
Practical Guidelines for Solving Difficult Mixed Integer Linear1

Programs2

Ed Klotz† • Alexandra M. Newman‡
†IBM, 926 Incline Way, Suite 100, Incline Village, NV 89451

‡Division of Economics and Business, Colorado School of Mines, Golden, CO 80401
klotz@us.ibm.com • newman@mines.edu

3

Abstract4

Even with state-of-the-art hardware and software, mixed integer programs can require hours,5

or even days, of run time and are not guaranteed to yield an optimal (or near-optimal, or any!)6

solution. In this paper, we present suggestions for appropriate use of state-of-the-art optimizers7

and guidelines for careful formulation, both of which can vastly improve performance.8

“Problems worthy of attack prove their worth by hitting back.”9

–Piet Hein, Grooks 196610

“Everybody has a plan until he gets hit in the mouth.”11

–Mike Tyson12

Keywords: mixed integer linear programming, memory use, run time, tight formulations, cuts,13

heuristics, tutorials14

1 Introduction15

Operations research practitioners have been formulating and solving integer programs since the16

1950s. As computer hardware has improved (Bixby and Rothberg, 2007), practitioners have taken17

the liberty to formulate increasingly detailed and complex problems, assuming that the correspond-18

ing instances can be solved. Indeed, state-of-the-art ptimizers such as CPLEX (IBM, 2012), Gurobi19

(Gurobi, 2012), MOPS (MOPS, 2012), Mosek (MOSEK, 2012), and Xpress-MP (FICO, 2012) can20

solve many practical large-scale integer programs effectively. However, even if these “real-world”21

problem instances are solvable in an acceptable amount of time (seconds, minutes or hours, de-22

pending on the application), other instances require days or weeks of solution time. Although not23

a guarantee of tractability, carefully formulating the model and tuning standard integer program-24

ming algorithms often result in significantly faster solve times, in some cases, admitting a feasible25

or near-optimal solution which could otherwise elude the practitioner.26

1



In this paper, we briefly introduce integer programs and their corresponding commonly used27

algorithm, show how to assess optimizer performance on such problems through the respective28

algorithmic output, and demonstrate methods for improving that performance through careful for-29

mulation and algorithmic parameter tuning. Specifically, there are many mathematically equivalent30

ways in which to express a model, and each optimizer has its own set of default algorithmic parame-31

ter settings. Choosing from these various model expressions and algorithmic settings can profoundly32

influence solution time. Although it is theoretically possible to try each combination of parameter33

settings, in practice, random experimentation would require vast amounts of time and would be34

unlikely to yield significant improvements. We therefore guide the reader to likely performance-35

enhancing parameter settings given fixed hardware, e.g., memory limits, and suggest methods for36

avoiding performance failures a priori through careful model formulation. All of the guidelines we37

present here apply to the model in its entirety. Many relaxation and decomposition methods, e.g.,38

Lagrangian Relaxation, Benders’ Decomposition, and Column Generation (Dantzig-Wolfe Decom-39

position), have successfully been used to make large problems more tractable by partitioning the40

model into subproblems and solving these iteratively. A description of these methods is beyond41

the scope of our paper; the practitioner should first consider attempting to improve algorithmic42

performance or tighten the existing model formulation, as these approaches are typically easier and43

less time consuming than reformulating the model and applying decomposition methods.44

The reader should note that we assume basic familiarity with fundamental mathematics, such45

as matrix algebra, and with optimization, in particular, with linear programming and the concepts46

contained in Klotz and Newman (To appear). We expect that the reader has formulated linear47

integer programs and has a conceptual understanding of how the corresponding problems can be48

solved. Furthermore, we present an algebraic, rather than a geometric, tutorial, i.e., a tutorial based49

on the mathematical structure of the problem and corresponding numerical algorithmic output,50

rather than based on graphical analysis. The interested reader can refer to basic texts such as51

Rardin (1998) and Winston (2004) for more detailed introductions to mathematical programming,52

including geometric interpretations.53

We have attempted to write this paper to appeal to a diverse audience. Readers with limited54

mathematical programming experience who infrequently use optimization software and do not55

wish to learn the details regarding how the underlying algorithms relate to model formulations56

can still benefit from this paper by learning how to identify sources of slow performance based57

on optimizer output. This identification will allow them to use the tables in the paper that list58

potential performance problems and parameter settings that address them. More experienced59

practitioners who are interested in the way in which the optimizer algorithm relates to the model60

2



formulation will gain insight into new techniques for improving model formulations, including those61

different from the ones discussed in this paper. While intended primarily for practitioners seeking62

performance enhancements to practical models, theoretical researchers may still benefit. The same63

guidelines that can help tighten specific practical models can also help in the development of the64

theory associated with fundamental algorithmic improvements in integer programming, e.g., new65

cuts and new techniques for preprocessing.66

The remainder of the paper is organized as follows: In Section 2, we introduce integer programs,67

the branch-and-bound algorithm, and its variants. Section 3 provides suggestions for successful al-68

gorithm performance. Section 4 presents guidelines for and examples of tight formulations of integer69

programs that lead to faster solution times. Section 5 concludes the paper with a summary. Section70

2, with the exception of the tables, may be omitted without loss of continuity for the practitioner71

interested only in formulation and algorithmic parameter tuning without detailed descriptions of72

the algorithms themselves. To illustrate the concepts we present in this paper, we show output logs73

resulting from having run a commercial optimizer on a standard desktop machine. Unless otherwise74

noted, this optimizer is CPLEX 12.2.0.2, and the machine possesses four single-core 3.0 gigahertz75

Xeon chips and 8 gigabytes of memory.76

2 Fundamentals77

Consider the following system in which C is a set of indices on our variables x such that xj, j ∈ C78

are nonnegative, continuous variables, and I is a set of indices on the variables x such that xj, j ∈ I79

are nonnegative, integer variables. Correspondingly, cC and AC are the objective function and left-80

hand-side constraint coefficients, respectively, on the nonnegative, continuous variables, and cI81

and AI are the objective function and left-hand-side constraint coefficients, respectively, on the82

nonnegative, integer variables. For the constraint set, the right-hand-side constants, b, are given as83

an m × 1 column vector.84

(PMIP ) : min cT
CxC + cT

I xI

85

subject to ACxC + AIxI = b
86

xC , xI ≥ 0, xI integer

Three noteworthy special cases of this standard mixed integer program are (i) the case in which87

xI is binary, (ii) the case in which cC , AC , and xC do not exist and xI is general integer, and (iii)88

the case in which cC , AC , and xC do not exist and xI is binary. Note that (iii) is a special case of89

3



(i) and (ii). We refer to the first case as a mixed binary program, the second case as a pure integer90

program, and the third case as a binary program. These cases can benefit from procedures such91

as probing on binary variables (Savelsbergh, 1994), or even specialized algorithms. For example,92

binary programs lend themselves to some established techniques in the literature that do not exist93

if the algorithm is executed on an integer program. These techniques are included in most standard94

branch-and-bound optimizers; however, some features that are specific to binary-only models, e.g.,95

the additive algorithm of Balas (1965), can be lacking.96

Branch-and-bound uses intelligent enumeration to arrive at an optimal solution for a (mixed)97

integer program or any special case thereof. This involves construction of a search tree. Each node98

in the tree consists of the original constraints in (PMIP ), along with some additional constraints on99

the bounds of the integer variables, xI , to induce those variables to assume integer values. Thus,100

each node is also a mixed integer program (MIP). At each node of the branch-and-bound tree, the101

algorithm solves a linear programming relaxation of the restricted problem, i.e., the MIP with all102

its variables relaxed to be continuous.103

The root node at the top of the tree is (PMIP ) with the variables xI relaxed to assume continuous104

values. Branch-and-bound begins by solving this problem. If the root node linear program (LP)105

is infeasible, then the original problem (which is more restricted than its linear programming106

relaxation) is also infeasible, and the algorithm terminates with no feasible solution. Similarly, if the107

optimal solution to the root node LP has no integer restricted variables with fractional values, then108

the solution is optimal for (PMIP ) as well. The most likely case is that the algorithm produces an109

optimal solution for the relaxation with some of the integer-restricted variables assuming fractional110

values. In this case, such a variable, xj = f , is chosen and branched on, i.e., two subproblems are111

created – one with a restriction that xj ≤ ⌊f⌋ and the other with a restriction that xj ≥ ⌈f⌉. These112

subproblems are successively solved, which results in one of the following three outcomes:113

Subproblem Solution Outcomes (for a minimization problem)114

• (i) The subproblem is optimal with all variables in I assuming integer values. In115

this case, the algorithm can update its best integer feasible solution; this update tightens116

the upper bound on the optimal objective value. Because the algorithm only seeks a single117

optimal solution, no additional branches are created from this node; examining additional118

branches cannot yield a better integer feasible solution. Therefore, the node is fathomed or119

pruned.120

• (ii) The subproblem is infeasible. In this case, no additional branching can restore121

feasibility. As in (i), the node is fathomed.122

4



• (iii) The subproblem has an optimal solution, but with some of the integer-123

restricted variables in I assuming fractional values. There are two cases:124

⋆ a. The objective function value is dominated by the objective of the best integer feasible125

solution. In other words, the optimal node LP objective is no better than the previously126

established upper bound on the optimal objective for (PMIP ). In this case, no additional127

branching can improve the objective function value of the node, and, as in (i), the node128

is fathomed.129

⋆ b. The objective function value is not dominated by that of the best integer feasible130

solution. The algorithm then processes the node in that it chooses a fractional xj′ =131

f ′; j′ ∈ I to branch on by creating two child nodes and their associated subproblems –132

one with a restriction that xj′ ≤ ⌊f ′⌋ and the other with a restriction that xj′ ≥ ⌈f ′⌉.133

These restrictions are imposed on the subproblem in addition to any others from previous134

branches in the same chain stemming from the root; each of these child subproblems is135

subsequently solved. Note that while most implementations of the algorithm choose a136

single integer variable from which to create two child nodes, the algorithm’s convergence137

only requires that the branching divides the feasible region of the current node in a138

mutually exclusive manner. Thus, branching on groups of variables or expressions of139

variables is also possible.140

Due to the exponential growth in the size of such a tree, exhaustive enumeration would quickly141

become hopelessly computationally expensive for MIPs with even dozens of variables. The effective-142

ness of the branch-and-bound algorithm depends on its ability to prune nodes. Effective pruning143

relies on the fundamental property that the objective function value of each child node is either the144

same as or worse than that of the parent node (both for the MIP at the node and the associated145

LP relaxation). This property holds because every child node consists of the MIP in the parent146

node plus an additional constraint (typically, the bound constraint on the branching variable).147

As the algorithm proceeds, it maintains the incumbent integer feasible solution with the best148

objective function determined thus far in the search. The algorithm performs updates as given in149

(i) of Subproblem Solution Outcomes. The updated incumbent objective value provides an upper150

bound on the optimal objective value. A better incumbent increases the number of nodes that can151

be pruned in case (iii), part (a) by more easily dominating objective function values elsewhere in152

the tree.153

In addition, the algorithm maintains an updated lower bound on the optimal objective for154

(PMIP ). The objective of the root node LP establishes a lower bound on the optimal objective155

5



because its feasible region contains all integer feasible solutions to (PMIP ). As the algorithm156

proceeds, it dynamically updates the lower bound by making use of the property that child node157

objectives are no better than those of their parent. Because a better integer solution can only be158

produced by the children of the currently unexplored nodes, this property implies that the optimal159

objective value for (PMIP ) can be no better than the best unexplored node LP objective value.160

As the algorithm continues to process nodes, the minimum LP objective of the unexplored nodes161

can dynamically increase, improving the lower bound. When the lower bound meets the upper162

bound, the algorithm terminates with an optimal solution. Furthermore, once an incumbent has163

been established, the algorithm uses the difference between the upper bound and lower bound to164

measure the quality of the solution relative to optimality. Thus, on difficult models with limited165

computation time available, practitioners can configure the algorithm to stop as soon as it has166

an integer feasible solution within a specified percentage of optimality. Note that most other167

approaches to solving integer programs (e.g., tabu search, genetic algorithms) lack any sort of168

bound, although it may be possible to derive one from the model instance. However, even if it is169

possible to derive a bound, it is likely to be weak, and it probably remains static. Note that in the170

case of a maximization problem, the best integer solution provides a lower bound on the objective171

function value and the objective of the root node LP establishes an upper bound on the optimal172

objective; the previous discussion holds, but with this reversal in bounds. Unless otherwise noted,173

our examples are minimization problems, as given by our standard form in (PMIP ).174

Figure 1 provides a tree used to solve a hypothetical integer program of the form (PMIP ) with175

the branch-and-bound algorithm. Only the relevant subset of solution values is given at each node.176

The numbers in parentheses outside the nodes denote the order in which the nodes are processed, or177

examined. The inequalities on the arcs indicate the bound constraint placed on an integer-restricted178

variable in the original problem that possesses a fractional value in a subproblem.179

Node (1) is the root node. Its objective function value provides a lower bound on the mini-180

mization problem. Suppose x1, an integer-restricted variable in the original problem, possesses a181

fractional value (3.5) at the root node solve. To preclude this fractional value from recurring in182

any subsequent child node solve, we create two subproblems, one with the restriction that x1 ≤ 3,183

i.e., x1 ≤ ⌊3.5⌋, and the other with the restriction that x1 ≥ 4, i.e., x1 ≥ ⌈3.5⌉. This is a mutually184

exclusive and collectively exhaustive set of outcomes for x1 (and, hence, the original MIP) given185

that x1 is an integer-restricted variable in the original problem.186

Node (2) is the child node that results from branching down on variable x1 at node (1). Among187

possibly others, x7 is an integer-restricted variable that assumes a fractional value when this sub-188

6



(1)

root
x1 = 3.5

x1
≤

3 x
1 ≥

4(2)

x7 = 2.3

x7
≤

2

x
7 ≥

3

(3)

x9 = 0.1

x 9
≤

0 x
9 ≥

1

(4)

Integer

(5)

x3 = 0.6

x 3
≤

0 x
3 ≥

1

(6)

???

(7)

Fathomed

(8)

x8 = 0.3

x 8
≤

0

x
8 ≥

1

(9)

Infeasible

(10)

Integer

(11)

???

Figure 1: Branch-and-bound algorithm

problem at node (2) is solved; the solve consists of the root node problem and the additional189

restriction that x1 ≤ 3. Because of this fractional value, we create two subproblems emanating190

from node (2) in the same way in which we create them from node (1). The subproblem solve at191

node (4), i.e., the solve consisting of the root node subproblem plus the two additional restrictions192

that x1 ≤ 3 and x7 ≤ 2, results in an integer solution. At this point, we can update the upper193

bound. That is, the optimal solution for this problem, an instance of (PMIP ), can never yield an194

objective worse than that of the best feasible solution obtained in the tree.195

At any point in the tree, nodes that require additional branching are considered active, or196

unexplored. Nodes (6) and (11) remain unexplored. Additional processing has led to pruned nodes197

(4), (7), and (9), either because the subproblem solve was infeasible, e.g., node (9), or because the198

objective function value was worse than that of node (4), regardless of whether or not the resulting199

solution was integer. As the algorithm progresses, it establishes an incumbent solution at node200

(10). Because nodes (6) and (11) remain unexplored, improvement on the current incumbent can201

only come from the solutions of the subproblems at nodes (6) and (11) or their descendants. The202

descendants have an objective function value no better than that of either of these two nodes;203

therefore, the optimal solution objective is bounded by the minimum of the optimal LP objectives204

7



of nodes (6) and (11). Without loss of generality, assume node (11) possesses the lesser objective.205

That objective value then provides a lower bound on the optimal objective for (PMIP ). We can206

continue searching through the tree in this fashion, updating lower and upper bounds, until either207

the gap is acceptably small, or until all the nodes have been processed.208

The previous description of the branch-and-bound algorithm focuses on its fundamental steps.209

Advances in the last 20 years have extended the algorithm from branch and bound to branch and210

cut. Branch and cut, the current choice of most integer programming solvers, follows the same211

steps as branch and bound, but it also can add cuts. Cuts consist of constraints involving linear212

expressions of one or more variables that are added at the nodes to further improve performance. As213

long as these cuts do not remove any integer feasible solutions, their addition does not compromise214

the correctness of the algorithm. If done judiciously, the addition of such cuts can yield significant215

performance improvements.216

3 Guidelines for Successful Algorithm Performance217

There are four common reasons that integer programs can require a significant amount of solution218

time:219

• (i) There is lack of node throughput due to troublesome linear programming node solves.220

• (ii) There is lack of progress in the best integer solution, i.e., the upper bound.221

• (iii) There is lack of progress in the best lower bound.222

• (iv) There is insufficient node throughput due to numerical instability in the problem data223

or excessive memory usage.224

By examining the output of the branch-and-bound algorithm, one can often identify the cause(s)225

of the performance problem. Note that integer programs can exhibit dramatic variations in run226

time due to seemingly inconsequential changes to a problem instance. Specifically, differences such227

as reordering matrix rows or columns, or solving a model with the same optimizer, but on a different228

operating system, only affect the computations at very low-order decimal places. However, because229

most linear programming problems drawn from practical sources have numerous alternate optimal230

basic solutions, these slight changes frequently suffice to alter the path taken by the primal or dual231

simplex method. The fractional variables eligible for branching are basic in the optimal node LP232

solution. Therefore, alternate optimal bases can result in different branching variable selections.233

Different branching selections, in turn, can cause significant performance variation if the model234

8



formulation or optimizer features are not sufficiently robust to consistently solve the model quickly.235

This notion of performance variability in integer programs is discussed in more detail in Danna236

(2008) and Koch et al. (2011). However, regardless of whether an integer program is consistently237

or only occasionally difficult to solve, the guidelines described in this section can help address238

the performance problem. We now discuss each potential performance bottleneck and suggest an239

associated remedy.240

3.1 Lack of Node Throughput Due to Troublesome Linear Programming Node241

Solves242

Because processing each node in the branch-and-bound tree requires the solution of a linear pro-243

gram, the choice of a linear programming algorithm can profoundly influence performance. An244

interior point method may be used for the root node solve; it is less frequently used than the sim-245

plex method at the child nodes because it lacks a basis and hence, the ability to start with an initial246

solution, which is important when processing tens or hundreds of thousands of nodes. However,247

conducting different runs in which the practitioner invokes the primal or the dual simplex method248

at the child nodes is a good idea. Consider the following two node logs, the former corresponding249

to solving the root and child node linear programs with the dual simplex method and the latter250

with the primal simplex method.251

252

Node Log #1: Node Linear Programs Solved with Dual Simplex253

Nodes Cuts/ ItCnt

Node Left Objective IInf Best Integer Best Node

0 0 -89.0000 6 -89.0000 5278

0 0 -89.0000 6 Fract: 4 12799

0 2 -89.0000 6 -89.0000 12799

1 1 infeasible -89.0000 20767

2 2 -89.0000 5 -89.0000 27275

3 1 infeasible -89.0000 32502

...

8 2 -89.0000 8 -89.0000 65717

9 1 infeasible -89.0000 73714

...

Solution time = 177.33 sec. Iterations = 73714 Nodes = 10 (1)

9



254

255

Node Log #2: Node Linear Programs Solved with Primal Simplex256

Nodes Cuts/ ItCnt

Node Left Objective IInf Best Integer Best Node

0 0 -89.0000 5 -89.0000 6603

0 0 -89.0000 5 Fract: 5 7120

0 2 -89.0000 5 -89.0000 7120

1 1 infeasible -89.0000 9621

2 2 -89.0000 5 -89.0000 10616

3 1 infeasible -89.0000 12963

...

8 2 -89.0000 8 -89.0000 21522

9 1 infeasible -89.0000 23891

...

Solution time = 54.37 sec. Iterations = 23891 Nodes = 10 (1)

257

The iteration count for the root node solve shown in Node Log #1 that occurred without258

any advanced start information indicates 5,278 iterations. Computing the average iteration count259

across all node LP solves, there are 11 solves (10 nodes, and 1 extra solve for cut generation at node260

0) and 73,714 iterations, which were performed in a total of 177 seconds. The summary output in261

gray indicates in parentheses that one unexplored node remains. So, the average solution time per262

node is approximately 17 seconds, and the average number of iterations per node is about 6,701.263

In Node Log #2, the solution time is 54 seconds, at which point the algorithm has performed 11264

solves, and the iteration count is 23,891. The average number of iterations per node is about 2,172.265

In Node Log #1, the 10 child node LPs require more iterations, 6,844, on average, than the266

root node LP (which requires 5,278), despite the advanced basis at the child node solves that was267

absent at the root node solve. Any time this is true, or even when the average node LP iteration268

count is more than 30-50% of the root node iteration count, an opportunity for improving node269

LP solve times exists by changing algorithms or algorithmic settings. In Node Log #2, the 10270

child node LPs require 1,729 iterations, on average, which is much fewer than those required by271

the root node solve, which requires 6,603 (solving the LP from scratch). Hence, switching from the272

10



dual simplex method in Node Log #1 to the primal simplex method in Node Log #2 increases273

throughput, i.e., decreases the average number of iterations required to solve a subproblem in the274

branch-and-bound tree.275

The different linear programming algorithms can also benefit by tuning the appropriate opti-276

mizer parameters. See Klotz and Newman (To appear) for a detailed discussion of this topic.277

3.2 Lack of Progress in the Best Integer Solution278

An integer programming algorithm may struggle to obtain good feasible solutions. Node Log #3279

illustrates a best integer solution found before node 300 of the solve that has not improved by node280

7800 of the same solve:281

282

Node Log #3: Lack of Progress in Best Integer Solution283

Nodes Cuts/ ItCnt Gap284

Node Left Objective IInf Best Integer Best Node285

...286

300 229 22.6667 40 31.0000 22.0000 4433 29.03%287

400 309 cutoff 31.0000 22.3333 5196 27.96%288

500 387 26.5000 31 31.0000 23.6667 6164 26.88%289

...290

7800 5260 28.5000 23 31.0000 25.6667 55739 17.20%291

292

Many state-of-the-art optimizers have built-in heuristics to determine initial and improved in-293

teger solutions. However, it is always valuable for the practitioner to supply the algorithm with an294

initial solution, no matter how obvious it may appear to a human. Such a solution may provide295

a better starting point than what the algorithm can derive on its own, and algorithmic heuristics296

may perform better in the presence of an initial solution, regardless of the quality of its objective297

function value. In addition, the faster progress in the cutoff value associated with the best inte-298

ger solution may enable the optimizer features such as probing to fix additional variables, further299

improving performance. Common tactics to find such starting solutions include the following:300

• Provide an obvious solution based on specific knowledge of the model. For example, models301

with integer penalty variables may benefit from a starting solution with a significant number302

(or even all) of the penalty variables set to non-zero values.303

11



• Solve a related, auxiliary problem to obtain a solution (e.g., via the Feasopt method in304

CPLEX, which looks for feasible solutions by minimizing infeasibilities), provided that the305

gain from the starting solution exceeds the auxiliary solve time.306

• Use the solution from a previous solve for the next solve when solving a sequence of models.307

To see the advantages of providing a starting point, compare Node Log #5 with Node Log308

#4. Log #4 shows that CPLEX with default settings takes about 1589 seconds to find a first309

feasible solution, with an associated gap of 4.18%. Log #5 illustrates the results obtained by310

solving a sequence of five faster optimizations (see Lambert et al. (to appear) for details) to obtain311

a starting solution with a gap of 2.23%. The total computation time to obtain the starting solution312

is 623 seconds. So, the time to obtain the first solution is faster by providing an initial feasible313

solution, and if we let the algorithm with the initial solution run for an additional 1589−623 = 966314

seconds, the gap for the instance with the initial solution improves to 1.53%.315

316

Node Log #4: No initial practitioner-supplied solution317

Root relaxation solution time = 131.45 sec.

Nodes Cuts/

Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 1.09590e+07 2424 1.09590e+07 108111

0 0 1.09570e+07 2531 Cuts: 4 108510

0 0 1.09405e+07 2476 Cuts: 2 109208

Heuristic still looking.

Heuristic still looking.

Heuristic still looking.

Heuristic still looking.

Heuristic still looking.

0 2 1.09405e+07 2476 1.09405e+07 109208

Elapsed real time = 384.09 sec. (tree size = 0.01 MB)

1 3 1.08913e+07 2488 1.09405e+07 109673

2 4 1.09261e+07 2326 1.09405e+07 109977

...

1776 1208 1.05645e+07 27 1.09164e+07 474242

12



1814 1246 1.05588e+07 31 1.09164e+07 478648

1847 1277 1.05554e+07 225 1.09164e+07 484687

* 1880+ 1300 1.04780e+07 1.09164e+07 491469 4.18%

1880 1302 1.05474e+07 228 1.04780e+07 1.09164e+07 491469 4.18%

Elapsed real time = 1589.38 sec. (tree size = 63.86 MB)

318

319

Node Log #5: An initial solution supplied by the practitioner320

Root relaxation solution time = 93.92 sec.

Nodes Cuts/

Node Left Objective IInf Best Integer Best Node ItCnt Gap

* 0+ 0 1.07197e+07 108111 ---

0 0 1.09590e+07 2424 1.07197e+07 1.09590e+07 108111 2.23%

0 0 1.09570e+07 2531 1.07197e+07 Cuts: 4 108538 2.21%

...

485 433 1.09075e+07 2398 1.07197e+07 1.08840e+07 244077 1.53%

487 434 1.08237e+07 2303 1.07197e+07 1.08840e+07 244350 1.53%

497 439 1.08637e+07 1638 1.07197e+07 1.08840e+07 245391 1.53%

Elapsed real time = 750.11 sec. (tree size = 32.61 MB)

501 443 1.08503e+07 1561 1.07197e+07 1.08840e+07 245895 1.53%

...

Elapsed real time = 984.03 sec. (tree size = 33.00 MB)

1263 674 1.08590e+07 2574 1.07197e+07 1.08840e+07 314814 1.53%

321

In the absence of a readily identifiable initial solution, various branching strategies can aid in322

obtaining initial and subsequent solutions. These branching strategies may be based purely on the323

algebraic structure of the model. For example, by using depth-first search, the branch-and-bound324

algorithm never defers processing a node until it has been pruned. This strategy helps find integer325

13



feasible solutions sooner, although it potentially slows progress in the best bound. (Recall, the best326

lower bound for a minimization problem is updated once all nodes with relaxation objective value327

equal to the lower bound have been processed.) In other cases, branching strategies may involve328

specific aspects of the model. For example, branching up, i.e., processing the subproblem associated329

with the greater bound as a restriction on its branch, in the presence of many set partitioning330

constraints (
∑

i xi = 1, xi binary) not only fixes the variable on the associated branch in the331

constraint to 1, but it also fixes all other variables in the constraint to a value of 0 in the children332

of the current node. By contrast, branching down does not yield the ability to fix any additional333

variables.334

Improvements to the model formulation can also yield better feasible solutions faster. Differ-335

entiation in the data, e.g., by adding appropriate discounting factors to cost coefficients in the336

objective function, helps the algorithm distinguish between dominated and dominating solutions,337

which expedites the discovery of improving solutions.338

3.3 Lack of Progress in the Best Bound339

The branch-and-bound depiction in Figure 1 and the corresponding discussion illustrate how the340

algorithm maintains and updates a lower bound on the objective function value for the minimization341

integer program. (Note that this would correspond to an upper bound for a maximization problem.)342

The ability to update the best bound effectively depends on the best objective function value of343

all active subproblems, i.e., the associated LP objective function value of the nodes that have not344

been fathomed. If successive subproblems, i.e., subproblems corresponding to nodes lying deeper345

in the tree, do not possess significantly worse objective function values, the bound does not readily346

approach the true objective function value of the original integer program. Furthermore, the greater347

the number of active, i.e., unfathomed, nodes deeper in the tree, the smaller the chance of a tight348

bound, which always corresponds to the weakest (lowest, for a minimization problem) objective349

function value of any active node. These objective function values, and the associated bounds they350

generate, in turn, depend on the strength of the model formulation, i.e., the difference between351

the polyhedron associated with the LP relaxation of (PMIP ) and the polyhedron consisting of the352

convex hull of all integer feasible solutions to (PMIP ). Figure 2 provides an illustration. The region353

P1 represents the convex hull of all integer feasible solutions of the MIP, while P2 represents the354

feasible region of the LP relaxation. Adding cuts yields the region P3, which contains all integer355

solutions of the MIP, but contains only a subset of the fractional solutions feasible for P2.356

Node log #6 exemplifies progress in best integer solution but not in the best bound:357

358

14



P1

P3

P2

âT
1 x ≤ b̂1

âT
2 x ≤ b̂2

âT
3 x ≤ b̂3

P1 := conv{x ∈ Z
n : Ax ≤ b, x ≥ 0}

P2 := {x ∈ R
n : Ax ≤ b, x ≥ 0}

P3 := P2 ∩ {x ∈ R
n : Âx ≤ b̂}

Cuts must satisfy

1) âT
i x ≤ b̂i ∀x ∈ P1 (validity)

2) ∃ x ∈ P2 : âT
i x > b̂i (separation)

Figure 2: Convex hull

Node Log #6: Progress in Best Integer Solution but not in the Best Bound359

Nodes Cuts/ ItCnt Gap360

Node Left Objective IInf Best Integer Best Node361

362

300 296 2018.0000 27 3780.0000 560.0000 3703 85.19%363

* 300+ 296 0 2626.0000 560.0000 3703 78.67%364

* 393 368 0 2590.0000 560.0000 4405 78.38%365

400 372 560.0000 291 2590.0000 560.0000 4553 78.38%366

500 472 810.0000 175 2590.0000 560.0000 5747 78.38%367

...368

* 7740+ 5183 0 1710.0000 560.0000 66026 67.25%369

7800 5240 1544.0000 110 1710.0000 560.0000 66279 67.25%370

7900 5325 944.0000 176 1710.0000 560.0000 66801 67.25%371

8000 5424 1468.0000 93 1710.0000 560.0000 67732 67.25%372

373

To strengthen the bound, i.e., to make its value closer to that of the optimal objective function374

value of the integer program, we can modify the integer program by adding special constraints.375

These constraints, or cuts, do not excise any integer solutions that are feasible in the unmodified376

integer program. A cut that does not remove any integer solutions is valid. However, the cuts377

remove portions of the feasible region that contain fractional solutions. If the removed area contains378

the fractional solution resulting from the LP relaxation of the integer program, we say the cut379

15



is useful (Rardin, 1998), or that the cut separates the fractional solution from the resulting LP380

relaxation feasible region. In this case, the cut improves the bound by increasing the original LP381

objective. There are various problem structures that lend themselves to different types of cuts.382

Thus, we have a general sense of cuts that could be useful. However, without the LP relaxation383

solution, it is difficult to say a priori which cuts are definitely useful.384

x1 x2

x3 x4 x5

Figure 3: Conflict Graph for numerical example (PEX
Binary)

Let us consider the following numerical example, in this case, for ease of illustration, a maxi-385

mization problem:386

(PEX
Binary) max 3x1 + 2x2 + x3 + 2x4 + x5 (1)

subject to x1 + x2 ≤ 1 (2)

x1 + x3 ≤ 1 (3)

x2 + x3 ≤ 1 (4)

4x3 + 3x4 + 5x5 ≤ 10 (5)

x1 + 2x4 ≤ 2 (6)

3x2 + 4x5 ≤ 5 (7)

xi binary ∀i (8)

A cover cut based on the knapsack constraint of (PEX
Binary), 4x3+3x4+5x5 ≤ 10, is x3+x4+x5 ≤ 2.387

That is, at most two of the three variables can assume a value of 1 while maintaining feasibility of the388

knapsack constraint (5). Adding this cut is valid since it is satisfied by all integer solutions feasible389

for the constraint. It also separates the fractional solution (x1 = 0, x2 = 0, x3 = 1, x4 = 1

3
, x5 = 1)390

from the LP relaxation feasible region. Now consider the three packing constraints, (2) − (4):391

16



x1 + x2 ≤ 1, x1 + x3 ≤ 1, and x2 + x3 ≤ 1. We can construct a conflict graph (see Figure 3) for the392

whole model, with each vertex corresponding to a binary variable and each edge corresponding to393

a pair of variables, both of which cannot assume a value of 1 in any feasible solution. A clique is a394

set of vertices such that every two in the set are connected by an edge. At most one variable in a395

clique can equal 1. Hence, the vertices associated with x1, x2 and x3 form a clique, and we derive396

the cut: x1 + x2 + x3 ≤ 1. In addition, constraints (6) and (7) generate the edges {1, 4} and {2, 5}397

in the conflict graph, revealing the cuts x1 + x4 ≤ 1 and x2 + x5 ≤ 1. One could interpret these398

cuts as either clique cuts from the conflict graph, or cover cuts derived directly from constraints399

(6) and (7). Note that not only does each of these clique cuts separate fractional solutions from400

the LP relaxation feasible region (as did the cover cut above), but they are also useful in that they401

remove the LP relaxation solution (1

2
, 1

2
, 1

2
, 3

4
, 7

8
) from the feasible region.402

The derivations of both clique and cover cuts rely on identifying a linear expression of variables403

that assumes an integral value in any integer feasible solution, then determining the integer upper404

(right-hand-side) limit on the expression. In the case of the cover cut for our example (PEX
Binary),405

x3, x4 and x5 form a cover, which establishes that x3 + x4 + x5 ≥ 3 is infeasible for any integer406

solution to the model. Therefore, x3 + x4 + x5 ≤ 2 is valid for any integer feasible solution to407

(PEX
Binary). Similarly, the clique in the conflict graph identifies the integral expression x1 + x2 + x3408

and establishes that x1 + x2 + x3 ≥ 2 is infeasible for any integer solution to the model. Therefore,409

x1 + x2 + x3 ≤ 1 is valid for any integer feasible solution to (PEX
Binary). This cut removes fractional410

solutions such as (x1 = 1

2
, x2 = 1

2
, x3 = 1

2
). Making use of fractional infeasibility relative to integer411

expressions is a useful technique for deriving additional cuts, and is a special case of disjunctive412

programming (Balas, 1998).413

Another mechanism to generate additional cuts includes the examination of the complementary414

system, i.e., one in which a binary variable xi is substituted with 1 − xi. Consider a constraint415

similar to the knapsack constraint, but with the inequality reversed:
∑

i aixi ≥ b (with ai, b > 0).416

Let x̄i = 1− xi. Multiplying the inequality on the knapsack-like constraint by -1 and adding
∑

i ai417

to both sides, we obtain:
∑

i ai −
∑

i aixi ≤ −b +
∑

i ai. Substituting the complementary variables418

yields:
∑

i aix̄i ≤ −b+
∑

i ai. Note that when the right hand side is negative, the original constraint419

is infeasible. Otherwise, this yields a knapsack constraint on x̄i from which cuts can be derived.420

Cover cuts involving the x̄i can then be translated into cuts involving the original xi variables.421

We summarize characteristics of these and other potentially helpful cuts in Table 1. A detailed422

discussion of each of these cuts is beyond the scope of this paper; see Achterberg (2007) or Wolsey423

(1998) for more details, as well as extensive additional references. State-of-the-art optimizers tend424

to implement cuts that are based on general polyhedral theory that applies to all integer programs,425

17



or on special structure that occurs on a sufficiently large percentage of practical models. Table 1426

can help the practitioner distinguish cuts that a state-of-the-art optimizer is likely to implement427

from those that are specific to particular types of models, and are less likely to be implemented428

in a generic optimizer (and, hence, more likely to help performance if the practitioner uses his429

knowledge to derive them).430

Cut name Mathematical description of cut Structure of original MILP
that generates the cut

Clique†
∑

i zi ≤ 1 Packing constraints

Cover†
∑

i zi ≤ b, b integer Knapsack constraints

Disjunctive∗ Constraint derived from an LP solution
∑

i a′ixi ≥ b′ or
∑

i a′′i xi ≥ b′′,
xi continuous or integer

Mixed Integer Rounding∗ Use of floors and ceilings of coefficients aCxC + aIxI = b,
and integrality of original variables x ≥ 0

Generalized Upper Bound†
∑

i xi ≤ b, b integer Knapsack constraints
with precedence or packing

Implied Bound† xi ≤
b
ai

∑

i aixi ≤ bz, x ≥ 0

Gomory∗ Mixed integer rounding applied to āCxC + āI/kxI/k + xk = b̄,

a simplex tableau row ā associated xk integer, x ≥ 0
with optimal node LP basis

Zero-half∗ λT Ax ≤ ⌊λT b⌋, Constraints containing integer
λi ∈ {0, 1/2} variables and coefficients

Flow Cover† Linear combination of flow and binary Fixed charge network
variables involving a single node

Flow Path† Linear combination of flow and binary Fixed charge network
variables involving a path of nodes

Multicommodity flow† Linear combination of flow and binary Fixed charge network
variables involving nodes in a network cut

Table 1: Different types of cuts and their characteristics, where z is binary unless otherwise noted,
and x is continuous; ∗based on general polyhedral theory; †based on specific, commonly occurring
problem structure

Adding cuts does not always help branch-and-bound performance. While it can remove integer431

infeasibilities, it also results in more constraints in each node LP. More constraints can increase432

the time required to solve these linear programs. Without a commensurate speed-up in solution433

time associated with processing fewer nodes, cuts may not be worth adding. Some optimizers have434

internal logic to automatically assess the trade-offs between adding cuts and node LP solve time.435

However, if the optimizer lacks such logic or fails to make a good decision, the practitioner may need436

to look at the branch-and-bound output in order to assess the relative increase in performance due437

to fewer examined nodes and the potential decrease in the rate at which the algorithm processes438

the nodes. In other cases, the computational effort required to derive the cuts needed to effectively439

18



solve the model may exceed the performance benefit they provide. Similar to node LP solve time440

and node throughput, a proper comparison of the reduction in solution time the cuts provide with441

the time spent calculating them may be necessary. (See Achterberg (2007).)442

Most optimizers offer parameter settings that can improve progress of the best node, either443

by strengthening the formulation or by enabling more node pruning. Features that are commonly444

available include:445

• (i) Best Bound node selection By selecting the node with the minimal relaxation objective446

value, the algorithm updates the best node value faster. However, by considering node LP447

objective values while ignoring the number of integer infeasibilities, best bound node selection448

may cause the optimizer to find fewer integer feasible solutions. Therefore, best bound node449

selection is most likely to help performance on models in which the optimizer finds integer450

feasible solutions easily, but has trouble making sufficient progress in the best node.451

• (ii) Strong branching By running a modest number of dual simplex iterations on multiple452

branching variable candidates at each node, the algorithm can exploit any infeasible branches453

to tighten additional variable bounds, resulting in a stronger formulation of the MIP at454

the node in question, and faster pruning of its descendants. Strong branching increases the455

computation at each node, so the performance improvement from the additional node pruning456

must compensate for the diminished rate of node throughput to make this a reasonable feature457

to employ.458

• (iii) Probing By fixing a binary variable to a value of 0 or 1 and propagating this bound459

change to other variables through the intersecting constraints, the optimizer can often identify460

binary variables that can only assume one value in any feasible solution. For example, if fixing461

a binary variable to 0 establishes that (PMIP ) is infeasible, then the variable must be 1 in462

any integer feasible solution. Probing computation time primarily occurs as a preprocessing463

step before starting the branch-and-bound algorithm. Identifying binary variables to fix can464

tighten the formulation and improve node throughput by reducing the size of the problem.465

However, it can be computationally expensive, so the practitioner must compare the time466

spent performing the initial probing computations with the subsequent performance gains.467

• (iv) More aggressive levels of cut generation Generating more cuts can further tighten468

the formulation. However, the practitioner must properly assess the trade-off between the469

tighter formulation and the potentially slower rate of node processing due to the additional470

constraints in the node LPs.471

19



If alternate parameter settings are insufficient to yield progress in the best node, the following472

guidelines, while requiring more work, can help address this performance problem:473

• (i) Careful model formulation It is sometimes possible to use alternate variable definitions.474

For example, in Bertsimas and Stock Patterson (1998), the authors use variables to denote475

whether an aircraft (flight) has arrived at a sector in the airspace by time period t, and476

postulate that the variables represented in this manner “define connectivity constraints that477

are facets of the convex hull of solutions,” which greatly improves the tractability of their478

model. Similarly, in a model designed to determine a net present value-maximizing schedule479

for extracting three-dimensional notional blocks of material in an open pit mine, we can define480

xbt = 1 if block b is extracted by time period t, 0 otherwise, as opposed to the more intuitive481

x̂bt = 1 if block b is extracted at time period t, 0 otherwise (Lambert et al., to appear). The482

definitions in these two references result in models with significant differences in performance,483

as illustrated theoretically and empirically.484

• (ii) Careful use of elastic variables, i.e., variables that relax a constraint by allow-485

ing for violations (which are then penalized in the objective) Adding elastic variables486

can result in MIPs that remove the infeasibilities on integer expressions essential to standard487

cut generation. This leads to a weaker model formulation in which most cut generation488

mechanisms are disabled. If the use of elastic variables is necessary, consider first minimizing489

the sum of the elastic variables, then optimizing the original objective while constraining the490

elastic variable values to their minimized values.491

3.4 Data and Memory Problems492

Because the optimizer solves linear programs at each node of the branch-and-bound tree, the493

practitioner must be careful to avoid the numerical performance issues described in Section 3 of494

Klotz and Newman (To appear). Specifically, it is important to avoid large differences in orders495

of magnitude in data to preclude the introduction of unnecessary round-off error. Such differences496

of input values create round-off error in floating point calculations which makes it difficult for the497

algorithm to distinguish between this error and a legitimate value. If the algorithm makes the498

wrong distinction, it arrives at an incorrect solution. Integer programs may contain the construct499

“if z = 0, then x = 0. Otherwise, x can be arbitrarily large.” Arbitrarily large values of x can be500

carelessly modeled with a numerical value designed to represent infinity (often referred to as “big501

M” in the literature). In reality, the value for this variable can be limited by other constraints in502

the problem; if so, we reduce its value, as in the following:503

20



x − 100000000000z ≤ 0 (9)

0 ≤ x ≤ 5000; z binary (10)

In this case, we should use a coefficient of 5000 on z, which allows us to eliminate the explicit504

upper bound on x as well. In addition to improving the scaling of the constraint, this change to505

the numerical value enables the optimizer to better identify legitimate solutions to the conditions506

being modeled. For example, the unmodified constraint accepts values of z = 10−8 and x =507

1000 as an integer feasible solution. Most optimizers use an integrality tolerance and, by default,508

accept an integrality violation of this order of magnitude. Therefore, the big M coefficient on the509

original constraint enables the optimizer to accept a solution that, while feasible in a finite precision510

computing environment, does not satisfy the intended meaning of the constraint. See Camm et al.511

(1990) for further discussion.512

Branch-and-bound can be generalized to other logic, which is important because it removes the513

urge to use these numerically problematic “big M ’s” by allowing, for example, direct branching514

on an indicator constraint. The indicator formulation of (9) is z = 0 ⇒ x ≤ 0. An indicator515

infeasibility that requires branching occurs when a node relaxation solution has z = 0 but x > 0.516

The indicator branches would be: x ≤ 0 and z = 1. By contrast, large values in (9) or elsewhere517

in the model (whether truly infinite or some big M approximation) can result in a wide range518

of coefficients that can easily lead to numerical problems. So, using indicators eliminates these519

potentially large values from the matrix coefficients used to approximate an infinite value. For the520

case in which the large values impose meaningful limits in the model, the indicator formulation521

moves the coefficients from the matrix into the variable bounds, which improves the numerical522

characteristics of the model.523

Indicator constraints also support more general conditions, e.g., z = 0 ⇒ aT x ≤ b. In this524

case, the indicator branches would be aT x ≤ b and z = 1. However, relaxations of indicator525

constraints remove the constraint completely and can therefore be potentially weaker than their526

less numerically stable big M counterpart. As of this writing, recent improvements in indicator527

preprocessing in CPLEX have helped address this drawback.528

Integer programs require at least as much memory as their linear programming equivalents.529

Running out of memory is therefore as frequent, if not more frequent, a problem when trying to530

solve integer programs, as opposed to linear programs. The same suggestions as those that appear531

in Subsection 3.3 of Klotz and Newman (To appear) apply.532

21



Table 2 provides suggestions for the branch-and-bound settings to use under the circumstances533

mentioned in this section.534

Characteristic Recognition Suggested tactic(s)

• Troublesome LPs • Large iteration counts per • Switch algorithms between primal
node, especially regarding and dual simplex; if advanced starts do
root node solve not help simplex, consider barrier method

• Lack of progress in best • Little or no change in best • Use best estimate or depth-first search
integer integer solution in log after • Apply heuristics more frequently

hundreds of nodes • Supply an initial solution
• Apply discount factors in the objective
• Branch up or down to resolve
integer infeasibilities

• Lack of progress in best • Little or no change in • Use breadth-first search
node best node in log after • Use aggressive probing

hundreds of nodes • Use aggressive algorithmic cut generation
• Apply strong branching
• Derive cuts a priori
• Reformulate with different variables

• Data and memory problems • Slow progress in node solves • Avoid large differences in size of data
• Out of memory error • Reformulate “big M” constraints

• Rectify LP problems, e.g., degeneracy
• Apply memory emphasis setting
• Buy more memory

Table 2: Under various circumstances, different formulations and algorithmic settings have a greater
chance of faster solution time on an integer programming problem instance.

4 Tighter Formulations535

When optimizer parameter settings (including aggressive application of cuts) fail to yield the desired536

improvements, the practitioner may obtain additional performance gains by adding cuts more537

specific to the model. The cuts added by the optimizer typically rely either on general polyhedral538

theory that applies to all MIPs, or on special structure that appears in a significant percentage of539

MIPs. In some cases, the cuts needed to improve performance rely on special structure specific540

to individual MIPs. These less applicable cuts are unlikely to be implemented in any state-of-541

the-art optimizer. In such cases, the practitioner may need to formulate his own cuts, drawing542

on specific model knowledge. One can find a staggering amount of theory on cut derivation in543

integer programming (Grötschel, 2004). While more knowledge of sophisticated cut theory adds544

to the practitioner’s quiver of tactics to improve performance, run time enhancements can be545

effected with some fairly simple techniques, provided the practitioner uses them in a disciplined,546

22



well organized fashion. To that end, this section describes guidelines for identifying cuts that can547

tighten a formulation of (PMIP ) and yield significant performance improvements. These guidelines548

can help both novice practitioners and those who possess extensive familiarity with the underlying549

theories of cut generation. See Rebennack et al. (2012) for an example of adding cuts based on550

specific model characteristics.551

Before tightening the formulation, the practitioner must identify elements of the model that552

make it difficult, specifically, those that contain the constraints and variables from which useful553

cuts can be derived. The following steps can help in this regard.554

Determining How a MIP Can Be Difficult to Solve555

• (i) Simplify the model if necessary. For example, try to identify any constraints or inte-556

grality restrictions that are not involved in the slow performance by systematically removing557

constraints and integrality restrictions and solving the resulting model. Such filtering can558

be done efficiently by grouping similar constraints and variables and solving model instances559

with one or more groups omitted. If the model remains difficult to solve after discarding a560

group of constraints, the practitioner can tighten the formulation without considering those561

constraints. Or, he can try to reproduce the problem with a smaller instance of the model.562

• (ii) Identify the constraints that prevent the objective from improving. With a563

minimization problem, this typically means identifying the constraints that force activities564

to be performed. In other words, practical models involving nonnegative cost minimization565

inevitably have some constraints that prevent the trivial solution of zero from being viable.566

• (iii) Determine how removing integrality restrictions allows the root node relax-567

ation objective to improve. In weak formulations, the root node relaxation objective568

tends to be significantly better than the optimal objective of the associated MIP. The vari-569

ables with fractional solutions in the root node relaxation help identify the constraints and570

variables that motivate additional cuts. Many models have a wealth of valid cuts that could571

be added purely by examining the model. But, many of those cuts may actually help little572

in tightening the formulation. By focusing on how relaxing integrality allows the objective to573

improve, the practitioner focuses on identifying the cuts that actually tighten the formulation.574

Having identified the constraints and variables most likely to generate good cuts, the practitioner575

faces numerous ways to derive the cuts. While a sophisticated knowledge of the literature provides576

additional opportunities for tightening formulations, practitioners with limited knowledge of the577

underlying theory can still effectively tighten many formulations using some fairly simple techniques.578

23



Model Characteristics from which to Derive Cuts579

• (i) Linear or logical combinations of constraints By combining constraints, one can580

often derive a single constraint in which fractional values can be rounded to produce a tighter581

cut. The clique cuts previously illustrated with the conflict graph provide an example of582

how to identify constraints to combine. The conflict graph in that example occurs in a583

sufficient number of practical MIPs so that many state-of-the-art optimizers use it. But,584

other MIPs may have different graphs associated with their problem structure that do not585

occur frequently. Identifying such graphs and implementing the associated cuts can often586

tighten the formulation and dramatically improve performance.587

• (ii) The optimization of one or more related models By optimizing a related model588

that requires much less time to solve, the practitioner can often extract useful information589

to apply to the original model. For example, minimizing a linear expression involving integer590

variables and integer coefficients can provide a cut on that expression. This frequently helps591

on models with integer penalty variables.592

• (iii) Use of the incumbent solution objective value Because cuts are often based on in-593

feasibility, models with soft constraints that are always feasible can present unique challenges594

for deriving cuts. However, while any solution is feasible, the incumbent solution objective595

value allows the practitioner to derive cuts based on the implicit, dynamic constraint defined596

by the objective function and the incumbent objective value.597

• (iv) Disjunctions Wolsey (1998) provides a description of deriving cuts from disjunctions,598

which were first developed by Balas (1998). In general, suppose X1 =
{
x : aT x ≥ b

}
and X2 =599

{

x : âT x ≥ b̂
}

. Let u be the componentwise maximum of a and â, i.e., uj = max {aj, âj}.600

And, let ū = min
{

b, b̂
}

. Then601

uT x ≥ ū (11)

is valid for X1 ∪ X2, which implies it is also valid for the convex hull of X1 and X2. These602

properties of disjunctions can be used to generate cuts in practice.603

• (v) The exploitation of infeasibility As previously mentioned, cover, clique and other604

cuts can be viewed as implicitly using infeasibility to identify cuts to tighten a formulation605

of (PMIP ). Generally, for any linear expression involving integer variables with integer coef-606

ficients and an integer right hand side b, if aT x ≤ b can be shown to be infeasible, then the607

constraint aT x ≥ b + 1 provides a valid cut.608

24



We now consider a simple example to illustrate the use of disjunctions to derive cuts. Most609

state-of-the-art optimizers support mixed integer rounding cuts, both on constraints explicitly in610

the model, and as Gomory cuts based on implicit constraints derived from the simplex tableau rows611

of the node LP subproblems. So, practitioners typically do not need to apply disjunctions to derive612

cuts on constraints like the one in the example we describe below. However, we use this simple613

example to aid in the understanding of the more challenging example we present subsequently. In614

the first instance, we illustrate the derivation of a mixed integer rounding cut on the constraint:615

4x1 + 3x2 + 5x3 = 10 (12)

616

x1, x2, x3 ≥ 0, integer (13)

Dividing by the coefficient of x1, we have617

x1 +
3

4
x2 +

5

4
x3 =

5

2
(14)

Now, we separate the left and right hand sides into integer and fractional components, and let x̂618

represent the integer part of the left hand side:619

x1 + x2 + x3
︸ ︷︷ ︸

x̂

−
1

4
x2 +

1

4
x3 = 2 +

1

2
= 3 −

1

2
(15)

We examine a disjunction on the integer expression x̂. If x̂ ≤ 2, the terms with fractional coefficients620

on the left hand side of (15) must be greater than or equal to the first fractional term in the right-621

hand-side expressions. Similarly, the terms with fractional coefficients on the left hand side must622

be less than or equal to the second fractional term in the right-hand-side expressions if x̂ ≥ 3.623

Using the nonnegativity of the x variables to simplify the constraints implied by the disjunction,624

we conclude:625

x̂ ≤ 2 ⇒
−1

4
x2 +

1

4
x3 ≥

1

2
⇒ x3 ≥ 2 (16)

626

x̂ ≥ 3 ⇒
−1

4
x2 +

1

4
x3 ≤

−1

2
⇒ x2 ≥ 2 (17)

25



So, either x3 ≥ 2 or x2 ≥ 2. We can then use the result of (11) to derive the cut627

x2 + x3 ≥ 2 (18)

Note that this eliminates the fractional solution (2, 1

3
, 1

5
), which satisfies the original constraint,628

(12). Note also that by inspection the only two possible integer solutions to this constraint are629

(1, 2, 0) and (0, 0, 2). Both satisfy (18), establishing that the cut is valid. (Dividing (12) by the630

coefficient on x2 or x3 instead of x1 results in a similar mixed integer rounding cut.)631

This small example serves to illustrate the derivation of a mixed integer rounding cut on a632

small constraint; state-of-the-art optimizers such as CPLEX would have been able to identify this633

cut. However, disjunctions are more general, and can yield performance-improving cuts on models634

for which the optimizer’s cuts do not yield sufficiently good performance. For example, consider635

the following single-constraint knapsack model. Cornuejols et al. (1997) originally generated this636

instance. (See Aardal and Lenstra (2004) for additional information on these types of models.) We637

wish to either find a feasible solution or prove infeasibility for the single-constraint integer program:638

13429x1 + 26850x2 + 26855x3 + 40280x4 + 40281x5 + 53711x6 + 53714x7 + 67141x8 = 45094583

639

xj ≥ 0, integer, j = 1, . . . , 8

Running CPLEX 12.2.0.2 with default settings results in no conclusion after over 7 hours and640

2 billion nodes, as illustrated in Node Log #7:641

642

Node Log #7643

Nodes Cuts/644

Node Left Objective IInf Best Integer Best Node ItCnt Gap645

...646

2054970910 13066 0.0000 1 0.0000 25234328647

Elapsed real time = 27702.98 sec. (tree size = 2.70 MB, solutions = 0)648

2067491472 14446 0.0000 1 0.0000 25388082649

2080023238 12892 0.0000 1 0.0000 25542160650

2092548561 15366 0.0000 1 0.0000 25696280651

...652

-------653

Total (root+branch&cut) = 28302.29 sec.654

26



655

656

MIP - Node limit exceeded, no integer solution.657

Current MIP best bound = 0.0000000000e+00 (gap is infinite)658

Solution time = 28302.31 sec. Iterations = 25787898 Nodes = 2100000004 (16642)659

660

However, note that all the coefficients in the model are very close to integer multiples of the661

coefficient of x1. Therefore, we can separate the left hand side into the part that is an integer662

multiple of this coefficient, and the much smaller remainder terms:663

13429 (x1 + 2x2 + 2x3 + 3x4 + 3x5 + 4x6 + 4x7 + 5x8)
︸ ︷︷ ︸

x̂

(19)

−8x2 − 3x3 − 7x4 − 6x5 − 5x6 − 2x7 − 4x8 (20)

= 3358 ∗ 13429 + 1 = 3359 ∗ 13429 − 13428 (21)

This constraint resembles the one from which we previously derived the mixed integer rounding664

cut. But, instead of separating the integer and fractional components, we separate the components665

that are exact multiples of the coefficient of x1 from the remaining terms. We now perform the666

disjunction on x̂ in an analogous manner, again using the nonnegativity of the variables.667

x̂ ≤ 3358 ⇒ −8x2 − 3x3 − 7x4 − 6x5 − 5x6 − 2x7 − 4x8
︸ ︷︷ ︸

≤0

≥ 1 (22)

Thus, if x̂ ≤ 3358, the model is infeasible. Therefore, infeasibility implies that x̂ ≥ 3359 is a668

valid cut. We can derive an additional cut from the other side of the disjunction on x̂:669

x̂ ≥ 3359 ⇒ −8x2 − 3x3 − 7x4 − 6x5 − 5x6 − 2x7 − 4x8 ≤ −13428 (23)

This analysis shows that constraints (24) (using the infeasibility argument above) and (25)670

(multiplying (23) through by -1) are globally valid cuts.671

x1 + 2x2 + 2x3 + 3x4 + 3x5 + 4x6 + 4x7 + 5x8 ≥ 3359 (24)

8x2 + 3x3 + 7x4 + 6x5 + 5x6 + 2x7 + 4x8 ≥ 13428 (25)

Adding these cuts enables CPLEX 12.2.0.2 to easily identify that the model is infeasible (see Node672

27



Log #8). Summarizing this example, concepts (iv) and (v), the use of disjunctions and exploiting673

infeasibility, helped generate cuts that turned a challenging MIP into one that was easily solved.674

675

Node Log #8676

677

Nodes Cuts/678

Node Left Objective IInf Best Integer Best Node ItCnt Gap679

680

0 0 0.0000 1 0.0000 1681

0 0 0.0000 2 MIRcuts: 1 3682

0 0 0.0000 2 MIRcuts: 1 5683

0 0 cutoff 5684

Elapsed real time = 0.23 sec. (tree size = 0.00 MB, solutions = 0)685

Mixed integer rounding cuts applied: 1686

...687

MIP - Integer infeasible.688

Current MIP best bound is infinite.689

Solution time = 0.46 sec. Iterations = 5 Nodes = 0690

691

The second practical example we consider is a rather large maximization problem, and illustrates692

concepts (ii) and (v): the optimization of one or more related models and the exploitation of693

infeasibility, respectively. The example involves a collection of n objects with some measure of694

distance between them. The model selects k < n of the objects in a way that maximizes the sum695

of the distances between the selected object, i.e., the k most diverse objects are selected. The most696

direct model formulation involves binary variables and a quadratic objective. Let dij ≥ 0 be the697

known distance between object i and object j, and let xi be a binary variable that is 1 if object i698

is selected, and 0 otherwise. The formulation follows:699

(MIQP ) max

n∑

i=1

n∑

j=i+1

dijxixj

700

subject to
n∑

j=1

xj ≤ k

28



701

xj binary

Because this article focuses on linear and linear-integer models, we consider an equivalent linear702

formulation that recognizes that the product of binary variables is itself a binary variable (Watters,703

1967). We replace each product of binaries xixj in (MIQP ) with a binary variable zij , and add704

constraints to express the relationship between x and z in a mixed integer linear program (MILP):705

(MILP ) max

n∑

j=1

n∑

i=1
i<j

dijzij (26)

subject to

n∑

j=1

xj ≤ k (27)

zij ≤ xi ∀ i, j (28)

zij ≤ xj ∀ i, j (29)

xi + xj ≤ 1 + zij ∀ i, j (30)

xj , zij binary ∀ i, j (31)

The constraints (28), (29) and (30) exist for indices (i, j), i < j because the selection of both i and706

j is equivalent to the selection of both j and i. Hence, the model only defines zij variables with707

i < j. Note that if xi or xj = 0, then constraints (28) and (29) force zij to 0, while (30) imposes708

no restriction on zij . Similarly, if both xi and xj = 1, (28) and (29) impose no restriction on zij ,709

while (30) forces zij to 1. So, regardless of the values of xi and xj , zij = xixj, and we can replace710

occurrences of xixj with zij to obtain the linearized reformulation above.711

This linearized model instance with n = 60 and k = 24 possesses 1830 binary variables, and 5311712

constraints. Due to the large branch-and-bound tree resulting from this instance, we set CPLEX’s713

file parameter to instruct CPLEX to efficiently swap the memory associated with the branch-and-714

bound tree to disk. This enables the run to proceed further than with default settings in which715

CPLEX stores the tree in physical memory. All other parameter settings remain at defaults, so716

CPLEX makes use of all four available processors. CPLEX runs for just over four hours (see Node717

Log #9), terminating when the size of the swap file for the branch-and-bound tree exceeds memory718

limits, i.e., at the point at which CPLEX has processed over 4 million nodes and the solution has719

an objective value of 3483.0000, proven to be within 51.32% of optimal. This level of performance720

indicates significant potential for improvement. Although we do not provide the output here, the721

original MIQP formulation in (MIQP ) performs even worse.722

723

29



Node Log #9724

Nodes Cuts/725

Node Left Objective IInf Best Integer Best Node ItCnt Gap726

727

* 0+ 0 0.0000 2247 ---728

0 0 7640.4000 1830 0.0000 7640.4000 2247 ---729

* 0+ 0 19.0000 7640.4000 2247 ---730

731

...732

733

* 0+ 0 3185.0000 7445.4286 2286 133.77%734

0 2 7628.5333 1829 3185.0000 7445.4286 2286 133.77%735

Elapsed real time = 4.09 sec. (tree size = 0.01 MB, solutions = 8)736

35 37 6579.2308 1378 3185.0000 7445.4286 6615 133.77%737

...738

4332613 3675298 4936.6750 1099 3483.0000 5270.8377 1.78e+08 51.33%739

4341075 3682375 3889.4643 714 3483.0000 5270.4545 1.79e+08 51.32%740

741

...742

CPLEX Error 1803: Failure on temporary file write.743

744

Solution pool: 25 solutions saved.745

746

MIP - Error termination, no tree: Objective = 3.4830000000e+03747

Current MIP best bound = 5.2704102564e+03 (gap = 1787.41, 51.32%)748

Solution time = 15031.18 sec. Iterations = 178699476 Nodes = 4342299 (3682262)749

750

Experimentation with non-default parameter settings as described in Section 3 yields modest751

performance improvements, but does not come close to enabling CPLEX to find an optimal solution752

to the model.753

We carefully examine a smaller model instance with n = 3 and k = 2 to assess how removing754

integrality restrictions yields an artificially high objective function value:755

30



max 3z12 + 4z13 + 5z23

subject to x1 + x2 + x3 ≤ 2

z12 − x1 ≤ 0

z12 − x2 ≤ 0

x1 + x2 ≤ 1 + z12

z13 − x1 ≤ 0

z13 − x3 ≤ 0

x1 + x3 ≤ 1 + z13

z23 − x2 ≤ 0

z23 − x3 ≤ 0

x2 + x3 ≤ 1 + z23

x1, x2, x3, z12, z13, z23 binary

The optimal solution to this MILP consists of setting z23 = x2 = x3 = 1, yielding an objective756

value of 5. By contrast, relaxing integrality enables a fractional solution consisting of setting all757

x and z variables to 2/3, yielding a much better objective value of 8. Note that the difference758

between the MILP and its relaxation occurs when the zij variables assume values strictly less than759

1. When any zij = 1, the corresponding xi and xj variables are forced to 1 by constraints (28)760

and (29) for both the MILP and its LP relaxation. By contrast, when 0 ≤ zij < 1, xi or xj must761

assume a value of 0 in the MILP, but not in the relaxation. Thus, in the LP relaxation, we can set762

more of the z variables to positive values than in the MILP. This raises the question of how many763

z variables we can set to 1 in the MILP. In the optimal solution, only z23 assumes a value of 1.764

So, can we set two of the z variables to 1 and find a feasible solution to the MILP? To answer this765

question, pick any two z variables and set them to 1. Since each z variable is involved in similar766

types of constraints, without loss of generality, we set z12 and z13 to 1. From the constraints:767

31



z12 − x1 ≤ 0

z12 − x2 ≤ 0

z13 − x1 ≤ 0

z13 − x3 ≤ 0

we see that x1, x2, and x3 must all be set to 1. But this violates the constraint that the x variables768

can sum to at most 2. For any of the other two distinct pairs of z variables in this smaller model,769

all three x variables are forced to a value of 1 since for the MILP:770

zij > 0 ⇐⇒ xi = xj = 1 (32)

Thus, any distinct pair of z variables set to 1 forces three x variables to 1, violating the constraint771

that x1 + x2 + x3 ≤ 2. Hence, in any integer feasible solution, at most one z variable can be set to772

1. This implies that the constraint:773

z12 + z13 + z23 ≤ 1

is a globally valid cut. And, we can see that it cuts off the optimal solution of the LP relaxation774

consisting of setting each z variable to 2/3.775

We now generalize this to (MILP ), in which the x variables can sum to at most k. We776

wish to determine the number of z variables we can set to 1 in (MILP ) without forcing the777

sum of the x variables to exceed k. Suppose we set k of the x variables to 1. Since (32) holds778

for all pairs of x variables, without loss of generality, consider an integer feasible solution with779

x1 = x2 = · · · = xk = 1, and xk+1 = · · · = xn = 0. From (32), zij = 1 if and only if 1 ≤ i ≤ k,780

1 ≤ j ≤ k, and i < j. We can therefore count the number of z variables that equal 1 when781

x1 = x2 = · · · = xk = 1. Specifically, there are k(k−1) pairs (i, j) with i 6= j, but only half of them782

have i < j. So, at most k(k− 1)/2 of the zij variables can be set to 1 when k of the x variables are783

set to 1. In other words,784

n∑

i=1

n∑

j=i+1

zij ≤ k(k − 1)/2

is a globally valid cut.785

32



Adding this cut to the instance with n = 60 and k = 24 enables CPLEX to solve the model to786

optimality in just over 2 hours and 30 minutes on the same machine using settings identical to those787

from the previous run without the cut. (See Node Log #10.) Note that the cut tightened the788

formulation significantly, as can be seen by the much better root node objective value of 4552.4000,789

which compares favorably to the root node objective value of 7640.4000 on the instance without790

the cut. Furthermore, the cut enabled CPLEX to add numerous zero-half cuts to the model that791

it could not with the original formulation. The zero-half cuts resulted in additional progress in the792

best node value that was essential to solving the model to optimality in a reasonable amount of793

time.794

795

Node Log #10796

Nodes Cuts/

Node Left Objective IInf Best Integer Best Node ItCnt Gap

* 0+ 0 0.0000 1161 ---

0 0 4552.4000 750 0.0000 4552.4000 1161 ---

* 0+ 0 6.0000 4552.4000 1161 ---

...

* 0+ 0 3477.0000 3924.7459 37882 12.88%

0 2 3924.7459 1281 3477.0000 3924.7459 37882 12.88%

Elapsed real time = 51.42 sec. (tree size = 0.01 MB, solutions = 31)

1 3 3919.3378 1212 3477.0000 3924.7459 39886 12.88%

2 4 3910.8201 1243 3477.0000 3924.7459 42289 12.88%

3 5 3910.8041 1144 3477.0000 3919.3355 44070 12.72%

...

125571 7819 cutoff 3590.0000 3599.7046 60456851 0.27%

Elapsed real time = 9149.19 sec. (tree size = 234.98 MB, solutions = 43)

Nodefile size = 196.38 MB (168.88 MB after compression)

*126172 7231 integral 0 3591.0000 3599.7046 60571398 0.24%

127700 5225 cutoff 3591.0000 3598.0159 60769494 0.20%

131688 6 cutoff 3591.0000 3592.5939 60980430 0.04%

Zero-half cuts applied: 2244

33



Solution pool: 44 solutions saved.

MIP - Integer optimal solution: Objective = 3.5910000000e+03

Solution time = 9213.79 sec. Iterations = 60980442 Nodes = 131695

797

Given the modest size of the model, a run time of 2.5 hours to optimality suggests potential798

for additional improvements in the formulation. However, by adding one globally valid cut, we see799

a dramatic performance improvement nonetheless. Furthermore, the derivation of this cut draws800

heavily on the guidelines proposed for tightening the formulation. By using a small instance of801

the model, we can easily identify how removal of integrality restrictions enables the objective to802

improve. Furthermore, we use infeasibility to derive the cut: by recognizing that the simplified803

MILP model is infeasible when z12 + z13 + z23 ≥ 2, we show that z12 + z13 + z23 ≤ 1 is a valid cut.804

5 Conclusion805

Today’s hardware and software allow practitioners to formulate and solve increasingly large and806

detailed models. However, optimizers have become less straightforward, often providing many807

methods for implementing their algorithms to enhance performance given various mathematical808

structures. Additionally, the literature regarding methods to increase the tractability of mixed809

integer linear programming problems contains a high degree of theoretical sophistication. Both of810

these facts might lead a practitioner to conclude that developing the skills necessary to successfully811

solve difficult mixed integer programs is too time consuming or difficult. This paper attempts to812

refute that perception, illustrating that practitioners can implement many techniques for improving813

performance without expert knowledge in the underlying theory of integer programming, thereby814

enabling them to solve larger and more detailed models with existing technology.815

Acknowledgements816

Dr. Klotz wishes to acknowledge all of the CPLEX practitioners over the years, many of whom817

have provided the wide variety of models that revealed the guidelines described in this paper. He818

also wishes to thank the past and present CPLEX development, support, and sales and marketing819

teams who have contributed to the evolution of the product. Professor Newman wishes to thank820

former doctoral students Chris Cullenbine, Brian Lambert, Kris Pruitt, and Jennifer Van Dinter at821

34



the Colorado School of Mines for their helpful comments; she also wishes to thank her colleagues822

Jennifer Rausch (Jeppeson, Englewood, Colorado) and Professor Josef Kallrath (BASF-AG, Lud-823

wigshafen, Germany) for helpful comments on an earlier draft. Both authors thank an anonymous824

referee for his helpful comments that improved the paper.825

Both authors wish to remember Lloyd Clarke (February 14, 1964-September 20, 2007). His826

departure from the CPLEX team had consequences that extended beyond the loss of an important827

employee and colleague.828

35



References829

Aardal, K. and Lenstra, A., 2004. “Hard equality constrained integer knapsacks.” Mathematics of830

Operations Research, 3(29): 724–738.831

Achterberg, T., 2007. Constraint Integer Programming (Ph.D. Dissertation), Technical University832

Berlin, Berlin.833

Balas, E., 1965. “An additive algorithm for solving linear programs with zero-one variables.” Op-834

erations Research, 13(4): 517–546.835

Balas, E., 1998. “Disjunctive programming: Properties of the convex hull of feasible points.” Dis-836

crete Applied Mathematics Tech. Report MSRR 348, Carnegie Mellon University, 89(1-3): 3–44.837

Bertsimas, D. and Stock Patterson, S., 1998. “The air traffic flow management problem with enroute838

capacities.” Operations Research, 46(3): 406–422.839

Bixby, R. and Rothberg, E., 2007. “Progress in computational mixed integer programming – a look840

back from the other side of the tipping point.” Annals of Operations Research, 149(1): 37–41.841

Camm, J., Raturi, A. and Tadisina, S., 1990. “Cutting big M down to size.” Interfaces, 20(5):842

61–66.843

Cornuejols, G., Urbaniak, R., Weismantel, R. and Wolsey, L., 1997. “Decomposition of integer844

programs and of generating sets.” Lecture Notes in Computer Science; Proceedings of the 5th845

Annual European Symposium on Algorithms, 1284: 92–102.846

Danna, E., 2008. “Performance variability in mixed integer programming.” Presentation at MIP847

2008 Workshop, Columbia University.848

FICO, 2012. Xpress-MP Optimization Suite, Minneapolis, MN.849

Grötschel, ed., 2004. The Sharpest Cut: The Impact of Manfred Padberg and His Work, MPS-SIAM850

Series on Optimization.851

Gurobi, 2012. Gurobi Optimizer, Houston, TX.852

IBM, 2012. ILOG CPLEX, Incline Village, NV.853

Klotz, E. and Newman, A., To appear. “Practical guidelines for solving difficult linear programs.”854

Surveys in Operations Research and Management Science, doi:10.1016/j.sorms.2012.11.001.855

Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R., Danna, E., Gamrath,856

G., Gleixner, A., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D. and857

Wolter, K., 2011. “MIPLIB 2010.” Mathematical Programming Computation, 3(2): 103–163.858

Lambert, W., Brickey, A., Newman, A. and Eurek, K., to appear. “Open pit block sequencing859

formulations: A tutorial.” Interfaces.860

MOPS, 2012. MOPS, Paderborn, Germany.861

MOSEK, 2012. MOSEK Optimization Software, Copenhagen, Denmark.862

Rardin, R., 1998. Optimization in Operations Research, Prentice Hall, chap. 6.863

36



Rebennack, S., Reinelt, G. and Pardalos, P., 2012. “A tutorial on branch and cut algorithms for864

the maximum stable set problem.” International Transactions in Operational Research, 19(1-2):865

161–199.866

Savelsbergh, M., 1994. “Preprocessing and probing techniques for mixed integer programming prob-867

lems.” INFORMS Journal on Computing, 6(4): 445–454.868

Watters, L., 1967. “Reduction of integer polynomial programming to zero-one linear programming869

problems.” Operations Research, 15(6): 1171–1174.870

Winston, W., 2004. Operations Research: Applications and Algorithms, Brooks/Cole, Thompson871

Learning.872

Wolsey, L., 1998. Integer Programming, Wiley.873

37


