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The focus of our research is on rail transportation of intermodal containers. We address the
problem of determining day-of-week schedules for both direct and indirect (via a hub) trains
and allocating containers to these trains for the rail (linehaul) portion of the intermodal trip.
The goal is to minimize operating costs, including a fixed charge for each train, variable
transportation and handling costs for each container and yard storage costs, while meeting
on-time delivery requirements. We formulate the problem as an integer program and develop a
novel decomposition procedure to find near-optimal solutions. We also develop a method to
provide relatively tight bounds on the objective function values. Finally, we compare our
solutions to those obtained with heuristics designed to mimic current operations, and show that
a savings of between 5 and 20% can be gained from using our solution procedure.

Intermodal transportation consists of combining
modes, usually ship, truck, or rail to transport
freight. The focus of our research is on rail transpor-
tation of intermodal containers for the long-haul
portion of their journey. For distances over 500
miles, train transportation is more efficient than
truck transportation, and results in savings in oper-
ating costs and labor. Because rail transport diverts
some freight traffic from the roads, congestion and
wear and tear on highways is partially alleviated
(MCKENZIE, 1989). Despite recent advances in the
efficiency of intermodal operations, difficulties re-
main. Some obstacles the railroads face result from
inadequate infrastructure including a shortage of
track, and the lack of a fully operational, continuous
transcontinental railroad. Other difficulties arise, in
part, due to basic management and information lim-
itations, which lead to poor train routes and sched-
ules and inadequate priority rules for sending ship-
ments. Because of the extra delay incurred and the
increased potential for mishandled containers at in-
termodal terminals, it is important that time and
cost considerations be taken seriously for inter-
modal transportation to compete effectively with
long-haul trucking.
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To improve the scheduling and coordination of
trains, we address the problem of how to schedule
direct and indirect trains and which containers to
send on each train for the rail (linehaul) portion of
the intermodal trip to minimize operating costs
while meeting on-time delivery requirements. Inter-
modal rail operations differ from conventional rail
operations in several important respects. First, be-
cause of the high cost of container handling equip-
ment, intermodal networks have relatively few,
widely spaced terminals. For example, the Illinois
Central Railroad has only nine intermodal termi-
nals, a few of which are small. Networks with more
than about two dozen major intermodal terminals
are uncommon. With such a structure, economies of
scale can be realized not only in container handling,
but also in train movements from terminal to termi-
nal. Transport from the customer to the nearest
intermodal terminal is handled by truck or by re-
gional or feeder railroads. Second, because of the
distances between intermodal terminals, a typical
container makes few stops and is transferred be-
tween trains only a few times on its journey. This
eliminates the need to consider blocks, i.e., groups of
railcars that travel as a unit for one or more seg-
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ments of their journey (to reduce train reassembly
time at rail yards), which are essential in conven-
tional rail scheduling and routing decisions. Finally,
shorter delivery leadtimes are promised for inter-
modal freight, and, consequently, there is a greater
need to schedule trains to achieve desired levels of
customer service. Under conventional operations,
some freight may wait while enough railcars accu-
mulate to form a block. The first two factors reduce
the number of decisions required for intermodal
freight versus conventional freight, but the third
factor dramatically increases the importance of care-
ful train scheduling and routing decisions.

Most of the research on train scheduling and con-
tainer routing uses average demand rates and has
the goal of determining steady-state train frequen-
cies and container allocations. KEATON (1989) con-
sidered direct and indirect train scheduling, the
routing of railcars, and their grouping (or blocking)
on a train. CRAINIC and ROUSSEAU (1986) developed
a general framework for multimode freight trans-
portation including the design of the network (e.g.,
which modes to use and what frequency of service to
provide) and the traffic routing scheme through this
network. MARIN and SALMERON (1996) investigated
the problem of determining an optimal train sched-
ule for a rail network, and the optimal assignment of
rail cars to these trains such that each train carries
cars of a single service class. They used simulated
annealing and tabu search to solve the problem. For
a recent survey on train scheduling and related
problems, see CORDEAU, TOTH, and VIGO (1998).

The literature on intermodal transportation is
growing. MORLOK and SPASOVIC (1994) developed a
model to reduce drayage costs without affecting the
timeliness of pickups and deliveries. DIAL (1994)
sought to minimize trailer-on-flatcar costs incurred
by United Parcel Service by choosing whether to
ship freight with a trailer owned by United Parcel
Service, or to lease one from the railroad. BARNHART
and RATLIFF (1993) developed a model that sought to
minimize transportation costs for a set of trailer
movements by truck and/or rail, considering the pos-
sibility of pairing trailers from different sources on
the same flatcar.

The research most similar to ours is by NOZICK
and MORLOK (1997) and GORMAN (1998a,b). Nozick
and Morlok took the train schedule as given and
addressed freight movement as well as equipment
and locomotive repositioning decisions. Their objec-
tive was to minimize the cost of on-time delivery
subject to constraints on equipment availability.
The primary differences between Gorman’s model
and ours are that he considered yard and rail line
capacity in an aggregate way, but focused on the
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special case of a single origin and single destination
with multiple routes between them. He used a tabu-
enhanced genetic search to arrive at solutions
within 10% of the optimum for this case. He then
applied his procedure to a problem with multiple
interdependent origins and destinations. The solu-
tion provided significant improvements in cost and
customer service over current policies, but the solu-
tion was not evaluated in an absolute sense.

To the best of our knowledge, this problem of
simultaneously determining direct and indirect
train-scheduling and container-routing decisions for
multiple interdependent origins and destinations
using a formal optimization approach has not been
addressed in the literature. Four aspects of our prob-
lem that make it challenging are: (i) more than one
train may be sent on each segment each day, (ii)
both direct and indirect trains may be scheduled,
(ii1) containers arrive dynamically during the deci-
sion horizon, and (iv) customer orders have distinct
due dates.

The remainder of the paper is organized as fol-
lows. In the following section, we present a problem
statement and formulation. In Section 2, we intro-
duce a new decomposition approach, which is based
on a partitioning of the underlying network. In Sec-
tion 3, we show how this decomposition approach
can be modified to handle larger problem instances
more effectively. In Section 4, we develop valid ine-
qualities that allow us to obtain tighter lower
bounds on the solutions. In Section 5, we discuss
simple heuristics designed to mimic current prac-
tice. In Section 6, we present numerical results. A
summary and directions for future research appear
in Section 7.

1. PROBLEM STATEMENT AND FORMULATION

OUR RESEARCH WAS motivated by the train-schedul-
ing and container-routing problem that we observed
at the intermodal division of a major railroad. The
railroad has several intermodal terminals on the
west coast of the United States, a single major hub
in the west-central part of the United States, and a
few other intermodal terminals east of the Missis-
sippi River. The flow of traffic eastbound is greater
than it is westbound, as it is for most U.S. railroads.

Much of the eastbound rail transport capacity is
dedicated to moving sea cargo for major interna-
tional shipping lines, for which the transoceanic
transit time is fairly predictable (approximately one
week). Remaining train capacity is utilized to ser-
vice smaller customers within a few hours’ drive of
the railroad’s intermodal terminals. These custom-
ers typically use intermodal retailers to coordinate
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the truck and rail movements for their goods. Inter-
modal retailers often reserve space on trains in ad-
vance, and then sell this space to their customers.
These reservations also contribute to the predict-
ability of demand for the railroad. Overall, demand
exhibits weekly patterns due to freighter schedules,
and seasonal patterns due to factors such as tradi-
tional cycles in retail demand, and agricultural and
manufacturing production.

The railroad offers several speeds (or levels) of
service and charges a premium for faster (promised)
delivery. Trains may be sent directly from an origin
intermodal terminal to the destination terminal
without stopping at a hub, providing the fastest
available service. Alternately, trains carrying con-
tainers bound for several destinations may be sent
to a hub, where containers are consolidated by des-
tination onto outbound trains. This consolidation
activity may cause a few days’ delay for transferring
containers or repositioning rail cars between trains.
Further delays also occur when inbound and out-
bound schedules are not coordinated.

Each train has a limited capacity, where the ca-
pacity is expressed in terms of number of containers
in our model. We assume that containers are homo-
geneous in terms of their use of train capacity, which
depends upon the power of the locomotives and the
terrain over which the train must travel. Typically,
decisions regarding locomotive capacity for each
transportation segment are determined in advance
on the basis of demand forecasts. We assume that
the capacities of all trains on a given segment are
the same, which reflects the situation in our moti-
vating application.

Yard storage space for containers waiting to be
shipped, awaiting a transfer at the hub, or waiting
to be picked up, is limited at all terminals. As the
number of containers in storage increases, contain-
ers are stacked higher and more densely. This in-
creases the time required to retrieve a container and
places a further burden on material-handling equip-
ment, which may already be a bottleneck. Our model
does not constrain the number of containers that can
be stored at a yard, but we do assess a cost for
container storage (discussed below) to deter unnec-
essary container inventory.

From our observations of intermodal terminal op-
erations, the train schedules and container routing
decisions do not appear to be affected strongly, if at
all, by what speed of delivery has been promised, or
what rate has been charged to the customer. This
motivated us to investigate how to schedule trains
and route containers to achieve on-time delivery at
minimum cost.

We address a short-term, finite-horizon, discrete-

time scheduling problem for the linehaul portion of
the intermodal trip. Given container demands dif-
ferentiated by origin, destination, arrival date at
origin, and due date, the objective is to determine a
train schedule (for both direct and indirect trains)
and container-shipment plan to minimize the total
cost while meeting on-time delivery requirements
and adhering to train capacity restrictions. We dis-
cuss the cost elements in more detail below.

The costs incurred by the rail company for trans-
portation on a segment consist of both a fixed-charge
component, or fixed cost, for each train and a vari-
able (per container) component. The fixed cost con-
sists primarily of operators’ wages and the opportu-
nity cost of locomotive use. We assume that each
train on a specific segment incurs the same fixed
cost.

The variable cost per container consists of three
main components: (i) transportation costs, such as
fuel, oil, and track maintenance; (ii) handling costs
incurred for moving containers on and off the rail
cars, or for repositioning the cars at an intermediate
terminal; and (iii) yard storage costs associated with
holding containers in inventory at the origin or at an
intermediate terminal. We assume that the variable
transportation costs are constant over time and that
they depend only on the route. The assumption of
constant transportation costs over time is quite rea-
sonable over a short horizon (e.g., a week or two),
and the assumption that costs depend only on the
rail segment is consistent with our assumption re-
garding homogeneity of containers in terms of their
use of transport capacity.

Handling costs for moving containers or reposi-
tioning rail cars depend more heavily on the equip-
ment used for such operations than they do upon the
container itself, or its origin or destination. Thus,
the assumption of constant handling costs for a
given terminal is quite mild. Inventory costs consist
primarily of yard storage costs and the opportunity
cost of having a container unavailable for use, be-
cause the opportunity cost of capital for in-transit
goods is borne either by the shipper or by the con-
signee. Yard storage costs in our model are assumed
to be equal for all containers for all locations and
time periods. We assume that customers will accept
delivery upon arrival at the destination, so no inven-
tory is held at the destinations. Generalizations to
consider other linear cost structures and delivery-
acceptance rules are straightforward.

We assume that hub delay and transit times are
deterministic, constant across time, and that both
transit times and delays at the hub are expressed as
an integral number of time periods, where a time
period is typically one day. In practice, transit times



are rarely predictable, but because time is expressed
in days, not hours or minutes, there is implicit slack
in the schedule. As with airlines and other transpor-
tation providers, additional slack in both scheduled
transit times and scheduled hub delays may be built
into the schedule to help ensure on-time delivery.
For instance, one major railroad adjusts schedules
with the goal of ensuring a 12-hour delivery window
for a container with a 4-day transit time.

Finally, we assume there is no limit on the num-
ber of trains that can be sent each day, although in
reality, locomotive and crew availability may be lim-
ited with respect to location and time. Our model
can be generalized to handle limits on the number of
trains, provided train availability is adequate to en-
sure on-time delivery, which we enforce as a hard
constraint. In practice, terminal operators might
choose to delay the shipment of some containers to
avoid sending a train with a small number of con-
tainers. Our model can be generalized to allow tardy
deliveries and associated penalties.

To summarize, our problem is to choose train sched-
ules and container routes for each day over a short
horizon to achieve on-time delivery at minimum cost,
where the total cost consists of a fixed charge per train,
a variable transportation cost per container, both of
which are dependent on the rail segment, handling
costs per container dependent upon the location, and
inventory holding costs for containers held at any ter-
minal prior to their arrival at the destination.

Note that our model is intended to aid in establish-
ing schedules in the “bottleneck” direction and does
not address locomotive repositioning. Empty container
repositioning can be handled as part of the demand.
The notation for our model is described below.

Subscripts:

i =index of origins

J =index of hubs

k  =index of destinations

t =index of periods in the time horizon, ¢ = 1,
2,...,T

l =index of level of service, i.e., the due date of
the container at the destination

Parameters:

«;;, =direct transportation time between origin i
and destination %
B;; =transportation time between origin i and hub

J

vjr =transportation time between hub j and desti-
nation %

8; =delay time incurred from passing through
hub j

C  =capacity of a train (number of containers)
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h =holding cost of a container ($/container/day)

¢}, ~=variable unit cost of transporting a container
directly from i to %

cijr =variable unit cost of transporting a container
from ; via j to &

&2 =fixed cost of running a train directly between
origin ¢ and destination &

S;? =fixed cost of running a train between origin i
and hub j

SJ’-Lk =fixed cost of running a train between hub j
and destination %

o

g? =cost of placing a container on the train at
origin i

gjh =cost of rearranging a container at hub j

g% =cost of removing a container from the train at

destination &
b, =the number of containers that arrive at i on
day ¢ bound for %, due at time [

Decision variables:

I?,,; =container inventory held at i at time ¢, which
is due at £ by time [
I, = container inventory from i, held atj at time ¢,
due at £ by time [
I¢,,, =container inventory from i due by time [
which is held at £ at time ¢
x%2,; =number of containers shipped directly from i
to £ at time ¢, due by time [
xijr =number of containers shipped from i to j at
time ¢, due at & by time [
xl’-;k,l =number of containers from i, shipped at time
t from j to k&, due by time [
z%, =the number of trains sent directly from origin
i to destination % at time ¢
=number of trains sent from origin i to hub at
time ¢
z}lkt =number of trains sent from hub j to destina-
tion & at time ¢

eo

Zijt

The formulation follows.

(P)
t+BLJ+3J
: _ 0 h eo
min Z = >, hl%, + > hIi, + > > X
iktl ijhtl ikl w=t+py
a ao e eo
+ E Cir Xipn T E Cijr Xijrl
iktl ijktl
0 ,.a0 0 ,.€0 h .h
+ > gl xlyt D gt Xijpar T > 8 Xijhu
iktl ijktl ijktl
d ..ao d ..h ao . ao eo . eo
+ E 8k xiktl+2 8k Xijpu T E S zikt+E Sij 2t
iktl ijktl ikt ijt

bk
+ > S 2

Jkt



260 / A. M. NEWMAN AND C. A. YANO
subject to

bira T L1y = Ty + Xiu + > X Vi, Rk, t,1
J

(1)
h eo —
I gke-10 T Xijh(t—py—s)l — I g'ktz + xZ’ktl
Vi,j, k,l,t2t=1+B;+§; (2)
d ao h
L1y + Xiyay + 2 Xijhe—yl = I+ by
J
Vi,k,[,t2t=1+ «a; (3)
> xiy<Czly Vi, k,t (4)
1
2 xha=<Cz Vi, j,t (5)
kl
> al,<Czh, Vj, k,t (6)
xl]ktl = z_/kt J > ’

il

All variables restricted to be nonnegative
and integer.

where I{,,; is set equal to O unless ¢ = 1 and / > ¢ +
Qs If}ktl is set equal to O unlesst =1 + B;; + 3; and
>t + yy; and I¢,, is set equal to O unless t = 1 +
a;;, and [ > t. Note also that x{j,, = 0if [l <t +
Bi; + vjr + & and xf}ktl =0ifl <t + v;. These
constraints ensure that appropriate inventory vari-
ables are initialized to zero; others are constrained
to be non-negative. Similarly, indirect container
shipments are constrained to be zero if due dates
necessitate a direct routing.

In our analysis, we assume only one hub, although
the formulation is written for the more general case
in which there may be multiple hubs and each con-
tainer may pass through at most one hub. We also
assume that direct travel time between an origin
and a destination is strictly less than the total tran-
sit and delay time for a container shipped indirectly,
ie., ay, < By + Vi + 5.

The objective function consists of inventory-hold-
ing costs at the origin and at the hub; transportation
costs for directly and indirectly shipped goods; han-
dling costs at the origin for both direct and indirect
shipments, handling costs at the hub for indirect
shipments, and handling costs at the destination for
direct and indirect shipments; and finally, fixed
costs at the origin for direct trains and trains bound
for a hub, and fixed costs at the hub for indirect
trains.

Constraints 1, 2, and 3 represent conservation of
flow of containers at the origins, hubs, and destina-
tions, respectively. Although we assume that no in-

ventory is held at the destination, the variables I%,,,
are used for bookkeeping purposes to ensure that
demand is satisfied. To properly reflect that contain-
ers are not actually held, we set the corresponding
inventory-holding cost coefficients to zero. Con-
straints 4 require that, for all origins, destinations,
and time periods, the number of containers sent on
direct trains must not exceed the total capacity of
the trains operating on that segment. Likewise, con-
straints 5 and 6 ensure that train capacity is not
exceeded on trains bound for the hub and trains
leaving the hub, respectively. Finally, nonnegativity
and integrality constraints are imposed on all deci-
sion variables.

A typical problem has thousands of general inte-
ger variables, and the nature of the tradeoffs con-
tributes further to the difficulty of the problem. Di-
rect trains are both faster and less expensive than
indirect trains, but they service only one destina-
tion. Thus, one faces difficult choices such as
whether to send containers on a relatively full indi-
rect train today, or, alternately, to send them within
the next few days on a direct train that may be
underutilized. Indeed, even when the train schedule
is fixed, the best priority scheme for assigning con-
tainers to trains is not evident. In particular, it may
not be optimal to ship containers bound for the same
destination in earliest due-date order.

Our problem has the structure of a multiple-fixed-
cost, multicommodity network flow problem. Figure
1 depicts such a network for two origins, two desti-
nations, and two time periods, assuming transit
times and hub delays are zero for simplicity. In
addition to a source and a sink, the network contains
three sets of nodes, with each node representing a
location—time period pair, where the location may be
an origin, hub, or destination. An arc links two
nodes representing different locations if a container
may travel between the locations beginning and
ending exactly at the time periods associated with
the two nodes. Additional arcs from a location in one
time period to the same location in the subsequent
time period permit inventory flows from period to
period. The network has a multicommodity struc-
ture because flows on the same arc may differ with
respect to their origin, destination, and/or due date,
depending upon the specific arc in question. Differ-
ent variable costs may be associated with each com-
modity on each arc. A commodity is assigned an
infinite cost if its due date prohibits it from traveling
on a particular arc. Upper bounds on the total flow
on each arc depend on the decisions regarding the
number of trains between the relevant locations in a
given time period, and a fixed charge is assessed for
each train. Multicommodity (uncapacitated) net-
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Fig. 1. Multi-commodity network depiction of our problem.

work flow problems with a fixed-charge structure
are known to be NP-complete (GAREY and JOHNSON,
1979), and our problem is complicated further by the
multiple fixed costs. Although algorithms have been
developed for fixed-charge networks, none can pro-
vide near-optimal solutions efficiently for our prob-
lem. The problem may also be formulated as a single
commodity network flow with bundle constraints
whose capacities depend upon the train decisions,
but the problem is no less difficult to solve in this
form (see AHUJA, MAGNANTI, and ORLIN, 1993).

We attempted to develop solution procedures us-
ing Lagrangian relaxation and Benders’ decomposi-
tion. Relaxing the train capacity constraints using
Lagrange multipliers led to poor results because the
multipliers could not accurately capture the step-
function nature of the costs associated with the train
variables. In our application of Benders’ decomposi-
tion, the train decisions are included in the master
problem, and the container flow variables appear in
the subproblem. Although this decomposition ap-
peared to be the most natural one, the dual price
information from the subproblem is insufficient to
aid in selecting better train decisions because of the
large fixed charge associated with each train. For
further details on Lagrangian relaxation and Bend-
ers’ decomposition, see NEMHAUSER and WOLSEY
(1988), and for further discussion of the application
of these techniques to our problem, see NEWMAN
(1998). Because of the difficulty of adapting tradi-
tional techniques to our problem, we developed a
new decomposition that takes advantage of the

physical structure of the system and the underlying
network flow problems.

2. NEW DECOMPOSITION TECHNIQUE

OUR DECOMPOSITION APPROACH is motivated, in
part, by the observation that, if the optimal pattern
of container arrivals at the hub (by origin, destina-
tion, arrival date at origin, and due date) were
known, we could infer which containers were to be
sent on direct trains. Moreover, for any given pat-
tern of container arrivals at the hub, the problem
decomposes into three sets of subproblems:

: scheduling direct trains and containers for each
origin—destination pair;

: scheduling trains and containers into the hub
from each origin; and

: scheduling trains and containers from the hub
to each destination.

Each of these subproblems has a single origin and
a single terminus (the hub or a destination), and,
although they remain network flow problems with
multiple fixed charges on each arc, they can be
solved optimally in polynomial time under the as-
sumptions of our model. See YANO and NEWMAN
(1998) for details. For convenience, let us refer to the
objective of P, for origin i and destination % as
Zp (i, k), the objective of P, for origin i as Zp (i) and
the objective of P, for destination & as Zp (k).

Let us define B(i, &, t', ¢, ) as the number of
containers that arrive at origin i in period ¢', arrive
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at the hub at period #, and are due at destination %
in time period /. Then, assuming instantaneous
travel time for simplicity, the matrix, D, of arrivals
at the origin that must be shipped on direct trains is
defined by the values

.
Dyy=byw— >, B(i, k, t', ¢, 1) Vi, k,t', 1,

t=t'

and the aggregate number of containers arriving at
the hub at time ¢, bound for destination 2 and due at
time / can be represented as

> B, k, t',t,1)

it

VEk, t, .

With these definitions, problem (P) can be re-
stated as

min | min >, (Zp(i, k)|D)

B ik

+min X (Zp,(i)[B) + min X (Zp,(k)|B)}.

i k

The matrix B is constrained by the pattern of
arrivals at the origin and the on-time delivery con-
straints, and directly influences the matrix D. The
problem of finding the optimal matrix B is difficult,
even without considering the on-time delivery con-
straints. Many different B matrices may lead to
similar solutions for the individual subproblems be-
cause each non-urgent container may take one of
several routes with similar, or even identical, costs.
Moreover, because the total cost is the sum of the
costs of many subproblems, there may be many dif-
ferent B matrices that lead to similar overall costs.
For example, one solution in which a given origin
sends many containers indirectly and another sends
many containers directly may have a similar cost to
one in which the allocation of direct and indirect ship-
ments is reversed. Our strategy is based on the con-
jecture that finding “good” B matrices should provide
the foundation for identifying a near-optimal solution.

Rather than searching for good B matrices directly,
we solve a problem of the following form, which we
term the “origin scheduling problem” to determine the
direct and indirect train schedules and related con-
tainer flows outbound from each origin i:

min >, Zp(i, k) + Zp,(i), (7N
k

where, in Zp (i), we assume that for each train in-
bound to the hub from origin i, there is a train
outbound from the hub whose fixed cost is the de-

mand-weighted average of the costs of trains from
the hub to the various destinations. Also, the han-
dling cost per container is the sum of the handling
cost at the origin and at the hub. Thus, rather than
using fixed and handling costs that reflect only the
first transportation segment, we use adjusted costs
that reflect estimates for the entire route:
S7=87+S; &i=gltg],
where S Jh is the fixed cost at hub j, obtained by using
an average or a weighted average of SJ’?k across des-
tinations.

Our motivation for making these cost adjustments
is to incorporate the first-order effects of sending
trains from the origin to the hub on the costs that
are incurred after the train reaches the hub. In other
words, the cost adjustment is an estimate of the
“cost to go” outbound from the hub. Although the
number of trains into and out of the hub may not be
exactly equal within a short time horizon, in practi-
cal applications, these values are fairly well bal-
anced. If the train capacities are well utilized in-
bound to the hub, on-time delivery requirements
make it difficult to hold containers at the hub for
long enough to achieve significant additional consol-
idation outbound from the hub. Here, we are implic-
itly assuming that the capacities of trains inbound
to and outbound from the hub are the same. If train
capacities vary by segment, then appropriate adjust-
ments can be made in the cost-to-go estimates.

More formally, the origin scheduling problem for
each origin i is

s (4 a ao e eo
min >, Al + D, c& x5, + 2, Ciie Xijhel
kil kil Jktl

o ao [ eo ao ao
+, gl xl, + 8 Xijpa T > Sz
kil Jktl Bt

eo eo
+ E ij 2ijt
jt

subject to constraints 1, 4, 5, and nonnegativity and
integrality constraints on all variables.

Having solved the above problem for each origin i,
we solve Py, the “hub scheduling problem,” for each
destination £ given container flows into the hub, i.e.,
%y from the origin scheduling problem. Letting c7,
denote the transportation cost between hub j and
destination %k, the problem for destination % is

: h h dy h h
min E hIijktl + Z(gj + gk)xijktl + E CiX i

ijtl jitl ijtl

h ok
+ Sl Zjke s

Jt
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TRAIN
(DESTINATION-TIME PERIOD)

(0, CAP_C1)

SUPERSINK

DIRECT TRAINS: C1, DI, C2, D2

DESTINATIONS: C,D
TIME PERIODS: 1, 2
DUE DATES: i, ii

INDIRECT TRAINS: HI, H2
TRANSPORTATION COSTS: ¢_
CONTAINER ARRIVALS: b_

= dircct shipments
------- = indirect shipments
------------ = inventory

Fig. 2. Network depiction of the origin scheduling problem for a given train schedule.

subject to constraints 2, 6, and nonnegativity and
integrality constraints on all variables. More com-
plex methods based on the same general strategy
appear in NEWMAN and YANO (2000).

Observe that this solution strategy allows us to
solve each origin scheduling problem independently,
and to solve an independent hub scheduling problem
for each destination. By simultaneously considering
direct and indirect shipments from each origin in
constraint 7 and approximating the cost to go for the
indirect shipments, we are able to find solutions that

TIME/DUE DATE

DAY 1

(b_lii, b_lii)
SOURCE

(b_2ii, b_2ii)

TRAINS: 1,2
TRANSPORTATION COSTS: ¢
CONTAINER ARRIVALS: b_

TIME PERIODS: 1, 2

DUE DATES: i, ii

reflect tradeoffs related to the type (direct or indi-
rect), number, and timing of trains to service goods
arriving at the same origin. We expect there will be
some loss of optimality from our approximation of
the cost to go, but we trade this off against the loss
of optimality from suboptimal solutions to the orig-
inal, monolithic problem. We explore these issues
further in Section 6.

Figure 2 depicts the network representation of the
origin scheduling problem for a single origin, a hub,
and two destinations for a given train schedule, and

TRAIN

0, CAP_I)

SUPERSINK

_______ = indirect shipments

--------------- = inventory

Fig. 3. Network depiction of the hub scheduling problem for a given train schedule.
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Figure 3 depicts the hub scheduling problem for a
single hub—destination pair for a given train sched-
ule. The examples have two time periods, two due
dates, and both travel times and hub delays are
assumed to be zero. Upper and lower bounds on
container flows are given in parentheses, and arc
costs are given in brackets.

It is important to note that, with the train sched-
ules fixed, both the origin and hub scheduling prob-
lems can be represented as single-commodity net-
work flow problems. In contrast, the original
problem with a fixed train schedule remains a multi-
commodity network flow problem. Thus, our solu-
tion strategy takes advantage of not only the direct
benefits of the decomposition in creating smaller
subproblems, but also the indirect benefits due to
the structure of the resulting subproblems. In par-
ticular, the fact that the embedded networks are
single-commodity network flow problems allows us
to relax the integrality constraints on the container
flows when solving the origin and hub scheduling
problems. In the next section, we show how our
methodology can be modified to provide good solu-
tions for larger problems.

3. PREPROCESSING METHOD TO DETERMINE
DIRECT TRAINS FOR MANY DESTINATIONS

OUR METHOD TO OBTAIN solutions for problems with
a larger number of destinations relies on a heuristic
preprocessing step to set the values of direct train
variables in the origin scheduling subproblems. Our
rationale for heuristically setting the direct train
variables (to reduce the size of the remaining prob-
lem) is that these decisions depend primarily upon
the demand between a single origin and a single
destination, and are only indirectly affected by when
and how containers are sent to other destinations.
Moreover, the primary indirect effect can be cap-
tured largely in the flows of containers sent via the
hub from the designated origin to all other destina-
tions. Our preprocessing method is motivated by
these observations.

For each origin, the preprocessing step proceeds
as follows. We construct K different subproblems,
where K is the number of destinations. In the kth
subproblem, £ = 1, ..., K, we partition the set of
destinations into two groups: a single destination, %,
and the remaining K — 1 destinations, which we
aggregate into a “super-destination.” Demands are
aggregated across destinations within the super-
destinations, taking into account differences in
travel times. (In effect, demands with the same lat-
est departure dates are grouped together.) Weighted
average fixed and variable costs are assessed for the

direct and indirect routes between the origin and the
aggregated destination.

This problem is now treated as an origin schedul-
ing problem with two destinations. Direct and indi-
rect train schedules for both the single (£th) and the
aggregated destination are derived, along with the
corresponding container routing schemes, but only
the direct train schedule for the £th destination is
retained. Therefore, at the end of this preprocessing
step, for each origin, we have established direct
train schedules for all K destinations. Having set
the direct train variables for all origin—destination
pairs in the preprocessing step, we solve the origin
scheduling problems to determine indirect train
schedules and all container flows.

This procedure generally will not provide an opti-
mal solution to the original origin scheduling prob-
lem because the direct train schedules are deter-
mined without full consideration of the details of the
indirect train schedules. However, recall that the
origin scheduling problem is an approximation in
itself. From the viewpoint of solving the original
problem, it would appear that there is greater loss of
optimality from decoupling the origins to create the
origin scheduling problems (and from the inability of
commercial software to find an optimal solution to
the original origin scheduling problem) than there is
from the use of this aggregation procedure in solving
the individual origin scheduling problems. More-
over, because this preprocessing step entails collaps-
ing a many-destination problem into a two-destina-
tion problem, it can be used even when the number
of destinations is large.

In the next section, we develop valid inequalities
to obtain tight lower bounds for the original model.

4. LOWER BOUNDS

TO EVALUATE THE performance of our procedure, we
use lower bounds as one type of benchmark. The
lower bounds provided by commercial software are
based on linear programming relaxations, which are
poor because they ignore the fixed-charge nature of
the train costs. These bounds can be improved con-
siderably by adding valid inequalities (cuts) to the
monolithic problem. These cuts are used to tighten
the lower bound on the original problem (but do not
necessarily yield an improved integer solution).
The cuts pertain to the minimum number of trains
required to service certain subsets of the demand.
Because of the substitutability of trains across time
to service non-urgent containers, it is difficult to
obtain tight lower bounds on the number of trains on
any segment in any time period. We can, however,
obtain fairly tight lower bounds on the following:



i. the total number of trains outbound from each
origin to each destination during the horizon
(single origin—single destination constraint type
1, or sosdl);

ii. the total number of trains outbound from each
origin to all destinations (collectively) during the
horizon (single origin—all destinations, or soad);

iii. the total number of trains inbound to each des-
tination from each origin during the horizon
(single origin—single destination constraint type
2, or sosd2); and

iv. the total number of trains from all origins in-
bound to each destination during the horizon (all
origins—single destination, or aosd).

Let M,;,, M;, and M,, be the lower bounds on the
number of trains sent during the horizon associated
with the origin—destination pair (i, k), with an ori-
gin i, and with a destination %, respectively. The
four types of cuts are stated algebraically as:

2 szt + E E Zyt/ Mzk Vl, ka (SOSdl)
t=1 j

T

2 2 1kt+ E 2 Zz]t/M VZ (Soad)

t=1 & t=1 j

2 Zlkt + E E Z]kt/Mlk Vl k, (SOSd2)
t=1 j

T T

> 2zt X X =M, Vk. (aosd)

t=1 i t=1 j

To obtain values of M;,, M;, and M, for all i and
k, we introduce the concept of a “supertrain,” a fic-
titious train type with the advantages of both direct
and indirect trains. A supertrain emanating from
the origin can deliver shipments to any destination,
giving it the geographical consolidation advantage of
indirect trains. However, like direct trains, it incurs
neither the cost nor time delays associated with
passing through a hub. Travel time to any destina-
tion is the direct travel time for the origin—destina-
tion pair. To obtain lower bounds on the number of
trains into each destination (sosd2 and aosd), we
reverse the network and reindex time appropriately.

Before solving each supertrain problem, we first
determine whether there are any demands that ne-
cessitate direct trains. We set the corresponding di-
rect train variables to 1 (or to a value large enough
to accommodate these demands, if more than one
train is needed for an origin—destination pair). We
then solve the problem of finding a supertrain sched-
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ule and container flows on both the supertrains and
pre-set direct trains that minimize the total number
of supertrains outbound from the origin while satis-
fying on-time delivery requirements. To establish
the value for M, we solve the supertrain problem for
a single origin and all destinations. To establish the
value for M,, we solve the supertrain problem on a
reversed version of the network and consider all
origins and a single destination. To establish the
value for M,,, we solve the supertrain problem for
just a single origin—destination pair on either the
original or the reversed network.

We now demonstrate that the optimal objective
value for the supertrain problem (which has the
objective of minimizing the number of trains) is a
lower bound on the optimal number of trains for the
cost-minimization (i.e., the original) problem. Note
that the assumptions in the supertrain problem lead
to differences in the constraints, not just in the
objective function. Therefore, for completeness, we
demonstrate this result formally.

We consider the train schedule component of the
optimal solution to the cost minimization problem,
say {285, 25, z0w:). From this schedule, we show
how to construct a feasible solution to the supertrain
problem with the same number of trains. Because
the optimal solution to the supertrain problem has an
equal or fewer number of trains than any feasible
solution to that problem, the optimal solution to the
supertrain problem provides a valid lower bound on
the number of trains in the cost minimization problem.

We now show how to construct a feasible solution
to the supertrain problem from {23/, 257", z;). Let
Z¢, be the number of supertrains departing from
origin i at time ¢ and ¢, be the number of super-
trains arriving at destination %2 at time ¢. These
supertrains will substitute for both direct and indi-
rect trains in the original minimum-cost solution.
First, substitute a supertrain for each direct train
outbound from origin i in the minimum cost solution
and retain the container assignments. The super-
train has the same transit time as a direct train, and
thus satisfies on-time requirements for the contain-
ers assigned to that train. Next, substitute a super-
train for each indirect train outbound from origin ¢
in the minimum cost solution, again retaining the
container assignments. The supertrain also has the
same transit time as a direct train for any destina-
tion, and thus also satisfies on-time requirements
for the containers on that train.

We can now set 2;, = 2, 25, + =257 . The analysis
for trains inbound to destinatmn k parallels the anal-
ysis above, and we can set 2}, = =, 2%, + =, 2ly,. Thus,
we have constructed a feasible solut10n to the super-

Qo* eo*

train problem from {233/, 27/, Jk,} that has the same
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number of trains as in the minimum cost solution.
Consequently, the minimum number of trains in the
supertrain problem provides a lower bound on the
number of trains in the minimum cost problem.

5. SIMPLE HEURISTICS

WE DEVISE TWO heuristics that are designed to
mimic current operating policies. These simple heu-
ristics provide additional benchmarks and allow us
to estimate the potential savings from using our
procedure. At the intermodal operation that moti-
vated our research, most, if not all, containers are
sent via a hub, which leads to some late deliveries.
Because we require on-time delivery in our model,
these two simple heuristics include the provision for
direct shipments when required to satisfy on-time
delivery requirements.

In both heuristics, all containers are sent out as soon
as possible after they arrive at the origin or at the hub.
Containers requiring expedited service are sent on
direct trains. Non-urgent containers are assigned to
direct trains (which have lower transportation and
handling costs) to the extent space is available. Then,
all remaining non-urgent containers are assigned to
indirect trains. Thus, the heuristics need only specify
the number of trains of each type.

The main difference between the two heuristics lies
in the conditions for sending direct trains, beyond the
minimum required to service expedited containers. In
Heuristic 1, direct trains also are sent when there are
enough containers to fill a train, even if direct service
is not required. We also allow up to one additional
direct train with non-urgent containers for each orig-
in—destination pair, provided it is at least 6 full, 0 <
0 < 1. In practice, 0 is a parameter determined by
management, taking into account the tradeoff be-
tween the opportunity cost of operating a less-than-full
direct train and the additional costs for containers sent
through the hub. In Heuristic 2, only necessary direct
trains are sent; no trains that contain exclusively non-
urgent containers are sent directly. The first heuristic
attempts to minimize costs by sending as many con-
tainers as possible, or as practicable, on direct trains
(which have lower costs). The second heuristic foregoes
this opportunity, emphasizing instead the opportunity
for consolidation on trains traveling into and out of the
hub.

We now describe Heuristic 1 in more detail. For
each origin—destination pair, compute the number
of direct trains:

t+Bijt+yrt+oi—1

2 biktl

I=t+ai,

C

Set z§, = +y Vi, k, ¢,

where y represents the smallest number of addi-
tional direct trains to be sent other than those car-
rying containers requiring expedited service, and is
the smallest nonnegative integer such that

N
t+Bit+yirto—1
ao
E b — | C * 25 — E b
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>9xC+(y—1)*C.

The corresponding number of containers that are
sent directly is given as

x?;fﬂ = biktl Vl, k, t, t+ aik$ l <t -+ BU + ')/Jk + 81-,
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where bipy < bipy Vi, k, 8, L =1 + By + vy + 8
containers not requiring expedited service are cho-
sen for direct shipment because either they fill a
direct train (with or without expedited containers),
or they constitute at most one train not carrying any
expedited containers, but which is at least 60 full.
Then, for each origin and time period, compute the
number of indirect trains needed to service the re-
maining containers not sent on a direct train:

{ 2{ S bu !

k I=t+Bij+yp+5;
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Vi, j, t.

For the case of a single hub, the corresponding
number of containers sent indirectly to the hub is
given as

xfﬁtl = by — bira
Vi, k, t,l>t+Bij+ 'yjk+8j, and j=1.

Compute the number of containers from each or-
igin i ready to depart the hub for destination % at
time ¢ + B;; + §; as

3
2 X jj(t+ B+ o)l
1

= E bk —
I=t+Bij+ vkt

£+ Byt vt 81 *
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C * zi — 2 bira

I=t+ai

Vi, k,t, and j=1.



TABLE I
Test Problem Characteristics
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TABLE II
Parameters for Test Problem Instances

Number of Relative Proportion
Origins—Hubs Expedited Service
Problems Destinations Demanded
1-5 3-1-3 ~20%
6-10 3-1-3 ~10%
11-13 3-1-4 ~20%
14-15 3-1-4 ~10%
16-18 4-1-3 ~20%
19-20 4-1-3 ~10%
21-25 6-1-6 ~20%
26-30 6—1-6 ~10%

Finally, for each destination and time period, com-
pute the number of trains needed to accommodate
the number of containers ready to depart from the
hub:

DI

i =t Bit ety
Set 2%,...5=
Jh(E+Bij+38)) C

h
X ik (t+By+ o)l

Vk,t, and j=1.

Heuristic 2 can be described as follows: Send a
direct train between an origin and a destination
when necessitated by the due dates of containers.
After the containers requiring urgent service have
been given priority, fill the remaining space with
non-urgent containers in any order (which we justify
below). Send as many indirect trains from the origin
as necessary each day to ship all remaining contain-
ers (i.e., those not sent directly). Send indirect trains
from the hub to each destination each day to ship the
containers arriving at the hub.

Any allocation of remaining non-urgent contain-
ers to indirect trains is feasible and has the same
cost. Feasibility follows because the containers can
be sent on either train type. Total variable costs are
equal because of our cost structure. Total fixed cost
is equal because the number of daily direct trains
depends only on pre-determined demand, and the
number of daily indirect trains is independent of the
slack in the non-urgent containers’ schedules.

6. NUMERICAL RESULTS

WE GENERATED 30 problems with one hub, three to
six origins and destinations, and with different con-
tainer-demand patterns and cost structures. We
summarize problem characteristics in Tables I and
II. All problems have eight time periods in which
containers become available at the various origins.
All trains have a capacity of 200 containers. Con-
tainer demand was generated for each origin—desti-
nation—arrival time—due date combination with a

Range Used in

Parameter Test Problems

Container arrival rate per day 0-65
Fixed cost at origin (direct train) ($/train) 11000-15000

Fixed cost at origin (indirect train) ($/train) 5900-8500
Fixed cost at hub ($/train) 6300—8500
Transportation cost ($/container) 40-100
Handling cost (all locations) ($/container) 1-2
Inventory holding cost ($/container/day) 1.5-2

probability of 0.55 of being randomly generated from
a discrete uniform distribution between 10 and 65,
and a probability of 0.45 of being 0. Scenarios in
which less expedited service is demanded are gen-
erated as described above, except that, for each orig-
in—destination—arrival time—due date combination
such that the shipment necessitated transport via
direct train (i.e., t + a; <1 < B; + vy + §),
demands that were originally positive are indepen-
dently set to zero with probability 0.4—0.5.

Table II gives ranges of values for container ar-
rival rates and the cost parameters. Industry data
suggest that fixed and variable transportation costs
for shipping a full train are approximately equal. We
set the fixed charge associated with each train to be
proportional to the distance, based on our observa-
tion that train-operator labor constitutes the major-
ity of this cost. Handling costs per container are
based on the hourly wage of yard operators and the
approximate time needed to load, unload, or reposi-
tion a container. The yard storage cost per container
per day is assigned a small value that provides in-
centive to ship earlier rather than later, all else
being equal. For the first heuristic, we set 6 = 0.65
for all problems.

The problems were solved on a Sun SparcStation
20 with 128 megabytes of RAM using CPLEX 6.0.
We obtained solutions and lower bounds for the
monolithic problem by using CPLEX (with a time
limit of 9000 seconds), with and without the valid
inequalities discussed in Section 4. We also obtained
solutions using our decomposition procedure and the
two simple heuristics. For all executions of the
CPLEX software, we use depth-first search, and
strong branching, i.e., the branching variable is se-
lected whose resolution is most likely to yield the
greatest improvement in the objective function
value. Additionally, we had CPLEX implement its
built-in heuristic to find integer solutions. This com-
bination of rules provided the best results for our set
of problems. We also implemented a priority branch-
ing scheme, but it did not lead to significant perfor-
mance improvement.
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TABLE III

Objective Values and Lower Bounds as a Ratio of the Objective
from the Decomposition Procedure

CPLEX

Best Our CPLEX

Heuristic Heuristic Integer Lower Lower

Problem 1 2 Solution Bound Bound
1 1.12 1.12 1.02 0.98 0.80
2 1.12 1.12 1.00 0.98 0.80
3 1.14 1.14 1.01 0.96 0.85
4 1.17 1.17 1.02 0.99 0.81
5 1.15 1.15 1.00 0.97 0.86
6 1.14 1.15 1.01 0.93 0.85
7 1.14 1.15 1.00 0.90 0.81
8 1.11 1.12 1.03 0.92 0.86
9 1.19 1.19 1.03 0.92 0.85
10 1.19 1.18 1.03 0.94 0.84
11 1.09 1.09 1.01 0.94 0.82
12 1.13 1.13 1.01 0.97 0.80
13 1.15 1.16 1.01 0.96 0.84
14 1.16 1.16 1.04 0.91 0.82
15 1.15 1.16 1.01 0.90 0.83
16 1.10 1.10 1.01 0.96 0.79
17 1.18 1.18 1.01 0.97 0.81
18 1.11 1.12 1.00 0.96 0.84
19 1.19 1.19 1.03 0.93 0.82
20 1.22 1.24 1.02 0.93 0.84
21 1.05 1.05 0.99 0.91 0.79
22 1.06 1.06 0.98 0.92 0.79
23 1.08 1.08 0.99 0.93 0.81
24 1.08 1.08 1.00 0.94 0.80
25 1.06 1.06 1.00 0.93 0.79
26 1.07 1.05 0.99 0.90 0.83
27 1.08 1.06 1.00 0.90 0.82
28 1.07 1.06 1.00 0.89 0.81
29 1.08 1.07 0.97 0.87 0.83
30 1.08 1.08 0.99 0.90 0.83

Although the valid inequalities were quite effec-
tive for improving the lower bounds (as we discuss in
more detail later), we found them to be ineffective
for improving the best integer solution found prior to
the time limit or for reducing overall computational
effort. One reason is that the cuts specify bounds on
the total number of trains outbound from an origin
or inbound to a destination, and thus also on the
sum of fixed costs associated with the trains. With
such cuts, we are able to get much larger lower
bounds (on costs) at all levels of the search tree, and
thus, also, a tighter lower bound upon termination.
In contrast, such aggregate constraints provide little
guidance in the search process. Meanwhile, modest
computational effort must be expended to compute
the right-hand-side values for the valid inequalities,
and the introduction of the valid inequalities slows
the overall execution of CPLEX in solving the prob-
lem, often resulting in inferior solutions. For this
reason, in what follows, we report solutions and
CPU times for the monolithic problem without valid
inequalities.

Results appear in Table III. All results are re-

ported as the ratio of the relevant objective value to
that of the objective value from the decomposition
procedure. As shown in the second and third col-
umns, the simple heuristics yield solutions that are
about 12% more costly than those found using our
decomposition technique. The results demonstrate
that significant cost savings can be realized from our
proposed procedures over systematic but simpler
heuristics. Results in the fourth column show that
our decomposition procedure yields an average im-
provement of approximately 1% versus the best in-
teger solution obtainable from a straightforward im-
plementation of CPLEX with a 9000-second time
limitation. In 6 of the 30 problems, the objective
value from our decomposition approach is 1-3%
above that of the straightforward CPLEX solution,
but, as we will show later, this small loss of solution
quality comes with a significant reduction in CPU
time. Moreover, some or all of this loss can be re-
gained by using refinements of our basic approach
that require very little computing effort (see New-
man and Yano, 2000).

The fifth and sixth columns report the ratio of the
decentralized objective value to lower bounds, where
the lower bounds are obtained by solving the mono-
lithic problem with and without the valid inequali-
ties (discussed in Section 4), respectively. It is evi-
dent that the addition of the valid inequalities
improves the bounds substantially. Furthermore,
the tighter bounds demonstrate that our decompo-
sition procedure performs well in an absolute sense.
On average, the solutions from the decomposition
procedure are within 6.6% of the corresponding
lower bounds, which is remarkable considering the
strong role of the fixed costs in our problem and the
fact that the bounds are (still) based on linear pro-
gramming relaxations. The bounds are tighter in
instances for which more expedited service is re-
quired because many direct train variables must be
set to 1 (or more). This, in turn, makes the valid
inequalities effectively tighter. By contrast, the
straightforward application of CPLEX yields bounds
that average 18% less than the corresponding objec-
tive function values from the decomposition proce-
dure.

Table IV contains CPU times that we report in
two different ways. The third column reports the
sum of the CPU times for all origin scheduling sub-
problems and the hub scheduling subproblems. The
fourth column reports the elapsed time that would
be required if the origin scheduling problems could
be solved in parallel, and, subsequently, the hub
scheduling problems could be solved in parallel. The
solution times from the monolithic problem are re-
ported as the time at which the best integer solution



TABLE IV
CPU Time Performance

Serial Run Time Parallel Run Time

Number of (Decentralized (Decentralized Centralized

Origins—Hubs Approach) Approach) Approach

Problem Destinations (sec.) (sec.) (sec.)*
1 3-1-3 i i 1825*
2 3-1-3 ¥ ¥ 9000*
3 3-1-3 i ¥ 6802*
4 3-1-3 ¥ ¥ 6051*
5 3-1-3 i * 4605*
6 3-1-3 t * 7892%
7 3-1-3 142 142 8622*
8 3-1-3 103 103 5662*
9 3-1-3 ¥ ¥ 192%
10 3-1-3 i ¥ 5008*
11 3-1-4 250 250 3824%
12 3-1-4 97 97 1266*
13 3-1-4 i i 534*
14 3-1-4 517 290 2258*
15 3-1-4 2112 1800 4700*
16 4-1-3 f i 3008*
17 4-1-3 i * 683*
18 4-1-3 i i 497*
19 4-1-3 ¥ i 2910*
20 4-1-3 i i 2800%
21 6-1-6 972 221 1295*
22 6-1-6 158 69 6469*
23 6-1-6 114 69 1223*
24 6—-1-6 736 139 5870*
25 6-1-6 810 113 1185+
26 6-1-6 2492 355 2642*
27 6-1-6 1019 226 6383*
28 6-1-6 912 896 1000*
29 6-1-6 536 207 5498*
30 6-1-6 670 111 8708*

*Indicates time at which best integer solution is first identi-
fied.

"Indicates CPU time is less than five seconds.

*Time limit of 9000 seconds is reached.

is identified within the preset time limit of 9000
seconds. In all cases, the 9000-second time limit is
reached without a verified optimal solution. For vir-
tually all of the problems, the CPU time for the
decomposition procedure is a small fraction of that
required to first identify the best integer solution
found within the 9000-second time limit, and the
latter times could be achieved in practice only if one
were clairvoyant about the best time to terminate
the search.

The majority of the CPU time is associated with
solving the preprocessing step required for the
larger origin scheduling subproblems (i.e., those
with six destinations in our data sets). This prepro-
cessing step is executed (optimally) in about one
minute or less, on average, for our problems, but, as
the problem size grows, a greater number of these
problems must be solved. Although the CPU times
for serial processing increase with the number of
origins and destinations, parallel run times remain
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very modest. The computing effort is dominated by
the origin scheduling problems; the solution times
for the hub scheduling problems are negligible in
almost all instances. In general, problems with more
expedited service are solved more quickly, as certain
direct-train variables can be fixed (or are set in
advance in the CPLEX pre-solve operation).

7. CONCLUSIONS

WE HAVE ADDRESSED the problem of simultaneously
determining train scheduling and container routing
decisions in a rail intermodal setting. We have de-
veloped a decomposition procedure that takes ad-
vantage of the embedded network structure, and
yields near-optimal solutions in less than one-third
the time of commercial optimization software. We
have also developed methods for obtaining tight
lower bounds using valid inequalities. The entire
decomposition procedure yields solutions with objec-
tive function values about 12% lower, on average,
than those obtained with the simple heuristics de-
scribed in Section 5. Managerially, our procedure
has the advantage of allowing decisions to be made
locally at each terminal while achieving, on average,
better performance than the best solutions obtained
from commercial software for the monolithic prob-
lem.

For problems with three or four origins and des-
tinations, we are able to obtain optimal solutions for
the origin scheduling subproblems in our decompo-
sition procedure. It is difficult to obtain (verified)
optimal solutions to these subproblems (which must
consider all destinations simultaneously) when the
number of destinations grows larger. To deal with
such situations, we have developed a variation of our
decomposition method that relies on a preprocessing
step to set certain direct-train variables heuristi-
cally before the remainder of the problem is solved.
For a network with a single hub, this preprocessing
step is effective in reducing the size of the remaining
origin scheduling subproblems, allowing us to solve
them to optimality (for problems of the size consid-
ered in our experiments). The method for construct-
ing valid inequalities described in Section 4 provides
much tighter lower bounds than those provided by a
straightforward implementation of CPLEX and
demonstrates that our decomposition procedure
yields solutions within 6.6% of the optimum, on av-
erage.

Future research is needed to capture other prac-
tical aspects of the problem. We mentioned earlier
that, in practice, some containers may be shipped
late to avoid sending a train with only a few contain-
ers. Our model can be generalized to allow tardy
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deliveries (with tardiness penalties). Other general-
izations include incorporation of hub capacity for
container handling, and networks with multiple
hubs. There may be parallel hubs, with each ship-
ment passing through (at most) one hub, or serial
hubs, with shipments passing through one or more
hubs en route to their destinations.

In the case of parallel hubs, the origin scheduling
problem is similar to that for the single hub case; the
decisions outbound from the origin include direct
train schedules and corresponding container ship-
ments to each destination, and indirect train sched-
ules and corresponding container movements to
each of several hubs. Estimates of the cost to go can
be made in much the same way as for a single-hub
problem. Once the origin scheduling problems are
solved, a hub scheduling problem is solved for each
hub-destination pair, because these problems can
be decoupled once the arrivals to the hubs are
known.

For scenarios involving two or more hubs in se-
ries, intermediate hub scheduling subproblems
must be solved sequentially starting from the ori-
gins and moving toward the destinations. Because
there may be several rail segments on a path be-
tween an origin and destination, accurately estimat-
ing the cost to go may be more difficult. Preliminary
computational studies yield good results even with-
out highly accurate cost-to-go estimates. Methods
for obtaining valid inequalities for the single hub
case can be extended in a straightforward manner
for multiple (parallel or serial) hub scenarios.

We believe that the decomposition concepts pro-
posed here provide an opportunity for considerable
cost reduction while maintaining the advantages of
local decision-making. The benefits derive from look-
ing ahead, not only with respect to downstream
freight flows, but also with respect to forecasted
future demands and opportunities to consolidate
shipments across time.
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