
Practical Guidelines for Solving Difficult Linear Programs1

Ed Klotz† • Alexandra M. Newman‡
†IBM, 926 Incline Way, Suite 100, Incline Village, NV 89451

‡Division of Economics and Business, Colorado School of Mines, Golden, CO 80401

klotz@us.ibm.com • newman@mines.edu

2

Abstract3

The advances in state-of-the-art hardware and software have enabled the inexpensive, effi-4

cient solution of many large-scale linear programs previously considered intractable. However, a5

significant number of large linear programs can require hours, or even days, of run time and are6

not guaranteed to yield an optimal (or near-optimal) solution. In this paper, we present sugges-7

tions for diagnosing and removing performance problems in state-of-the-art linear programming8

solvers, and guidelines for careful model formulation, both of which can vastly improve perfor-9

mance.10

Keywords: linear programming, algorithm selection, algorithmic tuning, numerical stability,11

memory use, run time, tutorials12

1 Introduction13

Operations research practitioners have been formulating and solving linear programs since the 1940s14

(Dantzig, 1963). State-of-the-art optimizers such as CPLEX (IBM, 2012), Gurobi (Gurobi, 2012),15

MOPS (MOPS, 2012), Mosek (MOSEK, 2012), and Xpress-MP (FICO, 2012) can solve most prac-16

tical large-scale linear programs effectively. However, some “real-world” problem instances require17

days or weeks of solution time. Furthermore, improvements in computing power and linear pro-18

gramming solvers have often prompted practitioners to create larger, more difficult linear programs19

that provide a more accurate representation of the systems they model. Although not a guarantee20

of tractability, careful model formulation and standard linear programming algorithmic tuning of-21

ten result in significantly faster solution times, in some cases admitting a feasible or near-optimal22

solution which could otherwise elude the practitioner.23

In this paper, we briefly introduce linear programs and their corresponding commonly used24

algorithms, show how to assess optimizer performance on such problems through the respective25

algorithmic output, and demonstrate methods for improving that performance through careful26

formulation and algorithmic parameter tuning. We assume basic familiarity with fundamental27

1

mathematics, such as matrix algebra, and with optimization. We expect that the reader has for-28

mulated linear programs and has a conceptual understanding of how the corresponding problems29

can be solved. The interested reader can refer to basic texts such as Chvátal (1983), Dantzig and30

Thapa (1997), Rardin (1998), Winston (2004), and Bazaraa et al. (2005) for more detailed intro-31

ductions to mathematical programming, including geometric interpretations. For a more general32

discussion of good optimization modeling practices, we refer the reader to Brown and Rosenthal33

(2008). However, we contend that this paper is self-contained such that relatively inexperienced34

practitioners can use its advice effectively without referring to other sources.35

The remainder of the paper is organized as follows. In Section 2, we introduce linear programs36

and the simplex and interior point algorithms. We also contrast the performance of these algo-37

rithms. In Section 3, we address potential difficulties when solving a linear program, including38

identifying performance issues from the corresponding algorithmic output, and provide suggestions39

to avoid these difficulties. Section 4 concludes the paper with a summary. Sections 2.1 and 2.2,40

with the exception of the tables, may be omitted without loss of continuity for the practitioner41

interested only in formulation and algorithmic parameter tuning without detailed descriptions of42

the algorithms themselves. To illustrate the concepts we present in this paper, we show output43

logs resulting from having run a state-of-the-art optimizer on a standard desktop machine. Unless44

otherwise noted, this optimizer is CPLEX 12.2.0.2, and the machine possesses four 3.0 gigahertz45

Xeon chips and eight gigabytes of memory.46

2 Linear Programming Fundamentals47

We consider the following system where x is an n× 1 column vector of continuous-valued, nonneg-48

ative decision variables, A is an m× n matrix of left-hand-side constraint coefficients, c is an n× 149

column vector of objective function coefficients, and b is an m× 1 column vector of right-hand-side50

data values for each constraint.51

(PLP) : min cT x

subject to Ax = b

x ≥ 0

Though other formats exist, without loss of generality, any linear program can be written in52

the primal standard form we adopt above. Specifically, a maximization function can be changed53

to a minimization function by negating the objective function (and then negating the resulting54

2

optimal objective). A less-than-or-equal-to or greater-than-or-equal-to constraint can be converted55

to an equality by adding a nonnegative slack variable or subtracting a nonnegative excess variable,56

respectively. Variables that are unrestricted in sign can be converted to nonnegative variables by57

replacing each with the difference of two nonnegative variables.58

We also consider the related dual problem corresponding to our primal problem in standard59

form, (PLP). Let y be an m × 1 column vector of continuous-valued, unrestricted-in-sign decision60

variables; A, b and c are data values with the dimensionality given above in (PLP).61

(DLP) : max yT b

subject to yT A ≤ cT

The size of a linear program is given by the number of constraints, m, the number of variables, n,62

and the number of non-zero elements in the A matrix. While a large number of variables affects the63

speed with which a linear program is solved, the commonly used LP algorithms solve linear systems64

of equations dimensioned by the number of constraints. Because these linear solves often dominate65

the time per iteration, the number of constraints is a more significant measure of solution time than66

the number of variables. Models corresponding to practical applications typically contain sparse A67

matrices in which more than 99% of the entries are zero. In the context of linear programming, a68

dense matrix need not have a majority of its entries assume non-zero values. Instead, a dense LP69

matrix merely has a sufficient number or pattern of non-zeros so that the algorithmic computations70

using sparse matrix technology can be sufficiently time consuming to create performance problems.71

Thus, a matrix can still have fewer than 1% of its values be non-zero, yet be considered dense.72

Practical examples of such matrices include those that average more than 10 non-zeros per column73

and those with a small subset of columns with hundreds of non-zeros. State-of-the-art optimizers74

capitalize on matrix sparsity by storing only the non-zero matrix coefficients. However, even for75

such matrices, the positions of the non-zero entries and, therefore, the ease with which certain76

algorithmic computations (discussed below) are executed, can dramatically affect solution time.77

A basis for the primal system consists of m variables whose associated matrix columns are78

linearly independent. The basic variable values are obtained by solving the system Ax = b given79

the resulting n −m non-basic variables are set to values of zero. The set of the actual values of80

the variables in the basis, as well as those set equal to zero, is referred to as a basic solution. Each81

primal basis uniquely defines a basis for the dual (see Dantzig (1963), pp. 241-242). For each basis,82

there is a range of right-hand-side values such that the basis retains the same variables. Within83

this range, each constraint has a corresponding dual variable value which indicates the change in84

3

the objective function value per unit change in the corresponding right hand side. (This variable85

value can be obtained indirectly via the algorithm and is readily available through any standard86

optimizer.) Solving the primal system, (PLP), provides not only the primal variable values but also87

the dual values at optimality; these values correspond to the optimal variable values to the problem88

(DLP). Correspondingly, solving the dual problem to optimality provides both the optimal dual89

and primal variable values. In other words, we can obtain the same information by solving either90

(PLP) or (DLP).91

Each vertex (or extreme point) of the polyhedron formed by the constraint set Ax = b corre-92

sponds to a basic solution. If the solution also satisfies the nonnegativity requirements on all the93

variables, it is said to be a basic feasible solution. Each such basic feasible solution, of which there is94

a finite number, is a candidate for an optimal solution. In the case of multiple optima, any convex95

combination of extreme-point optimal solutions is also optimal. Because basic solutions contain96

significantly more zero-valued variables than solutions that are not basic, practitioners may be more97

easily able to implement basic solutions. On the other hand, basic solutions lack the “diversity” in98

non-zero values that solutions that are not basic provide. In linear programs with multiple optima,99

solutions that are not basic may be more appealing in applications in which it is desirable to spread100

out the non-zero values among many variables. Linear programming algorithms can operate with a101

view to seeking basic feasible solutions for either the primal or for the dual system, or by examining102

solutions that are not basic.103

2.1 Simplex Methods104

The practitioner familiar with linear programming algorithms may wish to omit this and the fol-105

lowing subsection. The primal simplex method (Dantzig, 1963), whose mathematical details we106

provide later in this section, exploits the linearity of the objective and convexity of the feasible107

region in (PLP) to efficiently move along a sequence of extreme points until an optimal extreme-108

point solution is found. The method is generally implemented in two phases. In the first phase,109

an augmented system is initialized with an easily identifiable extreme-point solution using artificial110

variables to measure infeasibilities, and then optimized using the simplex algorithm with a view to111

obtaining an extreme-point solution to the augmented system that is feasible for the original system.112

If a solution without artificial variables cannot be found, the original linear program is infeasible.113

Otherwise, the second phase of the method uses the original problem formulation (without artificial114

variables) and the feasible extreme-point solution from the first phase and moves from that solution115

to a neighboring, or adjacent, solution. With each successive move to another extreme point, the116

objective function value improves (assuming non-degeneracy, discussed in §3.2) until either: (i) the117

4

algorithm discovers a ray along which it can move infinitely far (to improve the objective) while118

still remaining feasible, in which case the problem is unbounded, or (ii) the algorithm discovers an119

extreme-point solution with an objective function value at least as good as that of any adjacent120

extreme-point solution, in which case that extreme point can be declared an optimal solution.121

An optimal basis is both primal and dual feasible. In other words, the primal variable values122

calculated from the basis satisfy the constraints and nonnegativity requirements of (PLP), while the123

dual variable values derived from the basis satisfy the constraints of (DLP). The primal simplex124

method works by constructing a primal basic feasible solution, then working to remove the dual125

infeasibilities. The dual simplex method (Lemke, 1954) works implicitly on the dual problem126

(DLP) while operating on the constraints associated with the primal problem (PLP). It does so by127

constructing a dual basic feasible solution, and then working to remove the primal infeasibilities.128

In that sense, the two algorithms are symmetric. By contrast, one can also explicitly solve the129

dual problem (DLP) by operating on the dual constraint set with either the primal or dual simplex130

method. In all cases, the algorithm moves from one adjacent extreme point to another to improve131

the objective function value (assuming non-degeneracy) at each iteration.132

Primal simplex algorithm:133

We give the steps of the revised simplex algorithm, which assumes that we have obtained a134

basis, B, and a corresponding initial basic feasible solution, xB, to our system as given in (PLP).135

Note that the primal simplex method consists of an application of the algorithm to obtain such136

a feasible basis (phase I), and a subsequent application of the simplex algorithm with the feasible137

basis (phase II).138

We define cB and AB as, respectively, the vector of objective coefficients and matrix coefficients139

associated with the basic variables, ordered as the variables appear in the basis. The nonbasic140

variables belong to the set N , and are given by {1, 2, ...n} − {B}.141

The revised simplex algorithm mitigates the computational expense and storage requirements142

associated with maintaining an entire simplex tableau, i.e., a matrix of A, b, and c components of a143

linear program, equivalent to the original but relative to a given basis, by computing only essential144

tableau elements. By examining the steps of the algorithm in the following list, the practitioner can145

often identify the aspects of the model that dominate the revised simplex method computations,146

and thus take suitable remedial action to reduce the run time.147

1. Backsolve Obtain the dual variables by solving the linear system yT AB = cT
B, where AB is

represented by an LU factorization. The LU factorization is a product of a lower triangu-

lar and upper triangular matrix that is computed through a sequence of pivoting operations

5

analogous to the operations used to compute the inverse of a matrix. Most simplex algorithm

implementations compute and maintain an LU factorization rather than a basis inverse be-

cause the former is sparser and can be computed in a more numerically stable manner. See

Duff et al. (1986) for details. Given a factorization AB = LU , it follows that A−1
B = U−1L−1,

so the backsolve is equivalent to solving

yT = cT
BAB

−1 = cT
BU−1L−1 (1)

This can be calculated efficiently by solving the following sparse triangular linear systems148

(first, by computing the solution of a linear system involving U , and then using the result to149

solve a linear system involving L); this computation can be performed faster than computing150

yT as a matrix product of cT and AB
−1.151

pT U = cT
B

yT L = pT .

2. Pricing Calculate the reduced costs c̄T
N = cT

N − yT AN , which indicate for each nonbasic152

variable the rate of change in the objective with a unit increase in the corresponding variable153

value from zero.154

3. Entering variable selection Pick the entering variable xt and associated incoming column155

At from the set of nonbasic variable indices N with c̄T
N < 0. If c̄T

N ≥ 0, stop with an optimal156

solution x = (xB, 0).157

4. Forward solve Calculate the corresponding incoming column w relative to the current basis158

matrix by solving ABw = At.159

5. Ratio test Determine the amount by which the value of the entering variable can increase160

from zero without compromising feasibility of the solution, i.e., without forcing the other basic161

variables to assume negative values. This, in turn, determines the position r of the outgoing162

variable in the basis and the associated index on the chosen variable xj , j ∈ {1, 2, ...n}. Call163

the outgoing variable in the rth position xjr . Then, such a variable is chosen as follows: r =164

argmin
i:wi>0

xji

wi
.165

Let θ = min
i:wi>0

xji

wi
.166

6

If there exists no i such that wi > 0, then θ is infinite; this implies that regardless of the167

size of the objective function value given by a feasible solution, another feasible solution168

with a better objective function value always exists. The extreme-point solution given by169

(xB, 0), and the direction of unboundedness given by the sum of (−w, 0) and the unit vector170

et combine to form the direction of unboundedness. Hence, stop because the linear program171

is unbounded. Otherwise, proceed to Step 6.172

6. Basis update Update the basis matrix AB and the associated LU factorization, replacing173

the outgoing variable xjr with the incoming variable xt. Periodically refactorize the basis174

matrix AB using the factorization given above in Step 1 in order to limit the round-off error175

(see Section 3.1) that accumulates in the representation of the basis as well as to reduce the176

memory and run time required to process the accumulated updates.177

7. Recalculate basic variable values Either update or refactorize. Most optimizers perform178

between 100 and 1000 updates between each refactorization.179

(a) Update: Let xt = θ; xi ← xi − θ · wi for i ∈ {B} − {t}180

(b) Refactorize: Using the refactorization mentioned in Step 1 above, solve ABxB = b.181

8. Return to Step 1.182

A variety of methods can be used to determine the incoming variable for a basis (see Step 3)183

while executing the simplex algorithm. One can inexpensively select the incoming variable using184

partial pricing by considering a subset of nonbasic variables and selecting one of those with negative185

reduced cost. Full pricing considers the selection from all eligible variables. More elaborate variable186

selection schemes entail additional computation such as normalizing each negative reduced cost such187

that the selection of the incoming variable is based on a scale-invariant metric (Nazareth, 1987).188

These more elaborate schemes can diminish the number of iterations needed to reach optimality189

but can also require more time per iteration, especially if a problem instance contains a large190

number of variables or if the A matrix is dense, i.e., it is computationally intensive to perform the191

refactorizations given in the simplex algorithm. Hence, if the decrease in the number of iterations192

required to solve the instance does not offset the increase in time required per iteration, it is193

preferable to use a simple pricing scheme. In general, it is worth considering non-default variable194

selection schemes for problems in which the number of iterations required to solve the instance195

exceeds three times the number of constraints.196

Degeneracy in the simplex algorithm occurs when a basic variable assumes a value of zero as it197

enters the basis. In other words, the value θ in the minimum ratio test in Step 5 of the simplex198

7

algorithm is zero. This results in iterations in which the objective retains the same value, rather199

than improving. Theoretically, the simplex algorithm can cycle, revisiting bases multiple times with200

no improvement in the objective. While cycling is primarily a theoretical, rather than a practical,201

issue, highly degenerate LPs can generate long, acyclic sequences of bases that correspond to the202

same objective, making the problem more difficult to solve using the simplex algorithm.203

While space considerations preclude us from giving an analogous treatment of the dual simplex204

method (Fourer, 1994), it is worth noting that the method is very similar to that of the primal205

simplex method, only preserving dual feasibility while iterating towards primal feasibility, rather206

than vice versa. The dual simplex algorithm begins with a set of nonnegative reduced costs; such a207

set can be obtained easily in the presence of an initial basic, dual-feasible solution or by a method208

analogous to the Phase I primal simplex method. The primal variable values, x, are checked for209

feasibility, i.e., nonnegativity. If they are nonnegative, the algorithm terminates with an optimal210

solution; otherwise, a negative variable is chosen to exit the basis. Correspondingly, a minimum211

ratio test is performed on the quotient of the reduced costs and row associated with the exiting212

basic variable relative to the current basis (i.e., the simplex tableau row associated with the exiting213

basic variable). The ratio test either detects infeasibility or identifies the incoming basic variable.214

Finally, a basis update is performed on the factorization (Bertsimas and Tsitsiklis, 1997).215

2.2 Interior Point Algorithms216

The earliest interior point algorithms were the affine scaling algorithm proposed by Dikin (1967)217

and the logarithmic barrier algorithm proposed by Fiacco and McCormick (1968). However, at218

that time, the potential of these algorithms for efficiently solving large-scale linear programs was219

largely ignored. The ellipsoid algorithm, proposed by Khachian (1979), established the first poly-220

nomial time algorithm for linear programming. But, this great theoretical discovery did not trans-221

late to good performance on practical problems. It wasn’t until Karmarkar’s projective method222

(Karmarkar, 1984) had shown great practical promise and was subsequently demonstrated to be223

equivalent to the logarithmic barrier algorithm (Gill et al., 1986), that interest in these earlier in-224

terior point algorithms increased. Subsequent implementations of various interior point algorithms225

revealed primal-dual logarithmic barrier algorithms as the preferred variant for solving practical226

problems (Lustig et al., 1994).227

None of these interior point algorithms or any of their variants uses a basis. Rather, the algo-228

rithm searches through the interior of the feasible region, avoiding the boundary of the constraint229

set until it finds an optimal solution. Each variant possesses a different means for determining a230

search direction. However, all variants fundamentally rely on centering the current iterate, com-231

8

puting an improving search direction, moving along it for a given step size short enough that the232

boundary is not reached (until optimality), and then recentering the iterate.233

While not the most efficient in practice, Dikin’s Primal Affine Scaling Algorithm provides the234

simplest illustration of the computational steps of these interior point algorithms. Therefore, we235

describe Dikin’s Algorithm in detail below. Lustig et al. (1990) contains a more detailed description236

of the more frequently implemented primal-dual logarithmic barrier algorithm.237

The kth iteration of Dikin’s algorithm operates on the linear program (PLP), along with a feasible238

interior point solution xk > 0. The algorithm centers the feasible interior point by rescaling the239

variables based on the values of xk, computes a search direction by projecting the steepest descent240

direction onto the null space of the rescaled constraint matrix, and moves in the search direction241

while ensuring that the new scaled solution remains a feasible interior point. The algorithm then242

unscales the solution, resulting in a new iterate, xk+1. Following the unscaling, the algorithm243

performs a convergence test for optimality on xk+1. If xk+1 is not optimal, the algorithm repeats its244

steps using xk+1 as the feasible interior point solution. The following steps provide the mathematical245

details.246

Interior point algorithm with affine scaling:247

1. Centering Let D = Diag(xk). Rescale the problem to center the current interior feasible248

solution by letting Â = AD, ĉT = cT D. Hence, x̂k = D−1xk = e, the vector consisting of all249

1’s. Note that Âx̂k = b.250

2. Search Direction Computation For the rescaled problem, project the steepest descent251

direction −ĉT onto the null space of the constraint matrix Â, resulting in the search direction252

pk = −(I − ÂT (ÂÂT)−1Â)ĉ.253

3. Step Length Add a positive multiple θ of the search direction to pk, the scaled interior254

feasible point, by computing x̂k+1 = e + θpk. If pk ≥ 0, then x̂k+1, and hence xk+1, can255

increase without bound; stop the algorithm with an unbounded solution. Otherwise, because256

Âpk = 0, Âxk+1 = b. Therefore, θ must be chosen to ensure that x̂k+1 > 0. For any constant257

α such that 0 < α < 1, the update x̂k+1 = e− (α
minj pk[j])pk suffices.258

4. Optimality Test Unscale the problem, setting xk+1 = Dx̂k+1. Test xk+1 for optimality259

by checking whether ||xk+1 − xk|| is suitably small. If xk+1 is optimal, stop the algorithm.260

Otherwise, return to Step 1 with feasible interior point solution xk+1.261

The calculation of pk = −(I − ÂT (ÂÂT)−1Â)ĉ (Step 2) is the most time consuming operation262

of this algorithm. First, one must perform the matrix vector multiplication v = Âĉ. Then, one263

9

must compute the solution w to the linear system of equations (ÂÂT)w = v. This step typically264

dominates the computation time of an iteration. Subsequently, one must perform a second matrix265

vector multiplication, ÂT w, then subtract ĉ from the result.266

The simplex algorithm creates an m×m basis matrix of left-hand-side coefficients, AB, which267

is invertible. By contrast, interior point algorithms do not maintain a basis matrix. The matrix268

AAT is not guaranteed to be invertible unless A has full rank. Fortunately, in the case of solving269

an LP, full rank comes naturally, either through removal of dependent constraints during presolve,270

or because of the presence of slack and artificial variables in the constraint matrix.271

Other interior point algorithms maintain feasibility by different means. Examples include ap-272

plying a logarithmic barrier function to the objective rather than explicitly projecting the search273

direction onto the null space of the rescaled problem, and using a projective transformation instead274

of the affine transformation of Dikin’s algorithm to center the iterate. Some also use the primal and275

dual constraints simultaneously, and use more elaborate methods to calculate the search direction276

in order to reduce the total number of iterations. However, in all such practical variants to date,277

the dominant calculation remains the solution of a system of linear equations similar to the form278

(ÂÂT)w = v, as in Dikin’s algorithm. As of the writing of this paper, the primal dual barrier279

algorithm, combined with Mehrotra’s predictor-corrector method (Mehrotra, 1992), has emerged280

as the method of choice in most state-of-the-art optimizers.281

Because the optimal solutions to linear programs reside on the boundary of the feasible re-282

gion, interior point algorithms cannot move to the exact optimal solution. They instead rely on283

convergence criteria. Methods to identify an optimal basic solution from the convergent solution284

that interior point algorithms provide have been developed (Megiddo, 1991). A procedure termed285

crossover can be invoked in most optimizers to transform a (typically near optimal) interior solution286

to an optimal extreme-point solution. (In the case of a unique solution, the interior point method287

would converge towards the optimal extreme-point solution, i.e., a basic solution.) Crossover pro-288

vides solutions that are easier to implement in practice. While crossover typically comprises a289

small percentage of the run time on most models, it can be time consuming, particularly when290

initiated on a suboptimal interior point solution with significant distance from an optimal solution.291

For primal-dual interior algorithms (Wright, 1997), the optimality criterion is usually based on a292

normalized duality gap, e.g., the quotient of the duality gap and primal objective (or dual objective293

since they are equal at optimality): (cT x−yT b)
cT x

.294

In order to solve the linear system (ÂÂT)w = v efficiently, most practical implementations295

maintain a Cholesky factorization (ÂÂT) = L̂L̂T . The non-zero structure, i.e., the positions in the296

matrix in which non-zero elements of ÂÂT lie, profoundly influences interior point algorithm run297

10













x 0 0 0 0
x x 0 0 0
x 0 x 0 0
x 0 0 x 0
x 0 0 0 x













∗













x x x x x

0 x 0 0 0
0 0 x 0 0
0 0 0 x 0
0 0 0 0 x













=













x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

























x x x x x

0 x 0 0 0
0 0 x 0 0
0 0 0 x 0
0 0 0 0 x













∗













x 0 0 0 0
x x 0 0 0
x 0 x 0 0
x 0 0 x 0
x 0 0 0 x













=













x x x x x

x x 0 0 0
x 0 x 0 0
x 0 0 x 0
x 0 0 0 x













Figure 1: Let x denote an arbitrarily valued non-zero entry in the above matrices. The upper matrix
product yields a completely dense result, while the lower matrix product yields a reasonably sparse
result. The two products are merely reversals of each other.

times. Since D is a diagonal matrix, ÂÂT and AAT have the same non-zero structure. For sparse298

matrices, the non-zero structure of AAT depends heavily on the structure of the original matrix299

A. Note that even if the A matrix is sparse, the product of A and AT can be dense. Consider the300

two matrix products in Figure 1, in which x represents an arbitrarily valued non-zero matrix entry.301

The first product of A and AT leads to a fully dense matrix (barring unlikely cancellation of terms302

in some entries), while the second product, which is simply a reversal of the two matrices A and303

AT , remains relatively sparse.304

A significant amount of work involves determining how to order A so that the Cholesky factor305

of AAT is as sparse as possible. Although the non-zero values of Â change from one iteration to306

the next, the non-zero structure of AAT remains unchanged throughout the algorithm. So, interior307

point algorithm implementations can perform a large part of the computation that involves AAT
308

at the start of the algorithm by computing a symbolic Cholesky factorization of AAT to provide309

the static non-zero structure of a lower triangular matrix L such that: AAT = LLT . This avoids310

recomputing (ÂÂT)−1 from scratch during each iteration and removes the need to maintain any311

inverse at all. Rather, the implementation uses the Cholesky factorization to solve the system of312

equations (ÂÂT)w = v. At each iteration, the algorithm must update the individual values of the313

Cholesky factorization, but the non-zero structure of the factorization is known from the initial314

symbolic factorization.315

11

2.3 Algorithm Performance Contrast316

The linear programming algorithms we have discussed perform differently depending on the char-317

acteristics of the linear programs on which they are invoked. Although we introduce (PLP) in318

standard form with equality constraints, yielding an m×n system with m equality constraints and319

n variables, we assume for the following discussion that our linear program is given as naturally320

formulated, i.e., with a mixture of equalities and inequalities, and, as such, contains m equality321

and inequality constraints and n variables.322

The solution time for simplex algorithm iterations is more heavily influenced by the number323

of constraints than by the number of variables. This is because the row-based calculations in the324

simplex algorithm involving the m × m basis matrix usually comprise a much larger percentage325

of the iteration run time than the column-based operations. One can equivalently solve either326

the primal or the dual problem, so the practitioner should select the one that most likely solves327

fastest. Some optimizers have the ability to create the dual model before or after presolving a328

linear program, and to use internal logic for determining when to solve the explicit dual. The329

aspect ratio, n
m

, generally indicates whether solving the primal or the dual problem, and/or solving330

the problem with the primal or the dual simplex method is likely to be more efficient. If m << n,331

it is more expedient to preserve the large aspect ratio. In this case, the primal simplex algorithm332

with partial pricing is likely to be effective because reduced costs on a potentially small subset333

of the nonbasic variables need to be computed at each iteration. By contrast, the dual simplex334

algorithm must compute a row of the simplex tableau during the ratio test that preserves dual335

feasibility. This calculation in the dual simplex algorithm involves essentially the same effort as336

full pricing in the primal simplex algorithm. This can consume a large portion of the computation337

time of each iteration. For models with m >> n, an aspect ratio of 0.5 or smaller indicates that338

solving the dual explicitly yields faster performance than the dual simplex method, though solving339

the dual explicitly can also be faster even if the aspect ratio is greater than 0.5. Also, under primal340

degeneracy, implicitly solving the dual problem via the dual simplex method or solving the explicit341

dual can dramatically reduce the iteration count.342

Regarding interior point algorithms, they may be effective when m << n. And, when m is343

relatively small, AAT has only m rows and m columns, which gives the interior point algorithm344

a potential advantage over simplex algorithms, even when AAT is relatively dense. For m >> n,345

the interior point algorithm applied to the dual problem has potential to do very well. If A has346

either dense rows or dense columns, choosing between solving the primal and the dual affects only347

the interior point algorithm performance. Neither the primal nor the dual simplex algorithm and348

the associated factorized basis matrices has an obvious advantage over the other on an LP (or its349

12

dual) with dense rows or columns. However, in the interior point method, if AAT is dense, and350

if the Cholesky factor is also dense, explicitly solving the dual model might produce faster run351

time performance. Dense columns in the primal problem, which frequently result in a dense AAT
352

matrix, become dense rows in the dual problem, which are less likely to result in a dense AAT
353

matrix (see Figure 1). An A matrix which averages more than ten non-zero elements per column354

(regardless of the values of m and n), can make problems difficult to solve.355

Most state-of-the-art optimizers can handle a modest number of dense columns by representing356

AAT as the sum of outer products of the columns of A and separating the sum of the outer357

products of the dense columns. See Wright (1997) for more details. However, this approach can358

exhibit numerical instability (see Section 3.1) as the number of dense columns increases, so applying359

an interior point method to the explicit dual problem may be more effective.360

Iteration Log #1 sheds light on the density of AAT , as well as the additional non-zero matrix361

elements introduced during the factorization. The most important information in this output is362

the number of non-zeros in the lower triangle of AAT and the total number of non-zeros in the363

Cholesky factor. An interior point algorithm is less likely to outperform the simplex algorithm if the364

number of non-zeros in the lower triangle of AAT is much larger than the number of non-zeros in365

A, or if the number of non-zeros in the resulting Cholesky factor grows dramatically relative to the366

number of non-zeros in AAT . Not surprisingly, then, the output in Iteration Log #1 suggests that367

an interior point algorithm is likely to outperform the simplex algorithm, since both the density of368

AAT and the fill-in from the resulting factorization are quite modest. That is indeed true for this369

model (south31, a publicly available model from http://www.sztaki.hu/∼meszaros/public ftp/370

lptestset/misc/. CPLEX’s barrier method solves the model in just under one second, in contrast371

to 7 and 16 seconds for the primal and dual simplex methods, respectively.372

373

Iteration Log #1374

Reduced LP has 17645 rows, 35223 columns, and 93047 non-zeros.

Presolve time = 0.05 sec.

Parallel mode: using up to 4 threads for barrier.

***NOTE: Found 144 dense columns.

Number of non-zeros in lower triangle of A*A’ = 31451

Using Approximate Minimum Degree ordering

Total time for automatic ordering = 0.00 sec.

Summary statistics for Cholesky factor:

13

Threads = 4

Rows in Factor = 17789

Integer space required = 70668

Total non-zeros in factor = 116782

Total FP ops to factor = 2587810

375

Now consider Iteration Log #2 which represents, in fact, output for the same model instance376

as considered in Iteration Log #1, but with dense column handling disabled. The A matrix has377

93, 047 non-zeros, while the lower triangle of AAT from which the Cholesky factor is computed378

has over 153 million non-zeros, which represents a huge increase. The additional fill-in associated379

with the factorization is relatively negligible, with 153, 859, 571−153, 530, 245 = 329, 326 additional380

non-zeros created.381

382

Iteration Log #2383

Reduced LP has 17645 rows, 35223 columns, and 93047 non-zeros.

Presolve time = 0.05 sec.

Parallel mode: using up to 4 threads for barrier.

Number of non-zeros in lower triangle of A*A’ = 153530245

Using Approximate Minimum Degree ordering

Total time for automatic ordering = 11.88 sec.

Summary statistics for Cholesky factor:

Threads = 4

Rows in Factor = 17645

Integer space required = 45206

Total non-zeros in factor = 153859571

Total FP ops to factor = 1795684140275

384

The barrier algorithm must now perform calculations with a Cholesky factor containing over385

153 million non-zeros instead of fewer than 120, 000 non-zeros with the dense column handling.386

This increases the barrier run time on the model instance from less than one second to over 19387

minutes.388

14

Iteration Log #3 illustrates the case in which the non-zero count of AAT (566,986) is quite389

modest relative to the non-zero count in A; however, the subsequent fill-in while computing the390

Cholesky factor is significant, as can be seen from the final non-zero count, which exceeds 20 million.391

And, indeed, the barrier algorithm requires more than 4 times as long as the dual simplex method392

to solve this model instance.393

394

Iteration Log #3395

Reduced LP has 79972 rows, 404517 columns, and 909056 non-zeros.

Presolve time = 1.57 sec.

Parallel mode: using up to 16 threads for barrier.

Number of non-zeros in lower triangle of A*A’ = 566986

Using Nested Dissection ordering

Total time for automatic ordering = 9.19 sec.

Summary statistics for Cholesky factor:

Threads = 16

Rows in Factor = 79972

Integer space required = 941792

Total non-zeros in factor = 20737911

Total FP ops to factor = 24967192039

396

Finally, Iteration Log #4 illustrates the potential advantage of an interior point method over the397

simplex methods as the problem size grows very large. Due to its polynomial behavior, an interior398

point method’s iteration count tends to increase slowly as problem size increases. Iteration Log #4399

contains results for the zib05 model, available in MPS format at http://miplib.zib.de/contrib/400

miplib2003-contrib/IPWS2008/. Despite over 9 million columns in A with an average density of401

over 35 non-zeros per column, the modest number of rows and level of fill-in when computing the402

Cholesky factor results in a manageable model, provided sufficient memory (about 20 gigabytes) is403

available. Due to the increased memory needed to solve this model, this run was done on a machine404

with 4 2.9 gigahertz quad core Xeon chips and 128 gigabytes of memory.405

406

Iteration Log #4407

15

Reduced LP has 9652 rows, 9224120 columns, and 348547188 non-zeros.

Presolve time = 268.99 sec.

Parallel mode: using up to 16 threads for barrier.

Number of non-zeros in lower triangle of A*A’ = 16747402

Using Nested Dissection ordering

Total time for automatic ordering = 409.44 sec.

Summary statistics for Cholesky factor:

Threads = 16

Rows in Factor = 9652

Integer space required = 256438

Total non-zeros in factor = 36344797

Total FP ops to factor = 171936037267

408

By contrast, the simplex methods must select a basis of 9652 columns among the 9.2 million409

available, making this model much more challenging. CPLEX’s barrier algorithm can solve this410

model in about 3 hours, while neither the primal nor the dual simplex method solves the model on411

the same machine in 20 hours.412

The simplex method that can start with a feasible basis has a performance advantage over413

the one that lacks a feasible basis. Although, at the time of this writing, interior point methods414

cannot take advantage of a starting solution from a modified problem, the computational steps they415

perform parallelize better than those in the simplex algorithm. The simplex algorithm possesses416

a basis factorization whose non-zero structure changes at each iteration, while the interior point417

algorithm maintains a factorization with static non-zero structure throughout the algorithm that418

is more amenable to parallelization. The ability to parallelize an algorithm can produce faster run419

time performance.420

Both the implicit dual, i.e., the dual simplex algorithm, and solving the dual explicitly, offer the421

advantages of (i) better performance in the presence of primal degeneracy, and (ii) a more easily422

available feasible starting basis on practical models. In many practical cases, dual feasibility may423

be easier to obtain than primal feasibility. If, as is often the case in practical models involving424

costs, all values of c are nonnegative, then y = 0 is immediately dual feasible. In fact, this holds425

even if the dual constraints are a mixture of equalities and inequalities (in either direction).426

The basis with which the simplex algorithm operates allows for “warm starts,” i.e., the ability to427

take advantage of a solution as a starting point for a slightly modified problem. Such a problem can428

16

be found as a subproblem in an iterative technique in which new variables and/or constraints have429

been inserted. For the case in which the practitioner is interested in multiple, similar solves, the430

choice of the primal or the dual simplex method is influenced by how the modifications that generate431

the sequence of instances preserve primal or dual feasibility of the basis and associated solution432

from the previous solve. For example, adding columns to (PLP) maintains primal feasibility, but433

typically compromises dual feasibility. One can set the variables associated with the newly added434

columns to nonbasic at zero and append those values to the values of the existing primal feasible435

solution. Therefore, after adding columns, the primal simplex method has an advantage over the436

dual simplex method because the optimal basis from the previous LP remains primal feasible,437

but not typically dual feasible. Dual feasibility would also be preserved if the additional columns438

corresponded to redundant constraints in the dual, but such additions are uncommon in practice.439

Analogously, adding rows to a dual feasible solution (which is equivalent to adding columns to the440

explicit dual LP) preserves dual feasibility but typically compromises primal feasibility, so the dual441

simplex method has an advantage over the primal simplex method. Similarly, one can examine442

the different types of problem modifications to an LP and determine whether the modification443

preserves primal or dual feasibility. Table 1 summarizes the different types of modifications to the444

primal problem, (PLP), and whether they ensure preservation of primal or dual feasibility. Note445

that the preservation of primal feasibility for a row of the table does not imply the absence of446

dual feasibility for the given problem modification (or vice versa). For some problem modifications,447

additional conclusions about preservation of feasibility can be made with a closer examination of the448

nature of the change. For example, changing an objective coefficient that relaxes a dual constraint449

preserves dual feasibility when the associated variable is nonbasic, but can result in a dual infeasible450

basis if said variable is basic.451

Problem modification Primal or dual feasibility preserved?

Add columns Primal feasibility
Add rows Dual feasibility
Change objective function coefficients Primal feasibility
Change right-hand-side coefficients Dual feasibility
Change matrix coefficients of basic variables Neither
Change matrix coefficients of nonbasic variables Primal feasibility

Table 1: Different types of modifications to (PLP) influence primal or dual feasibility of the modified
LP.

Table 2 summarizes guidelines for the circumstances under which one should use primal simplex,452

dual simplex, or interior point method; the characteristics we present in this table are not mutually453

exclusive. For example, an LP may have m << n but also have dense columns in the A matrix.454

17

Table 2 recommends either the primal simplex method on the primal problem, or an interior point455

method on the primal or dual problem. However, the dense columns potentially hinder the interior456

point method on the primal problem, while the large aspect ratio is potentially problematic for the457

dual problem. By contrast, there are no obvious limitations to primal simplex method performance.458

Therefore, while one should consider all of these recommendations, the primal simplex method on459

the primal LP has the most promise in this example.460

Characteristic Recommended method

m << n Primal simplex or interior point on primal problem
m >> n Primal simplex or interior point on dual problem
Dense rows in A matrix Solve primal problem if using interior point
Dense columns in A matrix Solve dual problem if using interior point
Availability of parallel hardware Interior point
Multiple solves on similar instances necessary Primal or dual simplex
Availability of a primal or dual feasible basis Primal or dual simplex, respectively
Minimization with nonnegative c Dual simplex as dual feasible basis is available

Table 2: Under various circumstances, different methods have a greater chance of faster solution
time on a linear programming problem instance.

18

3 Guidelines for Successful Algorithm Performance461

3.1 Numerical Stability and Ill Conditioning462

Because most commonly used computers implement floating point computations in finite precision,463

arithmetic calculations such as those involved in solving linear programming problems can be prone464

to inaccuracies due to round-off error. Round-off error can arise from numerical instability or ill465

conditioning. In general terms, ill conditioning pertains to the situation in which a small change466

to the input can result in a much larger change to the output in models or systems of equations467

(linear or otherwise). Ill conditioning can occur under perfect arithmetic as well as under finite468

precision computing. Numerical stability (or lack thereof) is a characteristic of procedures and469

algorithms implemented under finite precision. A procedure is numerically stable if its backward470

error analysis results in small, bounded errors on all data instances, i.e., if a small, bounded471

perturbation to the model would make the computed solution to the unperturbed model an exact472

solution. Thus, numerical instability does not imply ill conditioning, nor does ill conditioning imply473

numerical instability. But, a numerically unstable algorithm introduces larger perturbations into474

its calculations than its numerically stable counterpart; this can lead to larger errors in the final475

computed solution if the model is ill conditioned. See Higham (1996) for more information on the476

different types of error analysis and their relationships to ill conditioning.477

The practitioner cannot always control the floating point implementations of the computers on478

which he works and, hence, how arithmetic computations are done. As of this writing, exact floating479

point calculations can be done, but these are typically done in software packages such as Maple480

(Cybernet Systems Co., 2012) and Mathematica (Wolfram, 2012), which are not large-scale linear481

programming solvers. The QSopt optimizer (Applegate et al., 2005) reflects significant progress in482

exact linear programming, but even this solver still typically performs some calculations in finite483

precision. Regardless, the practitioner can and should be aware of input data and the implications of484

using an optimization algorithm and a floating point implementation on a model instance with such485

data. To this end, let us consider the derivation of the condition number of a square matrix, and486

how ill conditioning can affect the optimization of linear programs on finite-precision computers.487

Consider a system of linear equations in standard form, ABxB + ANxN = b, where B consti-

tutes the set of basic variables, N constitutes the set of non-basic variables, and AB and AN are

the corresponding left-hand-side basic and non-basic matrix columns, respectively. Equivalently,

xB and xN represent the vectors of basic and non-basic decision variables, respectively. We are

19

interested in solving (PLP), whose constraints we can rewrite as follows:

ABxB = b−ANxN = b (2)

Note that in (PLP), all variables have lower bounds of zero and infinite upper bounds. Therefore,488

all nonbasic variables are zero and ANxN = 0. By contrast, if some of the variables have finite489

non-zero lower and/or upper bounds, then variables at these bounds can also be nonbasic and490

not equal to zero. Also note that equation (2) corresponds to Step 7b of the previously provided491

description of the primal simplex algorithm. In addition, Steps 1 and 4 solve similar systems of492

linear equations involving the basis matrix, AB.493

The exact solution of equation (2) is given by:

xB = A−1
B b (3)

Consider a small perturbation, ∆b, to the right hand side of equations (2). We wish to assess the

relation between ∆b and the corresponding change ∆xB to the computed solution of the perturbed

system of equations:

AB(xB + ∆xB) = b + ∆b (4)

The exact solution of this system of equations (4) is given by:

(xB + ∆xB) = A−1
B (b + ∆b) (5)

Subtracting equations (3) from those given in (5), we obtain:

∆xB = A−1
B ∆b (6)

Applying the Cauchy-Schwarz inequality to equations (6), we obtain:

||∆xB|| ≤ ||A
−1
B ||||∆b|| (7)

In other words, the expression (7) gives an upper bound on the maximum absolute change in xB

relative to that of b. Similarly, we can get a relative change in xB by applying the Cauchy-Schwarz

inequality to equation (2):

||b|| ≤ ||AB||||xB|| (8)

20

Multiplying the left and right hand sides of (7) and (8) together, and rearranging terms:

||∆xB||

||xB||
≤ ||AB||||A

−1
B ||

(

||∆b||

||b||

)

(9)

From (9), we see that the quantity κ = ||AB||||A
−1
B || is a scaling factor for the relative change in494

the solution, ||∆xB ||
||xB || , given a relative change in the right hand side, ||∆b||

||b|| . The quantity κ

(

||∆b||
||b||

)

495

provides an upper bound on the relative change in the computed solution, ||∆xB ||
||xB || , for a given relative496

change in the right hand side,

(

||∆b||
||b||

)

. Recall that ill conditioning in its most general sense occurs497

when a small change in the input of a system leads to a large change in the output. The quantity498

κ defines the condition number of the matrix AB and enables us to assess the ill conditioning499

associated with the system of equations in (2). Larger values of κ imply greater potential for ill500

conditioning in the associated square linear system of equations by indicating a larger potential501

change in the solution given a change in the (right-hand-side) inputs. Because both the simplex and502

interior point algorithms need to solve square systems of equations, the value of κ can help predict503

how ill conditioning affects the computed solution of a linear program. Note that the condition504

number κ has the same interpretation when applied to small perturbations in AB.505

In practice, perturbations ∆b can occur due to (i) finite precision in the computer on which the506

problem is solved, (ii) round-off error in the calculation of the input data to the problem, or (iii)507

round-off error in the implementation of the algorithm used to solve the problem. Note that these508

three issues are related. Input data with large differences in magnitude, even if computed precisely,509

require more shifting of exponents in the finite precision computing design of most computers than510

data with small differences in magnitude. This typically results in more round-off error in compu-511

tations involving numbers of dramatically different orders of magnitude. The increased round-off512

error in these floating point calculations can then increase the round-off error that accumulates in513

the algorithm implementation. Most simplex algorithm implementations are designed to reduce514

the level of such round-off error, particularly as it occurs in the ratio test and LU factorization515

calculations. However, for some LPs, the round-off error remains a problem, regardless of the ef-516

forts to contain it in the implementation. In this case, additional steps must be taken to reduce517

the error by providing more accurate input data, by improving the conditioning of the model, or518

by tuning algorithm parameters. While this discussion is in the context of a basis matrix of the519

simplex algorithm, the calculations in equations (3)-(9) apply to any square matrix and therefore520

also apply to the system of equations involving AAT in the barrier algorithm.521

Let us consider the condition number of the optimal basis to a linear program. Given the522

21

typical machine precision of 10−16 for double precision calculations and equation (9) that defines523

the condition number, a condition number value of 1010 provides an important threshold value.524

Most state-of-the-art optimizers use default feasibility and optimality tolerances of 10−6. In other525

words, a solution is declared feasible when solution values that violate the lower bounds of 0 in526

(PLP) do so by less than the feasibility tolerance. Similarly, a solution is declared optimal when527

any negative reduced costs in (PLP) are less (in absolute terms) than the optimality tolerance.528

Because of the values of these tolerances, condition numbers of 1010 or greater imply a level of529

ill conditioning that could cause the implementation of the algorithm to make decisions based on530

round-off error. Because (9) is an inequality, a condition number of 1010 does not guarantee ill531

conditioning, but it provides guidance as to when ill conditioning is likely to occur.532

Round-off error associated with finite precision implementations depends on the order of magni-533

tude of the numbers involved in the calculations. Double precision calculations involving numbers534

with orders of magnitude larger than 100 can introduce round-off error that is larger than the ma-535

chine precision. However, because machine precision defines the smallest value that distinguishes536

two numbers, calculations involving numbers with smaller orders of magnitude than 100 still pos-537

sess round-off errors at the machine precision level. For example, for floating point calculations538

involving at least one number on the order of 105, round-off error due to machine precision can539

be on the order of 105 ∗ 10−16 = 10−11. Thus, round-off error for double precision calculations540

is relative, while most optimizers use absolute tolerances for assessing feasibility and optimality.541

State-of-the-art optimizers typically scale the linear programs they receive to try to keep the round-542

off error associated with double precision calculations close to the machine precision. Nonetheless,543

the practitioner can benefit from formulating LPs that are well scaled, avoiding mixtures of large544

and small coefficients that can introduce round-off errors significantly larger than machine preci-545

sion. If this is not possible, the practitioner may need to consider solving the model with larger546

feasibility or optimality tolerances than the aforementioned defaults of 10−6.547

Equations (3) − (9) above are all done under perfect arithmetic. Finite-precision arithmetic548

frequently introduces perturbations to data. If a perturbation to the data is on the order of549

10−16 and the condition number is on the order of 1012, then round-off error as large as 10−16 ∗550

1012 = 10−4 can creep into the calculations, and linear programming algorithms may have difficulty551

distinguishing numbers accurately within its 10−6 default optimality tolerance. The following linear552

program provides an example of ill conditioning and round-off error in the input data:553

22

max x1 + x2 (10)

subject to
1

3
x1 +

2

3
x2 = 1 (11)

x1 + 2x2 = 3 (12)

x1, x2 ≥ 0 (13)

Because equations (11) and (12) are linearly dependent, {x1, x2} cannot form a basis. Rather,554

x1 is part of the optimal basis, along with an artificial variable, and the optimal solution under555

perfect precision in this case is x∗
1 = 3 and x∗

2 = 0. By contrast, imprecisely rounded input with556

coefficients on x1 and x2 of 0.333333 and 0.666667, respectively, in the first constraint produces557

no linear dependency in the constraint sets (11) and (12), allowing both x1 and x2 to be part of558

a feasible basis. Furthermore, the optimal solution under perfect precision, x∗
1 = 3 and x∗

2 = 0, is559

infeasible in (11) with the rounded coefficients (because 3 × 0.333333 6= 1). Instead, a solution of560

x∗
1 = x∗

2 = 1 satisfies both (11) and (12) using the default feasibility tolerance of 10−6 and is, in561

fact, optimal in this case. The associated optimal basis is {x1, x2}, with condition number 8.0∗106.562

Using three more digits of accuracy on the coefficients of x1 and x2 in constraint (11) yields the563

correct optimal solution. The optimal basis now consists of x1 and one of the artificial variables,564

resulting in a condition number of 8.0. However, the better approach is to avoid rounding (or565

approximating) altogether by appropriately scaling the problem (i.e., multiplying through by the566

denominator) such that the first constraint is expressed as x1+2x2 = 3. When the first constraint is567

expressed in this way, constraints (11) and (12) are obviously redundant, which simplex algorithm568

implementations can easily handle. By contrast, the representation using rounding yields a near-569

singular basis matrix, AB.570

When a linear program is poorly scaled or ill conditioned, the simplex algorithm may lose fea-571

sibility when solving the problem instance. Even if the instance remains feasible, the algorithm572

might try to refactorize AB = LU to regain digits of accuracy it may have lost due to round-off573

error in the basis updates. Iteration Log #5, involving a model with an objective to be maximized,574

illustrates an instance that loses feasibility. The log prints the objective function value each time575

the algorithm refactorizes, rather than updates, AB. The algorithm tries to refactorize the basis576

matrix three times in three iterations, and increases the Markowitz threshold to improve the ac-577

curacy with which these computations are done. Larger values of the Markowitz threshold impose578

tighter restrictions on the criteria for a numerically stable pivot during the computation of the579

LU factorization (Duff et al., 1986). However, despite the increased accuracy in the factorization580

23

starting at iteration 6391, enough round-off error accumulates in the subsequent iterations so that581

the next refactorization, at iteration 6456, results in a loss of feasibility.582

583

Iteration Log #5584

Iter: 6389 Objective = 13137.039899585

Iter: 6390 Objective = 13137.039899586

Iter: 6391 Objective = 13726.011591587

Markowitz threshold set to 0.3.588

Iter: 6456 Scaled infeas = 300615.030682589

...590

Iter: 6752 Scaled infeas = 0.000002591

Iter: 6754 Objective = -23870.812630592

593

Although the algorithm regains feasibility at iteration 6754, it spends an extra 298 (6754 -594

6456) iterations doing so, and the objective function is much worse than the one at iteration 6389.595

Additional iterations are then required just regain the previously attained objective value. So, even596

when numerical instability or ill conditioning does not prevent the optimizer from solving the model597

to optimality, it may slow down performance significantly. Improvements to the model formulation598

by reducing the source of perturbations and, if needed, changes to parameter settings can reduce599

round-off error in the optimizer calculations, resulting in smaller basis condition numbers and faster600

computation of optimal solutions.601

As another caveat, the practitioner should avoid including data with meaningful values smaller

than the optimizer’s tolerances. Similarly, the practitioner should ensure that the optimizer’s

tolerances exceed the largest round-off error in any of the data calculations. The computer can

only handle a fixed number of digits. Very small numerical values force the algorithm to make

decisions about whether those smaller values are real or due to round-off error, and the optimizer’s

decisions can depend on the coordinate system (i.e., basis) with which it views the model. Consider

the following feasibility problem:

c1 : −x1 + 24x2 ≤ 21 (14)

−∞ < x1 ≤ 3 (15)

x2 ≥ 1.00000008 (16)

(17)

24

The primal simplex method concludes infeasibility during the presolve:602

603

Iteration Log #6604

CPLEX> primopt605

Infeasibility row ’c1’: 0 <= -1.92e-06.606

Presolve time = 0.00 sec.607

Presolve - Infeasible.608

Solution time = 0.00 sec.609

610

Turning presolve off causes the primal simplex method to arrive at a similar conclusion during611

the first iteration.612

613

Iteration Log #7614

Primal simplex - Infeasible: Infeasibility = 1.9199999990e-06615

Solution time = 0.00 sec. Iterations = 0 (0)616

CPLEX> display solution reduced -617

Variable Name Reduced Cost618

x1 -1.000000619

x2 24.000000620

CPLEX> display solution slacks -621

Constraint Name Slack Value622

slack c1 -0.000002**623

CPLEX> display solution basis variables -624

There are no basic variables in the given range.625

CPLEX> display solution basis slack -626

Constraint ’c1’ is basic.627

628

The asterisks on the slack value for constraint c1 signify that the solution violates the slack’s lower629

bound of 0.630

These two runs both constitute correct outcomes. In Iteration Log #6, CPLEX’s presolve uses631

the variable bounds and constraint coefficients to calculate that the minimum possible value for632

25

the left hand side of constraint c1 is −3 + 24 ∗ 1.00000008 = 21 + 1.92 ∗ 10−6. This means that633

the left hand side must exceed the right hand side, and by a value of more than that of CPLEX’s634

default feasibility tolerance of 10−6. Iteration Log #7 shows that with presolve off, CPLEX begins635

the primal simplex method with the slack on constraint c1 in the basis, and the variables x1 and636

x2 at their respective bounds of 3 and 1.00000008. Given this basis, the reduced costs, i.e., the637

optimality criterion from Phase I, indicate that there is no way to remove the infeasibility, so the638

primal simplex method declares the model infeasible. Note that most optimizers treat variable639

bound constraints separately from general linear constraints, and that a negative reduced cost on a640

variable at its upper bound such as x1 indicates that decreasing that variable from its upper bound641

cannot decrease the objective. Now, suppose we run the primal simplex method with a starting642

basis of x2, the slack variable nonbasic at its lower bound, and x1 nonbasic at its upper bound.643

The resulting basic solution of x1 = 3, x2 = 1, slack on c1 = 0 satisfies constraint c1 exactly. The644

variable x2 does not satisfy its lower bound of 1.00000008 exactly, but the violation is less than645

many optimizers’ default feasibility tolerance of 10−6. So, with this starting basis, an optimizer646

could declare the model feasible (and hence optimal, because the model has no objective function):647

648

Iteration Log #8649

Primal simplex - Optimal: Objective = 0.0000000000e+00650

Solution time = 0.00 sec. Iterations = 0 (0)651

652

In this example, were we to set the feasibility tolerance to 10−9, we would have obtained653

consistent results with respect to both bases because the data do not possess values smaller than654

the relevant algorithm tolerance. Although the value of .00000008 is input data, this small numerical655

value could have just as easily been created during the course of the execution of the algorithm. This656

example illustrates the importance of verifying that the optimizer tolerances properly distinguish657

legitimate values from those arising from round-off error. When a model is on the edge of feasibility,658

different bases may prove feasibility or infeasibility relative to the optimizer’s tolerances. Rather659

than relying on the optimizer to make such important decisions, the practitioner should ensure660

that the optimizer’s tolerances are suitably set to reflect the valid precision of the data values661

in the model. In the example we just examined, one should first determine whether the lower662

bound on x2 is really 1.00000008, or if, in fact, the fractional part is round-off error in the data663

calculation and the correct lower bound is 1.0. If the former holds, the practitioner should set664

26

the optimizer’s feasibility and optimality tolerances to values smaller than .00000008. If the latter665

holds, the practitioner should change the lower bound to its correct value of 1.0 in the model.666

In this particular example, the practitioner may be inclined to deduce that the correct value for667

the lower bound on x2 is 1.0, because all other data in the instance are integers. More generally,668

examination of the possible round-off error associated with the procedures used to calculate the669

input data may help to distinguish round-off error from meaningful values.670

One particularly problematic source of round-off error in the data involves the conversion of671

single precision values to their double precision counterparts used by most optimizers. Precision672

for an IEEE single precision value is 6 ∗ 10−8, which is almost as large as many of the important673

default optimizer tolerances. For example, CPLEX uses default feasibility and optimality tolerances674

of 10−6. So, simply representing a data value in single precision can introduce round-off error of675

at least 6 ∗ 10−8, and additional single precision data calculations can increase the round-off error676

above the afore-mentioned optimizer tolerances. Hence, the optimizer may subsequently make677

decisions based on round-off error. Computing the data in double precision from the start will678

avoid this problem. If that is not possible, setting the optimizer tolerances to values that exceed679

the largest round-off error associated with the conversion from single to double precision provides680

an alternative.681

All linear programming algorithms can suffer from numerical instability. In particular, the682

choice of primal or dual simplex algorithm does not affect the numerical stability of a problem683

instance because the LU factorizations are the same with either algorithm. However, the interior684

point algorithm is more susceptible to numerical stability problems because it tries to maintain an685

interior solution, yet as the algorithm nears convergence, it requires a solution on lower dimensional686

faces of the polyhedron, i.e., the boundary of the feasible region.687

3.2 Degeneracy688

Degeneracy in the simplex algorithm occurs when the value θ in the minimum ratio test in Step 5689

of the simplex algorithm (see §2.1) is zero. This results in iterations in which the objective retains690

the same value, rather than improving. Highly degenerate LPs tend to be more difficult to solve691

using the simplex algorithm. Iteration Log #9 illustrates degeneracy: the nonoptimal objective692

does not change between iterations 5083 and 5968; therefore, the algorithm temporarily perturbs693

the right hand side or variable bounds to move away from the degenerate solution.694

695

Iteration Log #9696

27

Iter: 4751 Infeasibility = 8.000000697

Iter: 4870 Infeasibility = 8.000000698

Iter: 4976 Infeasibility = 6.999999699

Iter: 5083 Infeasibility = 6.000000700

Iter: 5191 Infeasibility = 6.000000701

...702

Iter: 5862 Infeasibility = 6.000000703

Iter: 5968 Infeasibility = 6.000000704

Perturbation started.705

706

After the degeneracy has been mitigated, the algorithm removes the perturbation to restore the707

original problem instance. If the current solution is not feasible, the algorithm performs additional708

iterations to regain feasibility before continuing the optimization run. Although a pricing scheme709

such as Bland’s rule can be used to mitigate cycling through bases under degeneracy, this rule holds710

more theoretical, than practical, importance and, as such, is rarely implemented in state-of-the-art711

optimizers. While such rules prevent cycles of degenerate pivots, they do not necessarily prevent712

long sequences of degenerate pivots that do not form a cycle, but do inhibit primal or dual simplex713

method performance.714

When an iteration log indicates degeneracy, first consider trying all other LP algorithms. De-715

generacy in the primal LP does not necessarily imply degeneracy in the dual LP. Therefore, the716

dual simplex algorithm might effectively solve a highly primal degenerate problem, and vice versa.717

Interior point algorithms are not prone to degeneracy because they do not pivot from one extreme718

point to the next. Interior point solutions are, by definition, nondegenerate. If alternate algorithms719

do not help performance (perhaps due to other problem characteristics that make them disadvan-720

tageous), a small, random perturbation of the problem data may help. Primal degenerate problems721

can benefit from perturbations of the right hand side values, while perturbations of the objective722

coefficients can help on dual degenerate problems. While such perturbations do not guarantee that723

the simplex algorithm does not cycle, they frequently yield improvements in practical performance.724

Some optimizers allow the practitioner to request perturbations by setting a parameter; otherwise,725

one can perturb the problem data explicitly.726

28

3.3 Excessive Simplex Algorithm Iteration Counts727

As described in the previous section, degeneracy can increase simplex algorithm iteration counts.728

However, the simplex algorithm may exhibit excessive iterations (typically, at least three times729

the number of constraints) for other reasons as well. For some models, the algorithm may make730

inferior choices when selecting the entering basic variable. In such cases, more computationally731

elaborate selection schemes than partial or full pricing that compute additional information can732

reduce the number of iterations enough to outweigh any associated increase in time per iteration.733

Today’s state-of-the-art optimizers typically offer parameter settings that determine the entering734

variable selection to the practitioner, and selections other than the default can significantly improve735

performance.736

Steepest edge and Devex pricing are the most popular of these more informative selection rules.737

Steepest edge pricing computes the L2 norm of each nonbasic matrix column relative to the current738

basis. Calculating this norm explicitly at each iteration by performing a forward solve, as in Step739

4 of the primal simplex algorithm, would be prohibitively expensive (with the possible exception of740

when a large number of parallel threads is available). However, such computation is unnecessary, as741

all of the Steepest edge norms can be updated at each iteration with two additional backward solves,742

using the resulting vectors in inner products with the nonbasic columns in a manner analogous to743

full pricing (Goldfarb and Reid (1977) and Greenberg and Kalan (1975)). Devex pricing (Harris,744

1975) estimates part of the Steepest edge update, removing one of the backward solves and one of745

the aforementioned inner products involving the nonbasic matrix columns. These methods can be746

implemented efficiently in both the primal and dual simplex algorithms.747

The initial calculation of the exact Steepest edge norms can also be time consuming, involving748

a forward solve for each L2 norm or a backward solve for each constraint. Steepest edge variants749

try to reduce or remove this calculation by using estimates of the initial norms that are easier750

to compute. After computing these initial estimates, subsequent updates to the norms are done751

exactly. By contrast, Devex computes initial estimates to the norms, followed by estimates of the752

norm updates as well.753

Since the additional computations for Steepest edge comprise almost as much work as a primal754

simplex algorithm iteration, this approach may need a reduction in the number of primal simplex755

iterations of almost 50 percent to be advantageous for the algorithm. However, the Steepest edge756

norm updates for the dual simplex algorithm involve less additional computational expense (Gold-757

farb and Forrest, 1992); in this case, a 20 percent reduction in the number of iterations may suffice758

to improve performance. Devex pricing can also be effective if it reduces iteration counts by 20759

percent or more. State-of-the-art optimizers may already use some form of Steepest edge pricing760

29

by default. If so, Steepest edge variants or Devex, both of which estimate initial norms rather than761

calculate them exactly, may yield similar iteration counts with less computation time per iteration.762

Model characteristics such as constraint matrix density and scaling typically influence the trade-763

off between the additional computation time and the potential reduction in the number of iterations764

associated with Steepest edge, Devex or other entering variable selection schemes. The practitioner765

should keep this in mind when assessing the effectiveness of these schemes. For example, since these766

selection rules involve additional backward solves and pricing operations, their efficacy depends on767

the density of the constraint matrix A. Denser columns in A increase the additional computation768

time per iteration. Some optimizers have default internal logic to perform such assessments au-769

tomatically and to use the selection scheme deemed most promising. Nonetheless, for LPs with770

excessive iteration counts, trying these alternate variable selection rules can improve performance771

relative to the optimizer’s default settings.772

Iteration Logs #6, #7 and #8 illustrate the importance of selecting optimizer tolerances to773

properly distinguish legitimate values from those arising from round-off error. In those iteration774

logs, this distinction was essential to determine if a model was infeasible or feasible. This distinc-775

tion can also influence the number of simplex algorithm iterations, and proper tolerance settings776

can improve performance. In particular, many implementations of the simplex method use the777

Harris ratio test (Harris, 1975) or some variant thereof. Harris’ method allows more flexibility in778

the selection of the outgoing variable in the ratio test for the primal or dual simplex method, but779

it does so by allowing the entering variable to force the outgoing variable to a value slightly below780

0. The optimizer then shifts the variable lower bound of 0 to this new value to preserve feasibility.781

These bound shifts are typically limited to a tolerance value no larger than the optimizer’s fea-782

sibility tolerance. While this offers advantages regarding more numerically stable pivots and less783

degeneracy, such violations must eventually be addressed since they can potentially create small784

infeasibilities. In some cases, performance can be improved by reducing the maximum allowable785

violation in the Harris ratio test.786

Iteration Logs #10 and #11 illustrate how reducing the maximum allowable violation in the787

Harris ratio test can improve performance. The model, pilot87, is publicly available from the788

NETLIB set of linear programs at http://www.netlib.org/lp/. Iteration Log #10 illustrates a789

run with default feasibility and optimality tolerances of 10−6. However, because pilot87 contains790

matrix coefficients as small as 10−6, the resulting bound violations and shifts allowed in the Harris791

ratio test can create meaningful infeasibilities. Hence, when CPLEX removes the shifted bounds792

starting at iteration 9, 161, it must repair some modest dual infeasibilities with additional dual793

simplex iterations. Subsequent iterations are performed with a reduced limit on the bound shift,794

30

but the removal of the additional bound shifts at iteration 10, 008 results in some slight dual in-795

feasibilities requiring additional iterations. Overall, CPLEX spends 993 additional dual simplex796

iterations after the initial removal of bound shifts at iteration 9, 161. Since this model has (appar-797

ently legitimate) matrix coefficients of 10−6, the default feasibility and optimality tolerances are798

too large to enable the optimizer to properly distinguish legitimate values from round-off error.799

The bound shifts thus are large enough to create dual infeasibilities that require additional dual800

simplex iterations to repair.801

Iteration Log #10802

Problem ’/ilog/models/lp/all/pilot87.sav.gz’ read.

...

Iteration log . . .

Iteration: 1 Scaled dual infeas = 0.676305

Iteration: 108 Scaled dual infeas = 0.189480

Iteration: 236 Scaled dual infeas = 0.170966

...

Iteration: 8958 Dual objective = 302.913722

Iteration: 9056 Dual objective = 303.021157

Iteration: 9137 Dual objective = 303.073444

Removing shift (4150).

Iteration: 9161 Scaled dual infeas = 0.152475

Iteration: 9350 Scaled dual infeas = 0.001941

Iteration: 9446 Scaled dual infeas = 0.000480

Iteration: 9537 Dual objective = 299.891447

Iteration: 9630 Dual objective = 301.051704

Iteration: 9721 Dual objective = 301.277884

Iteration: 9818 Dual objective = 301.658507

Iteration: 9916 Dual objective = 301.702665

Removing shift (41).

Iteration: 10008 Scaled dual infeas = 0.000136

Iteration: 10039 Dual objective = 301.678880

Iteration: 10140 Dual objective = 301.710360

31

Removing shift (8).

Iteration: 10151 Objective = 301.710354

Dual simplex - Optimal: Objective = 3.0171035068e+02

Solution time = 6.38 sec. Iterations = 10154 (1658)

By contrast, Iteration Log #11 illustrates the corresponding run with feasibility and optimality803

tolerances reduced to 10−9. This enables CPLEX to distinguish the matrix coefficient of 10−6 as804

legitimate in the model. Thus, it uses smaller bound violations and shifts in the Harris ratio test.805

Therefore, it needs to remove the bound shifts once, and only requires 32 additional dual simplex806

iterations to prove optimality. While the overall reduction in run time with this change is a modest807

four percent, larger improvements are possible on larger or more numerically challenging models.808

Iteration Log #11809

New value for feasibility tolerance: 1e-09

New value for reduced cost optimality tolerance: 1e-09

...

Iteration log . . .

Iteration: 1 Scaled dual infeas = 0.676355

Iteration: 123 Scaled dual infeas = 0.098169

...

Removing shift (190).

Iteration: 9332 Scaled dual infeas = 0.000004

Iteration: 9338 Dual objective = 301.710248

Dual simplex - Optimal: Objective = 3.0171034733e+02

Solution time = 6.15 sec. Iterations = 9364 (1353)

3.4 Excessive Barrier Algorithm Iteration Counts810

Section 2.3 included a discussion of how the non-zero structure of the constraint matrix influences811

barrier and other interior point algorithms’ time per iteration. On most LPs, the weakly poly-812

nomial complexity of the barrier algorithm results in a very modest number of iterations, even813

32

as the size of the problem increases. Models with millions of constraints and variables frequently814

solve in fewer than 100 iterations. However, because the barrier algorithm relies on convergence815

criteria, the algorithm may struggle to converge, performing numerous iterations with little or no816

improvement in the objective. Most barrier algorithm implementations include an adjustable con-817

vergence tolerance that can be used to determine when the algorithm should stop, and proceed to818

the crossover procedure to find a basic solution. For some models, increasing the barrier conver-819

gence tolerance avoids barrier iterations of little, if any, benefit to the crossover procedure. In such820

cases, a larger barrier convergence tolerance may save significant time when the barrier method821

run time dominates the crossover run time. By contrast, if the crossover time with default settings822

comprises a significant part of the optimization time and the barrier iteration count is modest,823

reducing the barrier convergence tolerance may provide the crossover procedure a better interior824

point with which to start, thus improving performance.825

Iteration logs #12 and #13 provide an example in which increasing the barrier convergence826

tolerance improves performance. The model solved in the logs is Linf 520c.mps, publicly available827

at Hans Mittelmann’s Benchmarks for Optimization Software website (http://plato.asu.edu/828

ftp/lptestset/). Because this model has some small coefficients on the order of 10−6, the runs in829

these logs follow the recommendations in Section 3.1 and use feasibility and optimality tolerances830

of 10−8 to distinguish them from any meaningful values in the model.831

Columns 2 and 3 of Iteration Log #12 provide the information needed to assess the relative832

duality gap (cT x−yT b)
cT x

typically compared with the barrier convergence tolerance. Not surprisingly,833

the gap is quite large initially. However, the gap is much smaller by iteration 20. Modest additional834

progress occurs by iteration 85, but little progress occurs after that, as can be seen at iterations 125835

and 175. In fact, at iteration 175, CPLEX’s barrier algorithm has stopped improving relative to836

the convergence criteria, as can be seen by the slight increases in relative duality gap, primal bound837

infeasibility and dual infeasibility (in the second, third, fifth and sixth columns of the iteration log).838

CPLEX therefore initiates crossover beginning at iteration 19. Thus, iterations 20 through 175 are839

essentially wasted. The solution values at iteration 19 still have a significant relative duality gap, so840

the crossover procedure finds a basis that requires additional simplex method iterations. Iteration841

Log #13 illustrates how, by increasing the barrier convergence tolerance from the CPLEX default842

of 10−8 to 10−4, much of the long tail of essentially wasted iterations is removed. In this case,843

the optimizer does not need to restore solution values from an earlier iteration due to increases in844

the relative duality gap. Hence, the optimizer initiates crossover at a solution closer to optimality.845

The basis determined by crossover is much closer to optimal than the one in Iteration Log #12,846

resulting in very few additional simplex iterations to find an optimal basis. This reduction in847

33

simplex iterations, in addition to the reduced number of barrier iterations, improves the overall run848

time from 1, 063 seconds to 452 seconds.849

By contrast, if the barrier iteration counts are small (e.g., 50 or fewer), show no long tail850

of iterations with little progress (as in Log #12), yet exhibit significant crossover and simplex851

iterations, decreasing the barrier convergence tolerance, rather than increasing it, often improves852

performance.853

Iteration Log #12854

Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf

0 5.9535299e+02 -2.7214222e+13 4.05e+11 1.03e+12 3.22e+07

1 1.8327921e+07 -2.4959566e+13 2.07e+10 5.30e+10 6.74e+04

2 7.5190135e+07 -5.6129961e+12 4.68e+09 1.20e+10 1.09e+03

3 2.8110662e+08 -2.2938869e+12 5.95e+07 1.52e+08 4.46e+02

4 2.8257248e+08 -4.7950310e+10 1.28e+06 3.26e+06 3.53e+00

...

19 2.0017972e-01 1.9840302e-01 1.37e-05 1.14e-06 1.51e-06

20 2.0003146e-01 1.9848712e-01 1.73e-05 1.30e-06 1.65e-06

21 1.9987509e-01 1.9854536e-01 1.62e-05 1.37e-06 1.71e-06

...

80 1.9896330e-01 1.9865235e-01 1.35e-04 2.87e-06 2.33e-06

81 1.9895653e-01 1.9865287e-01 1.50e-04 2.79e-06 2.32e-06

82 1.9895461e-01 1.9865256e-01 1.52e-04 2.87e-06 2.44e-06

83 1.9895075e-01 1.9865309e-01 1.69e-04 2.86e-06 2.38e-06

84 1.9894710e-01 1.9865303e-01 1.70e-04 2.85e-06 2.39e-06

85 1.9894158e-01 1.9865347e-01 1.68e-04 2.77e-06 2.40e-06

...

123 1.9888124e-01 1.9865508e-01 4.81e-04 3.01e-06 2.31e-06

124 1.9888029e-01 1.9865515e-01 4.46e-04 2.89e-06 2.37e-06

125 1.9887997e-01 1.9865506e-01 4.35e-04 2.93e-06 2.43e-06

34

...

170 1.9886958e-01 1.9865768e-01 9.10e-04 2.63e-06 2.37e-06

171 1.9886949e-01 1.9865771e-01 8.96e-04 2.56e-06 2.33e-06

172 1.9886939e-01 1.9865739e-01 8.15e-04 2.45e-06 2.28e-06

173 1.9886934e-01 1.9865738e-01 8.19e-04 2.47e-06 2.26e-06

174 1.9886931e-01 1.9865728e-01 7.94e-04 2.52e-06 2.29e-06

175 1.9886927e-01 1.9865716e-01 7.57e-04 2.55e-06 2.31e-06

* 2.0017972e-01 1.9840302e-01 1.37e-05 1.14e-06 1.51e-06

Barrier time = 869.96 sec.

Primal crossover.

Primal: Fixing 34010 variables.

34009 PMoves: Infeasibility 3.11238869e-08 Objective 2.00179717e-01

32528 PMoves: Infeasibility 4.93933590e-08 Objective 2.00033745e-01

31357 PMoves: Infeasibility 6.39691687e-08 Objective 2.00033745e-01

...

Elapsed crossover time = 20.14 sec. (3600 PMoves)

3021 PMoves: Infeasibility 1.14510022e-07 Objective 2.00033487e-01

2508 PMoves: Infeasibility 9.65797950e-08 Objective 2.00033487e-01

...

Primal: Pushed 15282, exchanged 18728.

Dual: Fixing 15166 variables.

15165 DMoves: Infeasibility 1.03339605e+00 Objective 1.98870673e-01

Elapsed crossover time = 27.38 sec. (14800 DMoves)

...

Elapsed crossover time = 68.41 sec. (1400 DMoves)

35

0 DMoves: Infeasibility 1.00261077e+00 Objective 1.98865022e-01

Dual: Pushed 10924, exchanged 4.

...

Iteration log . . .

Iteration: 1 Scaled infeas = 28211.724670

Iteration: 31 Scaled infeas = 23869.881089

Iteration: 312 Scaled infeas = 4410.384413

...

Iteration: 6670 Objective = 0.202403

Iteration: 6931 Objective = 0.199894

Elapsed time = 1061.69 sec. (7000 iterations).

Removing shift (5).

Iteration: 7072 Scaled infeas = 0.000000

Total crossover time = 192.70 sec.

Total time on 4 threads = 1063.55 sec.

Primal simplex - Optimal: Objective = 1.9886847000e-01

Solution time = 1063.55 sec. Iterations = 7072 (5334)

Iteration Log #13855

Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf

0 5.9535299e+02 -2.7214222e+13 4.05e+11 1.03e+12 3.22e+07

1 1.8327921e+07 -2.4959566e+13 2.07e+10 5.30e+10 6.74e+04

2 7.5190135e+07 -5.6129961e+12 4.68e+09 1.20e+10 1.09e+03

3 2.8110662e+08 -2.2938869e+12 5.95e+07 1.52e+08 4.46e+02

4 2.8257248e+08 -4.7950310e+10 1.28e+06 3.26e+06 3.53e+00

5 1.3900254e+08 -6.1411363e+07 1.21e-03 9.44e-07 6.00e-02

...

36

82 1.9895461e-01 1.9865256e-01 1.52e-04 2.87e-06 2.44e-06

83 1.9895075e-01 1.9865309e-01 1.69e-04 2.86e-06 2.38e-06

84 1.9894710e-01 1.9865303e-01 1.70e-04 2.85e-06 2.39e-06

Barrier time = 414.31 sec.

Primal crossover.

Primal: Fixing 33950 variables.

33949 PMoves: Infeasibility 4.36828532e-07 Objective 1.98868436e-01

32825 PMoves: Infeasibility 4.32016730e-07 Objective 1.98868436e-01

...

128 PMoves: Infeasibility 5.49582923e-07 Objective 1.98868436e-01

0 PMoves: Infeasibility 5.49534369e-07 Objective 1.98868436e-01

Primal: Pushed 13212, exchanged 20737.

Dual: Fixing 71 variables.

70 DMoves: Infeasibility 2.72300071e-03 Objective 1.98842990e-01

0 DMoves: Infeasibility 2.72073853e-03 Objective 1.98842990e-01

Dual: Pushed 63, exchanged 0.

Using devex.

Iteration log . . .

Iteration: 1 Objective = 0.198868

Removing shift (45).

Iteration: 2 Scaled infeas = 0.000000

Iteration: 6 Objective = 0.198868

Total crossover time = 38.39 sec.

Total time on 4 threads = 452.71 sec.

Primal simplex - Optimal: Objective = 1.9886847000e-01

Solution time = 452.71 sec. Iterations = 6 (4)

37

3.5 Excessive Time per Iteration856

Algorithms may require an unreasonable amount of time per iteration. For example, consider857

Iteration Log #14 in which 37,000 iterations are executed within the first 139 seconds of the858

run; at the bottom of the log, 1000 (140,000 - 139,000) iterations require about 408 (25,145.43 -859

24,736.98) seconds of computation time.860

861

Iteration Log #14862

Elapsed time = 138.23 sec. (37000 iterations)

Iter: 37969 Infeasibility = 387849.999786

Iter: 39121 Infeasibility = 379979.999768

Iter: 40295 Infeasibility = 375639.999998

Elapsed time = 150.41 sec. (41000 iterations)

...

Elapsed time = 24318.58 sec. (138000 iterations)

Iter: 138958 Infeasibility = 23.754244

Elapsed time = 24736.98 sec. (139000 iterations)

Elapsed time = 25145.43 sec. (140000 iterations)

863

This slowdown in iteration execution can be due to denser bases and the associated denser864

factorization and solve times in the simplex algorithm, specifically in Steps 1, 4 and 7. In this865

case, the practitioner should try each LP algorithm and consider an alternate pricing scheme866

if using the simplex algorithm. The more computationally expensive gradient pricing schemes867

available in today’s state-of-the-art optimizers calculate (exactly or approximately) the norm of868

each nonbasic matrix column relative to the current basis. The most expensive calculations involve869

computing these norms exactly, while less expensive calculations involve progressively cheaper (but870

progressively less accurate) ways of estimating these exact norms (Nazareth, 1987). All of these871

norm calculations involve extra memory, extra computation, and extra pricing operations.872

Another reason for excessive time per iteration is the computer’s use of virtual memory. A873

general rule requires one gigabyte of memory per million constraints of a linear program and even874

more if the A matrix is very dense or if there is a significantly larger number of columns (variables)875

than rows (constraints). Short of purchasing more memory, some optimizers support non-default876

settings that compress data and/or store data efficiently to disk. For example, CPLEX has a877

38

memory emphasis parameter whose overhead is mitigated by removing the optimizer’s reliance on878

the operating system’s virtual memory manager. This can help preserve memory and ultimately879

lead to finding a good solution reasonably quickly.880

While the change in density of the basis matrices used by the simplex method can alter the881

time per iteration, each iteration of the barrier algorithm and related interior point methods solves882

a linear system involving AAT with constant non-zero structure. Hence, barrier algorithm mem-883

ory usage and time per iteration typically exhibit little change throughout the run. Section 2.3884

describes how the density of AAT and the associated Cholesky factorization influence the time per885

barrier algorithm iteration. However, that section assumed that the density of the Cholesky factor886

was given, and identified guidelines for assessing when the density was favorable for the barrier887

algorithm. While state-of-the-art optimizers do offer some parameter settings that can potentially888

reduce the density of the Cholesky factor, the default settings are very effective regarding the889

sparsity of the Cholesky factor for a given non-zero structure of AAT . Instead of trying to find a890

sparser Cholesky factor for a given AAT , the practitioner can adjust the model formulation so that891

AAT is sparser, resulting in a sparser Cholesky factor and faster barrier algorithm iterations. One892

example of reformulation involves splitting dense columns into sparser ones (Lustig et al. (1991)893

and Vanderbei (1991)). While this increases the number of constraints and variables in the model,894

those dimensions are not the source of the performance bottleneck. A larger model with a Cholesky895

factor that has more constraints but fewer non-zeros can result in faster performance. For example,896

if Aj is a dense matrix column associated with variable xj , it can be split into two (or more) sparser897

columns A1
j and A2

j that, when combined, intersect the same rows as Aj . By defining A1
j and A2

j898

so that Aj = A1
j + A2

j , and their non-zero indices do not intersect, a single dense column can be899

replaced by two sparser ones. In the model formulation, Ajxj is replaced by A1
jx

1
j + A2

jx
2
j . The900

model also requires an additional constraint x1
j − x2

j = 0. The value of xj in the final solution is x1
j901

(or x2
j).902

Column splitting increases the problem size to improve performance. However, this somewhat903

counterintuitive approach can be effective because the reduction in run time associated with the904

dense columns exceeds the increase in run time associated with additional variables and constraints.905

More generally, if an increase in problem size removes a performance problem in an algorithm906

without creating a new bottleneck, it may improve overall algorithm performance.907

Table 3 summarizes problems and suggestions for resolving them as addressed in Section 3.908

These suggestions assume that the practitioner has formulated the model in question with the909

correct fidelity, i.e., that the model cannot be reduced without compromising the value of its910

solution. When the model size becomes potentially problematic, as illustrated in Iteration Logs #2911

39

and #14, the practitioner should also consider whether solving a less refined, smaller model would912

answer his needs.913

LP performance issue Suggested resolution

Numerical instability Calculate and input model data in double precision
Eliminate nearly-redundant rows and/or columns of A a priori

Avoid mixtures of large and small numbers:
(i) Be suspicious of κ between 1010 and 1014;
(ii) Avoid data leading to κ greater than 1014

Use alternate scaling (in the model formulation or optimizer settings)
Increase the Markowitz threshold
Employ the numerical emphasis parameter (if available)

Lack of objective function Try all other algorithms (and variants)
improvement under degeneracy Perturb data either a priori or using algorithmic settings

Primal degeneracy Use either dual simplex or interior point on primal problem

Dual degeneracy Employ either primal simplex or interior point on primal problem

Both primal and dual degeneracy Execute interior point on primal or dual problem

Excessive time per iteration Try all other algorithms (and variants)
Use algorithmic settings to conserve memory or purchase more externally
Try less expensive pricing settings if using simplex algorithms

Excessive simplex algorithm Try Steepest edge or Devex variable selection
iterations

Multiple bound shift removals or Reduce feasibility and optimality tolerances
significant infeasibilities after
removing shifts

Barrier algorithm iterations Increase barrier convergence tolerance in
with little or no progress order to initiate crossover earlier

Too much time in crossover Reduce barrier convergence tolerance in
order to provide better starting point for crossover

Table 3: LP Performance issues and their suggested resolution

When neither the tactics in Table 3 nor any other tuning of the simplex method or barrier914

algorithms yields satisfactory performance, the practitioner may also consider more advanced vari-915

ants of the simplex method. Such variants frequently solve a sequence of easier, more tractable916

LPs, resulting in an optimal solution to the more difficult LP of interest. Some variants, such as917

sifting (also called the SPRINT technique by its originator, John Forrest (Forrest, 1989)), work918

on parts of the LP of interest, solving a sequence of LPs in which the solution of the previous919

one defines problem modifications for the next one. In particular, sifting works well on LPs in920

which the number of variables dramatically exceeds the number of constraints. It starts with an921

LP consisting of all constraints but a manageable subset of the variables. After solving this LP922

subproblem, it uses the optimal dual variables to compute reduced costs that identify potential923

40

variables to add. The basis from the previous LP is typically primal feasible, speeding up the next924

optimization. Through careful management of added and removed variables from the sequence of925

LPs it solves, sifting can frequently solve the LP of interest to optimality without ever having to926

represent it in memory in its entirety. Sifting can also work well on models for which the number of927

constraints dramatically exceeds the number of variables by applying sifting to the dual LP. Other928

variants are more complex, maintaining two or more distinct subproblems, and using the solution929

of one to modify the other. The most frequently used methods are Dantzig-Wolfe Decomposition930

and Benders’ Decomposition. These methods both maintain a master problem and solve a separate931

subproblem to generate modifications to the master problem. Both the master and subproblem are932

typically much easier to solve than the original LP of interest. Repeatedly optimizing the master933

and subproblem ultimately yields an optimal solution to the original problem. Dantzig-Wolfe De-934

composition is column-based, using the subproblem to generate additional columns for the master935

problem, while Benders’ Decomposition is row-based, solving the subproblem to generate additional936

rows for the master problem. It can be shown that Benders’ Decomposition applied to the primal937

representation of an LP is equivalent to applying Dantzig-Wolfe Decomposition to the dual LP.938

The details and application of these and other decomposition methods are beyond the scope of this939

paper. Dantzig and Thapa (2003) provide more information about these approaches.940

4 Conclusions941

We summarize in this paper commonly employed linear programming algorithms and use this942

summary as a basis from which we present likely algorithmic trouble and associated avenues for their943

resolution. While optimizers and hardware will continue to advance in their capabilities of handling944

hard linear programs, practitioners will take advantage of corresponding improved performance to945

further refine their models. The guidelines we present are useful, regardless of the anticipated946

advances in hardware and software. Practitioners can implement many of these guidelines without947

expert knowledge of the underlying theory of linear programming, thereby enabling them to solve948

larger and more detailed models with existing technology.949

Acknowledgements950

Dr. Klotz wishes to acknowledge all of the CPLEX practitioners over the years, many of whom951

have provided the wide variety of models that revealed the guidelines described in this paper. He952

also wishes to thank the past and present CPLEX development, support, and sales and marketing953

teams who have contributed to the evolution of the product. Professor Newman wishes to thank954

41

the students in her first advanced linear programming class at the Colorado School of Mines for955

their helpful comments; she also wishes to thank her colleagues Professor Josef Kallrath (BASF-956

AG, Ludwigshafen, Germany) and Jennifer Rausch (Jeppeson, Englewood, Colorado) for helpful957

comments on an earlier draft. Both authors thank an anonymous referee for his helpful comments958

that lead to the improvement of the paper.959

Both authors also wish to remember Lloyd Clarke (February 14, 1964-September 20, 2007). His960

departure from the CPLEX team had consequences that extended beyond the loss of an important961

employee and colleague.962

42

References963

Applegate, D., Cook, W. and Dash, S., 2005. “QSopt.” http://www.isye.gatech.edu/∼wcook/964

qsopt/.965

Bazaraa, M., Jarvis, J. and Sherali, H., 2005. Linear Programming and Network Flows, John Wiley966

& Sons, Inc.967

Bertsimas, D. and Tsitsiklis, J., 1997. Introduction to Linear Optimization, Prentice Hall, chap. 4.968

Brown, G. and Rosenthal, R., 2008. “Optimization tradecraft: Hard-won insights from real-world969

decision support.” Interfaces, 38(5): 356–366.970

Chvátal, V., 1983. Linear Programming, W. H. Freeman.971

Cybernet Systems Co., 2012. “Maple.” http://www.maplesoft.com/.972

Dantzig, G., 1963. Linear Programming and Extensions, Princeton University Press.973

Dantzig, G. and Thapa, M., 1997. Linear Programming 1: Introduction, Springer.974

Dantzig, G. and Thapa, M., 2003. Linear Programming 2: Theory and Extensions, Springer.975

Dikin, I., 1967. “Iterative solution of problems of linear and quadratic programming.” Soviet Math-976

ematics Doklady, 8: 674–675.977

Duff, I., Erisman, A. and Reid, J., 1986. Direct Methods for Sparse Matrices, Clarendon Press978

Oxford.979

Fiacco, A. and McCormick, G., 1968. Nonlinear Programming: Sequential Unconstrained Mini-980

mization Techniques, Wiley.981

FICO, 2012. Xpress-MP Optimization Suite, Minneapolis, MN.982

Forrest, J., 1989. “Mathematical programming with a library of optimization routines.” Presenta-983

tion at 1989 ORSA/TIMS Joint National Meeting.984

Fourer, B., 1994. “Notes on the dual simplex method.” http://users.iems.northwestern.edu/985

∼4er/WRITINGS/dual.pdf.986

Gill, P., Murray, W., Saunders, M., Tomlin, J. and Wright, M., 1986. “On projected Newton987

barrier methods for linear programming and an equivalence to Karmarkar’s projective method.”988

Mathematical Programming, 36(2): 183–209.989

Goldfarb, D. and Forrest, J., 1992. “Steepest-edge simplex algorithms for linear programming.”990

Mathematical Programming, 57(1): 341–374.991

Goldfarb, D. and Reid, J., 1977. “A practical steepest-edge simplex algorithm.” Mathematical992

Programming, 12(1): 361–371.993

Greenberg, H. and Kalan, J., 1975. “An exact update for Harris’ TREAD.” Mathematical Program-994

ming Study, 4(1): 26–29.995

Gurobi, 2012. Gurobi Optimizer, Houston, TX.996

43

Harris, P., 1975. “Pivot selection methods in the Devex LP code.” Mathematical Programming997

Study, 4(1): 30–57.998

Higham, N., 1996. Accuracy and Stability of Numerical Algorithms, SIAM.999

IBM, 2012. ILOG CPLEX, Incline Village, NV.1000

Karmarkar, N., 1984. “A new polynomial-time algorithm for linear programming.” Combinatorica,1001

4(4): 373–395.1002

Khachian, L., 1979. “A polynomial algorithm for linear programming.” Soviet Mathematics Dok-1003

lady, 20: 191–194.1004

Lemke, C., 1954. “The dual method of solving the linear programming problem.” Naval Research1005

Logistics Quarterly, 1(1): 36–47.1006

Lustig, I., Marsten, R., Saltzman, M., Subramanian, R. and Shanno, D., 1990. “Interior-point1007

methods for linear programming: Just call Newton, Lagrange, and Fiacco and McCormick!”1008

Interfaces, 20(4): 105–116.1009

Lustig, I., Marsten, R. and Shanno, D., 1994. “Interior-point methods for linear programming:1010

Computational state of the art.” ORSA Journal on Computing, 6(1): 1–14.1011

Lustig, I., Mulvey, J. and Carpenter, T., 1991. “Formulating two-stage stochastic programs for1012

interior point methods.” Operations Research, 39(5): 757–770.1013

Megiddo, N., 1991. “On finding primal- and dual- optimal bases.” ORSA Journal on Computing,1014

3(1): 63–65.1015

Mehrotra, S., 1992. “On the implementation of a primal-dual interior point method.” SIAM Journal1016

on Optimization, 2(4): 575–601.1017

MOPS, 2012. MOPS, Paderborn, Germany.1018

MOSEK, 2012. MOSEK Optimization Software, Copenhagen, Denmark.1019

Nazareth, J., 1987. Computer Solution of Linear Programs, Oxford University Press.1020

Rardin, R., 1998. Optimization in Operations Research, Prentice Hall, chap. 6.1021

Vanderbei, R., 1991. “Splitting dense columns in sparse linear systems.” Linear Algebra and its1022

Applications, 152(1): 107–117.1023

Winston, W., 2004. Operations Research: Applications and Algorithms, Brooks/Cole, Thompson1024

Learning.1025

Wolfram, 2012. “Mathematica.” http://www.wolfram.com/mathematica/.1026

Wright, S., 1997. Primal-Dual Interior-Point Methods, SIAM.1027

44

