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Third Party Logistics Planning with

Routing and Inventory Costs

Abstract

We address a scheduling and routing problem faced by a third-party logistics provider in planning its
day-of-week delivery schedule and routes for a set of existing and/or prospective customers who need to
make shipments to their customers (whom we call “end-customers”). The goal is to minimize the total cost
of transportation and inventory while satisfying a customer service requirement that stipulates a minimum
number of visits to each customer each week and satisfaction of time-varying demand at the end-customers.
Explicit constraints on the minimum number of visits to each customer each week give rise to interdepen-
dencies that result in a dimension of problem difficulty not commonly found in models in the literature. Our
model includes two other realistic factors that the third-party logistics provider needs to consider: the cost

of holding inventory borne by end-customers if deliveries are not made

Yust-in-time” and the possibility of
multiple vehicle visits to an end-customer in the same period (day).

We develop a solution procedure based on Lagrangian relaxation in which the particular form of the
relaxation provides strong bounds. One of the subproblems that arises from the relaxation serves to integrate
the impact of the timing of deliveries to the various end-customers with inventory decisions, which not
only contributes to the strong lower bound that the relaxation provides, but also yields a mathematical
structure with some unusual characteristics; we develop an optimal polynomial-time solution procedure for
this subproblem. We also consider two variants of the original problem with more restrictive assumptions
that are usually imposed implicitly in many vehicle routing problems. Computational results indicate that
the Lagrangian procedure performs well for both the original problem and the variants. In many realistic
cases, the imposition of the additional restrictive assumptions does not significantly affect the quality of the

solutions but substantially reduces computational effort.

Keywords: Third-party logistics; vehicle scheduling; period vehicle routing problem; inventory routing prob-

lem; delivery scheduling



1 Introduction

Our research was motivated by a problem faced by a California-based third-party logistics (3PL) provider
that offers shipping services in the form of full-truckload (or as-if-full-truckload) moves to its customers.
Most of its customers are manufacturing firms that supply components to downstream manufacturers or
finished goods to distribution centers, or distribution centers that supply large retail firms. Some of the
manufacturing customers use the 3PL to provide transportation to support vendor-managed inventory (VMI)
programs. For clarity, we use the term customer to refer to a purchaser of 3PL services and end-customer
to refer to a customer’s customers. Fach customer needs to supply items to its end-customers to satisfy
the end-customers’ daily demands on or before their respective due dates. The 3PL provider has a contract
with each of its customers to transport these goods, usually with a requirement on the minimum number
of deliveries per week for each end-customer. Typically, the 3PL provider’s customers would view more
frequent delivery as an element of better customer service. Perhaps more importantly, the end-customers
prefer more frequent deliveries to reduce their inventory holding costs, and the customers who are involved
in VMI programs directly benefit from reduced inventory at the end-customers (if the customers own this
inventory, as is common). We explicitly consider these factors in our model.

In this paper, we address the 3PL provider’s problem of selecting routes to execute on each day of the
week to service its existing and/or prospective customers. We consider the problem from the viewpoint of
the 3PL provider, who is seeking a cost-efficient solution while satisfying customer service requirements that
stipulate conditions such as frequency of delivery. Although the solution of this problem can be used for
operational purposes, the 3PL management initially approached us seeking to estimate the cost of servicing
a prospective customer in the context of preparing bids and/or negotiating the terms of a contract.

It is important to emphasize that the focus of this paper is on route selection and delivery quantity
decisions, and not on the construction of candidate routes, because a typical 3PL provider has little difficulty
generating a set of viable routes, taking into account the structure of the road network, traffic patterns, etc.
Our primary concern is to find an effective solution procedure for our problem given a practical set of
candidate routes.

The remainder of this paper is organized as follows. In the next section, we describe our problem in

more detail and present a mathematical formulation. Section 3 contains a review of the related research



literature. In Section 4, we discuss two restricted variants of our problem, and in Section 5, we present
our proposed solution approach for the original problem and the two variants. Computational results are

reported in Section 6, and Section 7 concludes the paper.

2 Model Description

Our research was motivated by a 3PL provider which, for reasons of material handling efficiency, usually
requires its customers to palletize the goods to be shipped. For this reason and for ease of exposition, we
assume that the volume of goods can be expressed in terms of a homogeneous unit, such as a standard
pallet. In the formulation that follows, we assume that all customers use the same standard unit, but we
only require that each customer’s basic unit of shipment be sufficiently standardized that we do not have to
address the “bin-packing” aspect of the truck loading problem.

We assume that the 3PL provider owns, leases, or otherwise controls a fleet of trucks and that the
trucks are homogeneous. We also assume that the 3PL provider has sufficient trucks to service the selected
routes. 3PL firms often have standing arrangements for rental vehicles when needed, and additional drivers
are available except in unusual circumstances. Thus, although limitations due to the number of vehicles or
drivers may exist, they do not play a major role in a 3PL provider’s route planning decisions. When using
our procedure to estimate the cost of servicing a new customer, the 3PL provider recognizes that additional
vehicles may be needed, and generally would not want to constrain the number of vehicles a priori. In
the concluding section, we explain how our approach can be generalized to accommodate non-homogeneous
vehicles and the cost of rental trucks when required.

Our problem framework has many customers and many end-customers. To distinguish among origin-
destination pairs, we use the term job type to refer to the movement of goods from a single customer location
to a single end-customer location. Each “route” in our problem consists of a sequence of jobs types. To
service a job type, a truck must arrive empty at a customer, pick up its goods, and deliver all of these goods
to an end-customer. Thus, routes consist of (customer, end-customer, customer, end-customer,...) sequences,
where for every customer, the end-customer is known. There are a number of reasons for assuming that routes
have this structure. The first reason is that the transport capacity is sold to customers in full-truckload (or

as-if-full-truckload) increments, and the vast majority of customers specify the minimum number of visits



per week such that the transport capacity is reasonably well utilized (over 50% on the average). Second,
many of the parts being transported are valuable and at risk of theft, so customers may require that the
truck be sealed in transit or that the truck proceed directly to the end-customer. One example of such
a part is a compact disc (CD) containing software. The manufacturing cost of the CD is negligible, but
the significantly higher retail price makes it a target for thieves. Third, when using our model to estimate
the cost of servicing a prospective customer, the 3PL provider may not be able to estimate in advance the
opportunities for consolidation of loads that would facilitate the construction of appropriate candidate routes.
This is especially true because our approach determines the shipment quantities rather than taking them as
given. In the concluding section, we discuss how one can make heuristic adjustments to take advantage of
consolidation opportunities ez post.

We emphasize that our motivating application precludes the need for focusing on the classical routing
problem. The number of possible routes is severely constrained by geographical and practical considerations.
For example, due to driver workday restrictions and the time required to load and unload goods, it is unlikely
that a route would contain more than four or five (customer, end-customer) pairs. Thus, the 3PL provider
can easily enumerate and determine the cost of all practical routes, and use these costs to select the best
route containing any given subset of (customer, end-customer) pairs.

Under mild conditions, namely (i) if route costs are linear in distance (or time), (ii) the triangle inequality
for driving distance (alternatively, time) holds, and (iii) the 3PL provider’s objective is to minimize total
route cost, it is optimal to service each job type as few days per week as possible (i.e., one day per week if
the total weekly shipment quantity is less than or equal to one truckload, or the minimum number of trucks
required to transport the load otherwise). Without additional economic incentives, the selected schedule will
contain the minimal number of shipments for each customer. In order to lower their inventory holding costs,
the end-customers desire as many shipments as possible. Indeed, they may desire just-in-time delivery of
their daily demands. Thus, the customers may be willing to pay more to provide more frequent service for
their end-customers. As a proxy for the customers’ willingness to pay, we include the cost of holding inventory
at the end-customer. Thus, we implicitly assume that end-customers are willing to reward customers for
decreased holding costs, and that customers in turn are willing to reward the logistics provider. Alternatively,
if the customer is providing VMI services and owns the inventory at the end-customer, the customer benefits

directly from reduced inventory levels. We also impose a lower bound on the number of delivery days for



each job type. Both the inventory holding costs and the lower bounds on delivery days encourage better
service (i.e., smaller, more frequent deliveries). The goal is to choose the routes to execute each day (and
thus implicitly the job types to service) and the delivery quantity for each job type to minimize the sum of
route costs and inventory holding costs over a horizon of T periods. In doing so, we must meet demands on
time at the end-customers and satisfy a lower bound on the number of delivery days for each end-customer.
Of course, some of these decisions may be fixed in advance to represent the unchangeable portion of the
existing schedule. A formulation follows.

Indices:

j: job type (specifies (customer, end-customer) pair)
r: truck route (specifies a sequence of stops)
t: time (day of week),t=1,....,T

Data:

¢r: total cost for executing route r

Dj;: demand of job type j on day ¢, expressed in standard units (e.g., pallets)
h;: one-period inventory holding cost for one unit of demand for job type j
b;: minimum number of days of service for job type j

ajr: 1if route r includes job type j; 0 otherwise

CAP: capacity of a vehicle in standard units (e.g., pallets)
Decision Variables:

zr¢: number of times route r is executed on day ¢

2;¢: number of units of job type j shipped on day ¢

vj¢: number of vehicles servicing job type j on day t = ) o, 2

y;i: 1 if there is one or more delivery of job type j on day t; 0 otherwise (implicit decision)

I: inventory of job type j remaining at the end-customer at the end of period ¢ (implicit decision)



minimize Z Z CrZrt + Z Z hjIjt
r t i t

s.t.
> yje > b Vi (1)
7
yje <wvjp Vit (2)
vt < Z Qjrzre Vi, t 3)
T
ILiy=1I;; 1 +z;— Dy Vj,t (4)
zjy < CAP v Vj,t (5)

y;¢ binary Vj,t

Zr¢, V5t NON-negative integers Vj,r,t

zjt, I non-negative Vj,t

The first set of constraints ensures that each job type receives its minimum required days of service
(or more). Without these constraints, a job type’s “frequency of service” requirements may not be met,
particularly if the end-customer’s demands and holding costs are low, and the incremental cost of servicing
the job type is high. The incremental cost of servicing a job type is high if the end-customer and/or the
corresponding shipment origin is located far from the truck depot and/or from the other customers and
end-customers. The second set of constraints ensures that a service day is credited only if the number of
truck visits (for that job type) is one or greater. The third set of constraints defines the v;; variables, and the
fourth set of constraints represents the inventory balance equations, which preclude shortages. The fifth set
of constraints limits the shipment quantity to the corresponding shipment capacity. Observe that constraints

(3) are expressed as inequalities rather than equalities. Due to the structure of constraint sets (1), (2) and



(3), it is optimal for the v;; values to be as large as possible; thus, constraints (3) are always satisfied as
equalities. The inequality representation aids in our solution procedure, as we explain in more detail later.

The formulation above addresses the problem for a finite horizon. At the 3PL provider that motivated
our work, the plan is expected to repeat periodically, usually weekly. For this reason, it is not essential
for the system to start and end the week with zero inventory. We do require, however, that the plan be

repeatable, and we therefore impose the constraints:

Lir = ILjo Vj. (6)

Of course, the model above does not explicitly represent all the possible complexities of real world
problems. It can, however, be modified to capture at least some of these complexities, including:

e multiple truck types (the formulation is for a single truck type);

e constraints on the number of routes or the number of truck-hours available in a day (unconstrained
here);

o delivery time constraints (unconstrained here; such constraints can be considered easily in the genera-
tion of routes);

e multi-day routes (single-day routes assumed here); and

e time-varying route and inventory holding costs (assumed time-invariant here).

Also, recall that we are addressing a problem in which each route consists of a series of one or more
(pick-up, drop-off) operations, which reflects the usual mode of operation at the 3PL provider that motivated
our research. Figure 1 shows an example of an allowable route. As a consequence of this assumption, truck
capacity limits apply only to a single delivery. Of course, for some applications, goods from two or more job
types may be loaded onto a truck simultaneously. Modifying our model to accommodate this problem variant
would significantly increase the complexity of the model. (We discuss this issue further in the concluding

section.)

INSERT FIGURE 1 HERE.



3 Literature Review

Our problem involves selecting routes for each day of the week and determining shipment quantities for each
customer (within the capacity constraints defined by the selected routes) to satisfy demands that may vary by
period. The latter decisions are similar to lot sizing decisions. The long history of research on deterministic
single-stage, single-item lot sizing models begins with the seminal work of Wagner and Whitin (1958) for
the uncapacitated model. Aggarwal and Park (1990), Federgruen and Tzur (1991), and Wagelmans et al.
(1992) developed faster exact algorithms for the uncapacitated case. For the capacitated problem, Florian
and Klein (1971) characterized the optimal solution for the case of constant capacity. Baker et al. (1978)
developed algorithms for the case of time-varying capacity, and Love (1973) characterized optimal solutions
when production and storage costs have a piecewise concave structure. Lippman (1969) analyzed the multiple
setup cost case, where there is a fixed charge for each increment of capacity (such as one truckload). We
discuss his results in more detail in Section 5.

Although we do not explicitly solve the routing problem, our problem contains features of both the Period
Vehicle Routing Problem (PVRP) and the Inventory Routing Problem (IRP). The PVRP is a multi-period
vehicle routing problem in which the decisions are the service day(s) for each customer and the vehicle
routes for a service provider on each day. Very few PVRPs in the literature consider inventory or other
costs associated with the selection of a particular day-of-week schedule. The emphasis is on minimizing
routing costs and/or the number of required vehicles. The most common assumptions are that the number
of visits during the horizon is fixed and that the delivery or pick-up quantity is the same for each visit. A
few authors do allow for different numbers of visits and/or different delivery quantities. Russell and Gribbin
(1991) allow an arbitrary allocation of the week’s goods among a specified number of deliveries for each
customer. Gaudioso and Paletta (1992) assume constant demand and equal delivery quantities, and impose
spacing constraints between deliveries, without accounting for the cost of holding the inventory required to
support such a delivery pattern while avoiding shortages. Similarly, Chao et al. (1995) explicitly account
for the effect of time-varying demand and the delivery patterns on the quantities to be delivered, but do not
consider inventory holding costs.

In contrast to the PVRP, IRPs more strongly emphasize the tradeoff between delivery and inventory-

related costs. Typical objective functions include vehicle routing costs, inventory holding costs, and shortage



costs. For articles on continuous-time problems with constant demand, see Dror and Trudeau (1996), Herer
and Roundy (1997), Federgruen and Van Ryzin (1997), Viswanathan and Mathur (1997) and Chan et al.
(1998), and references therein. For single-period problems with stochastic demands, see Federgruen and
Zipkin (1984) and Federgruen et al. (1986). For multi-period problems with stochastic demands see Webb
and Larson (1995), Herer and Levy (1997) and Bard et al. (1998) and the references therein. Finally, for
continuous-time problems with stochastic demand, see Larson (1988), Dror and Trudeau (1996), and Qu
et al. (1999). It should be noted that the vast majority of the multi-period problems and continuous time
problems with stochastic demand assume that demand is stationary.

Several IRP papers address problems that are closely related to ours. Chien et al. (1989) consider a
single-period model with deterministic demand in which the supplier has a limited quantity of the product,
and the goal is to maximize revenue less transportation and shortage costs subject to supply and demand
availability, and vehicle capacity constraints. Our problem is essentially a multi-period generalization of
the Chien et al. model with additional costs for inventory and constraints on the delivery patterns. Dror
and Levy (1986) consider a multi-period model in which the demand is constant but the required shipment
quantity depends on the delivery day, and each customer is serviced no more than once during the time
horizon. Bell et al. (1983) develop a model to minimize the cost of distributing industrial gases considering
the forecasted inventory levels of the customers. Dror et al. (1985) study a finite-horizon problem in
which each customer receives at most one delivery during the horizon and deliveries must occur before the
customer is projected to deplete his supply. Dror and Levy (1986), and Dror and Trudeau (1996) consider
generalizations and additional solution approaches for these models. Chandra (1993) addresses the joint
problem of warehouse procurement decisions and delivery (routing) to retailers for multiple products over
a finite horizon, and develops a heuristic for the problem. Chandra and Fisher (1994) examine a similar
problem in which a production schedule, rather than a procurement schedule, must be decided. Metters
(1996) examines the problem of coordinating delivery and sortation of mail when there are deadlines for
the completion of sortation, and solves the problem using commercial optimization software. Carter et al.
(1996) consider the problem of planning the delivery of multiple grocery items during multiple periods over
a finite, repeating horizon. A delivery pattern must be selected for each customer, and inventory allocations
and vehicle routes must be chosen on each day. Vehicle capacity, vehicle availability, route duration and

delivery time window restrictions apply. They develop a heuristic procedure for solving this problem. As



the size of the fleet is an important constraint in their motivating application, their procedure emphasizes
smoothing vehicle use. A variant of our problem without constraints on the number of service days per
week and with deliveries only (i.e., no intermediate stops for pickups) is addressed by Lee et al. (2003), who
construct annealing heuristics and derive certain properties of the optimal solution for their problem.

In contrast to the vast majority of PVRP models, our model specifically accounts for effects of different
delivery patterns on the inventory that must be held by the end-customer. In contrast to many IRP models,
our model directly addresses a multi-period problem with time-varying demand that may need to be satisfied
by more than one shipment during the horizon. Equally important is that our formulation of the problem
permits an exact representation of route costs (versus a fixed cost per delivery, cf. Carter et al.), an exact
representation of inventory costs incurred by the end-customer as a consequence of the delivery schedule, as
well as constraints on the number of deliveries per week for each job type.

None of the articles cited above accounts for all of the factors and constraints that we consider. For this
much more general and accurate representation of real-world, multi-period shipment problems involving both
pickup and delivery with days-of-service constraints that 3PL providers are facing, our major contribution
is developing an approach that produces near-optimal solutions relatively quickly.

It is important to highlight the complications introduced by the minimum days-of-service constraints.
Our problem exhibits strong links across multiple periods, not only because of the inventory costs induced by
the day-of-week delivery pattern for an individual customer, but because the incremental cost of servicing a
customer and the difficulty of satisfying that customer’s days-of-service constraint depend upon the delivery
patterns of the other customers. Although the economic interactions noted above arise in the IRP and some
versions of the PVRP, in those contexts, they tend to induce “soft” constraints that can often be negotiated
via earlier shipments (and the associated inventory costs). On the other hand, the “hard” days-of-service
constraints in our problem create structural linkages that cause the (general) integral route selection decisions

to play a stronger role in the solution of our problem.
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4 Problem Variants

In addition to (P) formulated in Section 2, we examine two restricted versions that may be applicable in
many problem environments. These restricted problems are not only realistic but can be solved using the
same solution framework as that described in the next section and with less computational effort. As our
discussion proceeds, we will explain why the problems are easier to solve. Here, we present the motivation
for the restrictions and the related changes in the problem formulations.

Variant 1:

In the first problem variant, we impose the constraint that each job type receives at most one visit per
day. In this case, at most a partial truckload could be shipped ahead of schedule on a given day. Such
a constraint would be imposed in practice if the customer insists on a low-inventory, almost-just-in-time
solution.

The formulation changes as follows:

e The z,; and vj; variables are now binary.
e The y;; variables are now equivalent to the v;; variables and can be removed from the formulation by
substituting v;; wherever y;; appears and removing redundant constraints (e.g., (2)).

e We add the constraint

Zajrzrt <1 VJ, t.
r

If the demand on a single day exceeds one truckload, then the job type can be replaced by multiple
(“dummy”) job types with the same physical origin and destination, where each of these job types has
demand of up to one truckload per day. (Of course, it is most economical to subdivide the goods into as few
truckloads as possible.) In this case, for each job type j whose demand exceeds a truckload on day ¢, we
define Jj; as the set of corresponding “dummy” job types and rewrite the constraint that defines visits as:

Yjt < Z Zairzrt
i€djs T

Although this constraint has a different form than the constraints in the original formulation, it has
the same structure as certain constraints in the formulation on which our solution procedure is based.
Consequently, we can easily handle demands exceeding a truckload for any job type on any day.

Variant 2:

11



The second problem variant does not restrict the number of visits for each job type; it simply permits
us to execute each route at most once on each day. The motivation for this constraint is the very small
likelihood of needing, much less choosing, the same route more than once on the same day. Such a need
would arise only if several job types that could comprise a relatively efficient route could all benefit from
receiving more than one truckload of good on the same day.

The only required change in the formulation is to make the z,; variables binary.

5 Solution Approach

The set partitioning problem, an NP-hard problem (Garfinkel and Nemhauser 1969), is a special case of
(P), which implies that (P) is NP-hard. To see this, consider the special case of our problem in which
inventory costs are ignored and inventory non-negativity constraints are not enforced except at the end of
the horizon. In this case, it is optimal to service each job type with as few vehicles as possible, and without
regard to the day of the week, so each “week” can be regarded as a single time period. Each job type
requiring more than one truckload in a week is replaced by an appropriate number of “dummy” jobs, in
the same way as in Variant 1. The z,; become binary rather than general integer variables. The routes are
defined for the set of “dummy” job types and the a;, values are defined accordingly. With these redefinitions
and appropriate simplifications of the objective function and constraints, the problem reduces to the set
partitioning representation of the single-period (standard) vehicle routing problem.

The inventory non-negativity constraints and inventory costs link the periods, thereby creating a problem
that is more difficult than a set partitioning problem. Indeed, as we report in more detail later, even small
instances of (P) are impractical to solve using commercial software. This necessitates the development of a
solution procedure that takes advantage of the structure of our problem. We first present a solution approach
for the general problem, and then explain how the procedure should be modified for the two problem variants.

We propose a Lagrangian approach to the problem in which constraints (2) are relaxed using multipliers
wjt (> 0) and constraints (3) are relaxed using multipliers A;; (> 0). Observe that expressing constraints
(3) as inequalities allows us to dualize them using non-negative Lagrange multipliers. This, in turn, provides
for a more meaningful interpretation of the \;; values, and, as we observed in preliminary computational

studies, a more stable solution procedure.
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Because we have relaxed constraints (2), the introduction of constraints (7) and (8), shown below,
which are redundant in the original problem, provides a stronger formulation for the Lagrangian procedure.
Constraints (7) ensure that a service day is credited only if at least one appropriate route is selected, while

constraints (8) ensure that the total number of truck visits is large enough to satisfy each job type’s demand.

Yjt S Z QjrZrt Vj,t (7)

3> ajezn > [CAPT'Y Dyl Vj (8)
T t t

Relaxing constraints (2) and (3) and adding constraints (7) and (8) yields two subproblems for fixed Aj;

and pj¢ values:

(P1)

minimize Z Z(CT — Z AjtQjr)Zrt + Z Z Yt
r t J J t

s.t.

D Ty >b; Vi
t
Yjt S Z QjrZrt Vjat

Zzajrzrt Z [-CAP_IZDjt] VJ
T t t

y;¢ binary Vj,t

zpt nON-negative integers Vr,t
and (P2)
minimize Z Z hjL + Z Z()\jt — [jt)Vjt
it it
s.t.
Li=Ii4t1+zj:—Dj Vj,t

13



Tt S CAP*th Vj,t

v;¢ non-negative integers Vj,t

zjt, I non-negative Vj,t

Subproblem (P1), the routing subproblem, is a variant of the PVRP with lower bounds on the number of
service days and on the number of truck visits over the horizon for each job type. In the objective function,
there is an adjusted cost for each route that accounts for the value of that route’s shipping capacity in meeting
the needs of customers on that route on that day, as well as additional “costs” corresponding to satisfying
the service-day requirements of the customers. The “standard” PVRP includes only terms containing the
zr¢ variables, and consequently, is much simpler. Problem (P1) is NP-hard for the same reasons as (P), via
the same reduction.

Observe that without the added valid inequalities (7) and (8), the optimal solution to (P1) would be to
identify, for each j, the b; smallest values of p;; and to set the corresponding values of y;; to 1 (otherwise set
yj¢ to zero) and to set z,¢ to 1 if its coefficient (reduced cost) in the objective function is negative (otherwise
set z,¢ to zero). Such a solution does not ensure consistency between the selected routes and the days of
service, and provides no guarantee that the number of routes is sufficient to handle each job type’s weekly
demand. Consequently, the “solution” is far from being feasible and its cost is a very loose bound on the
actual cost. The inclusion of constraints (7) and (8) provides substantially better bounds, primarily because
the resultant routing solution is feasible: the constraints on number of service days are satisfied and there
are sufficient routes to accommodate the required freight flows.

Subproblem (P2), the shipment scheduling subproblem, is a capacitated lot sizing problem with multiple
setup costs, one for each capacitated vehicle. Because it is a subproblem in a relaxation with a form that
allows some of the (adjusted) setup costs to be negative, when viewed as a stand-alone problem, (P2) could
have an unbounded objective. However, in our problem context, despite these negative setup costs, we must
devise a method that provides a strong bound in order to solve the original problem. It is from this vantage

point that we analyze (P2) and develop an optimal polynomial-time solution procedure for it.
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5.1 Analysis of (P2)

The second subproblem is separable by job type. Thus, in the remainder of this section, we consider the
problem for a single job type and omit the job type subscript. Lippman (1969) studies a class of multiple
setup cost problems that includes ours as a special case. He shows that there exists an optimal solution
consisting of regeneration intervals. (A regeneration interval is a set of consecutive periods with zero initial
and terminal inventory and with all intermediate periods having positive inventory.) Thus, the strategy is
to find the optimal solution for each potential regeneration interval, then to find the best combination of
regeneration intervals using a shortest path algorithm.

Lippman also shows that there exists an optimal solution such that:
It_l(iL‘t mod CAP) =0.

In other words, in each period, either entering inventory is zero or the shipment quantity is a multiple of a
full truckload (or both). Although not explicitly stated in his paper, a further implication of this result is
that within o regeneration interval, only the first period can have a partial-truckload shipment, as all of the
remaining periods must have I;_; > 0. As such, if all trucks have the same capacity (as in our problem), we
know exactly how many vehicles are sent within the regeneration interval.

Lippman’s result is based on the assumption that the setup costs are non-negative, and his result char-
acterizes the shipment quantities but does not explicitly state how many trucks should be sent. Of course,
when setup costs are positive, it is optimal to send as few trucks as possible to accommodate the shipment
quantity in each period. Lee (1989) and Anily and Tzur (2002), among others, have studied variants of
this lot-sizing problem in which multiple capacitated shipments (of arbitrary quantities) are allowed in each
period, but all of these models have the implicit assumption of positive setup costs. Pochet and Wolsey
(1993) study the special (restrictive) case in which the batch size must be some integer multiple of some
basic batch size, but they, too, assume that setup costs must be positive.

Our second subproblem has the unusual and distinctive characteristic that some of the (adjusted) setup
costs may be negative, and it is this characteristic that necessitates a different solution approach. The
approaches in the literature cannot be applied directly to our problem because they do not allow for the

combination of negative and time-varying setup costs. Both of these aspects arise in our second subproblem.
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In our problem, it may be optimal to send extra trucks, including some that are completely empty. To

avoid an unbounded solution, we impose the constraint

Ut S [EtDt/CAP-], Vi

which simply limits the number of trucks in any period to the number that would be required to service
all of the demand in a single period. Let o = [)_, D;/CAP]. (We later obtain stronger bounds on v, but
for the purposes of our present analysis, this particular upper bound is useful.) It is clear that v; = ©
for periods in which the corresponding coefficients are negative. The problem is now to determine how to
use this “free capacity” and how to make shipments in the remaining periods. We show that this modified
problem (with constraints on v;) has the same property as that derived by Lippman. We then show how to
construct an optimal solution (both the truck schedule and the shipment quantities) for this problem. For
ease of exposition, let K; denote the coefficient associated with v;.

Proposition 1: For a setup cost structure of the form K;v; where some of the K; values may be negative,

the optimal solution satisfies:

It_l(xt mod CAP)ZO

Proof: Suppose, to the contrary, that we have an optimal solution, z}, in which Iy 1 > 0and zf mod CAP >
0. The latter condition implies there is excess transportation capacity in period t. There exists some
€ = min{CAP — (z; mod CAP),I;_1} > 0 such that we can ship, in period ¢, € units that had been
shipped in some prior period, at a minimum savings of he. This contradicts the optimality of the original

solution. O

Observe that the possibility of trucks being sent empty does not change the implication of Proposition
1 with respect to the timing of a partially-filled truck. Thus, only the first period in a regeneration interval
can have a partial truck shipment. The complication in our problem is that we do not know in advance how
many trucks will be sent in a regeneration interval. However, we do know how many non-empty trucks will
be sent.

Consider a solution for a regeneration interval consisting of periods a through b, constructed as follows:
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Algorithm A2:

Step 1. For t = a, ..., b, set

k=a k=i+1
Step 2. Fort =a+1,...,b,
n* = argmaxo<n<i{K; — CAP s hx(t —n) — K,}
S =maxg<n<t{Ki —CAP s hx(t —n) — K,}
IfsS>0
set Tpx = Tp+ + 24

set x; =0

Step 3. For t = a, ..., b, set

Uy = [.Z't/CAP]

Step 4. For t = a, ..., b,

if Ky <0and v <0, set vy = 0.

In Step 1, the shipment quantity is set so that the fractional truckload is shipped in the first period and
beyond this, just enough full truckloads are shipped in each period so that demand is satisfied on time. This
tentative solution can be viewed as the schedule that is as close to just-in-time as possible while retaining
properties of the optimal solution.

In Step 2, we determine, for each period, the best earlier period into which we could shift full truckloads.
If the savings is positive, we shift all relevant truckloads. In Step 3, we set the truck variable v; equal to the
minimum number of trucks necessary to ship the quantity x;. Finally, in Step 4, we identify periods with
K; < 0 in which the maximum number of trucks is not yet assigned, and set the corresponding v; values to

their upper bounds. Note that Steps 2, 3, and 4 retain properties of the optimal solution.

Proposition 2: Algorithm A2 produces an optimal solution (z} and v}) for a given regeneration interval.
Proof: We first note that by Proposition 1, in some optimal solution for the regeneration interval, all
shipments except possibly that in the first period of the interval are integer multiples of truck capacity. In

this proof, we restrict our attention to schedules for which the property in Proposition 1 holds. Thus, Step
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1 of the algorithm assigns shipments so that the minimum number of non-empty trucks, and indeed, the
only possible number of non-empty trucks under the property in Proposition 1, are scheduled. Moreover, the
schedule constructed in Step 1 is such that each full truckload is scheduled as late as possible. Thus, the only
feasible changes entail moving full truckloads to earlier periods. Recall that the maximum number of trucks
in each period () is sufficient to ship the entire demand during the regeneration interval. Thus, for any moves
of full truckloads to earlier periods, we can consider the best time to dispatch each individual non-empty
truckload independently. Now, by construction of the algorithm, we cannot move an entire truckload from
one period to another while reducing costs (cf. Step 2). Had it been possible to reduce costs by removing a
truck with K; > 0 and shifting the load into a period with K; < 0, that shift would have been implemented
in Step 2. Furthermore, by Step 4 of the algorithm, we cannot reduce the total cost by adding empty trucks

to the solution. Thus, Algorithm A2 produces an optimal solution for the regeneration interval. O

We note that regeneration intervals can be considered independently. Thus, the optimal solution for
each possible regeneration interval can be determined using this algorithm, and a shortest path algorithm
can be used to select the optimal set of regeneration intervals.

Observe that Steps 1, 3 and 4 have linear time complexity and Step 2 has O(T?) complexity. Thus
the computation of the costs for the O(T?) regeneration intervals has O(T*) complexity. The shortest path
problem (to find the best combination of regeneration intervals) has O(T?) complexity. Consequently, the
overall procedure has O(T*) complexity. Observe, however, that the computations and comparisons are
extremely simple.

We note that for any time interval that could be covered by a single regeneration interval, there may be
an alternate dominant solution consisting of a set of shorter regeneration intervals. Such dominant solutions
are identified by the shortest path procedure. Thus, it is only necessary for our procedure to find an optimal
solution that satisfies the regeneration interval property for the time interval under consideration. Among
all such optimal solutions, we restrict our search to those satisfying an established property of the optimal
solution within a regeneration interval. By doing so, we are able to construct a very efficient solution
procedure for (P2).

Because of its structure, (P2) is easy to solve and produces a much stronger bound than its LP relaxation,

and thereby provides a significant contribution to strengthening the overall lower bound. In addition, as we
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will see later, including the fixed charge costs (via the dual variables) and the vehicle capacity constraints in
this subproblem also provides relatively fast convergence of the Lagrangian procedure because the solutions

of (P1) and (P2) are more consistent than they would be without these considerations in (P2).

5.2 Solution Procedure for (P)

Recall that in order to solve (P), we propose a Lagrangian approach in which we relax two sets of constraints
— those ensuring that each service day is correctly accounted for, and those defining the v variables.
Correspondingly, we associate a set of multipliers with each set of relaxed constraints. We employ variants
of the subgradient optimization method to update the multipliers at each iteration. (See the Appendix for
details.) For each set of multipliers, we first solve (P1) and (P2) optimally to provide a lower bound, which
we update if it has improved. We then construct a feasible solution by using the 27, values from (P1),

computing
Vit = Z asz:t Vi, t
T

and substituting the values of v;; (as fixed quantities) in (P2). We then solve (P2), which is a linear program
when the v;; values are fixed.

We observed that solutions constructed by the method described above often result in excess truck
movements, i.e., the v;; values are larger than necessary to handle the resulting shipment quantities. There-
fore, we also construct another feasible solution by taking the solution for (P2) and checking its feasibility
with respect to the customer service constraints. If the solution satisfies these constraints, for each day of
the week, we solve the associated problem (P1). Of course, if the solution for (P1) exactly satisfies the
shipping requirements from (P2), the solution is optimal and there is no need to re-solve the routing sub-
problem. Although we could make incremental changes to the routes from (P1) (i.e., eliminate excess stops),
in exploratory tests, such a method did not consistently produce good solutions.

We compute the objective value of the feasible solution and update the upper bound if the newly-
constructed solution has a better objective than the current upper bound. The multipliers are then updated
and the process is repeated until optimality is achieved, or the best feasible solution is within some tolerance of
the lower bound, or until the step size reaches virtually zero (thereby precluding any significant improvement

in the objective function value).
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Because we allow a repeating schedule rather than restricting the solution to one with zero initial and
ending inventories, constraints (8), which are retained in (P1), are sufficient to ensure that the z.; values
from (P1) will yield a feasible solution for (P2). If one is solving a finite horizon problem, then it may be
necessary to impose lower bound constraints on 22:1 > jrzpg for t =1,...,T and for all j to ensure that

the timing of trucks allows for a feasible solution of (P2) with the v;; values implied by (P1).

5.3 Modification for Problem Variants

Variant 1:

In this case, we only need to impose the tighter of the customer service (number of visit days) constraint
or the constraint related to total delivery capacity for each job type j. Noting that there exists an optimal
solution such that vjy = > ajr2zr, we can eliminate the vj;; variables entirely. With these simplifications,

T
(P1) becomes

(P1)

minimize E E (CT—E AjtQjr) 2
T t i

s.t.

ZZajrzrt > max {bj, |-CAP71 ;D]t-l} Vj

T t

Zajrzrt S 1 Vjat
T

Zp¢ binary Vr,t

The only change in (P2) is that the v;; variables are now binary, so the problem becomes a lot sizing
problem with standard (binary) setups. Recall, however, that because (P2) is derived from a relaxation, the
setup costs may be negative.

Variant 2:
In this case, the only changes are that the z,; variables are binary. The same solution procedure can be

used, but the constraint space is much smaller. Next, we discuss ways to further limit the search space.
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5.4 Bounding the v; Values

In this subsection, we describe methods to obtain upper and lower bounds on the values of v;; and conse-
quently also on ) ajr2p¢ for the original problem and for Variant 2. The upper bounds on >~ ajr2r¢ also
T T

have obvious implications for the individual z,; values in the general model where the z,; values may be
greater than 1. These bounds and their derivations are intuitive and we state them without proof.
Simple Bounds

The simple bounds are based on the observation that for customer j, service must occur on at least b;
days. Thus, the most that one would ship on a single day is the sum of demands on the T' — (b; — 1) days
with the greatest demands, as the demands on all of the other days would be shipped “just-in-time.” This
bound may be quite loose, but it is easy to compute and does not differ by day of week.
Cost-Based Bounds

The cost-based bounds recognize the economic tradeoffs between the “setup” (transportation) and hold-
ing costs. We can derive an upper bound on the number of times job type j is serviced on day t as follows:
First, we let the setup cost on day ¢ be equal to a lower bound on the smallest incremental cost of servicing
job j, which can be determined by finding the least expensive way to insert job type j into any (already-
generated) executable route. Then, we let the setup cost for all other days be equal to an upper bound,
for example, that derived from serving job type j alone. (Note that this route is always feasible.) With
these bounds on setup costs, we solve the associated lot sizing problem with multiple setups. The number
of trucks on day t in the solution of this problem is a tentative upper bound on vj; = )", @;r2¢. In other
words, we would not service job type j on day t any more times than if transportation costs were as cheap as
possible on day ¢t and as expensive as possible on the other days. This would be a valid bound if we did not
have a constraint on the number of service days. To account for this constraint, we note that if the initial
upper bound is equal to zero, it is economically unfavorable to service that job type on that day. To incur
the minimum penalty while contributing to the days of service, we would service that job type at most once
on that day. Thus, we can, without loss of optimality, set the upper bound on vj; equal to 1 in this case.

Similarly, we can find lower bounds on the v;; values by setting the setup cost on day ¢ equal to an upper
bound and the cost on the other days equal to a lower bound and solving the same lot sizing problem. In

this case, the days-of-service constraint does not necessitate any adjustment.
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Other Bounds

Observe that an upper bound on vj;; can be used as an upper bound on all z,; such that a;, = 1. Such
bounds may be useful when the upper bound on vj; is small (e.g., 1) and the corresponding 2z, values would
otherwise be constrained only by much larger values obtained from the simple bounds described above.

The analysis can be taken a step further by noting that another upper bound on z,; is:
min ; {upper bounds on vj;; such that o, = 1}.

In other words, the maximum number of times we would select a route is the minimum among the upper
bounds on vj; for the locations on the route. Bounds of this type may be useful when many locations have
small upper bounds on v;;. We did not implement this type of bound because of the computational effort

required for the large number of routes in our problems.

6 Computational Results

We perform a series of computational tests in order to evaluate the effectiveness of our algorithm on the
original problem and on the two problem variants. Before describing our computational study, it is important
to point out that preliminary computational tests showed that both (i) the bounds described in the previous
section and (ii) constraint sets (7) and (8) that are redundant in (P) but not redundant in (P1) are critical in
finding solutions quickly. Without them, our procedure is not efficient, and the standard implementation of
CPLEX applied to (P) is rarely able to find feasible solutions, even for problems of modest size. We report
results in which both solution approaches, i.e., our Lagrangian approach and applying CPLEX to (P), are
afforded the benefits from these additional valid inequalities. We next detail problem generation, and then

discuss results.

6.1 Problem Generation and Execution of Algorithms

We generate a variety of problem instances for our computational study. Each problem instance has a five day
time horizon. For each customer, the minimum number of days of service in a week is randomly generated
from a U[1,3] distribution. We chose this range for the minimum days of service because problems with
a four-day minimum service requirement are easier to solve and a five-day delivery requirement eliminates

day-of-week decisions altogether.
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The depot is located at the center of a 100 “mile” x 100 “mile” area. The location of each customer
and end-customer is determined by randomly generating (i.i.d.) horizontal and vertical coordinates from a
U[0,100] distribution. All customer locations are thus distinct, so there is a one-to-one relationship between
customers and job types. Once customer and end-customer locations are generated, we use Euclidean
distances and assume that transportation costs are linear in the travel distance (normalized to $1 per “mile,”
which is roughly equal to the true variable cost for many 3PL providers). All trucks are assumed to have a
capacity of 20 units (e.g., pallets).

Each customer’s daily inventory holding cost per unit is generated from a UJ[0.5,5] distribution. This
range of inventory holding costs corresponds to goods whose value may be as much as approximately $20,000
per (full) truckload. For such goods, less-than-daily delivery may be warranted, necessitating day-of-week
decisions.

To generate candidate routes, we initially generated all combinations of 1, 2, 3, or 4 job types. In typical
applications involving the transport of components to manufacturers and finished goods from distribution
centers to retailers, the combination of transit times between customers and end-customers and enroute
loading and unloading time limits the number of customers that a single vehicle can service to about 4 job
types in a typical work shift, especially in congested urban areas.

Before solving the traveling salesman problem (TSP) for each combination, we apply a filter which
eliminates those combinations for which a very loose lower bound on total route time exceeds a 7.5 hour
work-day. We assume an average driving speed of 40 miles per hour (which is similar to the value used by
regional delivery companies in major metropolitan areas), and a total of 30 minutes for loading, unloading
and waiting time associated with one delivery. For those combinations that pass the filter, we solve the
TSP (by enumeration) and eliminate the combination if the route time for the optimal TSP solution exceeds
the 7.5 hour threshold, or retain the best TSP routing if the route time is below the threshold. However,
we retain all single-job-type routes, even if they exceed the route time threshold, to ensure that a feasible
solution exists.

We solve one set of (“small”) problems with 25 customers and their respective end-customers. The
problem sizes in this set are limited in order to allow us to compare our heuristic solutions with those
obtained from commercial software. The second set contains (“large”) problems with 50 customers and their

respective end-customers. All computations are performed on a Sunblade 1000 with 1 GB RAM. CPLEX
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7.0 is utilized for (P) and its variants, as well as for the subproblems in the Lagrangian procedure. We use
AMPL as the matrix generator for the solver, and as the scripting language for the Lagrangian procedure.
In all instances, we record only the solve time required.

For each problem instance, we solve the original version of the problem (P), as well as Variants 1 and 2.
We first generate bounds on the vj;; values, as described in Section 5.4, to be applied in the original version
and in Variant 2. We execute our Lagrangian procedure as well as CPLEX applied to each variant of (P),
utilizing all relevant bounds on the v;; values. We employ an optimality tolerance of 2% for both procedures,
and, because preliminary results indicate that the quality of the CPLEX solutions for the original problem
and for Variant 2 do not improve significantly after several hours, we impose a time limit of 4 hours on both
the 25-customer and the 50-customer problems. The four hour time limit allows for a reasonable tradeoff
in both solution procedures between optimality and solution time. In executing the Lagrangian procedure,
we terminate it when either the optimality tolerance or the time limit is reached, or, additionally, when the
step size becomes zero to within the precision of the computer (precluding significant improvement in the
objective function value), whichever comes first. (See the Appendix for details of CPLEX parameter settings
and numerical implementation issues.)

We discuss parameters specific to the problem sets, along with computational results, below.

6.2 25-Customer Problems

For this set of 10 problems, we generate demand for each customer and each day from a truncated Normal
(n = 10,0 = 3) distribution, rounded to the nearest integer. For these problems, it is unlikely that more
than one vehicle will visit a customer on a given day in a good solution (i.e., it is unlikely that v;; > 1).
Consequently, even Variant 1 would not be overly constraining for these problems. For this set of problems,
after applying our filter, the number of remaining routes is about 7,000, corresponding to between 8,000
and 34,000 binary variables for Variants 1 and 2 (and a few hundred integer variables for Variant 2), and
a corresponding number of integer variables for the original problem. The problems contain about 500
constraints.

In Table 1, we report the objective values for the problem variants and for the two solution procedures,
along with the corresponding optimality gaps (best objective from procedure/lower bound from procedure -

1). Where optimality gaps are not reported, the gap is less than 2%. For Variant 1, both procedures solve
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Prob. Variant 1 Variant 2 Original Problem (P) Benchmark
No. CPLEX ‘ Lagrangian CPLEX ‘ Lagrangian CPLEX ‘ Lagrangian

Objective Function Values (% Gap)
1 8302 1 8353 8483 (5.0%) 8351 8390 (3.9%) | 8298 (4.0%) | 10701
2 7778 7816 7842 (5.6%) 7782 8001 (7.4%) | 7793 (8.3%) 8962
3 7581 7574 7889 (10.2%) 7588 7838 (9.6%) | 7617 (7.8%) 9282
4 9015 9054 9757 (14.7%) 9074 9710 (14.3%) | 9054 (6.2%) 11621
5 7535 7587 7672 (7.3%) 7582 7782 (8.7%) | 7577 (7.7%) 9263
6 7091 7126 7298 (9.3%) 7149 7366 (10.1%) | 7160 (7.4%) 8727
7 7011 7049 7172 (8.1%) 6979 7138 (7.6%) | 6979 (4.5%) 8864
8 8244 | 8336 (2.3%) | 8509 (10.4%) 8274 8422 (9.5%) | 8287 (7.6%) | 10348
9 8288 8291 8587 (11.4%) 8303 8825 (13.7%) | 8264 (5.3%) 9869
10 6792 6829 6860 (5.8%) 6827 6878 (6.0%) | 6806 (5.0%) 8526

Solution Times (seconds)

1 130 312 * 164 * 421
2 1300 599 * 925 * 1021
3 860 176 * 225 * 660
4 47 21 * 103 * 205
b} 1500 570 * 294 * 571
6 2600 324 * 1371 * 1033
7 1000 825 * 406 * 1183
8 980 874 * 301 * 472
9 310 189 * 79 * 284
10 3100 2164 * 604 * 1381

t If gap percentage is not reported, gap is less than 2%.
* Indicates that CPLEX reached the time limit of 4 hours.

Table 1: Objective values, corresponding gaps and solution times for 25-customer problems

all 10 problems to within approximately 2% of their respective lower bounds fairly quickly.

Variant 2 and the original problem are more difficult to solve. For Variant 2, the Lagrangian procedure

identifies solutions within 2% of their respective lower bounds for all 10 scenarios in less than 25 minutes of

CPU time, whereas after 4 hours of computing, CPLEX applied to (P) identifies solutions with optimality

gaps of between 5% and 15%. For the original problem, the Lagrangian procedure identifies solutions within

5% of their respective lower bounds for 3 of the problems and within 8.3% for all 10 problems before the

step size becomes virtually zero. CPLEX applied to (P) identifies a solution within 5% of its lower bound

for only one problem, within 10% of its lower bound for 7 of the 10 problems, and within 14.3% for the
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remaining problems. Although the Lagrangian solutions have optimality gaps of up to 2% for Variant 2 and
up to 8.3% for the original version of the problem, for each of the 10 problems, the Lagrangian procedure
finds a solution that ranges from one-half of one percent to more than 7% percent better than the solution
identified by CPLEX applied to (P), with an average improvement of approximately 2-3%. In addition to
providing better solutions, the Lagrangian procedure consumes, on average, less than 5% of the CPU time
for our (fine-tuned) CPLEX implementation on the corresponding instances of Variant 2 and the original
problem.

For the distribution from which we generated demands, the v;; < 1 and 24 < 1 constraints present in
Variant 1 are unlikely to affect the optimal solution. The imposition of these constraints reduces the search
space so the Variant 1 problems require considerably less CPU time than the other problem variants; thus,
Variant 1 can be solved with a straightforward implementation of CPLEX applied to (P). Thus, where it
is reasonable to assume that v;; < 1 in an optimal solution, the application of Variant 1 appears to be a
practical alternative.

A typical 3PL provider would not explicitly consider the consequences of its selected route schedule
on the cost of holding inventory at the end-customer. But the 3PL provider has the opportunity to offer
tangible value to the party who bears the cost of holding inventory by offering more frequent service, and
this value can translate into additional revenue for the 3PL provider. For this reason, we are interested in the
consequences of ignoring inventory holding costs. To make this assessment, we use CPLEX applied to (P)
(although, in principle, we could have used either procedure) to solve Variant 1 with the inventory holding
costs set to zero. This version of the model is identical to the standard PVRP with the usual assumptions
that (i) at most one visit is made to each end-customer (drop-off location) each day and thus also (ii) each
route is executed at most once each day. This models the situation faced by the “traditional” 3PL provider,
who optimizes his own costs (while ignoring those of his customers). To tabulate the full cost of this solution,
we add the consequent inventory costs. We treat this total cost as a benchmark which we then compare
to optimal or near-optimal solutions to estimate the system-wide benefit of explicitly considering customer
inventory costs. Observe that whether or not the 3PL provider explicitly considers end-customer inventory
holding costs when determining a delivery schedule, the end-customers will incur these costs directly, in
addition to indirectly incurring the cost of transportation from the 3PL provider.

The benchmark objective values are about 15% to 30% greater than the corresponding values from
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Variant 1 (the most constrained version of the problem), suggesting that accounting for inventory costs leads
to significantly better solutions if the 3PL provider is currently ignoring inventory costs. Even if the 3PL
provider considers inventory costs indirectly by offering customers the possibility of better service at a higher
price, there may still be opportunity from using more accurate “value pricing,” particularly for customers
with expensive goods. In view of the thin profit margins in the trucking industry, even a portion of a 15%

to 30% gap is likely to be large enough to have a significant effect on the bottom line.

6.3 50-Customer Problems

Our primary reason for solving 50-customer problems is to demonstrate that problems of the sizes observed
in some practical applications can be solved by our procedure. Large logistics providers typically subdivide
their customers into geographical districts, and/or according to the type of vehicle required, e.g., standard,
refrigerated, extra shock protection (used for sensitive electronic goods), small vehicles (for narrow roads or
hilly terrains). The corresponding problems would then also be separable by these job type categories.

Recall that one of our goals in constructing the Lagrangian procedure is to develop a viable method of
solving problems for which the usual PVRP assumption of vj; < 1 might be unnecessarily restrictive. Because
only highly correlated demands among customers on relatively “efficient” routes (with little deadheading)
would lead to z,; > 1, we generate customer demands in such a way that we could test Variant 2 and
our original problem for cases with some individual demands exceeding a truckload. We solve 10 problems
with 50 (customer, end-customer) pairs. Demands are generated from a truncated Normal (p = 20,0 = 5)
distribution, rounded to the nearest integer.

After applying the route filter, these problem instances contain about 60,000 routes. In general, these
problems contain between 250,000 and 600,000 binary variables (and a few hundred integer variables) for
Variant 2, and a corresponding number of integer variables for the original version of the problem. The
problems contain between 1000 and 1500 constraints, on average.

Results for the 50-customer problems appear in Table 2. Where optimality gaps are not reported, the
gap is less than 2%. CPLEX applied to (P) fails to find a feasible solution within 4 hours of CPU time for
9 out of the 10 problem instances (for both Variant 2 and the original problem). On the other hand, the
Lagrangian procedure identifies a solution within 2% of optimality in 9 of the 10 cases for Variant 2, and in

the tenth case, the optimality gap is only 2.3%. The Lagrangian procedure also identifies solutions within 2%
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Variant 2 Original Problem P
CPLEX Lagrangian CPLEX Lagrangian
Prob. obj. value time obj. value time obj. value time obj. value time
No. (% gap ) (sec.) (% gap ) (sec.) (% gap ) (sec.) (% gap ) (sec.)
1 — * 211067 10700 — * 21145 (7.9%) *
2 23876 (5.7%) * 23673 4760 | 24121 (6.7%) * 23612 (5.5%) *
3 — * 23770 13800 — * 26640(18.0%) *
4 — * 22300 12400 — * 21038 9660
5 — * 21455 (2.3%) * — * 22480 (14.7%) *
6 — * 20323 11900 — * 20327 (7.2%) *
7 — * 22526 7410 — * 21499 7540
8 — * 22535 13400 — * 22129 (6.1%) *
9 — * 18432 2000 — * 18432 3220
10 — * 23443 5910 — * 23397 (6.0%) *

* Indicates that the procedure reached the time limit of 4 hours.

t If gap percentage is not reported, gap is less than 2%.

Table 2: Objective values, corresponding gaps and solution times for 50-customer problems

of optimality for 3 of the 10 cases of the original problem. In the remaining 7 cases of the original problem,
the Lagrangian procedure provides solutions that are generally within 8% of the corresponding lower bound,
but the gaps range up to 18%. We allowed the Lagrangian procedure to run to termination (i.e., until the
step size equals virtually zero) for the two problems that have large (> 10%) gaps at the 4 hour time limit,
and found that at termination, solutions within 7% of the respective lower bounds were achieved.

Solving the original problem with 50 customers is evidently quite difficult, but the Lagrangian procedure
reliably finds what appear to be good feasible solutions, while, for the vast majority of problem instances,
CPLEX applied to (P) is unable to find any feasible solution.

A portion of the difficulty of solving 50-customer problems is due to the large number of routes. In
practical applications with several dozen job types, a 3PL provider would rarely consider including 50,000+
routes as we have done in our computational study. In practice, routes would be eliminated due to factors
other than route time, so the usable set would be much smaller. Consequently, problems with more job types
and proportionally fewer routes are within the range of what could be solved in practice.

Although the Lagrangian procedure produces excellent solutions in most cases, it could also be used to

provide strong bounds in a branch-and-bound framework if one desired to use an enumerative procedure
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to find better solutions. The Lagrangian procedure could be executed differentially at various nodes in the
branch-and-bound tree to take best advantage of its flexibility.

Overall, the Lagrangian procedure appears to be a promising approach, especially for solving these
difficult problems in which v;; may exceed 1, where there are strong interactions among the decisions across

both locations and time periods.

7 Summary and Conclusions

We have modeled a multi-customer, multi-period delivery scheduling problem faced by a third-party logistics
provider in which routes must be selected, and delivery quantities must be decided while satisfying constraints
on the number of customer visits during a specified horizon. We have developed a solution procedure based
on Lagrangian relaxation to minimize the total cost of transportation and inventory.

In this paper, we focus on the route selection and delivery quantity decisions because a typical 3PL
provider has little difficulty generating a practical set of candidate routes, taking into account the structure
of the road network, traffic patterns, etc. Our primary concern was to find an effective solution procedure
given a good set of candidate routes. We constructed a relaxation that provides strong bounds, owing largely
to the combination of the following: (i) the identification of additional valid inequalities that “tighten” the
formulation and the relaxation, (ii) the economic structure of the relaxation in which one of the subproblems
integrates the impact of the timing of deliveries to the various end-customers with the inventory decisions, and
(iii) upper bounds on the values of certain decision variables that are derived from the solutions to variants of
certain subproblems. The subproblem mentioned in (ii) above has the unusual feature of potentially negative
setup costs (for some values of the Lagrange multipliers) and we develop an optimal polynomial-time solution
procedure for it.

We also consider two variants of the problem in which we impose one or both of the constraints implicitly
assumed in much of the literature. The weaker of the two constraints permits a route to be used at most
once each day, and the stronger constraint limits the number of routes servicing each customer each day
to at most one. Computational results indicate that the Lagrangian procedure performs well on difficult
problem instances for which it is ineffective to simply apply CPLEX to (P). The results also suggest that the

imposition of the additional simplifying constraints does not significantly affect the quality of the solutions
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when it is unlikely that two trucks will be sent to a single customer on the same day in an optimal solution,
and that the resulting problems require much less computational effort to solve. When demand is such that
more than one stop per day is required at a customer (i.e., Variant 2 or (P) is appropriate), the Lagrangian
procedure obtains very good solutions fairly quickly. More notably, the Lagrangian procedure produces very
strong bounds, and thus may be valuable within a branch-and-bound procedure.

Several generalizations can be handled with no modification or only minor modifications to our approach.
Time varying costs require no change in the solution procedure. Constraints on route duration and delivery
and pick-up time windows can be considered in the route generation routine. Heterogeneous truck types can
be handled by generating routes applicable to each truck type. If a job type can be serviced by more than
one type of vehicle, then our algorithm for (P2) cannot be used directly, but because this subproblem is
separable by job type, it can be solved using commercial software with a concomitant increase in the CPU
time. If truck availability imposes practical limitations and rental vehicles are available, it would be possible
to add the cost of a rental vehicle to each route and solve the problem in the usual way. The ability to avoid
rental costs for the routes covered by the 3PL provider’s own vehicles would create a “sunk” benefit in the
model (i.e., it would appear as a non-controllable “cost” in the objective function that would not actually
need to be paid), and the rental costs for all additional vehicles would be properly accounted for.

Multi-day routes can be handled with a modification to the formulation to account for the actual day
of delivery and the extra cost of inventory due to goods in transit. Also, allowing multiple shipments to be
loaded onto a truck at the same time can be handled, in principle, for small, pre-defined sets of job types
that typically have small shipments. Considerable “bookkeeping” effort in the route generation scheme may
be required, as well as a change in the solution method for P2. (The revised version of P2 could still be
solved easily using commercial software.) Of course, if the solution generated by our procedure allows for
consolidation of loads for customers that happen to be on the same route, then any such route can be
modified to take advantage of such opportunities if they reduce costs.

The Lagrangian procedure may be enhanced by devising more effective multiplier adjustment methods
especially designed for this problem, or other methods for constructing feasible solutions from the Lagrangian
solutions. Also, if the problem contains a particularly large number of potential routes, it may be possible to
generate only a subset of the routes a priori and to utilize a column generation-based approach to construct

other economically viable routes. Further research is needed to explore the implications of such a strategy.

30



Recall that subproblem (P2) already is separable by customer, so it is easily solved for large numbers of

customers. It may be necessary, however, to devise a more efficient solution method for subproblem (P1).
Further research is also needed to consider more rigid constraints on allowable day-of-week combinations

(e.g., MWF or Tu-Th) and the possibility of backorders, and to handle uncertainty in demand and transit

times.
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Appendix: Computational Implementation Issues

CPLEX

For all executions of the CPLEX software on the original problem and its variants, we use strong branching,
i.e., the branching variable is selected whose resolution is most likely to yield the greatest improvement in

the objective function value. This setting provides the best overall performance.

Lagrangian Procedure

Within the Lagrangian procedure, we employ variants of the standard subgradient optimization method to
update the multipliers. For Assumption 1, we use the variant of the subgradient procedure (Held et al. 1974)
described in Camerini et al. (1975). For Variant 2 and the original problem, we use a version in which the
scale factor is halved if the lower bound has not improved after 5 iterations. We also update the multipliers
using a weight of 0.35 on the slack from the prior iteration and a weight of 1 on the slack from the current
iteration.

To solve subproblem (P2), which can be solved easily using CPLEX (thus obviating the need for the
special-purpose algorithm developed in Section 3.1), we use the default branch-and-bound algorithmic set-
tings, including the default optimality tolerance of 0.0001.

Subproblem (P1) is more difficult to solve than (P2). For the original formulation and for Variant 2,
we use the solution from the prior iteration as a “warm start” for the next iteration. We do not utilize
the CPLEX-generated cuts because we observed that they do not provide much benefit relative to the CPU
effort. We also select the CPLEX parameter setting that emphasizes optimality over feasibility. We solve
each subproblem to within 5% of optimality or stop after 1000 seconds, whichever occurs sooner. For Variant
1, we similarly use the solution from the prior iteration as a “warm start” for the next iteration and we turn
off the CPLEX-generated cuts. We use a search strategy in which the branching variable is selected based on
“pseudo-reduced” costs, i.e., estimates of the change in the objective from rounding a fractional variable to
the nearest integer; the branching node is selected based on the best integer objective that can be achieved
from solving the subproblem corresponding to all nodes eligible for selection. We solve each subproblem to
within 1% of optimality. The ease with which these subproblems are solved in contrast to those in Variant

2 and the original problem obviates the need for a time limit.
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customer A4

Figure 1: Depiction of an example route
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