Vol. 14, No. 1, September 2013, pp. 26-38
ISSN 1532-0545 (online)

| N F 0O R M 3

1 liorms |

http://dx.doi.org/10.1287 /ited.2013.0115
©2013 INFORMS

Transactions on Education

A Survey of Linear and Mixed-Integer
Optimization Tutorials

Alexandra M. Newman
Division of Economics and Business, Colorado School of Mines, Golden, Colorado 80401, newman@mines.edu

Martin Weiss

European Commission, Directorate-General Joint Research Centre, Institute for Energy and Transport,
Sustainable Transport Unit, I-21027 Ispra-Italy, martin.weiss@jrc.ec.europa.eu

s advanced undergraduate and graduate students in optimization begin conducting research, they must

base their work on articles found in academic journals. However, there is often a gap between the levels at
which a journal article and a textbook are written. Bridging that gap are tutorials on fundamental, yet advanced,
concepts such as (i) algorithmic details of linear and mixed-integer optimizers, (ii) formulations that render
models more tractable, (iii) descriptions of the mathematical structure of linear and mixed-integer programs, and
(iv) manuals of modeling languages that enable quick implementation of formulations and of linear and mixed-
integer solvers. This survey paper provides references to papers and reports whose purpose is to give overviews
of linear and mixed-integer optimization. We also include seminal texts and journal articles on fundamental
topics, and furnish references on applications whose implementation may have implications for more general
problems with similar mathematical structure. We propose to guide graduate students to identify references that
aid in their understanding of advanced journal articles and that help them write their own research articles.

Key words: teaching engineering, teaching modeling, teaching optimization, linear optimization, mixed-integer
optimization, tutorials, efficient formulations, cuts, heuristics, modeling languages, decomposition techniques

Introduction

and solvers, (vi) a few applications, and (vii) sem-

Students in their first year or two of college often
find that consulting the class textbook suffices for
solving their carefully contrived homework prob-
lems that test a small number of structured concepts,
generally, those being taught in the class. However,
advanced undergraduate and graduate students real-
ize that their missions, which assume the form of,
inter alia, class projects and research, involve open-
ended questions, for which there is little, if any, guid-
ance provided in standard textbooks, and only some
difficult-to-parse direction given in the open academic
literature.

To bridge the gap between textbook material and
journal articles, students should be aware of sem-
inal references in their field, tutorials that summa-
rize advanced concepts, and manuals that help prac-
titioners use software to solve their problems. In this
survey, we categorize helpful references into those
that treat (i) linear programming, (ii) integer program-
ming, including constraint programming, (iii) opti-
mization under uncertainty, (iv) solution techniques
specific to problem structure, (v) modeling languages

26

inal textbooks. Throughout this tutorial, we assume
a basic knowledge of optimization terminology at
the level expected of an advanced undergraduate
or of a graduate student in engineering or applied
mathematics.

Although topics such as complexity theory and
nonlinear programming are relevant, we omit these
from our treatment. For complexity theory, we rec-
ommend Tovey (2002), who (i) introduces big-O time
bound notation; (ii) differentiates problems classified
as P, NP, NP-complete, and NP-hard; (iii) introduces
yes-no form with examples; and then (iv) presents
examples of how to identify “hard” problems. John-
son (2012) gives a history of NP-completeness. For
nonlinear programming, we recommend Bazaraa
et al. (2006) for continuous nonlinear programming,
and Lee and Leyffer (2012) for nonlinear program-
ming with discrete variables. We also omit dynamic
programming and its variants, but refer the reader
to Powell (2009), who presents approximate dynamic
programming as a tool for modeling and solving
a broad class of complex problems that typically
involve uncertainty and for which decisions must be


mailto:newman@mines.edu
mailto:martin.weiss@jrc.ec.europa.eu

Newman and Weiss: A Survey of Linear and Mixed-Integer Optimization Tutorials

INFORMS Transactions on Education 14(1), pp. 26-38, ©2013 INFORMS

27

made over time in fields of study such as control the-
ory (including classical engineering and economics),
artificial intelligence, and operations research. Finally,
we omit a treatment of network models, such as span-
ning tree problems (Nésetfil and Nésetfilova 2012),
shortest path problems (Schrijver 2012a), and max-
imum flow and transportation problems (Schrijver
2012b), but refer the reader to these references and to
the seminal text of Ahuja et al. (1993).

Before we begin, it is important to reflect on
the origins of operations research. Gass and Assad
(2011) provide a description and list influential peo-
ple during the early years of the field. They then
describe seminal works themselves, and papers that
discuss seminal works. After a description of early
operations research-focused centers at locations such
as the RAND Corporation, the Pentagon, MIT, and
Princeton, Gass and Assad (2011) conclude with sto-
ries, lessons learned, and an annotated bibliography.
Grotschel (2012) edits a lengthier volume that con-
tains articles on classical mathematicians and their
contributions to the field of optimization, as well as
accounts detailing the history and significant devel-
opments in linear programming, discrete optimiza-
tion, nonlinear programming, and related computa-
tional work. Where relevant and appropriate through-
out our article, we give specific references to seminal
papers and papers that describe the history of a sub-
field. However, we provide only a few such papers,
and instead focus on state-of-the-art tutorials.

2. Linear Programming

Arguably, the seminal contributions to the field
of inequality-constrained optimization began with
Dantzig’s theory and algorithms of linear program-
ming in which both the objective function and the
constraints of an optimization model are linear func-
tions of the decision variables; these variables are
allowed to assume continuous (fractional) values. We
first discuss the earlier simplex method, followed by
interior point methods, and cite papers that give a
performance contrast between the two types of linear
programming algorithms. We conclude this section by
citing a paper on implementation issues for difficult-
to-solve linear programs. Dantzig et al. (1955) repre-
sents a fundamental paper on the simplex method
applied to both maximization and minimization prob-
lems. The authors include the theory behind the con-
struct of a basis, the existence of a (basic) feasible
solution and a bounded linear program, the existence
of an optimal solution, and the finite termination of
the algorithm. Lemke (1954) describes the dual sim-
plex method, applies this method to the dual problem,
discusses the advantages of this approach for solving
linear programs, and concludes with some remarks

regarding dual degeneracy, numerical stability, and
Phase I. Despite its usefulness in practice, the sim-
plex algorithm has exponential worst-case complex-
ity (Klee and Minty 1972).

Based on the premise that there exists a polynomial
time algorithm for linear programming (Khachian
1979), Karmarkar (1984) proposed an alternative
method for solving linear programs, now called the
barrier, or interior point, method. Karmarkar’s sem-
inal paper on the algorithm first gives an overview
of the background for and the main idea of this
polynomial-time algorithm, before providing both
algorithmic and theoretical details in subsequent sec-
tions. The author also discusses alternate implemen-
tations and examples of practical performance. Sim-
ply because the theoretical complexity of the sim-
plex method is worse than that of interior point
algorithms does not mean that the simplex method
always performs worse in practice. The implemen-
tations of the two types of algorithms is important
for run-time performance, as is the type of linear
program being solved. Gill et al. (1986) provide a
contrast between the simplex method and the bar-
rier method, review the barrier method, and describe
the notion of a barrier function. The authors then
equate Karmarkar’s method with a “projected New-
ton barrier method” in the context of linear program-
ming, and demonstrate that they can construct an
interior point algorithm for linear programs based
on a logarithmic transformation to inequality con-
straints. They present numerical results with and
without scaling constraint coefficients, and contrast
simplex and barrier method performance. Along sim-
ilar lines, Marsten et al. (1990) motivate interior point
methods based on techniques for converting equality-
and inequality-constrained optimization problems to
unconstrained problems, and based on using New-
ton’s method to solve such unconstrained problems.
The authors mathematically motivate the derivation
of interior point methods, and discuss implementa-
tion issues and computational results, including con-
trasts with simplex method performance.

Two survey papers coalesce the improvements in
interior point algorithm performance since a variant
of the algorithm was introduced in the 1980s. Lustig
et al. (1994) provide a state-of-the-art treatment of
interior point algorithms about a decade after their
emergence. Specifically, the authors examine various
implementations of logarithmic barrier functions (that
penalize constraint violation in the objective, thus
inducing feasibility), and matrix factorization meth-
ods, among others, and show computationally that
carefully constructed interior point implementations
can outperform simplex method implementations on
large-scale problems. Terlaky (2009) reviews interior
point methods, their variants and their benefits, and



Newman and Weiss: A Survey of Linear and Mixed-Integer Optimization Tutorials

28

INFORMS Transactions on Education 14(1), pp. 26-38, ©2013 INFORMS

develops theory in support of a basic interior point
method. The author then discusses limitations of inte-
rior point methods in terms of their ability to handle
problems with many constraints or problems that are
ill conditioned or numerically unstable. Terlaky (2009)
concludes with open problems regarding theoretical
performance, and with extensions of interior point
methods beyond applications in linear optimization.

In an advanced paper, Murty (2009) describes
sphere methods for solving large-scale, and not nec-
essarily sparse, linear programs. The author briefly
explains the importance of Gaussian elimination, the
simplex method, and interior point methods for solv-
ing linear systems. He then defines sphere methods as
special cases of interior point methods in which few,
or no, matrix inversions are required, and the matrix
inversion that is required involves only a small sub-
set of all constraints. Based on the premise that the
primal-dual interior point method is the most pop-
ular interior point variant because of its termination
criterion and the availability of both primal and dual
solutions, the author shows how to transform sphere
algorithms into primal-dual algorithms. The method
assumes the possession of an initial feasible solution,
uses centering (based on a ball), and determines a
descent direction to iterate from one solution to the
next. The author concludes with numerical results
and recommendations for further enhancements of
the method.

However, these papers do not diminish the promi-
nence of the simplex method as the algorithm of
choice for solving practical linear programming prob-
lems. In fact, most popular commercial linear pro-
gramming solvers (see §7) incorporate the primal and
dual simplex methods, as well as one or more interior
point methods. Such software allows the user to select
the solver and to tune it by choosing, for example,
pricing schemes in the simplex method, or features to
emphasize scaling of the problem instance. Klotz and
Newman (2013a) describe suggestions for improv-
ing computational performance of these solvers for
difficult linear programs. Their suggestions include
(i) consideration of parameter settings applied to
a problem instance, (ii) algorithm selection based
on the mathematical structure of the problem, and
(iii) assessment of the numerical stability associated
with the problem instance. Solver output from an iter-
ation log serves as guidance.

3. Integer Programming

A generalization of linear programming is one in
which the objective function and the constraints of
an optimization model remain linear functions of the
decision variables, but some or all of these variables
assume discrete or integer values. In this section,

we provide references that give background on the
subject, discuss the history of computational advance-
ments, describe ways in which model tractability can
be enhanced and solutions can be improved, provide
descriptions of integer programming enhancements
in two specific cases, and conclude with contempo-
rary advice on computation. Cook (2012) describes a
basic method for solving integer programming prob-
lems, the branch-and-bound algorithm, and provides
background on the fundamentals that are connected
to develop it. He gives the origin of the algorithm'’s
name, and concludes with an extension to the branch-
and-cut algorithm. His article points out the early
recognition of the necessity for modeling practical
problems using integer variables. Logical constructs,
among others, require such variables, but during the
1950s, even small linear programming problems were
not tractable. However, several decades later, there
had been significant hardware and software develop-
ments regarding the implementation of algorithms for
solving integer programs. Hoffman (2000) describes
the improvements in tractability of large-scale mixed-
integer linear optimization models from the begin-
ning to the end of the 1990s. She provides examples
of good formulation and discusses (i) exact solu-
tion strategies including enumeration, decomposition
methods (see §6 of this paper), and cutting plane algo-
rithms; and (ii) heuristic techniques, including simu-
lated annealing and tabu search. She then describes
column generation (see §6 of this paper), and hybrid
algorithms, the latter of which combine some or all
of the aforementioned techniques. She discusses par-
allel implementation and concludes with new direc-
tions for modeling and solution examination, and for
modeling under uncertainty (see §5 of this paper).

These advances in the ability to solve realistically
sized integer programming instances are explained
and documented in a pair of papers (Bixby et al. 2000,
Bixby and Rothberg 2007). Whereas the earlier paper
concentrates to some extent on linear programs and
then discusses the improvements in integer program-
ming tractability owing to heuristics, the presolve
feature, and cutting planes, the latter paper reviews
more recent progress in solving mixed-integer pro-
gramming problems; this progress comes both in
terms of hardware capabilities and in terms of soft-
ware (specifically, CPLEX (IBM 2009)) sophistication.
The authors run the branch-and-bound algorithm,
disabling then-recent features, most notably, cutting
planes, to demonstrate their effectiveness. Bixby and
Rothberg (2007) conclude by emphasizing the useful-
ness of the callback feature in CPLEX, which allows
users to implement tailored techniques within the
optimization algorithm.

A number of authors recognize the extent to which
model formulation affects tractability, and adminis-
ter advice to this end. Camm et al. (1990) provide



Newman and Weiss: A Survey of Linear and Mixed-Integer Optimization Tutorials

INFORMS Transactions on Education 14(1), pp. 26-38, ©2013 INFORMS

29

specific formulation guidance for practitioners inter-
ested in the ubiquitous big “M.” This “M” stands
in place of a very large number, and is often used
as a coefficient to represent the ability to employ “as
much of the corresponding resource as one desires”
when the binary variable linked to incurring a fixed
charge for such use has a value of 1. (Otherwise,
one cannot use any of the resource.) The authors
mention many practical examples to demonstrate that
almost always, there is a maximum practical size for
“M.” Furthermore, they illustrate that using unnec-
essarily large values for this parameter diminishes
model tractability. Trick (1997) presents an unmain-
tained, but still highly relevant, website containing
examples, and discussions of and formulations for
popular integer programming problems. Brown and
Dell (2007) provide excellent examples of how to start
formulating a model, focusing on commonly appear-
ing integer linear programming structure, for exam-
ple, (i) the use of big “M”; (ii) packing, covering, and
partitioning constraints; (iii) cardinality constraints;
and (iv) the use of the inclusive and exclusive “or.”
The authors begin the tutorial without set notation
but then provide examples using set notation. They
draw on examples from the military, and conclude
their paper by specifying an easy-to-read format in
which mathematical programming models should be
written. Trick (2005) points out that some well-known
reformulation techniques designed to improve the lin-
ear programming relaxation bound for an integer pro-
gram do not necessarily apply in light of more sophis-
ticated integer programming solvers, which already
recognize common tightening inequalities. He sug-
gests instead, via two examples in transportation and
sports scheduling, that redundant constraints (which
are relaxations of existing constraints), and variable
redefinition can significantly improve solution times
of model instances.

Preprocessing of an already-formulated model
before it is passed to the branch-and-bound algo-
rithm can improve the tractability of an integer pro-
gram significantly. Some preprocessing techniques are
embedded in solvers, and should serve as a secondary
screening mechanism on a well-formulated model.
(However, preprocessing can also be applied to a
poorly formulated model.) Savelsbergh (1994) identi-
fies such techniques to detect redundancies and infea-
sibility, and to tighten variable bounds and alter coef-
ficients in integer programming problems. He also
determines opportunities to fix (binary) variable val-
ues based on infeasibilities associated with having the
variable assume alternate values within its domain.
Additionally, objective function coefficients can be
modified by comparing these coefficients to those on
the same variables in the constraint set. The author

then extends the techniques, and provides numerical
examples and computational results.

In a pair of eminently readable papers, authors
suggest how to improve the quality of solutions
obtained from integer programs. Sherali and Smith
(2001) reduce solution times of integer programming
formulations possessing symmetry, or many solu-
tion options with similar mathematical characteristics.
The authors present three examples: network design,
noise pollution reduction, and machine scheduling;
they show how, in each case, careful formulation that
provides a hierarchy in solutions can lead to a more
tractable model. In some cases, a model can also be
reformulated to achieve better results. Brown et al.
(1997) explain the concept of “persistence,” or the
art of formulating models that yield similar solu-
tions with a change in some input parameters. While
this concept can be applicable to increasing model
tractability, it also pertains to formulating models
well under repeated solves, where the repetition is
introduced because of changing conditions (inputs).
Implementing the ideas of Brown et al. (1997) helps
to mitigate the commonly occurring characteristic of
integer programs that a small change in data can
yield a vastly different solution (where the difference
in solutions is measured, e.g., for binary solutions,
in terms of the Hamming distance between them).
In practice, one is often willing to give up some value
(or cost) in the objective function for a solution sim-
ilar to one obtained with slightly different inputs.
For example, a persistent solution might be welcome
in a setting in which a predetermined production
schedule must be reoptimized because a machine is
inoperable.

Some authors provide advice pertaining to more
specific classes of integer programming problems.
Rebennack et al. (2012) address the maximum stable
set problem, i.e., maximizing the sum of the weights
in a set of nodes on a graph such that the nodes in
the set are pairwise nonadjacent. The authors discuss
special constructs and specific solution strategies, e.g.,
preprocessing heuristics, and a branch-and-cut algo-
rithm. Cornuéjols (2008) discusses families of cuts that
strengthen the linear programming bound of an inte-
ger program. His tutorial reviews basic polyhedral
theory, and lift-and-project theory. The author then
derives mixed-integer inequalities, e.g., mixed-integer
rounding cuts and Gomory mixed-integer cuts, and
presents examples and computational results for sev-
eral classes of these types of inequalities. The conclu-
sions contain a schematic of the relationship between
different classes of cuts, and avenues for future
research. Cornuéjols (2012) gives a more in-depth dis-
cussion that focuses only on Gomory cuts, including
their checkered past regarding the extent to which
they were thought to be useful.



Newman and Weiss: A Survey of Linear and Mixed-Integer Optimization Tutorials

30

INFORMS Transactions on Education 14(1), pp. 26-38, ©2013 INFORMS

Similar to linear programs, good commercial solvers
for integer programs also exist (see §7). However, for
maximal performance, one must be familiar not only
with good formulation but also with the attributes of
the solver. Danna (2008) discusses the performance
variability of integer programs, defined as an inex-
plicable difference in computation time on the same
model instance under different performance-neutral
circumstances, e.g., a similar algorithm in a similar
environment. She includes in her presentation the
definition of performance variability, its causes and
effects, and suggests ways in which to reduce vari-
ability. Klotz and Newman (2013b) describe methods
for improving computational performance of difficult
mixed-integer linear programs. They suggest tuning
algorithmic parameter settings, implementing cuts,
defining variables effectively, formulating the model
well, and being able to identify, based on the math-
ematical structure of the problem and/or the output
from a node log, when to employ which technique(s).

4. Constraint Programming
Constraint programming is a logic-based method for
examining and solving integer programming prob-
lems which usually lack an objective function, or
that possess only a simple objective. With its roots
in computer science, its techniques reduce the search
space by eliminating infeasible solutions from con-
sideration using constraint satisfiability arguments.
Optimization problems involving binary or integer
variables, and ones in which finding a feasible solu-
tion can be difficult, e.g., scheduling and timetabling,
lend themselves well to this technique. This section
highlights several papers that describe the method
of constraint programming, and contrast it with clas-
sical mathematical (integer) programming. Hooker
(1994) examines pure and mixed-integer programs.
He draws analogies between cutting planes and
other classical methods designed to expedite solutions
within a traditional branch-and-bound framework,
and describes reasoning used to determine feasible
solutions via constraint and logic-programming. The
author emphasizes that constraint programming can
exploit the structure of some (mixed) integer pro-
grams, and rejects the idea that the inability to convert
inequality constraints into a logical form precludes
the effectiveness of constraint programming. Hooker
(1994) provides examples of how logical implica-
tions can be derived from an integer programming
problem, and presents a generic branch-and-bound
algorithm with in-built logic processing. He also
mentions relaxations, strong cuts, and nonvalid cuts
within the context of branch-and-bound and con-
straint programming.

Smith (1995) provides an introduction to con-
straint satisfaction problems, including the domain

over which variables are generally defined, the types
of constraints often present in these problems, and
algorithms. The author also discusses ordering tech-
niques to expedite solutions, and mentions extensions
involving an objective function. Brailsford et al. (1999)
provide a tutorial on constraint satisfaction problems.
The authors define these combinatorial problems as
those requiring a solution that satisfies a set of con-
straints. The authors contend that traditional inte-
ger programming techniques do not necessarily per-
form well on these problems, and suggest that artifi-
cial intelligence researchers have introduced efficient
algorithms that are relatively unknown to operations
researchers. The authors give the basic components of
a constraint satisfaction problem, provide examples,
describe exact algorithms, suggest efficient formula-
tions (e.g., ones in which symmetry is precluded and
the number of variables per constraint is small), and
introduce heuristics.

In a rather accessible paper, Lustig and Puget (2001)
contrast constraint programming and classical mathe-
matical programming. The authors then provide three
examples: a graph coloring problem, the stable mar-
riage problem, and a sequencing problem, and dis-
cuss how the constraint programming concepts of
domain reduction and constraint propagation can be
used to apply search strategies to solve these classical
mathematical programming problems as constraint
programs. Suggestions include hybrid strategies that
combine mathematical programming and constraint
programming to enhance tractability, and examples
of warehouse location-allocation and crew scheduling
conclude the paper.

5. Optimization Under Uncertainty
Researchers have long been aware of the potential
shortcomings of treating input data as deterministic.
Most of the work cited in this section addresses uncer-
tain optimization in the context of linear program-
ming. We first cite articles that provide background
on the topic, and then discuss proper stochastic pro-
gramming model formulation, and two specific types
of stochastic programs. We conclude with one paper
on simulation optimization and another on robust
optimization.

Dantzig (1955) and Beale (1955) independently dis-
covered an extension of linear programming that han-
dles uncertainty. Dantzig’s paper discusses two-stage
stochastic linear programs in which first-stage deci-
sion variables must be determined before observing
some yet-to-be-realized scenarios, whereas second-
stage decision variables can be selected after observing
these scenarios; hence, the values of the second-stage
variables depend on the scenarios. Dantzig further
considers the multistage extension of this two-stage



Newman and Weiss: A Survey of Linear and Mixed-Integer Optimization Tutorials

INFORMS Transactions on Education 14(1), pp. 26-38, ©2013 INFORMS

31

paradigm. Beale focuses on the mathematical struc-
ture of such models, emphasizing cases in which con-
vexity properties arise. He considers a formulation in
which the optimal value of the second-stage problem
is a convex function in the first-stage decision vector
and, hence, the expected value of the second-stage cost
is also a convex function of these variables (because it
is a positively weighted sum of convex functions). He
further provides conditions under which the optimal
value of the second-stage problem is a convex func-
tion with respect to the uncertain parameters in the
constraint set.

Sen and Higle (1999) provide guidance in for-
mulating simple recourse, two-stage, and multistage
stochastic linear programs. They begin by postu-
lating that deterministic linear programs that use
expected values for the data yield quantitatively and
qualitatively different solutions than their stochas-
tic programming counterparts. The authors contrast
solutions obtained from expected-value data with
those from wait-and-see (or scenario) analysis, and
introduce examples to illustrate possible character-
istics of stochastic programming, including future
infeasibility, and nonconvex feasible regions. They
conclude with scenario analysis and recent devel-
opments to simplify stochastic programs. The tuto-
rial on the same subject by Higle (2005) shows an
example in which sensitivity analysis is not suffi-
cient to examine an uncertain scenario, and com-
pares the outcome from this analysis to one in which
recourse is used. She then provides a general intro-
duction to the concept of recourse, and the ideas
of two-stage, simple, fixed, complete, and multistage
recourse. She discusses solutions for these types of
problems, demonstrates using an example why a
stochastic program solution can be better than a cor-
responding deterministic model solution, discusses
solution techniques, and concludes with computa-
tional results and further reading.

Rockafellar (2007) discusses ways in which to ad-
dress risk when optimizing a system under uncer-
tainty, where the uncertainty is characterized as a
set of scenarios, each of which has a given nonzero
probability of occurring. He discusses traditional
approaches to optimization modeling under uncer-
tainty, including guessing which scenario might mate-
rialize and optimizing with respect to it, performing
worst-case analysis, and using expectations and stan-
dard deviations. The author then describes means to
hedge against uncertainty by using techniques that
lend themselves to multistage modeling, e.g., stochas-
tic programming and dynamic programming. Rock-
afellar then provides means for quantifying risk in
a coherent fashion, describes the measures of value-
at-risk and conditional value-at-risk, and concludes

with examples, generalizations, and characterizations
of what an optimal solution under uncertainty is.

Ahmed and Shapiro (2008) address a chance-
constrained stochastic program, in which the modeler
is interested in determining a solution that satisfies a
constraint with some given probability. They cite two
reasons for the continued intractability of these types
of stochastic programming problems: (i) it is difficult
to test whether a solution is feasible in the chance
constraint, and (ii) the feasible region is not convex,
implying that even if one could check for feasibil-
ity, checking for optimality remains difficult. Ahmed
and Shapiro approximate the distribution that they
use to model uncertainty of the probabilistic vector
in their chance constraint with an empirical distribu-
tion based on a Monte Carlo sample. This approxi-
mated problem provides provably good solutions to
the chance-constrained problem.

Wallace (2010) describes the way in which stochas-
tic programming relates to the theory of real options.
He sets forth the types of options, and states that
the wait-and-see (scenario) solutions are unlikely to
be those produced by a stochastic program. He con-
cludes that a real options approach is not as general
as a stochastic programming approach in that the for-
mer requires that the options must be identified a pri-
ori, and the latter produces the options as part of its
solution.

Chen et al. (2008) present a tutorial in the area
of simulation optimization. Unlike in stochastic pro-
gramming, in which the underlying model is a math-
ematical program, the authors address the paradigm
in which a simulation model is used to capture uncer-
tain inputs with a view to optimizing performance
of the system in question. The authors point out that
the difficulties in this modeling paradigm stem from
balancing the computational effort used to search for
better solutions with the effort related to obtaining
better estimates of the performance of the incumbent
solution. The authors provide a context for and a
description of existing solution approaches, and then
treat three specific areas of this field: (i) allocating
correctly simulation replications to determine an opti-
mal solution, (ii) estimating an improving (but, nec-
essarily, stochastic) search direction, and (iii) obtain-
ing globally optimal solutions. They conclude with
related work.

Bertsimas et al. (2011) discuss both methodology
and computational results of robust optimization in
which the goal is to determine an optimal solution for
any realization of an outcome (where these outcomes
are given as prespecified members of a set). The
authors argue that many robust optimization prob-
lems are reasonably tractable, but that robust opti-
mization may not be the appropriate modeling frame-
work depending on the nature of uncertainty in the



Newman and Weiss: A Survey of Linear and Mixed-Integer Optimization Tutorials

32

INFORMS Transactions on Education 14(1), pp. 26-38, ©2013 INFORMS

problem. After developing mathematical models with
various structures, and discussing how to model the
uncertainty within these structures, some successful
applications in finance, statistics, supply chain man-
agement, and engineering design are presented.

The stochastic programming community has a
website (http://stoprog.org/) that provides resources
such as tutorials (journal articles and presentations),
papers, lecture notes, and books.

6. Specialized Solution Techniques
Although most of the discussion to this point has
concerned algorithms and good modeling practice
for monolithic formulations, the following authors
offer polylithic solution techniques, i.e., techniques
designed to partition a problem into manageable
parts and solve these parts iteratively until conver-
gence. In this section, we begin by describing exact
techniques, specifically, two ways in which “difficult”
(or many) variables can be handled, a method by
which constraints are handled, and some specialized
techniques; we conclude with heuristics.

In a seminal paper, Dantzig and Wolfe (1960) intro-
duce a method that solves a large-scale linear pro-
gram by examining only a subset of the columns
(variables) of said linear program at a time; dual-
price information is passed to subproblems and those
subproblems generate columns that are passed back
to a centralized master program for evaluation of
their appeal in constituting the optimal solution. The
authors begin with a specific linear programming for-
mat, show how the algorithm can handle generalized
formats, and conclude by mentioning some special-
ized systems (e.g., block angular constraint sets) to
which their approach can be applied. Subsequently,
Liibbecke and Desrosiers (2005) survey contributions
in Dantzig-Wolfe decomposition and column genera-
tion. They provide references for applications of col-
umn generation, and then outline the method. They
describe the structure of integer programs and corre-
sponding convexification principles. They then elab-
orate on column generation for integer programs.
The authors explain the structure of the decomposed
problem—the restricted master problem and the pric-
ing problem. The article concludes with a discus-
sion of implementation issues and their resolution,
and practical guidelines for obtaining integer solu-
tions from a procedure that solves linear programs.
Feillet (2010) describes column generation as it applies
specifically to the vehicle routing problem with time
windows. The author provides a Dantzig-Wolfe refor-
mulation to obtain a tighter linear programming
relaxation, a branch-and-price strategy, cutting planes,
and a Lagrangian procedure tailored to the specific
application.

In another seminal paper, Benders (1962) describes
a method for solving mixed-integer programming
problems in which two classes of variables exist—
those restricted to be integer, and those that are
continuous. He places the former in an integer pro-
gramming master problem and the latter in a linear
programming subproblem. He shows two ways in
which the subproblem can be solved—either via the
primal or the dual formulation. He concludes with
numerical results. Geoffrion (1972) generalizes this
approach to the situation in which the subproblem is
not a linear program, discusses cases in which this
type of decomposition is appropriate, and gives pre-
liminary computational results.

The above techniques address the way in which
a problem can be made more tractable by reducing
the number of variables that must simultaneously
be considered, either in that said variables are intro-
duced into a problem in stages, or that they are parti-
tioned into separate problems and their values deter-
mined in their respective subproblem. Lagrangian
relaxation also partitions the problem, but by relaxing
constraints into the objective function with a penalty
for their violation. The eminently readable and highly
cited paper by Fisher (1981) describes this technique,
and provides a numerical example of how lower and
upper bounds on the problem instance are derived.
The example consists of a generalized assignment
model in which the knapsack constraints are relaxed
into the objective. The author also discusses multiplier
updates and the shortcomings of the technique.

Kallrath (2011) provides summaries of polylithic
solution approaches, i.e., solution approaches that
decompose the original problem and solve it itera-
tively, in parts. The author also provides guidance on
careful model formulation and constructs, e.g., SOS-2
constraints, that may be helpful in solving mathemat-
ical programs either in their monolithic or in their
polymathic format.

In the realm of heuristic techniques, Glover (1990)
provides a fundamental tutorial on tabu search, which
he defines as the transformation of one solution into
another for the purpose of evaluating the solution
with respect to an objective (or measure of “good-
ness”). A transformation consists of a sequence of
moves, which could assume the form of the addi-
tion or removal of a variable in the solution, or a
change in the solution’s variable value(s). He provides
examples of successful applications of tabu search,
and emphasizes and explains certain characteristics
of the search, such as its short-term memory mecha-
nisms of identifying good candidate solutions. Glover
(1990) carefully illustrates the search procedure with
an example of a modified minimum cost spanning
tree. The author then discusses longer term mem-
ory implications as they relate to search intensifica-
tion strategies. Schneider (2011) describes a specific


http://stoprog.org/

Newman and Weiss: A Survey of Linear and Mixed-Integer Optimization Tutorials

INFORMS Transactions on Education 14(1), pp. 26-38, ©2013 INFORMS

33

application of tabu search regarding the manufac-
ture of cables for cars; there are ramping and retool-
ing times associated with setups, which are reflected
in the overall cost of producing cables. Certain jobs
can only be assigned to certain machines, where a
job consists of a type of cable, differentiated by its
length, diameter, color, and insulation material. The
author provides a basic tabu search algorithm, and
then shows how this algorithm can be tailored for her
problem, specifically, with a view to enhancing com-
putational efficiency. The problem the author presents
is general enough that researchers can benefit from
the ideas for a different problem setting.

7. Modeling Languages and Solvers

Bixby (2012) gives an amusing, yet comprehensive
and easily understandable, history of computation
for both linear and integer programming problems,
from well before the advent of modeling languages,
efficient computer codes, and hardware and pro-
gramming as we know them today. A practitioner
can now solve an optimization model through direct
use of commercial or open-source software contain-
ing the linear and integer programming algorithms
described above (or with the use of a customized
algorithm). However, the software requires an inter-
face that accepts vectors and matrices of data, specif-
ically, vectors containing objective function coeffi-
cients and constraint data in the form of matrices
of left-hand-side coefficients and vectors of right-
hand-side constants. Implementation of the special-
ized solution techniques described in §6 requires
iterative solutions of subproblems, and information
passing between the iterations. Programming lan-
guages such as C++ can be used to generate vectors
and matrices in the form required by optimization
solvers, and allow for “scripting” or writing proce-
dural code to solve parts of a monolith and pass
information from that solve to subsequent ones. How-
ever, decades ago, researchers recognized that the
time required to write the necessary code and the
inflexibility of the resulting code would lead many
practitioners to adopt modeling languages, or higher-
level, specialized programming constructs suited for
optimization model formulation, e.g., set constructs,
and the expression of objective functions and con-
straints similar to the way in which they appear when
written mathematically. These modeling languages
allow for more rapid model development, and for
more flexibility in changing and debugging a model
than conventional programming languages do. Fourer
(2012) provides a history of matrix generators, moti-
vating their need, discussing their correspondence
with modeling languages, and providing examples
of syntax. Among those algebraic modeling lan-
guages Fourer (2012) mentions, the most commonly

used ones for linear and mixed-integer program-
ming problems are AMPL (AMPL 2009, Fourer et al.
2003) and GAMS (GAMS 2012, Rosenthal 2012). The
most competitive linear and mixed-integer program-
ming solvers at the time of this writing are CPLEX
(IBM 2009), GuRoBi (GuRoBi 2009), and Xpress (FICO
2008). CPLEX, GuRoBi, and Xpress can all accept
models written in either AMPL or GAMS; the Xpress
solver can also accept models written in its Mosel
modeling language (FICO 2008). (CPLEX also has its
own modeling language, OPL.) Unlike AMPL and
GAMS, Mosel is a compiled language, making it
faster to read into the solver for large models, which
AMPL and GAMS only interpret. However, Mosel has
the disadvantage that it lacks solver versatility, i.e.,
at the time of this writing, the solvers with which
the modeling language is compatible are more lim-
ited. AMPL and GAMS, on the other hand, can be
used with many solvers (including a variety of non-
linear ones). Kallrath (2012) describes algebraic mod-
eling languages including, but not limited to, the ones
we mention.

It is now possible to obtain heavily discounted
or even free academic licenses for most model-
ing languages and solvers, which possess the full
capability of commercial software. However, these
licenses can only be used for academic (i.e., teaching
and research) purposes. It is also possible to access
solvers on the NEOS server, see http://www.neos-
server.org/neos/, hosted by the University of Wiscon-
sin, Madison. Most linear and mixed-integer solvers
on this website accept AMPL and/or GAMS input.
Solvers (and other software including a modeling lan-
guage called FlopC++) are also available on the COIN-
OR website (http://www.coin-or.org/index.html) as
part of the COmputational INfrastructure for Oper-
ations Research project designed to encourage the
development and improvement of open-source soft-
ware (see Martin 2010). Sandia National Laborato-
ries has been at the forefront of developing a
Python-based open-source optimization package with
modeling language capabilities, and solvers that
take advantage of special problem structure both
in stochastic and deterministic (integer) programs
(https://software.sandia.gov /trac/coopr/).

8. Applications

In addition to focusing on theory and algorithms,
many researchers have written tutorials on well
known applications, in some cases, furthering the
theory in addressing the application. For example,
Bertsimas and Stock Patterson (1998) describe the “air
traffic flow management problem,” involving rout-
ing aircraft through capacity-constrained sectors in
the sky. The authors use a clever formulation for


http://www.neos-server.org/neos/
http://www.neos-server.org/neos/
http://www.coin-or.org/index.html
https://software.sandia.gov/trac/coopr/

Newman and Weiss: A Survey of Linear and Mixed-Integer Optimization Tutorials

34

INFORMS Transactions on Education 14(1), pp. 26-38, ©2013 INFORMS

their integer programming problem with an under-
lying network structure and show how the resulting
structure possesses facet-defining constraints, greatly
enhancing model tractability. This research provides
an excellent example of how unintuitive model refor-
mulation can lead to dramatic improvements in com-
putational performance. Lambert et al. (2013) describe
a prominent class of problems in open pit mining,
the open pit production scheduling problem and its
variants. Lambert et al. (2013) focus on computational
aspects of certain applied models. The authors dis-
cuss variable elimination techniques, variable defini-
tions, strong formulations, and techniques for quickly
obtaining integer feasible solutions. In many cases,
these ideas existed in the literature, but had never
been carefully written down and explained mathe-
matically. The observant reader should be able to
apply the insights in the Lambert article to mod-
els with a similar precedence-constrained knapsack
structure.

Arguably, operations research began as a field with
its applications during World War II. Sheldon and
Yost (2011) lead the reader through four decades of a
mathematical modeler, algorithmic expert, and prac-
titioner as he recounts his (at the time of this writ-
ing, still active) life in military operations research.
Not only does this article provide insights into mil-
itary modeling and the way in which the U.S. mili-
tary uses operations research, but it also points out
the advances in and shortcomings of the field. For
example, the article mentions the important modeling
concept of elastic programming, and also the mysteri-
ous concept of the “subject matter expert,” noting that
there are no “subject matter apprentices,” and issuing
the caveat that the former designation seems almost
always to be a subjective one.

An excellent tutorial on an application with both
military and civilian relevance is given by Brown et al.
(2006), who introduce bi-and tri-level models whose
solutions dictate how to fortify assets in the face of
attack from an “intelligent” terrorist (or, in a civil-
ian setting, how to respond to natural disasters). The
authors begin by listing U.S.-defined critical assets,
and note that these are often characterized by the
attributes of criticality, vulnerability, reconstitutability,
and threat. They then introduce an attacker-defender
optimization model in which an inner problem speci-
fies that a “defender” wishes to utilize his asset most
efficiently, whereas an “attacker” seeks to heavily
damage or destroy the asset under the assumptions
that the attacker has perfect information regarding the
way in which the defender uses his (damaged) asset
and is capable of optimally manipulating the sys-
tem in his favor. The paper also details related model
types, i.e., defender-attacker models and defender-
attacker-defender models, discusses the mathematics

and solution techniques behind each, and concludes
with examples.

In recent applications that are somewhat uncon-
ventional for operations researchers, but interesting
nonetheless, Worden et al. (2011) and Cohen and
Parhi (2011) provide tutorials on soft algorithms for
mechanical systems, and on optimization of the RSA
public key cryptosystem, respectively.

Finally, Brown and Rosenthal (2008) discuss
“secrets” for success in applied optimization mod-
eling, which include guidance on: (i) writing and
model formulation, (ii) the realization of a fine line
between what classifies as an objective function and
what classifies as a constraint, (iii) the necessity of
running a variety of model instances, (iv) the benefits
of modeling robustly, (v) the insights available from
the dual model, (vi) the recognition of the benefits and
drawbacks of modeling languages and spreadsheets,
(vii) the strengths and weaknesses of sensitivity anal-
ysis and heuristics, and (viii) the importance of clearly
conveying model results.

9. Optimization Textbooks

Although we provide here a tutorial consisting of
journal articles, technical reports, Web pages, and
manuals containing advanced material not necessar-
ily found in books, we mention in closing books that
may prove to be helpful references: (i) Winston and
Goldberg (2004) provide an advanced undergradu-
ate and beginning masters-level treatment of many
operations research topics; Rardin (1998) addresses
the same for optimization modeling in particular;
and Kallrath and Wilson (1997) address linear and
mixed-integer optimization models and solution algo-
rithms specifically; (ii) Dantzig (1963) represents a
seminal linear programming text, with updates given
in Dantzig and Thapa (1997, 2003); (iii) Bertsimas
and Tsitsiklis (1997) address both linear and inte-
ger optimization, as do Wolsey (1998), Martin (1999)
and Bertsimas and Weismantel (2005); (iv) Bazaraa
et al. (2005) and Ahuja et al. (1993) provide coverage
of network flow models, with the former reference
also including linear programming topics. Finally,
in the stochastic programming domain, King and
Wallace (2012) emphasize modeling, while Shapiro
et al. (2009), Birge and Louveaux (1997), and Prekopa
(1995) focus on theory and algorithms. Although
this section in no way provides a complete listing
of useful books on the topics of linear and mixed-
integer optimization, we attempt to highlight texts
that advanced undergraduate and graduate students
may find useful.

10. Summary and Conclusions
We have surveyed seminal works and tutorials on lin-
ear and mixed-integer programming. Tables 1 and 2



Newman and Weiss: A Survey of Linear and Mixed-Integer Optimization Tutorials

INFORMS Transactions on Education 14(1), pp. 26-38, ©2013 INFORMS 35
Table 1 Summary of Cited Work on Linear Programming, Mixed-Integer Programming, and Optimization Under Uncertainty

Article Topic Subtopic Article type Article level®
Dantzig et al. (1955) Linear programming Primal simplex Seminal paper |
Lemke (1954) Linear programming Dual simplex Seminal paper A
Klee and Minty (1972) Linear programming Complexity Seminal paper A
Khachian (1979) Linear programming Ellipsoid method Seminar paper A
Karmarkar (1984) Linear programming Interior point Seminal paper A
Gill et al. (1986) Linear programming Method and performance contrast Seminal paper A
Marsten et al. (1990) Linear programming Interior point motivation Tutorial |
Lustig et al. (1994) Linear programming Interior point implementation State-of-the-art A
Terlaky (2009) Linear programming Interior point review State-of-the-art A
Murty (2009) Linear programming Sphere methods Tutorial A
Klotz and Newman (2013a) Linear programming Implementation Tutorial |
Cook (2012) Integer programming Background and history Survey B
Hoffman (2000) Integer programming Large-scale improvements State-of-the-art |
Bixby et al. (2000) Integer programming Progress State-of-the-art |
Bixby and Rothberg (2007) Integer programming Progress State-of-the-art |
Camm et al. (1990) Integer programming Big “M” Tutorial B
Trick (1997) Integer programming Examples Tutorial B
Brown and Dell (2007) Integer programming Formulation Tutorial B
Trick (2005) Integer programming Formulations Tutorial |
Savelsbergh (1994) Integer programming Preprocessing Tutorial A
Sherali and Smith (2001) Integer programming Symmetry Tutorial A
Brown et al. (1997) Integer programming Persistence Tutorial |
Rebennack et al. (2012) Integer programming Maximum stable set Tutorial A
Cornuéjols (2008) Integer programming Cuts Tutorial A
Cornuéjols (2012) Integer programming Gomory cuts History B
Danna (2008) Integer programming Performance variability Tutorial A
Klotz and Newman (2013b) Integer programming Implementation Tutorial |
Hooker (1994) Integer programming Constraint programming Tutorial A
Smith (1995) Integer programming Constraint satisfaction Tutorial A
Brailsford et al. (1999) Integer programming Constraint satisfaction Tutorial A
Lustig and Puget (2001) Integer programming Constraint programming Tutorial |
Dantzig (1955) Stochastic programming Math structure Seminal paper A
Beale (1955) Stochastic programming Math structure Seminal paper A
Sen and Higle (1999) Stochastic programming Recourse Tutorial |
Higle (2005) Stochastic programming Comparisons with determinism Tutorial A
Rockafellar (2007) Optimization under uncertainty Risk Tutorial A
Ahmed and Shapiro (2008) Stochastic programming Chance constraints Tutorial A
Wallace (2010) Optimization under uncertainty Real options Tutorial A
Chen et al. (2008) Optimization under uncertainty Simulation Tutorial A
Bertsimas et al. (2011) Robust optimization Methodology and modeling Tutorial A

tArticle levels: beginning (B), intermediate (1), and advanced (A).

summarize the sources we have cited. It is our hope
that advanced undergraduate and graduate students
can use our paper and the references contained herein
in order to fill the gaps between course work and their
own research.

Acknowledgments

The authors wish to thank Holly Graham (Colorado School
of Mines) for her help with retrieving reference material and
with bibliographic formatting. The views expressed here are
those of the authors and may not be considered as an official
position of the European Commission.

References

Ahmed S, Shapiro A (2008) Solving chance-constrained stochas-
tic programs via sampling and integer programming. Chen Z,

Raghavan S, eds. Tutorials in Operations Research (INFORMS,
Hanover, MD), 261-269.

Ahuja R, Magnanti T, Orlin J (1993) Network Flows: Theory, Algo-
rithms, and Applications (Prentice Hall, Englewood Cliffs, NJ).

AMPL (2009) AMPL—A Mathematical Programming Language
(AMPL Optimization LLC, Albuquerque, NM).

Bazaraa M, Jarvis J, Sherali H (2005) Linear Programming and Net-
work Flows (John Wiley & Sons, Inc., New York).

Bazaraa M, Sherali H, Shetty C (2006) Nonlinear Programming: The-
ory and Algorithms (John Wiley & Sons, Inc., Hoboken, NJ).
Beale EML (1955) On minimizing a convex function subject to linear

inequalities. . Roy. Statist. Soc. 17(2):173-184.

Benders ] (1962) Partitioning procedures for solving mixed-
variables programming problems. Numerische Mathematik
4(3):238-252.

Bertsimas D, Stock Patterson S (1998) The air traffic flow manage-
ment problem with enroute capacities. Oper. Res. 46(3):406—422.

Bertsimas D, Tsitsiklis ] (1997) Introduction to Linear Optimization
(Athena Scientific, Belmont, MA).

Bertsimas D, Weismantel R (2005) Optimization Owver Integers
(Dynamic Ideas, Belmont, MA).



Newman and Weiss: A Survey of Linear and Mixed-Integer Optimization Tutorials

36 INFORMS Transactions on Education 14(1), pp. 26-38, ©2013 INFORMS
Table 2 Summary of Cited Work on Decomposition Techniques, Modeling Languages and Solvers, and Applications

Article Topic Subtopic Article type Article level®
Dantzig and Wolfe (1960) Tailored algorithms Dantzig-Wolfe decomposition Seminal paper A
Libbecke and Desrosiers (2005) Tailored algorithms Column generation Tutorial A
Feillet (2010) Tailored algorithms Column generation (for vrp*) Tutorial A
Benders (1962) Tailored algorithms Benders decomposition Seminal paper A
Geoffrion (1972) Tailored algorithms Generalized Benders decomposition Seminal paper A
Fisher (1981) Tailored algorithms Lagrangian relaxation Seminal paper |
Kallrath (2011) Tailored algorithms Polylithic approaches Tutorial |
Glover (1990) Tailored algorithms Tabu search Tutorial |
Schneider (2011) Tailored algorithms Tabu search (example) Tutorial |
Bixby (2012) Computation History Tutorial B
Fourer (2012) Software History Survey B
Fourer et al. (2003) Software AMPL Manual B
Rosenthal (2012) Software GAMS Manual B
Kallrath (2012) Software Modeling language description Tutorial B
Martin (2010) Software COIN-OR Manual B
Bertsimas and Stock Patterson (1998) Application Air traffic flow management Seminal paper |
Lambert et al. (2013) Application Mining Tutorial |
Sheldon and Yost (2011) Application Military Interview B
Brown et al. (2006) Application Infrastructure defense Tutorial |
Worden et al. (2011) Application Algorithms for mechanical systems Tutorial |
Cohen and Parhi (2011) Application RSA public key cryptosystem Tutorial |
Brown and Rosenthal (2008) Applications Secrets for success Tutorial B

tArticle levels: beginning (B), intermediate (1), and advanced (A).
*Vehicle routing problem.

Bertsimas D, Brown D, Caramanis C (2011) Theory and applications
of robust optimization. SIAM Rev. 53(3):464-501.

Birge J, Louveaux F (1997) Introduction to Stochastic Programming
(Springer, New York).

Bixby R (2012) A brief history of linear and mixed-integer pro-
gramming. Grotschel M, ed. Documenta Mathematica—Optim.
Stories, 21st Internat. Sympos. Math. Programming (Journal der
Deutschen Mathematiker-Vereinigung, Berlin), 107-121.

Bixby R, Rothberg E (2007) Progress in computational mixed integer
programming—A look back from the other side of the tipping
point. Ann. Oper. Res. 149(1):37-41.

Bixby R, Fenelon M, Gu Z, Rothberg E, Wunderling R (2000)
MIP: Theory and Practice: Closing the gap. System Modeling
and Optimization: Methods, Theory and Applications (Kluwer, The
Netherlands), 19-50.

Brailsford S, Potts C, Smith B (1999) Constraint satisfaction prob-
lems: Algorithms and applications. Eur. J. Oper. Res. 119(3):557—
581.

Brown G, Carlyle M, Salmerén J, Wood K (2006) Defending critical
infrastructure. Interfaces 36(6):530-544.

Brown G, Rosenthal R (2008) Optimization tradecraft: Hard-won
insights from real-world decision support. Interfaces 38(5):
356-366.

Brown G, Dell R (2007) Formulating integer linear programs:
A rogues’ gallery. INFORMS Trans. Ed. 7(2):1-13.

Brown G, Dell R, Wood RK (1997) Optimization and persistence.
Interfaces 27(5):15-37.

Camm J, Raturi A, Tsubakitani S (1990) Cutting big M down to
size. Interfaces 20(5):61-66.

Chen C-H, Fu M, Shi L (2008) Simulation and optimization. Chen Z,
Raghavan S, eds. Tutorials in Operations Research (INFORMS,
Hanover, MD), 247-260.

Cohen A, Parhi K (2011) Architecture optimizations for the RSA
public key cryptosystem: A tutorial. IEEE Circuits and Systems
Magazine 11(4):24-34.

Cook W (2012) Markowitz and Manne + Eastman + Land and
Doig = branch and bound. Grétschel M, ed. Documenta

Mathematica—Optim. Stories, 21st Internat. Sympos. Math. Pro-
gramming, (Journal der Deutschen Mathematiker-Vereinigung,
Berlin), 227-238.

Cornuéjols G (2008) Valid inequalities for mixed integer linear pro-
grams. Math. Programming 112(1):3-44.

Cornuéjols G (2012) The ongoing story of Gomory cuts.
Grotschel M, ed. Documenta Mathematica—Optim. Stories. 21st
Internat. Sympos. Math. Programming (Journal der Deutschen
Mathematiker-Vereinigung, Berlin), 221-226.

Danna E (2008) Performance variability in mixed integer
programming. MIP 2008 Workshop, Columbia University,
New York, http://www.iro.umontreal.ca/~gendron/IFT6551/
LECTURES/Computation.pdf.

Dantzig G (1955) Linear programming under uncertainty. Manage-
ment Sci. 1(3—4):197-206.

Dantzig G (1963) Linear Programming and Extensions (Princeton Uni-
versity Press, Princeton, NJ).

Dantzig G, Thapa M (1997) Linear Programming 1: Introduction
(Springer, New York).

Dantzig G, Thapa M (2003) Linear Programming 2: Theory and Exten-
sions (Springer, New York).

Dantzig G, Wolfe P (1960) Decomposition principle for linear pro-
grams. Oper. Res. 8(1):101-111.

Dantzig G, Orden A, Wolfe P (1955) A generalized simplex method
for minimizing a linear form under linear inequality restraints.
Pacific ]. Math. 5(2):183-195.

Feillet D (2010) A tutorial on column generation and branch-and-
price for vehicle routing problems. 4OR: Quart. ]. Oper. Res.
8(4):407-424.

FICO (2008) Xpress-MP Optimization Suite. http://www.fico.com/
en/Products/OMTools/Pages /FICO-Xpress-Optimization-Suite
.aspX, Minneapolis.

Fisher M (1981) The Lagrangian relaxation method for solving inte-
ger programming problems. Management Sci. 27(1):1-18.

Fourer R (2012) On the evolution of optimization modeling sys-
tems. Grotschel M, ed. Documenta Mathematica—Optim. Sto-
ries, 21st Internat. Sympos. Math. Programming (Journal der
Deutschen Mathematiker-Vereinigung, Berlin), 377-388.


http:/\kern -0.18em/\relax www.iro.umontreal.ca/~gendron/IFT6551/LECTURES/Computation.pdf
http:/\kern -0.18em/\relax www.iro.umontreal.ca/~gendron/IFT6551/LECTURES/Computation.pdf
http://www.fico.com/en/Products/OMTools/Pages/FICO-Xpress-Optimization-Suite.aspx
http://www.fico.com/en/Products/OMTools/Pages/FICO-Xpress-Optimization-Suite.aspx
http://www.fico.com/en/Products/OMTools/Pages/FICO-Xpress-Optimization-Suite.aspx

Newman and Weiss: A Survey of Linear and Mixed-Integer Optimization Tutorials

INFORMS Transactions on Education 14(1), pp. 26-38, ©2013 INFORMS

37

Fourer R, Gay D, Kernighan B (2003) AMPL—A Modelling Language
for Mathematical Programming (Thomson Brooks/Cole, Pacific
Grove, CA).

GAMS (2012) GAMS Distribution 23.9.1. Washington, DC.

Gass S, Assad A (2011) History of operations research. Geunes J, ed.
Tutorials in Operations Research (INFORMS, Hanover, MD),
1-14.

Geoffrion A (1972) Generalized Benders decomposition. J. Optim.
Theory Appl. 10(4):237-260.

Gill P, Murray W, Saunders M, Tomlin J, Wright M (1986) On pro-
jected Newton barrier methods for linear programming and an
equivalence to Karmarkar’s projective method. Math. Program-
ming 36(2):183-209.

Glover F (1990) Tabu research: A tutorial. Interfaces 20(4):74-94.

Grotschel M (2012) Documenta Mathematica—Optim. Stories, 21st
Internat. Sympos. Math. Programming (Journal der Deutschen
Mathematiker-Vereinigung, Berlin).

GuRoBi (2009) GuRoBi Optimizer (GuRoBi Optimization Inc.,
Houston).

Higle ] (2005) Stochastic programming: Optimization when uncer-
tainty matters. Smith JC, ed. Tutorials in Operations Research
(INFORMS, Hanover, MD), 30-53.

Hoffman K (2000) Combinatorial optimization: History and future
challenge. |. Appl. Comput. Math. 124(1-2):341-360.

Hooker ] (1994) Logic-based methods for optimization.
Borning A, ed. Principles and Practice of Constraint Programming,
Vol. 874, Lecture Notes in Computer Science (Springer, Berlin,
Heidelberg), 336-349.

IBM (2009) ILOG CPLEX IBM—International Business Machines
Corporation, Incline Village, NV.

Johnson D (2012) A brief history of NP-completeness, 1954-2012.
Grotschel M, ed. Documenta Mathematica—Optim. Stories. 21st
Internat. Sympos. Math. Programming (Journal der Deutschen
Mathematiker-Vereinigung, Berlin), 359-376.

Kallrath J (2011) Polylithic modeling and solution approaches using
algebraic modeling systems. Optim. Lett. 5(3):453—466.

Kallrath J (2012) Algebraic Modeling Systems—Modeling and Solving
Real World Optimization Problems (Springer-Verlag, Heidelberg,
Germany).

Kallrath ], Wilson JM (1997) Business Optimisation Using Mathemati-
cal Programming (Macmillan Press, London).

Karmarkar N (1984) A new polynomial-time algorithm for linear
programming. Combinatorica 4(4):373-395.

Khachian L (1979) A polynomial algorithm in linear programming.
Soviet Math. Doklady 20:191-194.

King A, Wallace S (2012) Modeling with Stochastic Programming
(Springer Series in Operations Research and Financial Engi-
neering, New York).

Klee V, Minty G (1972) How good is the simplex algorithm?
Shisha O, ed. Inequalities III (Academic Press, New York),
159-175.

Klotz E, Newman A (2013a) Practical guidelines for solving difficult
linear programs. Surveys Oper. Res. Management Sci. 18(1-2):
1-17.

Klotz E, Newman A (2013b) Practical guidelines for solving dif-
ficult mixed integer programs. Surveys Oper. Res. Management
Sci. 18(1-2):18-32.

Lambert W, Brickey A, Eurek K, Newman A (2013) Open pit block
sequencing formulations: A tutorial. Interfaces. Forthcoming.

Lee J, Leyffer S (2012) Mixed Integer Nonlinear Programming, the IMA
Volumes in Mathematics and Its Applications, Vol. 154 (Springer,
New York).

Lemke C (1954) The dual method of solving the linear program-
ming problem. Naval Res. Logist. Quart. 1(1):36-47.

Liibbecke M, Desrosiers J (2005) Selected topics in column genera-
tion. Oper. Res. 53(6):1007-1023.

Lustig I, Puget J-F (2001) Program does not equal program: Con-
straint programming and its relationship to mathematical pro-
gramming. Interfaces 31(6):29-53.

Lustig I, Marsten R, Shanno D (1994) Interior-point methods for
linear programming: Computational state of the art. ORSA J.
Comput. 6(1):1-14.

Marsten R, Subramanian R, Saltzman M, Lustig I, Shanno D
(1990) Interior point methods for linear programming: Just
call Newton, Lagrange, and Fiacco and McCormick! Interfaces
20(4):105-116.

Martin K (1999) Large Scale Linear and Integer Optimization: A Unified
Approach (Kluwer Academic Publishers, Boston).

Martin K (2010) Tutorial: COIN-OR: Software for the OR commu-
nity. Interfaces 40(6):465-476.

Murty K (2009) New sphere methods for linear programs.
Oskoorouchi M, ed. Tutorials in Operations Research (INFORMS,
Hanover, MD), 62-80.

Nésetfil J, Nésetfilovda H (2012) The origins of minimal span-
ning tree algorithms—Bortivka and Jarnik. Grétschel M, ed.
Documenta Mathematica—QOptim. Stories. 21st Internat. Sympos.
Math. Programming (Journal der Deutschen Mathematiker-
Vereinigung, Berlin), 127-141.

Powell W (2009) What you should know about approximate
dynamic programming. Naval Res. Logist. 56(3):239-249.

Prekopa A (1995) Stochastic Programming (Kluwer Academic Pub-
lishers, Norwell, MA).

Rardin R (1998) Optimization in Operations Research (Prentice Hall,
Upper Saddle River, NJ).

Rebennack S, Reinelt G, Pardalos P (2012) A tutorial on branch and
cut algorithms for the maximum stable set problem. Internat.
Trans. Oper. Res. 19(1-2):161-199.

Rockafellar R (2007) Coherent approaches to risk in optimiza-
tion under uncertainty. Klastorin T, ed. Tutorials in Operations
Research (INFORMS, Hanover, MD), 38-61.

Rosenthal R (2012) GAMS: A User’s Guide, http://www.gams.com/
dd/docs/bigdocs/ GAMSUsersGuide.pdf, Washington, DC.

Savelsbergh M (1994) Preprocessing and probing techniques for
mixed integer programming problems. ORSA ]. Comput.
6(4):445-454.

Schneider U (2011) A tabu search tutorial based on a real-world
scheduling problem. Central Eur. ]. Oper. Res. 19(4):467-493.

Schrijver A (2012a) On the history of the shortest path problem.
Grotschel M, ed. Documenta Mathematica—Optim. Stories, 21st
Internat. Sympos. Math. Programming (Journal der Deutschen
Mathematiker-Vereinigung, Berlin), 155-167.

Schrijver A (2012b) On the history of the transportation and max-
imum flow problems. Grotschel M, ed. Documenta Mathe-
matica—Optim. Stories, 21st Internat. Sympos. Math. Programming
(Journal der Deutschen Mathematiker-Vereinigung, Berlin),
169-180.

Sen S, Higle ] (1999) An introductory tutorial on stochastic linear
programming models. Interfaces 29(2):33-61.

Shapiro A, Dentcheva D, Ruszczynski A (2009) Lectures on Stochas-
tic Programming: Modeling and Theory (Society for Industrial
and Applied Mathematics and the Mathematical Programming
Society, Philadelphia).

Sheldon B, Yost K (2011) Military operations research society
(MORS): Oral history project interview of Dr. Gerald G. Brown.
Military Oper. Res. 16(4):57-82.

Sherali D, Smith ] (2001) Improving discrete model representa-
tions via symmetry considerations. Management Sci. 47(10):
1396-1407.

Smith BM (1995) A tutorial on constraint programming. Report
95.14. University of Leeds. http://www.dcs.gla.ac.uk/~pat/
cp4/papers/95_14.pdf.

Terlaky T (2009) Twenty-five years of interior point methods.
Oskoorouchi M, ed. Tutorials in Operations Research (INFORMS,
Hanover, MD), 1-33.


http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf
http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf
http://www.dcs.gla.ac.uk/~pat/cp4/papers/95_14.pdf
http://www.dcs.gla.ac.uk/~pat/cp4/papers/95_14.pdf

Newman and Weiss: A Survey of Linear and Mixed-Integer Optimization Tutorials

38

INFORMS Transactions on Education 14(1), pp. 26-38, ©2013 INFORMS

Tovey C (2002) Tutorial on computational complexity. Interfaces
32(3):30-61.

Trick M (1997) A tutorial on integer programming. Carnegie
Melon University, http://mat.gsia.cmu.edu/orclass/integer/
integer.html.

Trick M (2005) Formulations and reformulations in integer pro-
gramming. Carnegie Melon University, http://mat.gsia.cmu
.edu/trick/formul04.pdf.

Wallace S (2010) Stochastic programming and the option of doing
it differently. Ann. Oper. Res. 177(1):3-8.

Winston W, Goldberg J (2004) Operations Research: Applications and
Algorithms (Duxbury Press, Belmont, CA).

Wolsey L (1998) Integer Programming (John Wiley & Sons,
New York).

Worden K, Staszewski W, Hensman ] (2011) Natural computing
for mechanical systems research: A tutorial overview. Mech.
Systems and Signal Processing 25(1):4-111.


http://mat.gsia.cmu.edu/orclass/integer/integer.html
http://mat.gsia.cmu.edu/orclass/integer/integer.html
http://mat.gsia.cmu.edu/trick/formul04.pdf
http://mat.gsia.cmu.edu/trick/formul04.pdf

