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Front-end loaders extract sand and gravel (aggregate) from a pit and haul it to a feeder, which releases the
aggregate onto a conveyor belt that is connected to a stockpile; the material is subsequently distributed to a
processing plant. As mining progresses, the mining frontier moves farther away from the feeder, increasing
loader cycle time. In turn, plant managers add loaders to maintain production rates. Eventually, the feeder must
be moved closer to the mining frontier. Such a move requires shutting down production so that a crew can
move the feeder. Historically, because a feeder movement did not occur until all loaders were in operation, such
feeder movements overtaxed the loaders and lacked advance warning. We present a model to determine how
often the feeder should be moved to the mining frontier. A shortest-path algorithm can quickly solve our model
to minimize feeder movement and loader cycle-time costs. This model revolutionizes how aggregate companies,
specifically Front Range Aggregates, plan feeder movements.

Key words : optimization; network models; shortest-path models; applications; quarry-mining operations;
production planning.
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Aggregate consists of (i) crushed stone, and
(ii) sand and gravel, including cobble. Both cat-

egories include boulders. In 2007, US crushed stone
output was 1.59 billion tons with a value of $14
billion, distributed over 1,370 companies principally
operating 3,360 quarries (Willett 2008). US sand and
gravel output was an estimated 1.17 billion tons in
2007. Its value was about $8 billion, distributed over
4,000 companies (Bolen 2008).
In 2004, Front Range Aggregates, with estimated

annual sales of between $1 million and $2.5 million,
acquired the Parkdale property, a 100-acre glacial
granite deposit at the southern end of the Colorado
Front Range. The deposit contains sand, gravel, cob-
ble, and boulders. The sand and gravel resulted from
a load of sediment that meltwater deposited in front
of a glacier many thousands of years ago; the cob-
ble arrived by glacial transport; the boulders were
the result of a flood. Previous investigations suggest

that a few million tons of sand, gravel, and granite
lie within the deposit. Another aggregate company
had owned and operated the deposit from 1999–2003
before declaring bankruptcy in March 2003.
At its Parkdale Property, Front Range Aggregates

employs a plant manager and 13 hourly workers in
five 10-hour production shifts and five 8-hour main-
tenance shifts per week. Typically, three people per-
form maintenance and the remainder work on the
production shift. The company uses five major pieces
of machinery. Three wheel loaders, each with a capac-
ity of approximately 8–10 tons and a capability of
traveling at about 30 feet per second (20 mph), extract
aggregate from the deposit and transport it to a feeder
(a large funnel). A skid-steer loader clears large rock
and other debris from the area around the loader
paths and near the feeder. A track excavator is used
for dewatering ditches. For the purposes of our study,
we assume that all equipment in the mine has been
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Figure 1: Loaders excavate material from a mining frontier that separates
the excavated from the unexcavated material. They haul the material to a
feeder, where the material is funneled onto a conveyor belt, transported
to a (surge) stockpile, and then fed to a processing plant.

determined; i.e., we make no decisions regarding the
type of equipment to purchase or use. We also assume
that the loaders are placed into operation in decreas-
ing order of their efficiency.
The feeder regulates the flow of suitably sized rock

onto a conveyor belt, which runs to a stockpile near a
processing plant. The stockpile acts as a buffer so that
the plant receives material at a constant rate. Figure 1
depicts the flow of material from the mining frontier,
i.e., the area from which material is currently being
extracted, to the feeder, then to the stockpile, and
finally to the plant (Figure 2).
At the processing plant, the rock is separated by

size using gravity and agitation. Excavators first re-
move boulders from the material, which is then
passed through a set of steel bars (the grizzly) that
separates cobble from the rest of the material. A jaw
crusher breaks the remaining material finely enough
to pass through two rectangular 8 by 20-foot vibrating
deck screens that categorize the aggregate as: (1) not
fine enough to pass through the first screen, (2) fine
enough to pass through the first, but not the sec-
ond screen, or (3) fine enough to pass through both
screens. The resulting fine-granularity rock bypasses
the primary cone crusher, while the coarser rock is
ground more finely than in the jaw crusher. Three 8
by 20-foot stacked, vibrating deck screens divide the
aggregate into four different granularities. From there,
the rock may be categorized into pea gravel or con-
crete stone, as sand and washed with a sand screw
before being used in concrete, or the rock may be sent

Figure 2: A loader dumps material into a feeder (top); the feeder is con-
nected to a series of conveyor belts (bottom) that transports the aggregate
to a stockpile prior to transporting it to the processing plant. Sources: loader
photo retrieved from Web August 31, 2005; conveyor photo retrieved from
http://www.rocksystems.com/images/inventory/506-P-4.jpg.

through either another three deck screens (7 by 20 feet
in dimension) and/or a secondary cone crusher and
categorized as 3/4-inch rock, 1/2-inch rock, or crusher
fines. Splitters, the granularity of the deck screens,
and the settings on the crushers regulate the size of
rock that flows through various parts of the plant
and ultimately into piles of finished product. These
settings are important for meeting demand specifica-
tions, and the combination of settings allows the plant
to run smoothly. For example, a splitter might ensure
that fine material avoids a crusher, and a crusher
produces smaller, more-jagged rocks to meet product
specifications. Figure 3 depicts a schematic of the pro-
cessing plant.
The company’s end-products are sand, concrete

stone, 3/4-inch rock, crusher fines, 1/2-inch rock, pea
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Figure 3: The processing plant uses gravity and agitation to recover sand, pea gravel, concrete stone, two sizes
of rock, and crusher fines from the aggregate. Crushers grind the rock while splitters and screens appropriately
categorize it.

gravel, and cobble, with percentages of total output
as 29, 18, 18, 14, 11, 7, and 3 percent, respectively.
Boulders contribute a negligible amount to overall
output. Sand, pea gravel, concrete stone, 3/4-inch
rock, and 1/2-inch rock are used in the production of
concrete and asphalt. Crusher fines and sand are used
primarily for structural fills and beddings (e.g., as a
reliable material on which a road can be built). Cob-
ble, rock fragment between 2�5 inches and 10 inches
in diameter, is used for erosion control in construction
such as housing developments. Boulders are used as
landscaping materials. A loader transports end prod-
ucts from piles of output at the plant directly to a
rail car on a track that circumscribes the plant. This
spur connects to a main rail line, which runs to Front
Range transloading sites, where customers (ready-
mixed concrete and asphalt manufacturers, construc-
tion contractors, and landscape designers) use trucks
to transport the end product to their sites.

Economic Analysis
Economic analysts use geographic sampling, expected
operational costs, and market information to deter-
mine if a mine is likely to be profitable. Geological
investigators sample the field by drilling holes to find
the approximate composition of the proposed min-
ing area. They consider fixed costs associated with
depreciation, exploration, development, permitting,

insurance (e.g., for floods), equipment, employee
salaries, and county, state, and federal income taxes.
Analysts must also consider the cost of building and
maintaining a rail line on the property. In addition to
fixed costs, expenses include wages of hourly employ-
ees, and costs associated with plant and equipment
maintenance and repair, loader fuel, utilities (primar-
ily electricity), and stripping (i.e., removing vegeta-
tion, topsoil, and overlying waste material from the
deposit).
Economic analysts compare these costs to the cur-

rent average selling prices for aggregate products. If a
mine could yield a profit, the mining company must
ensure that its operations are efficient and its extrac-
tion costs are low. Some gravel pits and aggregate
quarries operate on such a thin margin that the com-
pany realizes a profit only when, at the end of the
mine’s life, the company seals the resulting hole and
sells it to a city or county for use as a water reservoir.

Related Work
A large body of optimization research in surface min-
ing addresses the ultimate pit limit problem, i.e., deter-
mining the boundaries of the mine such that the
extracted material is, on average, profitable. Ahuja
et al. (1993) show that the ultimate pit limit problem
is a maximum-flow model. In this context, research
often focuses on making efficiency improvements to
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Lerchs and Grossmann’s (1965) seminal exact algo-
rithm for determining ultimate pit limits, e.g., Under-
wood and Tolwinski (1998) and Hochbaum (2001).
Other authors provide heuristic approaches to the

problem without including assumptions, e.g., Sevim
and Lei (1998). Wilke and Reimer (1977) and Johnson
(1969) formulate linear programming production-
scheduling models for use in the short and long
terms, respectively. Generally speaking, their models
determine the amount of material to extract and pro-
cess either over a single period in the short term or
over multiple periods in the long term to maximize
profits subject to operational (e.g., block sequencing)
or quality constraints, and production-capacity con-
straints. Johnson (1969) suggests a decomposition pro-
cedure to solve problem instances. Fytas et al. (1993)
combine simulation (to model long-term decisions)
and linear programming (to model short-term deci-
sions) to maximize cash flow over the life of a mine.
Akaike and Dagdelen (1999), Erarslan and Celebi
(2001), Johnson et al. (2002), and Caccetta and Hill
(2003) propose integer programming generalizations
of the above. Onur and Dowd (1993) and Ramazan
and Dimitrakopoulos (2004) take the ultimate pit lim-
its as given; however, they consider the inclusion of
roadways in a mine and variability in the grade of a
production block, respectively. For a more complete
review of the literature on open pit mine scheduling,
we refer the reader to the references contained in the
above papers, especially in Erarslan and Celebi (2001),
who provide a thorough review of optimizing open
pit mine scheduling operations.
Aggregate quarries are homogeneous and usually

relatively shallow because they contain solid rock
or shale. Ultimate pit limits are relevant in a 2,000
foot-deep deposit that might have metal of vary-
ing qualities at various depths; however, low-quality
aggregate is simply left unmined because the qual-
ity of the material deeper in the shallow pit is not
likely to improve. Aggregate mining operations are
fundamentally different, and, in some sense, less com-
plicated than those described in the generalizations
of the work of Lerchs and Grossmann (1965). How-
ever, aggregate mines do use some quantitative mod-
els. For example, Norton (1991) describes mine- and
quarry-design software to locate haulage roads and
dewatering pipelines, and to quantify the economic

impacts of certain mine-planning decisions. Gove and
Morgan (1994) describe software designed to balance
the number and type of trucks and the number and
type of loaders in a simple truck-and-shovel oper-
ation. The goal is to meet production levels while
minimizing operating costs. Our operation is slightly
different in that it uses a conveyor belt, rather than
trucks, to “haul” the excavated material. Additionally,
neither of these software applications describes a for-
mal optimization model.
Optimization applications in underground mining

also exist, as Carlyle and Eaves (2001), Kuchta et al.
(2004), and Sarin and West-Hansen (2005) discuss,
although there are fundamental differences in mining
methods and their corresponding models.

Previous Method of Operation
Prior to using an optimization model, mine man-
agers usually placed the feeder in a centralized, “intu-
itive” location and ran loaders between the feeder and
the mining frontier, adding loaders as the distance
between the feeder and the mining frontier increased.
However, mine managers would become reluctant to
remove loaders from operation to perform mainte-
nance; the delayed maintenance had adverse long-
term effects on equipment functionality and resulted
in excessively high operational costs. When all loaders
were in use and the mine managers realized that the
loader cycle times were so long that planned produc-
tion levels could not be met, mine managers stopped
operations and moved the feeder. However, there was
such a short time between the realization that the
managers had to move the feeder and its actual move-
ment that stockpiles could not meet demand during
stopped production. Furthermore, the lack of advance
planning precluded other types of maintenance, e.g.,
plant modifications, from being scheduled simultane-
ously with the feeder movement; this increased total
downtime at the facility.
Hence, the lack of a robust model to systematically

determine feeder-movement policies had a twofold
adverse effect: (1) movement policies were subopti-
mal, and (2) lack of advance warning of a feeder
movement resulted in a crisis when the feeder was
moved. Our model mitigates both of these problems.
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Optimization Model
Our mathematical model determines feeder move-
ments in multiples of 20 feet in a forward direction
down the midpoint of a straight-line trajectory of
length L and width 2a from an initial (predetermined)
location. When the area along the trajectory is com-
pletely mined out, the feeder is moved laterally a dis-
tance of 2a; the same moves can be followed along the
trajectory back in the opposite direction. In total, the
feeder is moved laterally p − 1 times, where 2ap rep-
resents the total width of the pit. We assume that the
aggregate is fairly homogeneous in its composition,
which precludes a need to move the feeder to another
area of the mine to meet production requirements for
different product types. We also assume that the area
in which we make feeder movements is devoid of
irregularities, i.e., areas that must be avoided, such as
a lake or an already mined-out area. Figure 4 shows
a typical mining area with irregularities at each end,
and a regular, rectangular area divided into widths
of 2a along which our model determines feeder move-
ments. Mine planners can use our model to enu-
merate alternatives and evaluate them to determine
feeder movements in the irregular areas of the pit.
We model this problem as a dynamic program on

a network consisting of collections of nodes and arcs,

......

F
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Figure 4: The rectangular area (bounded horizontally by the dotted and
dashed lines) is suitable for dividing into trajectories of length L and
width 2a along which our model determines how far to move the feeder
(F) at one time.

where each node in the network is spaced 20 feet from
the previous node and represents a possible feeder
location. Forward arcs exist between a node and all
nodes of greater distance than the current node. An
arc �i� j� is used in the network if the feeder has been
at location i and is moved to location j . Each arc, if
used, incurs a cost, which is the sum of a fixed and a
variable cost.
Our optimization model requires input data on the

fixed cost of a feeder movement and the variable cost
of traveling from the mining frontier to the feeder,
dumping a load of excavated material, and return-
ing to the mining frontier. The feeder is moved using
one or more 20-foot conveyor-belt extensions. These
extensions, and the labor and equipment required to
move the feeder, are sunk costs. The mine owns the
conveyor belt extensions and equipment; mine work-
ers, who would otherwise be performing other jobs
(e.g., running the loaders) move the feeder. Therefore,
the fixed cost of moving the feeder does not consist
of labor or equipment costs, but rather includes only
the opportunity cost of deferring production for the
time required to move the feeder. We can compute
this opportunity cost as the product of the profit mar-
gin per ton of aggregate, the required production rate
per day (based on initial economic analysis, including
anticipated selling prices), and the number of days
required to move the feeder. This fixed cost, which is
incurred each time the feeder is moved, is invariant
with the distance that the feeder is moved.
The variable cost is more complicated to compute.

Given that the feeder is at location i and is not
moved again until the mining frontier reaches loca-
tion j (a specified number of feet away from i), we
can compute the average haul distance for a loader
moving between the feeder and the mining frontier
by approximating the number of feet a loader moves,
on average, between i and j within a rectangle with
a length of j − i and a width of a (because the feeder
position is symmetric about the width). We com-
pute the distance based on rectangular shapes, which,
when divided into small squares (appendix), closely
approximate arc-like frontiers. In the appendix, we
also show the high dependency of average costs on
the chosen geometry, and therefore the criticality of
an appropriately chosen geometry. Using this aver-
age haul distance, we can compute the average cycle
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Figure 5: The depiction of the dynamic program (rotated 90 degrees with respect to Figure 4) has nodes that
represent possible feeder locations and arcs that represent possible feeder movements. The parameter f repre-
sents the fixed cost of moving the feeder; vij represents the variable cost of mining from location i to location
j for a width of 2a feet and at a depth of 30 feet. Because conveyor-belt extensions are added in fixed incre-
ments of 20 feet, there is a finite number of �i� j� pairs, where the difference between j and i is a multiple of a
20-foot increment with a minimum positive distance of 20 feet and a maximum positive distance of approximately
20 ∗ �L/20� feet.

time for a loader, i.e., the time required to lower
the bucket, pick up a full load, raise the bucket,
return to the feeder with the full load, lower the
bucket to the feeder and dump the full load in, and
return to the mining frontier. The cycle time for each
loader is based on its speed (factoring in loader effi-
ciency and the loader-path topology) and on the dis-
tance the loader travels between the mining frontier
and the feeder. From these cycle times, we can com-
pute the average number of loads carried over a
10-hour shift. Using the number of tons each full load
contains, we can compute the number of tons that
a single loader can transport to the feeder within a
10-hour workshift and we can determine the num-
ber of loaders necessary to meet production require-
ments; from that, we can determine the total variable
cost per day of running the loaders based on the cost
of the labor, fuel, and maintenance necessary to run
each type of loader. We can then compute the vari-
able cost per ton as the quotient of the variable cost
per day and the production level per day. The vol-
ume of material moved between i and j is the amount
of aggregate in a three-dimensional area that is j − i

feet long, 2a feet wide, and 30 feet deep. The prod-
uct of this quantity with its density yields the number
of tons moved. The total variable cost, vij , of running
the loaders between i and j is then the product of
the variable cost per ton and the total number of tons

moved in a rectangular volume j − i feet long, 2a feet
wide, and 30 feet deep. The sum of the fixed and vari-
able costs between locations i and j is the cost on arc
�i� j�. From the fixed and variable costs, the model
determines where to next place the feeder given its
current location. Figure 5 depicts the topology of our
dynamic programming model; we give the algebraic
formulation in the appendix.
Recall that we assume that the area in which we

make feeder movements is devoid of irregularities,
and we know the trajectory width. If the former
assumption is violated, we might determine feeder
placements to excavate these areas that contain irreg-
ularities by enumerating all operationally reasonable
alternatives, and evaluating the associated costs. Sim-
ilarly, if we violate the latter assumption, we can
enumerate a reasonable set of widths (e.g., integer
multiples of the total width), determine the least-cost
solution for each trajectory width using our model,
compute the total cost of mining p trajectories of
width 2a in the deposit, and select the width that
yields the minimum total cost. Practical implemen-
tation of feeder movements would require that the
feeder be placed at approximately, not exactly, the
location at which mining ceases prior to the feeder
move; this precludes unsensible behavior, such as
undermining the earth on which the feeder is sitting,
or tramming up a steep mound of dirt.
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Dynamic programming models with a structure
similar to ours have been successfully applied in in-
dustries other than in mining, e.g., to minimize travel
expenses for federal employees (Huising et al. 2001),
to determine the locations at which larvicide should be
sprayed (Solomon et al. 1992), and to schedule projects
(Darrah 1984).

Results and Comparisons
The Parkdale property consists of a deposit divided
into two parts, each 1,200 feet wide. One deposit part
is 1,800 feet long; the second is 1,000 feet long. These
deposit parts are free from irregularities. Our goal
is to determine for each deposit part: (1) an opti-
mal trajectory width from a set of candidate widths,
and (2) optimal feeder moves along the trajectory
of that given width. Mine planners are interested in
considering evenly spaced trajectory widths, i.e., tra-
jectory widths that are multiples of 1,200 feet. There-
fore, for each of the two deposit parts, we compute
the optimal trajectory moves and the associated total
cost of mining the deposit for widths of 100, 200, 300,
400, 600, and 1,200 feet. Because each network model
solves quickly, the computational burden of solving
six model instances for each deposit part is minimal.
We implement the network as a shortest-path model

and process the results in a series of Excel worksheets.
In the first worksheet, we accept cost information and
the desired trajectory width and compute arc costs
based on this information (appendix). We set up the
second worksheet to handle the shortest-path network
topology of a deposit part of a given length; as inputs,
it takes the costs in the first worksheet and computes
the optimal series of feeder movements along a trajec-
tory of that given length for the width specified in the
first worksheet. The underlying solver, invoked with
a click of the “solve” button, is the Jensen Network
Solver (coded by Paul Jensen at the University of Texas
at Austin); it operates in a spreadsheet and can solve
network models as large as ours (i.e., models that con-
tain 50–100 nodes and a few thousand arcs) in a mat-
ter of seconds. The solver displays the solution and
objective function value in that second spreadsheet, in
which we have created a macro, “capture flow,” that
translates the arcs with a corresponding value of 1
in the optimal solution to feeder locations and places
these feeder moves in another worksheet.

Figure 6 shows the worksheet in which the net-
work is solved as a shortest-path model. The right
side depicts representative cost information that is
collected on the first of the three worksheets. In the
upper right corner, the spreadsheet shows the results
of the “capture flow” macro, which translates the
shortest-path solution into feeder locations and places
the information in a third worksheet.
For the 1,800-foot-length part of the deposit, optimal

feeder moves are spaced either 440 or 460 feet apart,
and occur along a trajectory width of 1,200 feet. Specif-
ically, the optimal mining plan is to place the feeder
at an initial location in the deposit that is 600 feet
away from its sides, excavate until the mining fron-
tier reaches 440 feet from that initial location, move
the feeder approximately 440 feet, excavate until the
mining frontier reaches 900 feet from the initial loca-
tion, move the feeder 460 feet, excavate until the min-
ing frontier reaches 1,360 feet from the initial location,
move the feeder to that point, and then excavate until
the end of that part of the deposit. Optimal feeder
moves for the 1,000-foot part of the deposit are similar:
for a 1,200-foot-deposit width, move the feeder once
to 500 feet. In each case, no more than three loaders
are needed.
Without our model, mine planners would ignore

feeder movements until production requirements
could no longer be met using the existing fleet of load-
ers. If we compute the costs associated with this sub-
optimal policy using the trajectory widths that are
multiples of 1,200 feet, the lowest-cost widths for the
1,800 and 1,000-foot-deposit parts are 1,200 and 600
feet, respectively. For the 1,800-foot part of the deposit,
the suboptimal policy would result in the feeder being
moved once, at 1,260 feet (after which three load-
ers could not meet production requirements). For the
1,000-foot part of the deposit, no feeder move would
be necessary. For the 1,800-foot part of the deposit,
the cost of the suboptimal policy is 14 percent higher
than the optimal solution; results for the 1,000-foot
part of the deposit are similar; the cost of the subop-
timal policy is 13 percent higher. The savings gained
from the use of our model apply to costs that con-
stitute about half of the operating expenses at the
quarry. (The other half is associated with plant oper-
ation and train loading.) Note that these percentages
are actually lower bounds on the cost savings for two
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Figure 6: We implement the network model and process the results using three Excel worksheets, which gather
cost information (see the right side in this example), use this information and an underlying network solver (i.e.,
the Jensen solver) to compute an optimal solution, and translate the optimal solution into a series of feeder
movements (see the upper right corner).

reasons: (1) we assume that the mine would choose
the optimal trajectory width while determining feeder
moves without our model, and (2) we do not consider
the detrimental effects of poor loader-maintenance
schedules, lack of coordination between feeder move-
ments and scheduled downtime at the plant, and low
customer satisfaction because of late delivery resulting
from suboptimal feeder movements.
We began to develop the model at the start of 2004.

After working on it for a few months, we realized
that a dynamic program solvable as a shortest-path
model would accurately capture the relevant deci-
sions. In early 2005, we embedded our application in
a spreadsheet; we transitioned the model to the mine
that fall. While developing the model, two coauthors

met with the mine manager to verify the model’s
usefulness and validate the assumptions and calcula-
tions therein. Upon its completion, one coauthor (and
her research assistant) visited the mine site for sev-
eral hours to install the software on the mine man-
ager’s computer, explain the software to him, and
give him an instruction sheet. That manager, who
has been using the software since its installation in
October 2005, now runs the model himself; he can
make changes to the number and type of operating
equipment and to the characteristics of the operating
equipment, such as costs and efficiency factors.
Front Range Aggregates began to implement the

model recommendations mentioned above at its
Parkdale property in January of 2006. Prior to the
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implementation, the company used the authors’ rec-
ommendations to mine its irregular areas. Although
these recommendations were not the result of the
shortest-path solutions, they are relevant to the dis-
cussion because: (1) they validated the cost structures
we use in our network model, and (2) they were done
using our advice regarding the (small) enumeration
procedure we mention above. Subsequent to mining
the irregularities, the mine manager has been mining
the 1,000-foot part of the deposit, having placed the
feeder according to our recommendations. The model
is closely tracking the actual loader time required
to feed the plant as the frontier moves away from
the feeder. The manager plans to continue to move
the feeder according to our recommendations. More
than one year later (as of this writing), the company
has verified the cost savings we estimate, and has
realized pit-haulage cost improvements approaching
33 percent compared with the previous year’s lev-
els. These savings are better than predicted because
of both the conservative nature of our estimates and
external factors. For example, the plant was able to
run continuously because of, inter alia, favorable mar-
ket conditions; additionally, the loaders experienced
no major mechanical problems. The company plans to
continue to use the model where mine reserve char-
acteristics allow its application.
The usefulness of our dynamic program is evi-

dent from this cost comparison. Our model uses
only basic data and is relatively straightforward to
implement; the model does not require understanding
of sophisticated mathematical modeling and yields
easily executable and simple-to-understand policies.
Finally, it produces solutions that improve the way in
which aggregate quarries in general can plan feeder
movements.

Appendix

Formulation

Indices
i� j = location of feeder along a straight-line trajectory.

n = last node = �L/20�.
Sets
N = nodes, i.e., feasible feeder locations (multiples of

20 feet from an initial location).

A = feasible adjacent feeder-location pairs (multiples
of 20 feet apart, terminal node > incident node).

Parameters
f = fixed cost of moving feeder ($).

vij = variable cost of extracting and hauling all mined
material in the pit between location j and the
feeder located at i given a width of 2a feet and
a depth of 30 feet ($).

Decision Variables

xij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if the feeder is moved along its straight-
line trajectory to location j , having last
been moved to location i,

0 otherwise�

Objective
min

∑
�i� j�∈A

�f + vij �xij �

Constraints

∑
j

x1j = 1� (1)

∑
i

xij =∑
k

xjk ∀ j ∈ N� j �= 1�n� (2)

∑
i

xin = 1� (3)

0≤ xij ≤ 1 ∀ �i� j� ∈ A� (4)

We minimize the total fixed costs of moving the
feeder and the variable extraction costs between
feeder movements. The constraint set forms sim-
ple flow-balance requirements for a shortest-path
problem, with a single unit supplied at the origin
(node 1) and a single unit demanded at the destina-
tion (node n).

Deriving the Average Haul Distance for a Loader
Suppose that we assume, without loss of generality,
that the feeder is at the corner of an a × b rectangle
(Figure A.1). We wish to compute the average haul
distance between the feeder and the mining frontier,
where the mining frontier lies within the rectangle.
We divide the rectangle into small squares, each of
length �, and approximate the distance between the
feeder and the mining frontier within one of the small
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b = j– i
(n of these)

a
Feeder ... ΔΔ Δ Δ Δ

Δ
Δ
Δ

Δ

...

•

•

•

•

•

•

•

•
•

•

(m of these)

Figure A.1: To derive the average haul distance for a loader between the
feeder and the mining frontier in an a × b rectangle, we divide the rect-
angle into squares, and take the average distance from the feeder (at the
bottom left corner) to the center of all squares inside the rectangle.

squares as the distance between the feeder and the
center of said square. The average haul distance is then
the average (two-way) distance between the feeder
and the center of all such squares within the a × b

rectangle. The lines in Figure A.1 comprised of both
dashes and dots show some representative distances.
If we assume that the horizontal side of the rectan-

gle consists of m intervals of length �, and that the
vertical side of the rectangle consists of n such inter-
vals, then �i�+�/2� j�+�/2� for i = 0� � � � �m−1 and
j = 0� � � � �n − 1 are the x and y coordinates, �x̂i� ŷj �,
respectively, of the center of any small square within
the a × b rectangle. The distance between the feeder
and the center of the �i� j�th square is

dij =
√

�2�0�5+ i�2 + �2�0�5+ j�2�

and the haul distance D between the feeder and the
mining frontier in the a × b rectangle is the average
distance across all such squares as the size of the
squares approaches zero:

D = lim
m�n→�

1
nm

m−1∑
i=0

n−1∑
j=0

dij = 1
ab

∫ a

0

∫ b

0

√
x2 + y2 dx dy

=
√

a2 + b2

3
+ a2

6b
ln
(

a + b + √
a2 + b2

a − b + √
a2 + b2

)

− b2

6a
ln
(

b

a + √
a2 + b2

)
� (5)

a a

1 2... m 2... n

0

a /2 3a /2

1

Γ Γ Γ Δ Δ Δ.... ΔΓ....

Figure A.2: We show using a one-dimensional example how the approx-
imation for the distance between the feeder and the mining frontier
depends on the geometry of the section.

Equation (5) follows from the definition of integral as
a limit of Riemann sums. We can then calculate the
integral by dividing the rectangular domain into two
equal triangles and doing a polar coordinate transfor-
mation in each triangle.

Geometry of the Mine
Note that the approximation for the distance between
the feeder and the mining frontier depends on the
geometry of the section, i.e., in our case, that we have
elected to use a rectangle for the shape of the mined
area, and squares for the subdivided areas, rather
than other shapes. To see the importance of care-
fully selecting a geometry that represents or closely
approximates the actual loader movements, consider
the one-dimensional example in Figure A.2. We sep-
arate a line segment of length 2a into two equal seg-
ments, each of length a, and then subdivide one such
segment into m subsegments and the other segment
into n subsegments, where each of the first set of sub-
segments has width � = a/m and each of the second
set has width � = a/n.
Then, the average distance D�m�n� from the left

endpoint to the n + m segments along the line is

D�m�n� = 1
m + n

( m∑
i=1

i� +
n∑

i=1

�a + i��

)

= 1
m + n

��m�m + 1�/2+ an + �n�n + 1�/2	

= a

m + n
��m + 1�/2+ n + �n + 1�/2	

= a

(
1
2

+ 1+ 1/n

m/n + 1

)
� (6)

If we let m = kn, where k is a positive integer
greater than 1, and substitute this value for m into (6),
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as n → �, we obtain

D�kn�n� = a

(
1
2

+ 1+ 1/n

k + 1

)
→ a

2

(
k + 3
k + 1

)
∈ �a/2� a	�

Hence, depending on the value for k, the average dis-
tance from the left endpoint to any point on the line
lies somewhere between halfway between the origin
and the midpoint of the line segment, and the mid-
point of the line segment.
If, however, we reverse the relationship between m

and n such that n = km, by the same logic, it follows
that the average distance from the left endpoint to
anywhere on the line is

D�m�km� → a

2

(
3k + 1
k + 1

)
∈ �a�3a/2	

as m → �; thus, the average distance from the left
endpoint to any point on the line lies somewhere be-
tween the midpoint of the line segment, and halfway
between the midpoint of the line segment and the end
of the segment.
Hence, we conclude that we cannot arbitrarily as-

sign dimensions to subsections of the mining fron-
tier to approximate average loader travel distance.
Instead, we must carefully choose a pattern that
closely approximates actual loader movement.
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Thomas M. Maul, General Manager, Front Range
Aggregates, LLC, 3655 Outwest Drive, Colorado
Springs, CO 80910, writes: “Planning of pit feeder
movements in the aggregates industry is rarely per-
formed using sophisticated techniques. Traditionally,
mine managers have tended to defer the cost and
effort of this task until absolutely necessary, i.e., until
production requirements can no longer be met with
full utilization of the existing mobile equipment fleet.
Contributing to the problem is the fact that many
aggregate mines exist on a scale that does not justify
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a management “team,” many having a single person
managing the entire mine. Such a person does not
have a great deal of time to perform lengthy optimiza-
tion analyses, and so the planning of unit operations
is driven by the desire to meet short-term objectives;
not long term performance.
“The spreadsheet model described in this paper

allows mine planners (managers) to quickly enter rel-
evant operating cost data, and describe pit dimen-
sions. The optimization model then uses this data to
compute a sequence of pit feeder movements which
minimizes pit operating costs over the life of the pit.
Changing the data inputs is relatively simple and does
not take much time, making the model practically
applicable to most equipment and pit configurations
found in typical alluvial aggregate mining operations.

“Front Range Aggregates (FRA) implemented the
model recommendations for pit feeder placement at
our Parkdale aggregates mine in January of 2006, and
to date (approximately 12 months of operation) have
realized pit haulage cost improvements approaching
33% compared to 2005 levels. We have not yet com-
pleted one full cycle of pit feeder movements, but
operational characteristics of the pit are closely con-
forming to those predicted in the model at this point,
and we expect full cycle results to be consistent with
those predicted by the model over the life of the mine,
barring unforeseen external influences.
“FRA will continue to utilize the model where mine

reserve characteristics allow its application, and we
expect it to be a useful tool for our operation staff in
our efforts to optimize operational performance.”


