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The distributed generation (DG) of combined heat and power (CHP) for commercial buildings is gaining
increased interest, yet real-world installations remain limited. This lack of implementation is due, in part,
to the challenging economics associated with volatile utility pricing and potentially high system capital
costs. Energy technology application analyses are also faced with insufficient knowledge regarding how
to appropriately design (i.e., configure and size) and dispatch (i.e., operate) an integrated CHP system.
Existing research efforts to determine a minimum-cost-system design and dispatch do not consider many
dynamic performance characteristics of generation and storage technologies. Consequently, we present a
mixed-integer nonlinear programming (MINLP) model that prescribes a globally minimum cost system
design and dispatch, and that includes off-design hardware performance characteristics for CHP and
energy storage that are simplified or not considered in other models. Specifically, we model the maxi-
mum turn-down, start up, ramping, and part-load efficiency of power generation technologies, and the
time-varying temperature of thermal storage technologies. The consideration of these characteristics
can be important in applications for which system capacity, building demand, and/or utility guidelines
dictate that the dispatch schedule of the devices varies over time. We demonstrate the impact of neglect-
ing system dynamics by comparing the solution prescribed by a simpler, linear model with that of our
MINLP for a case study consisting of a large hotel, located in southern Wisconsin, retrofitted with
solid-oxide fuel cells (SOFCs) and a hot water storage tank. The simpler model overestimates the SOFC
operational costs and, consequently, underestimates the optimal SOFC capacity by 15%.

Published by Elsevier Ltd.

1. Introduction

economic viability of DG. However, even in the most economically
favorable markets, commercial building application remain limited

The on-site generation of heat and power, commonly referred to
as distributed generation (DG), is gaining interest in the commer-
cial building sector. A DG system can consist of renewable or non-
renewable sources of power generation (e.g., photovoltaic (PV)
cells, fuel cells, and other prime movers), electric energy storage
(e.g., batteries), heat generation (e.g., heat exchangers and boilers),
and/or thermal energy storage (e.g., hot water). For some markets,
volatile utility pricing and high technology capital costs reduce the
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to uninterrupted or backup power systems. Barriers to widespread
adoption of DG at the commercial scale (< 1 MW) can be due to
high grid interconnection fees and permitting wait times, as well
as the perceived risk in installing new technologies. The lack of
DG implementation is also due to the inadequacy of existing tools
to determine the optimal configuration, size, and operation of com-
plex, combined heat and power (CHP) systems. We refer to this
task of determining the lowest cost mix, capacity, and operational
schedule of DG technologies as the design and dispatch problem.

Existing efforts (see [1]) to solve the design and dispatch
problem apply techniques that include simulation, evolutionary
algorithms (e.g., genetic algorithms), or more traditional
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mathematical programming algorithms (e.g., simplex or branch-
and-bound). The leading simulation model in the literature is the
Hybrid Optimization Model for Electric Renewables (HOMER)
(see [2-5]). HOMER enumerates DG system designs that have suf-
ficient capacity to meet the annual demand of a building of inter-
est, calculates the hourly dispatch associated with each system
design, and rank orders the designs based on life-cycle cost. How-
ever, the dispatch strategy is pre-specified by the user, rather than
determined by the model. The inability to optimally select the sys-
tem dispatch is particularly troublesome when the system design
includes storage, because the model cannot consider the demand
in future time periods when choosing the dispatch in the current
time period. Thus, as with any simulation model (see also [6-9]),
the results are inherently descriptive rather than prescriptive.

Prescriptive models of the design and dispatch problem include
variables for the configuration, capacity, and time-varying opera-
tion of the technologies in the system. The values of these variables
are determined by solving instances of the model with an appro-
priate algorithm. Evolutionary algorithms (EAs) are applied in a
number of studies to determine the dispatch of an existing DG sys-
tem (see [10,11]) or the design and dispatch of a new system (see
[12-14]). Although these studies are capable of prescribing a sys-
tem design and/or dispatch, the EA approach is fundamentally dif-
ferent than that of more traditional algorithms. In general, search
heuristics such as EAs do not include methods for bounding the
optimal objective function value and terminate based solely on de-
creased improvement in the objective. Thus, there is often no way
of determining whether the solution which results from the algo-
rithm is close to globally (or even locally) optimal. By contrast,
models which apply simplex or branch-and-bound algorithms
(see [15-19]) can prescribe a provable, globally optimal system de-
sign and dispatch.

Foremost among the global optimization models in the DG liter-
ature is the Distributed Energy Resources Customer Adoption Mod-
el (DER-CAM) (see [20-23]). DER-CAM is a mixed-integer linear
programming (MILP) model that is solved using the branch-and-
bound algorithm to determine the number of DG technologies to
acquire, along with their operating levels over time, to meet the
power and heating demands of a building at minimum capital,
operational, and environmental (i.e., emissions) cost. In contrast
to other existing research, DER-CAM addresses both the design
and dispatch of a DG system, applies a provable global optimiza-
tion approach, includes both economic and environmental costs
in its objective, and considers the generation and storage of both
power and heat using renewable and nonrenewable technologies.
Given all of these attributes, DER-CAM is the most flexible of the
design and dispatch models cited thus far. But, DER-CAM does
not consider many performance characteristics that constrain the
dynamic (i.e., off-design) operation of DG technologies. Simplifying
these characteristics permits a linear formulation of the problem
with few integer variable restrictions. Thus, even large instances
(i.e., instances possessing long time horizons) of the design and
dispatch problem can be solved with relative ease. However, insuf-
ficiently modeling the off-design system performance could result
in the prescription of unrealistic system dispatch schedules and,
ultimately, in the recommendation of a suboptimal system design.

Pruitt et al. [24] address the implementation of higher model
fidelity by presenting a mixed-integer nonlinear programming
(MINLP) model, referred to as (P), that prescribes a globally mini-
mum cost system design and dispatch, and that includes dynamic'
performance characteristics of power and heat generation and storage
that are simplified or not considered in models such as DER-CAM. In

! The usage of dynamic in this paper refers to both the off-design (or part-load)
performance of the SOFC system and the time-dependent thermodynamic state of the
water in the storage tank.

addition to typical constraints on demand, capacity, and inventory
balance, (P) models the maximum turn-down, start-up fuel consump-
tion, ramping capability, and part-load electric efficiency of power
generation technologies, and models the time-varying temperature
of thermal storage technologies. The consideration of these dynamic
performance characteristics can be particularly important when the
technologies are operated in a load-following (i.e., time-varying),
rather than baseload (i.e., fixed), manner. In some applications, the
DG system configuration and capacity, the building’s energy demands,
and/or the local utility’s rates, policies, and procedures may require a
time-varying dispatch from the DG technologies. In these instances,
(P) captures the real-world operation of the technologies more
accurately than models which simplify or do not consider dynamic
performance characteristics.

The objectives of this work are to: (i) evaluate the differences in
optimal design and dispatch when using simplified or higher-fidel-
ity models, (ii) develop insight into when higher-fidelity models
are more appropriate to employ than simplified models, and (iii)
provide a higher-fidelity model for enabling more detailed engi-
neering analyses of integrated DG systems in building applications.

In this paper, we demonstrate that neglecting system dynamics
can result in inaccurate prescriptions of system operation and, sub-
sequently, in suboptimal DG investment. In order to demonstrate
this, we present a simplified version of (P), called (S), that does
not include maximum turn-down, start up, ramping, or part-load
efficiency, and that models thermal storage in terms of energy
inventory rather than temperature. The formulation of (S) as a rep-
resentative model that does not consider system dynamics permits
both qualitative and quantitative comparisons with (P). In so
doing, we are able to highlight the scenarios for which a more de-
tailed model, such as (P), is preferable to a simpler model, such as
(S). The remainder of the paper is organized as follows: Section 2
discusses the specific dynamic performance characteristics consid-
ered in our research and their importance given alternative operat-
ing strategies. Section 3 provides the MINLP formulation of (P), the
MILP formulation of (S), and concludes with an examination of the
qualitative differences between (P) and (S). Section 4 demon-
strates the numerical impact of the differences between the two
formulations with a case study of a representative commercial
building application. Finally, Section 5 concludes the paper.

2. System operating strategies

For the DG systems examined in this research, we consider so-
lid-oxide fuel cells (SOFCs) as the primary source of on-site power
generation. Thus, one of the goals of solving specific instances of
(P) is to determine the appropriate operating strategy (e.g., base-
load versus load-following) for the SOFC system. Accurately mod-
eling the operation of DG technologies, such as fuel cells, can
require the consideration of a number of performance characteris-
tics. Fuel cells convert the chemical energy of a fuel, such as natural
gas, directly into electrical energy through electrochemical reac-
tions. In this way, the performance and technological characteris-
tics of fuel cells resemble those of batteries more than those of
conventional, fossil fuel-based combustion generators. However,
unlike batteries, fuel cells do not require charging and can continue
to produce power as long as they are supplied with reactants (such
as fuel and air). The materials of construction employed by SOFCs,
in particular, demand high operating temperatures to achieve
practical power generating efficiencies. Because SOFCs require a
significant amount of time to reach operating temperature
(i.e., maximum turn-down), their ability to depart standby mode
(i.e., start up) and change power output between time periods
(i.e., ramp) is limited (see [25]). Additionally, the ratio of their
electric energy output to fuel energy input (i.e., electric efficiency)
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decreases as power output increases (see [26,27]). Thus, power is
generated with greater efficiency at part load (i.e., below maxi-
mum power output) than at rated capacity. Maximum turn-down,
start-up fuel consumption, power ramping, and part-load electric
efficiency are all performance characteristics of off-design SOFC
power generation that are modeled in (P).

SOFCs can also be integrated with waste heat recovery and stor-
age to form a CHP system. For instance, the high-temperature ex-
haust gases from the SOFCs could flow through heat exchangers
in a water tank to store thermal energy in the form of hot water.
The flowrate of exhaust gas from SOFCs depends on their power
output and electric efficiency (see [28]). As power output increases,
electric efficiency decreases, and the flowrate of exhaust gas in-
creases. However, the heat that can be applied to the tank depends
not only on the flowrate of exhaust gas, but also on the temperature
difference between the gas and the tank water. Thus, the time-vary-
ing temperature of the water stored in the tank, which is modeled
in (P), impacts the effective thermal efficiency of the SOFC system.

The implications for neglecting the dynamic aspects of power
and heat generation depend largely on how the SOFC system is
operated. Ultimately, the optimal solution to (P) dictates the low-
est-cost operating strategy for the system. However, given a spe-
cific system configuration, (P) is more likely to select certain
operating strategies. In order to illustrate this point, we next dis-
cuss the performance limitations of SOFC power and heat dispatch
in the context of two operating strategies: baseload and load-
following.

2.1. Baseload strategy

Fig. 1 depicts the energy system originally presented in Pruitt
et al. [24]. In this system, the power demands of a commercial
building are met by the grid (i.e., the local utility) and/or electricity
provided by PV cells, SOFCs, and lead-acid batteries. Excess power
generated by the PV cells or SOFCs can be charged to the batteries
or exported to the grid (i.e.,, net-metered). Both the space and
water heating demands of the building are met by an existing boi-
ler and/or hot water from a storage tank which is heated by ex-
haust gases from the CHP SOFCs. In this configuration, the SOFCs
preheat the water prior to its flow into the boiler, which then en-
sures the water is delivered to the building’s faucets and radiators
at the appropriate temperature. The objective of solving the design
and dispatch problem is to determine the mix, capacity, and oper-
ating strategy of the DG technologies in Fig. 1 that provide the min-
imum total annual cost.

Utilities CHP DG System Building
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PV > Demand
Cells
Power 1
' Power > 4y
i SOFCs — Heating
Water - Demand
Natural 1 Tank
Gas - CHP % 'y :
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Fig. 1. Combined heat and power (CHP), distributed generation (DG) system
consisting of photovoltaic (PV) cells, solid-oxide fuel cells (SOFCs), lead-acid
batteries, and a hot water storage tank. This particular system also permits
electricity export (i.e., net-metering) to the power utility.
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Fig. 2. SOFC power output given a baseload operating strategy. The SOFC output
falls short of the building load in periods of high demand (i) and exceeds the
building load in periods of low demand (ii).

A robust DG system, such as that in Fig. 1, with multiple
sources of electricity import and export, provides flexibility in
how the SOFCs are operated. For instance, Fig. 2 depicts an oper-
ating strategy for which the SOFCs baseload at their rated (i.e.,
maximum) capacity. In the region labeled (i), the SOFC power
output falls short of the building demand. Consequently, the
remaining power demand must be supplied by the PV cells,
battery discharge, and/or the grid. The complementary case is
demonstrated in the region labeled (ii), where the SOFC power
output exceeds the building demand. In (ii), the surplus power
generated by the SOFCs must be charged to the batteries or ex-
ported to the grid. Thus, a DG system with the technological
means to address shortages and surpluses in power supply per-
mits SOFCs the flexibility to operate according to a variety of
strategies, including baseloading.

If the SOFC system is baseloaded then limitations on dynamic
performance may be of little concern. When baseloading at rated
capacity, the SOFCs are rarely turned down to part load or standby,
and do not change power or exhaust gas output between time peri-
ods. With a fixed exhaust gas input to the storage tank, the heating
demand of the building is the only time-varying factor affecting the
temperature of the tank water. In this case, the rated power output
and efficiency may be the only characteristics required to model
the operation of the SOFCs accurately. Thus, in applications for
which it is physically possible and economically beneficial to oper-
ate the SOFCs in a baseload manner, the system design and dis-
patch solutions prescribed by (P) may be similar to, if not the
same as, solutions prescribed by simpler models that do not con-
sider dynamic performance limitations. However, certain condi-
tions for the DG system and energy market might prevent or
discourage baseloading.

2.2. Load-following strategy

Both physical and economic conditions could dictate a decrease
in design options compared to the system in Fig. 1. Renewable
sources of power, such as PV cells, could have prohibitive capital
costs and unpredictable supply. Similarly, high capital costs and
charge-discharge inefficiencies could render electricity storage
technologies unavailable or unattractive. Finally, local utility net-
metering policies or interconnection procedures could discourage
or prevent excess power from being exported to the grid. Under
these conditions, the DG system has no means of disposing of ex-
cess SOFC power and relies solely on the grid to address power
shortages. Fig. 3 depicts a system for which PV cells, batteries,
and exportation of power to the grid are not viable, and for which,
consequently, SOFC baseloading may not be an attractive option.
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Fig. 3. Combined heat and power (CHP), distributed generation (DG) system
consisting of solid-oxide fuel cells (SOFCs) and a hot water storage tank.

With the DG system in Fig. 3, there is far less flexibility in how
the SOFC system is operated compared to Fig. 1. This is particularly
true when the rated SOFC system capacity is greater than the min-
imum power load of the building, and the effective price of elec-
tricity from the SOFC system is less than that of the utility. In
this case, the preferred operating strategy is for the SOFC power
output to follow the building load (i.e., load-follow) in all hours
for which the demand is less than the rated capacity, as in Fig. 4.
In the region labeled (iii), where the building demand exceeds
the rated capacity of the SOFCs, the remaining power is provided
by the grid. Thus, a DG system with no technological means to ad-
dress surplus power and only limited means to address power
shortages, may force SOFCs to load-follow.

Because load-following requires the SOFCs to operate at off-de-
sign power levels, it can be important to consider part-load perfor-
mance characteristics such as maximum turn-down, start up,
ramping, and off-design electric efficiency and exhaust gas output
in order to avoid prescribing an unrealistic system dispatch. When
SOFCs operate at part load, it is possible that one or more SOFC
modules could be forced into standby mode and, therefore, must
later start back up when the required power output increases
above the maximum turn-down. Also, large increases and de-
creases in power output throughout the day are constrained to
the ramping capability of the SOFC system. As the power output
of the SOFCs changes over time, so too do their electric efficiency,
their rate of natural gas consumption, and their rate of exhaust gas
production. Thus, with load-following, the temperature of the
water in the storage tank is determined by both time-varying heat
input and output.
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Fig. 4. SOFC power output given a load-following operating strategy. The SOFC
output falls short of the building load only in the periods of high demand (iii).

It should be noted that while the focus of the present work is on
employing high-temperature SOFC technology, the models and
discussion in the following text are applicable to many different
prime mover technologies. The desire to have the SOFC system
operate in a load-following manner is not unrealistic as long as
the temperature constraints are maintained throughout its operat-
ing envelope. A recent study suggests that load-following may
even be a preferred operating scenario for SOFCs [41].

The aspects of dynamic SOFC operation described above can be
critical to realistically modeling the operation of a CHP system in
applications that require load-following. However, existing global
optimization models of the design and dispatch problem do not
consider the maximum turn-down, start-up fuel consumption,
ramping capability, and/or part-load electric efficiency of power
generators, and/or do not include the quality (i.e., temperature)
of stored thermal energy. Simplifying these aspects of system oper-
ation allows for a linear formulation of the problem with fewer
variables and constraints, but might lead to the prescription of a
suboptimal or unrealistic system design and dispatch.

3. Model

In this section, we provide two different mathematical formula-
tions, (P) and (S), of the design and dispatch problem for the sys-
tem depicted in Fig. 3. Given we address the reduced system,
rather than the more complex system depicted in Fig. 1, the (P)
formulation presented in this paper contains fewer variables and
constraints than that of Pruitt et al. [24]. However, (P) remains a
mixed-integer nonlinear program that models off-design perfor-
mance characteristics of the SOFC system and dynamic character-
istics of the water tank, while (S) is a mixed-integer linear program
that simplifies or does not include these characteristics. We con-
clude the section with a discussion of the qualitative differences
between the two formulations.

3.1. (P) Formulation

Here we provide the mathematical formulation of (P). Upper-
case letters identify variables or sets, while lower-case letters
identify parameters or set indices. Superscripts and accents differ-
entiate parameters and variables that use the same base letter.
Subscripts distinguish between elements of a set. Some parameters
and variables are only defined for certain elements of sets, which
are listed in each definition. The units of each parameter and
variable are provided in brackets after its definition.

3.1.1. Sets

j € J: set of all technologies (Consistent with Pruitt et al. [24],
we define the elements of 7 numerically as 3 = Power
SOFC, 4 = CHP SOFC, 5 = Storage Tank, 6 = Boiler.),

n € N: set of all months,

t € Ty: set of all hours in month n (7 =Y, 7).

3.1.2. Time and demand parameters
6 =demand time increment [hours],
d': , d? =average power and heating demand, respectively, in
hour t [kW] .
3.1.3. Cost and emissions parameters
¢j = amortized capital and install cost of each technology j =3, 4

[$/kw],
m; = average O&M cost of each technology j =3, 4, 6 [$/kW h],
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Pw, & = price of electricity and natural gas, respectively, from the
utility in hour t [$/kW h],

pmax = peak demand price of power from the utility in month n
[$/kW/month],

z = tax on carbon emissions [$/kg],

7P, 78 = average carbon emissions rate for utility power and gas
combustion, respectively [kg/kW h].

3.1.4. Power generation parameters

e, 171‘.“‘" =max and min, respectively, electric efficiency of
each technology j = 3, 4 [fraction],

1; = max turn-down of each technology j = 3, 4 [fraction],

o = start-up time for each technology j = 3, 4 to reach operating

temperature [hours],

k; = power output rating of each technology j = 3, 4 [kW],

r]‘.‘p, rj‘.j"""“ = max ramp-up and ramp-down rate, respectively, for
each technology j = 3, 4 [kW/h].

3.1.5. Heat generation and storage parameters

oj = average ambient heat loss of water stored in technology
j =5 [fraction],
y; = average exhaust gas output from technology j = 4 per unit of
fuel input [kg/kW h],
nj=average thermal efficiency of each technology j=5, 6
[fraction],
T, rj"-" = average temperature of fluid out of and into, respec-
tively, each technology j =4, 5, 6 [°C],
TMax M = max and min, respectively, temperature of water in
the system [°C],
h; = specific heat of fluid output from each technology j=4, 5
[kW h/(kg °C) or kW h/(gal °C)],
v, v]?"‘“ =max and min, respectively, storage capacity of
technology j =5 [gallons].

3.1.6. System design variables

Aj=number of each technology j =3, 4, 5 acquired [integer],
V; = water storage capacity of technology j =5 [gallons].

3.1.7. Power dispatch variables

Ej; = electric efficiency of each technology j =3, 4 operating in
hour t [fraction],

N;;=number of each technology j=3, 4 operating in hour t
[integer],

th= increase in number of each technology j =3, 4 operating
from t — 1 to t [integer],

Pj; = aggregate power output from each technology j=3, 4in
hour t [kW],

U, = power purchased from the utility in hour t [kW],

Uy®=max power purchased from the utility in month n [KW].

3.1.8. Heat dispatch and storage variables

B]i.? =1 if water in technology j =5 is above " + ¢ at start of
hour ¢, 0 otherwise [binary],

Bﬁ“t =1 if water in technology j = 5 is above 72" at start of hour

t, 0 otherwise [binary],

Fl?'[“‘ = flowrate of water out of technology j = 5 in hour t [gal/h],

F]‘-{’ = flowrate of exhaust gas into technology j = 5 in hour t [kg/h],

Gj: = aggregate natural gas input to each technology j =3, 4, 6 in
hour t [kW],

T;: = temperature of water stored in technology j =5 at the start
of hour t [°C].

The objective of (P) minimizes the total capital and operational
costs of the system over the time horizon of interest. Objective
component (1a) comprises the capital, operations and mainte-
nance (O&M), fuel (start-up and steady-state operation), and emis-
sions costs for the SOFCs. We assume the capital costs for the
SOFC-CHP system account for the cost of the waste heat recovery
and storage tank integration. Objective component (1b) captures
the energy and emissions costs of power purchased from the util-
ity, as well as the O&M, fuel, and emissions costs for the boiler. If
SOFCs are not acquired, then the total cost is reduced to compo-

nent (1b).
Minimize
. e otk X
S akiAi+ 30 T moP + 30N (g +22%) 5 Nic +0Gie| - (12)
i34 j34teT j34teT h;j
+ 3 (P +22)0Uc+ Y pRPUTT + Y (M6Me + 8¢ +22°)0Ge:  (1D)
teT neN teT

The constraint set of (P) ensures that the power and heating de-
mands of the building are met, subject to the performance charac-
teristics of the SOFCs, storage tank, and boiler. We provide a brief
description of each of the constraints here. See Pruitt et al. [24]
for a more detailed discussion of the constraint set.

Constraints (2a)-(2c) address the hourly power and heating de-
mands of the building. Constraint (2a) requires the power demand
to be met by the SOFC system and the power purchased from the
utility. Constraint (2b) determines the peak power load purchased
from the utility in each month. Constraint (2c) dictates that the
heating demand be met by the flow of hot water, which must be
delivered at a specified temperature. If the water from the storage
tank is below the specified delivery temperature (i.e., Bs' = 0),
then the hot water flow from the tank is directly determined by
the heating demand. However, if the tank water is above the deliv-
ery temperature (i.e., B" = 1), then the hot water flow from the
tank is reduced due to the cold water mixing required to achieve
the delivery temperature.

SPy+Ui=d VteT (2a)

Jj=34

U™ > U VneN,teT, (2b)
out _ i\ pout T — TN out - Q

h5 (TG - T5 )FSt <1 - |:1 - m} BSt ) = dt \V/t (S T(ZC)

Constraints (3a) and (3b) account for the design of the thermal
storage system. Constraint (3a) ensures that a hot water storage
tank is acquired if and only if at least one SOFC -CHP is acquired.
Constraint (3b) restricts the selected capacity of the storage tank
to the established minimum and maximum based on the building
heating load.

maxtg{df}
As<As< |— LA (3a)
4

Viin L Vs (3b)

Constraints (4a)-(4d) address the hourly aggregate power out-
put of the SOFCs. Constraint (4a) dictates that the aggregate power
output of the SOFCs must remain between the total output at max-
imum turn-down and the total output at the nameplate power rat-
ing of the SOFCs operating in a given time period. Constraint (4b)
limits changes in the aggregate power output from the SOFCs be-
tween time periods based on their maximum power ramping capa-
bilities. Constraint (4c) states that the number of SOFCs operating
in a given time period cannot exceed the number acquired. Con-
straint (4d) determines the number of SOFCs that start up between
time periods.

Please cite this article in press as: Pruitt KA et al. Evaluating shortfalls in mixed-integer programming approaches for the optimal design and dispatch of
distributed generation systems. Appl Energy (2012), http://dx.doi.org/10.1016/j.apenergy.2012.07.030



http://dx.doi.org/10.1016/j.apenergy.2012.07.030

6 KA. Pruitt et al. / Applied Energy xxx (2012) xxX-Xxx

,Lljijjf < Pjt < ijj[ Vi=3,4,teT (4a)
— OT{Nje < Pirir — Pyt <O1PNjen Vj =3, 4, t <|[T]| (4b)
Ni <A Vji=3,4,teT (4c)
Nieit = Ni <Njeor ¥j=3, 4, t<|T| (4d)

Constraints (5a)-(5c) relate the energy output and fuel
consumption of the technologies in the system. Constraint (5a)
defines the electric efficiency of the SOFCs as a decreasing linear
function of the share of aggregate power output provided by each
operating SOFC. Constraint (5b) establishes the aggregate power
output of the SOFCs as the product of the electric efficiency and
the aggregate natural gas input. Constraint (5c¢) dictates that the
heat output from the boiler, which depends on the temperature
and flowrate of hot water from the storage tank, must be equiv-
alent to the product of the boiler’s thermal efficiency and natural
gas consumption.

nljnax _ 'un[nin r]max _ n[nin P. )
E,= |- KA R R J (—”)V:3,4,t6753
g ( T—p > ( ki(1 — ) > Nje ! (2)

EiGie=P; Vj=3,4,teT (5b)
N6Ger = hsFo (18" — Tse) (1 - B') VteT (5¢)

Constraint (6a) limits the flowrate of hot exhaust gas into the
storage tank to the maximum flowrate of exhaust gas out of the
CHP SOFCs.

Fit <7,Ga VEeT (6a)

Constraints (7a)-(7e) address the storage of thermal energy in
the form of hot water. Constraint (7a) states that the change in
storage tank water temperature between time periods, including
ambient heat loss, is calculated as the quotient of the net thermal
energy added to the tank and the heat capacity of the water vol-
ume. The net thermal energy added to the tank (i.e., the numerator
of the quotient on the right-hand side of the constraint) is calcu-
lated as the difference between the thermal energy added by the
SOFCs, after considering the efficiency of the heat exchange, and
the thermal energy removed for the building heating demand. In
both cases, thermal energy is calculated as the product of the time
increment, specific heat capacity, flowrate, and temperature differ-
ence. Constraint (7b) reduces the temperature of the water flowing
into the boiler to the average return temperature if a storage tank
is not acquired. Constraint (7c) determines the value of the binary
variable that controls the tank water’s ambient heat loss. Con-
straint (7d) determines the value of the binary variable that con-
trols the need for additional heating from the boiler. Constraint
(7e) dictates that the temperature of the water at the end of the
time horizon must be equivalent to the water temperature at the
beginning of the time horizon.

Tseq —(1— “SB;)TSt
_ onshaF(t§" — Ts) — ohsF" (Ts: — i)

T 7
sV Yt < |T| (7a)
Tse — T < (T™* —TMAs VteT (7b)
BE < Tse — TN e+ (T"* — T —¢)BY, VteT (7¢)

(0~ ) (1 BY) < T~ 7 < (™ — B Vee T

(7d)
Tsqi =Tsr (7e)

Constraints (8a)-(8d) establish the non-negativity and integral-
ity of the variables, as appropriate.

Ut, Pjt, Nj[, Ejt, Gj, Fjotut’ FJI?. Tjr, Vj = 0 V] S J, teT (83)

UM >0 YneN (8b)
Aj,Nj; = 0, integer Vj=3,4, teT (8c)
Aj, By B} binary Vj=5,teT (8d)

The (P) formulation includes a linear objective, 17|7| + [N| + 4
variables (2|7 + 2 general integer, 2|7 | + 1 binary), and 27|7| — 2
constraints (7|7| — 1 nonlinear). All of the nonlinearities in (P)
consist of nonlinear equality constraints (see (2c), (5a)-(5c) and
(7a)). Thus, the constraint set is nonconvex. Given the difficulties
associated with solving nonconvex MINLPs, Pruitt et al. [24] intro-
duce specialized convexification and linearization techniques for
solving large instances of (P) whose solutions exceed the capabil-
ity of existing solvers.

3.2. (S) Formulation

In this section, we present a simpler formulation, (S), of the de-
sign and dispatch problem which does not consider maximum
turn-down, start up, ramping, part-load efficiency, and thermal
storage temperature. We formulate (S) as a representative model
that simplifies system dynamics so that we may evaluate the qual-
itative and quantitative impacts of not using a more detailed model
like (P). We introduce the objective and constraints of (S) briefly
here and provide a more thorough discussion of how they differ
from those of (P) in Section 3.3. (S) requires the definition of the
following additional parameters and variables:

3.2.1. Parameters

', ;1]‘.2 =rated electric and thermal efficiency, respectively, of
each technology j = 3, 4 [fraction],
s; = thermal storage capacity of technology j =5 [kW h].

3.2.2. Variables

Q;c = inventory of thermal energy stored in technology j=5 at
the start of hour t [kW h],

QJ‘-"“, QJ‘? = heat output from and input to, respectively, each
technology j =5, 6 in hour t [kW].

Minimum total cost

Minimize
ZCjijj + szjépj[ + ZZ(g[ +ZZg)5Gj[ (9&)
j=3.4 j=3.4teT j=34teT
+ (P 4+227)0Uc+ Y prUR 4+ " (eme + 8 +228)0Ge: (9D)
teT neN teT
subject to
Power and heat demand
SPi+Ui=df VteT (10a)
j=34
U™ > U VneWN, teT, (10Db)
SrQut=d? vteT (10c)
System acquisition
max{df }
As <Ay < |2 As (11a)
k4
Power generation
Pjtgijj Vj:3, 47 teT (123)
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Natural gas consumption

Gi=Pi Vj=3,4teT (13a)
NeGer = QR VteT (13b)
Heat generation
o <n§Gy VteT (14a)
Heat storage
Qsoi1 — (1-25)Qse = 6(n5Q5 — Q%) ve< |7 (15a)
Qs <S5As VteT (15b)
Qs1=0Qs,7 (15c¢)

Non-negativity and integrality
U, Pr, G, Qs Q2, QP >0 Vjed, teT
Ui >0 VnenN

(16a)
(16b)
A; > 0, integer Vj=3, 4 (16¢)
A; binary Vj=5 (16d)

The (S) formulation has a linear objective, and includes 7|7 + 1
fewer variables and 16|7| — 4 fewer constraints than (7). Addition-
ally, (S) contains only two general integer variables, one binary
variable, and is comprised of only linear constraints. With only
three total integer variables and a linear (i.e., convex) constraint
set, instances of (S) are much simpler to solve than those of (P).

3.3. Differences between (P) and (S)

Qualitatively, (P) and (S) differ in how they model the genera-
tion of power and heat by the SOFC system, and the storage of heat
in the water tank. In terms of power generation, (P) and (S) differ
in how they model (i) the maximum turn-down, (ii) the fuel con-
sumption, (iii) the start up, and (iv) the ramping limitations of
the SOFCs. In terms of heat generation and storage, (P) and (S) dif-
fer in how they model (v) the heat charged to, (vi) the heat dis-
charged from, and (vii) the capacity of the water tank. In this
subsection, we provide a detailed discussion of these seven quali-
tative differences. We then examine the quantitative impact of the
modeling differences in Section 4.

3.3.1. Power generation
An examination of SOFC natural gas consumption at various
power output levels highlights the differences in how (P) and (S)

—_— (D)

——z)

of Operation at a Given Power Output (kWh)

” 1 . i :
Median

Maximum
SOFC Power Output (kW)

SOFC Natural Gas Consumption for One Hour

0 Minimum

Fig. 5. Comparison of SOFC natural gas consumption at minimum, median, and
maximum power output as modeled in (P) versus (S).

model power generation. Fig. 5 depicts the hourly natural gas con-
sumption of a representative SOFC as a function of its power
output.

In (P), the left-hand side of constraint (4a) enforces a minimum
power output for the SOFCs that are operating (i.e., not in standby
mode) in a given time period. Given the minimum operating tem-
perature required for power generation, SOFCs cannot operate at
power levels below this maximum turn-down. Thus, the range of
power output levels below the maximum turn-down (i.e., between
zero and minimum power output) is appropriately restricted in
(P). However, because constraint (12a) in (S) does not include
the operational status and maximum turn-down of the SOFCs,
power dispatch solutions (i.e., prescribed values for P;;) are permit-
ted to select output levels below the maximum turn-down (as de-
picted in Fig. 5). Such solutions cannot be implemented in practice.

Constraints (4a) and (4c) in (P) and constraint (12a) in (S) sim-
ilarly limit the maximum aggregate power output of the SOFCs to
the total nameplate power rating of the SOFCs that are acquired.
Furthermore, because (S) fixes the electric efficiency of the SOFCs
to the rated efficiency (i.e., the efficiency at nameplate power out-
put), the natural gas consumption at maximum power output is
the same as in (P). However, the natural gas consumption of the
SOFCs at part-load differs between the two formulations. In (P),
constraints (5a) and (5b) dictate that natural gas consumption de-
creases nonlinearly as power output decreases. By contrast, con-
straint (13a) in (S) indicates that natural gas consumption
decreases linearly as power output decreases. The result of these
differences is that (S) overestimates the fuel consumption when-
ever the SOFCs operate at part-load (as depicted in Fig. 5). Thus,
when SOFCs load-follow, the time-varying electric efficiency cap-
tured in (P) allows for a more accurate calculation of fuel
consumption.

The overestimation of SOFC fuel consumption in (S) is partially
offset in time periods in which a positive number of SOFCs start up.
In (P), the variable th found in objective component (1a) and con-
straint (4d) enforces a fuel requirement for the SOFCs to depart
standby mode and achieve operating temperature. If a SOFC’s oper-
ational status changes from “standby” to “on” between successive
time periods, then the objective accounts for the cost associated
with the natural gas consumed by the SOFC to achieve the maxi-
mum turn-down. We calculate the gas required for start up by
assuming a SOFC requires ¢; hours to increase power from zero
to pkj, and that fuel is consumed during start up with the same
efficiency n;"i" as at rated capacity. However, objective component
(9a) in (S) does not account for the fuel required for SOFC start up,
nor do any constraints. Thus, in (S), the underestimation of start-
up fuel consumption partially offsets the overestimation of stea-
dy-state fuel consumption in any hour in which SOFCs start up.

Another key difference in how (P) and (S) model power gener-
ation pertains to the ramping capability of the SOFCs. In (P), ramp-
ing is explicitly limited in constraint (4b), which we restate here:

f(SrJ‘-jOW“th < Pjy[_*_] — ij < (5r]‘.‘pNj1+1 V] = 37 4, t< ‘T‘

On the other hand, (S) only implicitly restricts changes in SOFC
power output. Based on constraints (12a) and (16a), we can derive
the following ramping restrictions:

7’(jAj < Pj_[+1 — Pj[ < ijj V] = 3., 47 t< ‘T| (17)

Eq. (17) indicates that, in (S), SOFC power output is permitted
to increase or decrease by the aggregate nameplate power rating
of the SOFCs that are acquired. However, depending on the demand
time increment and the number of operational SOFCs, a ramp (i.e.,
P; 1 — Pj) of this magnitude may not be achievable. Constraint
(4b) in (P) accounts for this ramping limitation. If —6rj‘.‘°W“er >
—k;A; or 01" Nj11 < kiA; in a given time period, then (P) provides
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tighter restrictions on SOFC ramping than (S) does. Furthermore,
the consideration of sub-hourly power demand (i.e., <1) and
SOFC standby mode (i.e., Nj; < A;) increase the likelihood that (S)
overestimates the ramping capacity. This situation could result in
(S) prescribing dispatch schedules that cannot be implemented
in a given application.

3.3.2. Heat generation and storage

In addition to the differences in modeling power generation, (P)
and (S) differ in how they account for the generation and storage of
heat. The most fundamental difference is how heat itself is repre-
sented in the two formulations. In (S), the flow of heat is repre-
sented directly by the variables Qﬁ“' and Q}‘{‘ and the amount of
thermal energy stored is represented by Q;. In (P), however, heat
(or thermal energy) is determined as the product of a fluid’s spe-
cific heat capacity, flowrate (or volume), and temperature change.
This alternative representation of heat and thermal energy permits
the consideration of more detailed performance characteristics of
thermal systems. Specifically, the heat charged to and discharged
from the storage tank can be modeled as a function of the flowrate
and temperature of the exhaust gas supplied by the SOFCs and the
hot water demanded by the building.

Fig. 6 depicts the maximum thermal energy that can be charged
to the storage tank in an hour by the exhaust gas from a represen-
tative SOFC operating at minimum, median, and maximum power
output. In (S), the thermal energy that can be added to the storage
tank by SOFC exhaust gas is independent of the temperature of the
water in the tank, and is based solely on the rated thermal effi-
ciency of the SOFC (see constraints (14a) and (15a)). As a result,
the maximum thermal energy that can be charged to the tank is
fixed for a given SOFC power output (as demonstrated in Fig. 6).
Conversely, in (P), the thermal energy that can be added to the
tank is directly determined by the temperature of the tank water
(see constraints (6a) and (7a)). The greater the temperature differ-
ential between the SOFC exhaust gas and the tank water, the great-
er the amount of thermal energy that can be recovered and stored
in the tank. Consequently, the maximum thermal energy that can
be added to the tank decreases as the water temperature increases
(as demonstrated in Fig. 6). In general, these differences between
the two formulations result in (S) overestimating the amount of
heat that can be charged to the storage tank. However, when the
tank water is below delivery temperature and SOFC power output
is at or near its maximum, (S) underestimates the available heat.

Accounting for water temperature also leads to differences in
how (P) and (S) model the tank discharge. Fig. 7 presents the

Maximum Power Output

Median Power Output

Minimum Power Output

Max Heat Charged to Tank for One Hour of
SOFC Operation (kWh)

] [l

e+

Maximum

Delivery
Tank Water Temperature (deg C)

Fig. 6. Comparison of heat charged to storage tank for SOFC operating at minimum,
median, and maximum power output as modeled in (P) versus (S).
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Maximum Demand

Median Demand

Minimum Demand

One Hour of Heat Demand (kWh)

Minimum Heat Discharged from Tank for

Return

Delivery
Tank Water Temperature (deg C)

Maximum

Fig. 7. Comparison of heat discharged from storage tank to meet minimum,
median, and maximum demands as modeled in (P) versus (S).

minimum thermal energy that must be discharged from the stor-
age tank in an hour to meet representative minimum, median,
and maximum demands. In (S), there is no minimum requirement
on the portion of heating demand that must be met by the storage
tank (see constraints (10c) and (15a)). Thus, the tank is permitted
to provide as little as zero kilowatt-hours of thermal energy (as de-
picted in Fig. 7) or as much as the full inventory of stored energy in
the tank, regardless of the water temperature. By contrast, con-
straints (2c) and (7a) in (P) enforce a minimum provision of heat
by the storage tank whenever the tank water temperature is above
the average return temperature. For hours in which the tank water
is between the return and delivery temperatures (as determined by
constraints (7c¢) and (7d)), the storage tank provides a positive flow
of hot water (and thus heat), with the boiler providing the remain-
ing heat required to deliver the water (see constraint (5c)). As the
tank water temperature increases, the portion of heating demand
met by the storage tank increases (as depicted in Fig. 7), and the
portion met by the boiler decreases. For hours in which the tank
water is at or above delivery temperature, all of the heating de-
mand is met by the storage tank. In this case, no additional heating
is required by the boiler. Thus, for hours in which both the tank
water temperature and heating demand are high, (S) likely under-
estimates the portion of demand met by the storage tank. How-
ever, in periods of lower heating demand and water temperature,
it is possible for (S) to overestimate the tank heat discharge.

For the representative cases demonstrated in Figs. 6 and 7, the
net result of the limitations on tank heat charge and discharge is
that the time-varying inventory of stored thermal energy is more
accurately modeled in (P) versus (S). This is particularly true when
the SOFC power output and building heating demand are high.
When SOFC power output is at its maximum, the slope of the
(P)-line in Fig. 6 is at its greatest (in absolute value). The same is
true of the slope of the (P)-line in Fig. 7 when the heating demand
is at its maximum. Due to the steep slopes of these lines, the ther-
mal energy charged to or discharged from the storage tank is more
sensitive to changes in the water temperature compared to when
SOFC power output and heating demand are low. This sensitivity
can lead to wild fluctuations in the thermal energy available from
the tank. Because the limits on maximum charge and minimum
discharge in (S) are independent of the tank water temperature,
(8S) is less capable of capturing these fluctuations in available ther-
mal energy. As a result, there exist instances for which (S) inaccu-
rately represents the operation of the tank.

The final difference between (P) and (S) concerns the way in
which the two formulations model the capacity of the thermal stor-
age device. In (S), the maximum allowable inventory of thermal
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energy in the storage tank (i.e., the tank size) is a fixed parameter s5
(see constraint (15b)), the value of which is selected by the user a
priori. Alternatively, (P) models the tank size as a variable Vs (see
constraint (3b)), the value of which is optimally selected by the
solution algorithm. When modeling the temperature and flowrate
of fluids into and out of the tank, the size of the tank determines
the increase or decrease in stored thermal energy. Thus, (P) opti-
mally sizes the storage device based on the heat supplied by the
SOFCs and the heat demanded by the building.

4. Case study

In this section, we contrast solutions from (7P) and (S) for a six-
story, 122,000 square foot hotel located in southern Wisconsin. The
power and heating loads for this building type, and the local utility
rates, policies, and procedures, encourage the load-following
behavior by the SOFCs previously discussed in Section 2.2. Hence,
this scenario highlights the deficiencies exhibited by (S) in model-
ing dynamic performance. We first present the building, utility,
and technology parameter values applied in the case study, and
then provide the results from solving (P) and (S).

4.1. Building, utility, and technology data

In this section, we provide the values assigned to the parame-
ters defined in Section 3.1 for this particular case study. The hourly
(6=1) power and heating demands (d’; and d?) are simulated in
EnergyPlus (see [29]) using a Department of Energy commercial
reference building model (see [30]). The power demand, which
averages 142 kW, includes lighting, equipment, and cooling, while
the heating demand, which averages 256 kW, includes both space
and water heating. The hotel’s hourly demands on a representative
summer day are depicted in Fig. 8.

The average electricity and natural gas prices listed in Table 1
are based on Wisconsin Electric Power Company’s rate schedule
for general commercial service (see [31]) and Wisconsin Electric-
Gas Operations’ rate schedule for firm sales service (see [32]).
These energy charges are also consistent with statistics reported
by the Energy Information Administration (EIA) for the state of
Wisconsin (see [33,34]). The aforementioned EIA reports addition-
ally provide the basis for our calculation of the Wisconsin electric
industry’s average rate of carbon emissions.

According to the Network for New Energy Choices (NNEC), the
state of Wisconsin’s net-metering policies and interconnection
procedures discourage customer-sited DG (see [35]). The NNEC
cites Wisconsin Public Service Commission standards which limit
DG system capacity, restrict customer energy credits, require
excessive customer insurance, and include hidden interconnection
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Fig. 8. Power and heating demands on a summer day for a large hotel located in
southern Wisconsin.

Table 1

Cost, emissions, and technology parameter values applied in the case study.
Parameter Value Units
Dr, & Vt 0.10, 0.03 $/kW h
PR vn 6.00 $/kW/month
z 0.02 $/kg
2, 22 0.74, 0.18 kg/kW h
3, C4 226, 271 $/kW/year
ms, My, Mg 0.020, 0.024, 0.010 $/kW h
ks, ks 10, 10 kW
a3, 04 2,2 hours
U3, Hg 0.2,0.2 n/a
PP PP pdown ydown 4,4,4,4 KW/hour
JX | ymax pmin i 057,057, 0.41, 0.41 HHV-basis
yinax, ysmin 4200, 1000 gallons
s, e 0.80, 0.75 n/a
Ols 0.01 n/a
Va 2.05 kg/kW h
hs 0.0003 kW hj(kg °C)
hs 0.004 KW h/(gal °C)
QU 7in out 365, 20, 60 °C
Tmaxv Tmin 85, 15 °C

fees. The standard with the greatest impact on the SOFC system de-
sign is a 20 kW maximum DG system capacity. As we demonstrate
in the numerical results, the optimal DG system capacity for the
large hotel is much greater than 20 kW. Because the DG system ex-
ceeds the allowable capacity, net-metering is not permitted, and
the SOFCs have no means to dispose of excess power.

The costs and performance characteristics of the SOFCs and
water tank are listed in Table 1. The annualized capital and instal-
lation costs for the SOFCs applied here are lower than those typi-
cally reported in the current literature. At present, the
uninstalled unit cost of stationary commercial SOFC systems in-
tended for building applications ranges from $4000/kW to
$47,500/kW depending on the system size, annual production le-
vel, and specific type of SOFC technology (e.g., tubular or planar
stacks) (see [36-38]). Furthermore, the additional costs associated
with the installation of SOFC systems can be as much as the capital
cost. However, we find that, without subsidies, costs of this magni-
tude result in both (P) and (S) choosing the grid-only solution (i.e.,
no SOFCs acquired). Thus, the initial capital and installation cost
used for the SOFCs in this case study is $1,600/kW. The cost in-
crease above this value for CHP integration, including the water
tank, is 20%. The initial cost is continuously compounded at 5%
interest over a 15-year system lifetime to obtain a lifetime oppor-
tunity cost, which is then divided by the 15 years to determine the
annual costs (c3 and c4) reported in Table 1. We assume these re-
duced annual costs in the case study in order to induce DG acqui-
sition according to both (P) and (S), thereby providing a means to
contrast the system design and dispatch selected by the two for-
mulations. However, significant cost reduction is anticipated as
the technology matures and production volumes of 50,000 per year
or more are reached. Projected system capital costs of current,
state-of-the-art SOFC technology as reported by leading developers
is expected to be in the $800/kW range for MW-scale systems (see
(39D

Each of the performance characteristics of the SOFCs and water
tank listed in the table are captured in (P). On the other hand, (S)
does not include the maximum turn-down, start up, ramping, and
part-load efficiency of the SOFCs, and does not consider the tem-
perature of the water in the storage tank. Given these exclusions,
(8) simply models the operation of the SOFCs with the rated power

output (k;), and rated electric and thermal efficiencies (nf ,nj‘.l) of

0.41 and 0.19, respectively, on a higher heating value (HHV) basis.
These efficiencies are consistent with the SOFCs operating at
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maximum power output and the exhaust heat transferring to tank
water at delivery temperature. The thermal efficiency of 0.19 is cal-
culated based on constraints (6a) and (7a), using the formula
Y4ha(t§" — 72") and the specific parameter values in Table 1. In
(S), the fixed storage capacity (ss) of the tank is expressed in terms
of thermal energy, rather than water volume, and is set to a value
equivalent to the maximum hourly heating load (1086 kW h) for
the year. This capacity is consistent with the upper bound on tank
volume in (P), given the maximum allowable temperature of the
water.

4.2. Numerical results

Here we present the optimal system design and dispatch pre-
scribed by (P) and (S) for the hotel, based on a typical year’s hourly
demand (8760 h). Both formulations are coded in AMPL Version
20090327 and solved with CPLEX 12.3 (see [40]) on a 64-bit Linux
workstation with four 2.27 GHz Intel processors and 12 GB of RAM.
Given the nonlinear nature of (P), we apply heuristic linearization
techniques to determine integer-feasible solutions and implement
convex underestimation to determine the proximity of those
solutions to global optimality (see [24]). For the 1-year instances
presented here, the linearization heuristic provides an integer-
feasible solution to (P) in 3-4 s. However, the convex underesti-
mation problem requires significantly longer solve times (greater
than 10 h) to bound the integer-feasible solutions to within close
proximity (less than 10%) of global optimality. On the other hand,
1-year instances of (S) solve to within 1% of global optimality in 1-
2 s. Although (S) provides the possibility of significantly shorter
solve times, the trade-off is the prescription of a suboptimal sys-
tem design and an infeasible system dispatch.

The optimal system design and dispatch determined by (P) in-
cludes 130 kW of on-site capacity (represented as 13x10 kW
SOFC-CHP modules), sizes a single water storage tank to
3900 gal, and operates the SOFC system in a load-following man-
ner. Based on the maximum allowable water temperature of
85 °C and the average return temperature of 20 °C, the 3900 gal
tank has a maximum thermal energy capacity of roughly
1014 kW h. By contrast, the design and dispatch prescribed by
(S) consists of only 110 kW of capacity (11 SOFC-CHP modules),
sizes the tank to the pre-determined 1086 kW h, and still operates
the SOFC system in a load-following manner.

Annual statistics for the optimal system design and dispatch
determined by (P) are listed in the second column of Table 2, while
the same statistics for (S) are listed in the third column. The sys-

Table 2

tem design and dispatch prescribed by both formulations afford a
total annual cost less than the cost ($284,767) incurred by the grid
and boiler alone. However, the total annual cost (including capital
and operational costs) for the 13 SOFC system determined by (P) is
less than the total annual cost of the 11 SOFC system determined
by (S).

The suboptimal system design determined by (S) results from
its inability to consider the dynamic performance of the SOFCs
and water tank as part of the system dispatch. Specifically, neglect-
ing power ramping limitations, part-load electric efficiency, and
thermal storage temperature causes (S) to overestimate the total
annual operational (i.e., utility gas, utility power, and O&M) cost
of the system. We demonstrate this with the statistics listed in
the fourth and fifth columns of Table 2. In the fourth column of
the table, we fix the system design to the 110 kW system selected
by (S) and solve (P) to determine the system dispatch. Even though
the system designs, and thus the investment costs, in the third and
fourth columns of the table are the same, the system dispatches,
and thus the operational costs, are different. The (S) dispatch over-
estimates the total annual operational cost compared to (P). Simi-
larly, in the fifth column of the table, we fix the system design to the
130 kW system selected by (P) and solve (S) to determine the sys-
tem dispatch. Again, the total annual operational cost in the fifth
column is greater than that in the second column, even though
the annual investment costs are identical. Although these differ-
ences in operational costs between (P) and (S) are relatively small,
the overestimation of total annual cost is enough to cause (S) to
favor the smaller (110 kW) system capacity when the larger
(130 kW) system capacity is not fixed. Thus, not considering the
dynamic performance characteristics of the DG technologies causes
(8) to undersize the system capacity by 15% compared to (P).

The annual summary statistics listed in Table 2 demonstrate the
cumulative effect of not considering power ramping limitations,
part-load electric efficiency, and thermal storage temperature.
However, a more detailed examination of the hourly system dis-
patch is required to reveal the source of the (S) formulation’s ten-
dency to overestimate the total annual operational costs. Thus, we
next compare the dispatches dictated by (P) and (S) over a single
24-h period for the 130 kW system. Using the same annual data
that is summarized in the second and fifth columns of Table 2,
we extract the data for the representative summer day previously
depicted in Fig. 8 in order to examine the system dispatch.

Fig. 9 demonstrates that (P) and (S) select nearly the same
aggregate power dispatch for the 13 SOFCs over the 24-h period.
In general, the optimal SOFC power dispatch is the minimum of
the aggregate rated power capacity and the building demand

Summary of solution differences between (P) and (S) for the annual instance of the case study. Each column indicates which formulation is utilized to determine the system

design and dispatch.

Annual statistics (P) Design (S) Design (S) Design (P) Design
(P) Dispatch (S) Dispatch (P) Dispatch (S) Dispatch
Total Installed Cost [$] 35,230 29,810 29,810 35,230
SOFC Gas Input [MW h] 2221 2100 2041 2327
Boiler Gas Input [MW h] 2552 2568 2593 2522
Total Utility Gas Cost [$] ? 160,358 156,828 155,730 162,911
SOFC Power Output [MW h] 953.5 860.9 860.9 953.9
Grid Power Output [MW h] 290.2 3829 3829 289.8
Total Utility Power Cost [$] ® 42,886 54,967 54,967 42,842
SOFC Heat Output [MW h] 461.0 398.9 424.6 442.0
Tank Heat Output [MW h] 3315 319.6 300.4 354.1
Boiler Heat Output [MW h] 1914 1926 1945 1891
Total O&M Cost [$] 38,211 36,476 36,668 37,993
Total Cost [$] 276,686 278,082 277,175 278,976

@ The total gas cost includes the taxes paid for the carbon emissions resulting from the combustion of natural gas.
b The total power cost includes the taxes paid for the carbon emissions from the grid and the monthly peak demand charges.
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Fig. 9. Optimal SOFC power output as determined by (P) versus (S).

(i.e., P4 = min (13041'?)). However, there are certain hours

throughout the year when the SOFCs are not capable of the ramp
up in power output dictated by the building demand. For the day
depicted in Fig. 9, the building power demand increases by
80 kW between the fifth and sixth hours. This increase in power
demand is beyond the 52 kW total hourly ramping capacity of
the 13 SOFCs. The optimal power dispatch determined by (P)
appropriately restricts the hourly increase in SOFC power output
to 52 kW. By contrast, (S) prescribes an infeasible increase in SOFC
power output between the fifth and sixth hours of the day. (S) sim-
ilarly overestimates the SOFC power output in other hours
throughout the year, which accounts for the overestimation of
the annual SOFC power output compared to (P).

The natural gas consumed by the SOFCs to generate power also
differs between the two formulations, as depicted in Fig. 10. As
previously predicted in Fig. 5, (S) overestimates the natural gas
consumption in any hour in which the SOFCs operate below max-
imum power output. In fact, in the early hours of the day, (S) over-
estimates the SOFC gas consumption by as much as 29% compared
to (P). The more hours the SOFCs operate at part-load, the more (S)
overestimates the fuel requirements for the SOFCs. Because the
optimal dispatch strategy in this scenario is load-following and,
the SOFCs frequently operate at part-load, (S) overestimates the
annual SOFC fuel consumption compared to (P).

The overestimation of SOFC fuel requirements by (S) also con-
tributes to differences in the thermal dispatch prescribed by the
two formulations. Fig. 11 depicts the optimal exhaust heat dis-
patch from the SOFCs to the water tank as determined by (P) ver-
sus (S). (S) overestimates the heat charged to the tank at low SOFC
power output and underestimates it at high SOFC power output (as
previously shown in Fig. 6). In the early hours of the day, when
SOFC power output is low, (S) overestimates the exhaust heat
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Fig. 10. Optimal SOFC natural gas input as determined by (P) versus (S).
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Fig. 11. Optimal SOFC exhaust heat transferred to storage tank as determined by
(P) versus (S).

charged to the storage tank by as much as 19%. In these hours,
(S) prescribes an infeasible heat dispatch (i.e., more heat than is
actually available) from the SOFCs. During the two peak power de-
mand periods of the day, when SOFC power output is at or near
maximum, (S) underestimates the exhaust heat charged to the
tank by as much as 9%. The more hours the SOFCs operate at or
near rated capacity, the more (S) underestimates the heat that
can be generated by the SOFCs. For this scenario, the SOFCs operate
at rated capacity in enough hours throughout the year to cause (S)
to underestimate the annual SOFC heat output compared to (P).

In the description of Fig. 7, we stated that (S) likely underesti-
mates the heat discharged from the storage tank in periods of high
heating demand and/or high tank water temperature, and likely
overestimates the heat discharge in periods of low heating demand
and/or low tank water temperature. Fig. 12 depicts the optimal
flowrate and temperature of the tank water as determined by
(P). The flowrate of the tank water closely follows the heating de-
mand of the building, while the tank water temperature increases
during periods of low demand and decreases during periods of high
demand. Fig. 13 demonstrates the impact of the water flowrate and
temperature on the tank heat discharge, as determined by (7), and
contrasts the prescribed heat discharge with that of (S). During the
two peak heating demand periods of the day, (S) underestimates
the tank heat discharge by as much as 36%. However, in the middle
of the day, when the heating demand is relatively low and the tank
water is still well below delivery temperature, (S) overestimates
the tank heat discharge by as much as 97%, when compared to
(P). In these hours, (S) prescribes an infeasible heat dispatch from
the storage tank. Additionally, any hour in which (S) overestimates
the heat provided by the storage tank, it underestimates the addi-
tional heat that must be provided by the boiler, and thus underes-
timates the fuel requirements for the boiler. Ultimately, these
hourly miscalculations cause (S) to overestimate the annual tank
heat output, underestimate the annual boiler heat output, and
underestimate the annual boiler fuel input.

For this particular building power load, the aggregate power
output of the SOFCs never reaches the maximum turn-down. With
130 kW of rated capacity and a 20% maximum turn-down, the
aggregate power output must decrease below 26 kW before any
number of SOFCs is forced into standby mode. Because the mini-
mum hourly power load for the year is 52 kW, this particular sys-
tem does not demonstrate SOFC standby mode or, consequently,
SOFC start-up. However, for other simulated load profiles (or in
the real-world application of the system) the power demand could
fall below the 26 kW threshold. In these cases, the ability to model
the effects of SOFC standby and start-up is important.

Interestingly, the cumulative effect of the hourly miscalcula-
tions of power, gas, and heat dispatch by (S) is only a slight
overestimation of the total annual operational cost, but a more
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Fig. 13. Optimal storage tank heat dispatch as determined by (P) versus (S).

significant underestimation of the optimal SOFC capacity. In this
paper, we demonstrate the miscalculations by (S) for a large hotel
located in Wisconsin. However, other locations with similar utility
rates, policies, procedures, and emissions produce comparable re-
sults. In general, any location with a relatively high electricity-to-
gas price ratio, a relatively high rate of carbon emissions, and
restrictive net-metering policies will result in similar miscalcula-
tions by (S). For example, according to EIA reports on state electric-
ity prices, carbon emissions, and natural gas prices (see [33,34]),
Indiana, Kentucky, Minnesota, Montana, North Dakota, and Wyo-
ming have energy market conditions similar to those of Wisconsin.
These same states also have unfavorable net-metering policies and
interconnection procedures for customer-sited DG, according to
the NNEC (see [35]). For locations such as these, the (S) formula-
tion is insufficient to accurately determine the optimal design
and dispatch of a DG system, and we prefer the more detailed
(P) formulation.

5. Conclusions

Extant research approaches the problem of designing and dis-
patching DG systems with a variety of models and solution tech-
niques. Arguably, the most robust DG system design and
dispatch model in the literature is DER-CAM. This MILP model is
capable of prescribing a globally minimum total cost mix, capacity,
and operational schedule of an assortment of DG technologies.
Though simplified models such as DER-CAM allow for the rapid
solution of large problem instances, the trade-off for this simplicity
is the recommendation of a suboptimal, or even infeasible, system
design and dispatch in some instances.

A MINLP formulation of the design and dispatch problem ad-
dresses some of the shortfalls in simpler models by considering dy-
namic (i.e., off-design) performance characteristics of DG
technologies. Given the complex and often nonlinear behavior
inherent in the operation of real-world systems, a MINLP formula-
tion captures the dynamic performance of CHP and thermal stor-
age technologies more accurately than simpler, linear models.
However, the nonlinearities and additional integer variables re-
quired to model this behavior render instances of the problem
more difficult to solve. Thus, the purpose of this paper is to justify
the more complex formulation by demonstrating scenarios for
which it is important to model off-design performance and by eval-
uating the impact on the prescribed design and dispatch of neglect-
ing system dynamics.

In general, off-design performance limitations can be important
to consider when the operational schedule of DG technologies is
expected to vary over time (e.g., in load-following strategies).
Depending on the physical and economic viability of generation
and storage technologies, and on the rates, policies, and procedures
of local utilities, on-site generator output may be required to fol-
low the load demand during certain time periods. Because load-
following requires generators to operate at part-load, ramp power
output between time periods, and potentially enter standby mode,
the inability to constrain system dynamics could result in an unre-
alistic dispatch schedule. The off-design operation of CHP technol-
ogies also impacts the accurate determination of the thermal
energy that can be captured and stored. Ultimately, miscalcula-
tions in the operation of the technologies over time could result
in the selection of a system with suboptimal capacity.

We numerically demonstrate the effect of neglecting system
dynamics via a case study of a large hotel, located in southern Wis-
consin, retrofitted with SOFCs and a hot water storage tank. For
this example, a simple MILP model overestimates the annual fuel
requirements of the SOFCs, underestimates the annual amount of
exhaust heat that can be recovered from the SOFCs, overestimates
the annual amount of thermal energy available from the tank, and
underestimates the annual fuel requirements for the existing heat-
ing system. The cumulative impact of these miscalculations is that
the MILP overestimates the annual operational costs of the system
compared to the MINLP. By overestimating the costs, the MILP
underestimates the optimal SOFC capacity by 15%.

Ultimately, the preference for either a MINLP or a MILP formu-
lation of the design and dispatch problem depends on both the
purpose of the model and on the primary operating strategy (e.g.,
load-follow versus baseload) that is expected for the application
under study. If the purpose of the model is to employ it as a screen-
ing tool to determine which DG technologies are attractive in a gi-
ven application, then a simple MILP formulation may be adequate.
If, however, more detailed engineering analyses of the equipment
sizing and system dispatch are the objective, then a higher-fidelity
MINLP formulation is more appropriate. Furthermore, simple mod-
els of DG technologies under design conditions are sufficient to
determine the optimal system acquisition and operation for some
operating strategies (e.g., when the technologies baseload). How-
ever, we demonstrate that strategies exist for which not consider-
ing off-design performance can lead to the recommendation of a
suboptimal system design. Additionally, a more detailed model
permits the observation and analysis of dynamic aspects of techno-
logical performance that simpler models cannot capture. Such
analyses could reveal desirable performance characteristics of indi-
vidual DG technologies, and elucidate the impact of those charac-
teristics on the economic viability of integrated DG systems.

Future embellishments to the MINLP model presented here
could include the consideration of uncertainty in building demand,
market pricing, and system availability. A multi-stage, stochastic
programming approach to the design and dispatch problem could
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identify DG system designs that are robust to changes in the dis-
patch parameters. However, the introduction of stochasticity in-
creases the complexity of a MINLP problem that is already
difficult to solve. As with the research presented here, it would
be useful to determine the real-world scenarios for which the
added complexity (i.e., uncertainty) is of value.
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