Theoretical and Computational Advances for

Network Diversion

Christopher A. Cullenbine

Division of Economics and Business, Colorado School of Mines, Golden, Colorado 80401

R. Kevin Wood

Operations Research Department, Naval Postgraduate School, Monterey, California 93943

Alexandra M. Newman

Division of Economics and Business, Colorado School of Mines, Golden, Colorado 80401

The network-diversion problem (ND) is defined on a
directed or undirected graph G = (V, E) having non-
negative edge weights, a source vertex s, a sink
vertex t, and a “diversion edge” e’. This problem,
with intelligence-gathering and war-fighting applications,
seeks a minimum-weight, minimal s-t cut Ec € Ein G
such that e’ € E¢c. We present (a) a new NP-completeness
proof for ND on directed graphs, (b) the first polynomial-
time solution algorithm for a special graph topology,
(c) an improved mixed-integer programming formula-
tion (MIP), and (d) useful valid inequalities for that MIP.
The proof strengthens known results by showing, for
instance, that ND is strongly NP-complete on a directed
graph even when €’ is incident from s or into ¢, but not
both, and even when G is acyclic; a corollary shows
the NP-completeness of a vertex-deletion version of ND
on undirected graphs. The polynomial-time algorithm
solves ND on s-t planar graphs. Compared to a MIP from
the literature, the new MIP, coupled with valid inequal-
ities, reduces the average duality gap by 10-50% on
certain classes of test problems. It can also reduce solu-
tion times by an order of magnitude. We successfully
solve unweighted problems with roughly 90,000 vertices
and 360,000 edges and weighted problems with roughly
10,000 vertices and 40,000 edges. © 2013 Wiley Periodicals,
Inc. NETWORKS, Vol. 000(00), 000—000 2013

Keywords: network diversion; minimum cut; complexity;
mixed-integer programming; valid inequality

Received July 2012; accepted June 2013

Correspondence to: R.K.Wood; e-mail: kwood @nps.edu

Contract grant sponsors: Office of Naval Research, Air Force Office of
Scientific Research, and Defense Threat Reduction Agency (R.K.W.)

DOI 10.1002/net.21514

Published online in Wiley Online Library (wileyonlinelibrary.com).

© 2013 Wiley Periodicals, Inc.

NETWORKS—2013—DOI 10.1002/net

1. INTRODUCTION
1.1. The Network Diversion Problem

The network-diversion problem (ND) arises in the con-
text of war-fighting and intelligence-gathering (Curet [12],
Cintron-Arias et al. [9]). An “interdictor” seeks to manipu-
late the routing choices of an adversary, the “network user”.
The network user wishes to traverse (or communicate across)
an s-f path in a directed or undirected network G = (V,E).
The interdictor understands the network user’s goal and seeks
to force the network user to traverse (or communicate across)
a special diversion edge ¢’ = (/',j') € E, where the network
user is especially susceptible to physical attack (or where his
communications can be intercepted). To accomplish this, the
interdictor can attack and destroy, that is, “interdict,” a subset
of edges Ep 2 {¢}, which prohibits the use of those edges by
the network user. But, interdicting an edge requires effort, and
the interdictor prefers to use minimum total effort to accom-
plish his task. To this end, he defines edge weights w, > 0
for all e € E\{¢’}, which correspond to interdiction effort.
The interdictor then wishes to solve ND: find Ep C E such
that (a) G — Ep = (V, E\Ep) contains at least one s-f path,
(b) every s-t path in G — Ep contains ¢/, and (¢) }_,. £, We
is minimized. We call Ep a diverting (edge) set with respect
to ¢ if it satisfies (a) and (b). Thus, ND defines the prob-
lem of finding a minimum-weight diverting set in G, given
{s,t} C V and diversion edge ¢’. This paper presents new the-
oretical and computational results for ND. “DND” (“UND”)
denotes ND defined on a directed (undirected) graph.

ND has an important, alternative characterization: if G =
(V,E),{s,t} CV,¢ € E,andw, > Oforall e € E, then Ep
is a minimum-weight diverting set for G with respect to ¢’ if
and only if Ec = Ep U {¢'} is a minimum-weight, minimal
s-f cut that contains ¢’. “Minimal” implies that s and ¢ are
disconnected in G — E, but are connected in G — Eé: for
any E., C Ec. Because of this characterization, ND may

FIG. 1. Minimum-weight, minimal (a) and non-minimal (b) s-f cuts for a
directed graph G that contain a specific edge ¢/ = (/). The number next
to each edge is its weight, and edges marked by “x” define the cut. Figure 1a
shows a minimum-weight, minimal s-¢ cut EZ. that contains ¢’ = (i',j'). This
cut solves the network-diversion problem (ND) in this example. Figure 1b
shows a minimum-weight (non-minimal) s-f cut Eé that contains €’. Elé has
less total weight than E¢., but EZ does not solve ND because G — (E’é\{e/})
contains no s-f paths.

appear at first glance to be a simple variant of the standard
minimum-cut problem (e.g., Ahuja et al. [1, p. 167]), but
ND turns out to be an interesting and difficult combinatorial-
optimization problem in its own right. The difficulty arises
because a minimum-weight s-z cut E¢c 2 {¢’} may not be a
minimal cut, and interdicting Ep = Ec\{e'} would destroy
all s-¢ paths (see Fig. 1). This is not, of course, the interdictor’s
intent.

Unfortunately, a non-minimal cut is likely to appear when
trying to solve ND using what may seem like an obvi-
ous approach: apply the standard minimum-cut model (e.g.,
Papadimitriou and Steiglitz [35, p. 119]), but fix the appro-
priate variable to force ¢’ into the “restricted minimum-cut
solution.” Upon reflection, however, it is easy to see that this
cannot work in general, because it is equivalent to (a) letting
w, represent a standard flow capacity for eachedge e € E, (b)
defining w, = 0, (c) solving for a maximum s-t flow subject
to the given edge capacities, and (d) hoping that ¢’ appears in
a corresponding minimum-capacity cut. ND demands more
sophisticated techniques for its solution.

1.2. Applications

In one application of ND, a military commander wishes
to force an enemy supply convoy to traverse a specific bridge
¢’ as the convoy travels through a road network from a rear-
echelon depot to a forward-operating base. The convoy is
especially vulnerable to attack when it crosses ¢’. The military
commander is the interdictor here; the convoy or its comman-
der is the network user; the bridge is the diversion edge; road
segments or bridges other than ¢’ will be interdicted to effect
the diversion; and an edge’s weight reflects the number of
aerial attacks that must be carried out on the edge to ensure
its destruction. In another example, the interdictor represents
an intelligence-gathering organization that wishes to attack
links in a communications network so that all messages sent
by the network user between points s and # must pass through
awiretapped link ¢’ where they can be intercepted. Our results
also cover a vertex-interdiction variant of ND, which would

2 NETWORKS—2013—DOI 10.1002/net

apply if attacks, and possibly wiretapping, must occur at
communication hubs, that is, at vertices in the network.

The literature does not describe any real-world applica-
tions of mathematically optimized diversion, but we find
numerous potential applications. For example, Krause [31]
describes a “herding process” in which an interdictor pres-
sures and removes options to steer “the enemy decision maker
into a position in which the adversary leaders can neither
exploit options nor gain an advantage without suffering unac-
ceptable costs.” Finelli [17] discusses the use of airpower
in “herding targets.” Jackson et al. [28] describe security
measures designed to identify terrorists and “funnel them
inward, where they can be isolated and engaged in a place
and time of advantage to the authorities.” In the context of
counterdrug operations, Laughton [32] discusses the use of
direct or indirect military actions and the way “they ‘shape’
the battlefield to ‘funnel’ the enemy for a future decisive
engagement.” Finally, Gayash et al. [22] describe a “man-in-
the-middle” attack that “funnels communication” to a cyber
criminal (interdictor).

1.3. Complexity

The original literature on ND [9, 12] addresses a more
general version of DND, denoted here as “DNDm,” with
“m” implying multiple diversion edges. Specifically, DNDm
defines a set of diversion edges E’ and seeks a minimum-
weight, minimal s-7 cut E¢ such that |E' NE¢| > 1. We show
in Section 3 that DNDm can be solved through |E’| solutions
of DND, so no theoretical generality is lost in pursuing our
simpler model. (The analogous result also holds for undi-
rected networks.) Furthermore, if we take Curet’s limit of
|E’| < 10 in his computational tests as a practical limit [12],
no generality is lost in practice either. If E” were to comprise
a substantial proportion of E, however, additional research
might be warranted.

Although previous computational work on ND covers
both DND and UND (Curet [12], Cintron-Arias et al. [9],
Erken [15], Yang and Park [45]), the only available result
on theoretical complexity applies exclusively to DND and
DNDm: DND is strongly NP-complete for general directed
graphs, which is a fact that derives from the NP-completeness
of the directed subgraph homeomorphism problem (Fortune
et al. [19]). The NP-completeness of DNDm then follows by
restricting m to 1.

Because of the limited results available, our paper explores
more deeply the complexity of DND and UND in a variety of
contexts, and provides a number of new results. For example,
we show that DND is NP-complete even when the diver-
sion edge is incident from s or into ¢, but not both, and we
show that certain planar instances of DND and UND can be
solved in polynomial time. The latter result could be impor-
tant because ND on a planar graph can model the diversion
of enemy troops traveling through a (planar) road network,
and especially efficient computational methods would apply.

The computational complexity of ND remains open for
some potentially interesting variants of this problem, how-
ever. For instance, we show that a vertex-deletion ver-
sion of UND is NP-complete, but the complexity of the

nominal, edge-deletion version remains open. A key differ-
ence between UND and DND is that the feasibility problem
for a general instance of DND is NP-complete, whereas the
feasibility problem for UND is solvable in polynomial time.

As a final point on complexity, we note that two graph
measures, inclusive vertex connectivity and inclusive edge
connectivity, may seem to be related to network diversion;
see Cribb [11] and the references therein. For example, inclu-
sive vertex connectivity for a vertex v in an undirected graph
measures the minimum number of vertices whose deletion
causes v to become a cut vertex. This may be viewed as a
vertex-deletion version of UND, without specification of s
and ¢. We discuss both of these graph measures in Section 4.3
and explain why they do not help solve network-diversion
problem.

1.4. Existing Solution Methods

Curet [12] and Cintron-Arias et al. [9] apply integer-
programming (IP) methods to solve ND. Subsequently, Erken
[15] develops a combinatorial algorithm, which is based on
enumerating near-minimum-weight s-¢ cuts. His algorithm
may warrant further investigation, but our computational
experiments favor a mathematical-programming approach.
For example, given 48 h of computation time, Erken’s algo-
rithm fails to find a single feasible solution to DND on
one 25 x 25 star-mesh network—we describe this topology
in Section 6.1—while mathematical-programming methods
solve this problem instance in just a few minutes.

Yang and Park [45] apply a tabu-search heuristic (e.g.,
Glover [23]) to instances of DND with as many as 100 ver-
tices, 600 edges, and three diversion edges. This heuristic
typically runs more quickly than does Curet’s IP model, but
some of the heuristic solutions have optimality gaps that
exceed 11%. By contrast, our computational results iden-
tify solutions in networks that are orders of magnitude larger,
with optimality gaps of at most 1%.

Cho [8] combines an IP and solution-elimination con-
straints (SECs) in a decomposition algorithm to solve
instances of DND with up to 2,550 vertices, 9,900 edges,
and three diversion edges. (See Brown et al. [7] for a dis-
cussion of SECs. The SECs used by Cho may be interpreted
as “combinatorial Benders cuts” as defined by Codato and
Fischetti [10], and Cho uses the latter phrase.) The algorithm
iteratively solves a minimum-weight s-# cut problem for a
minimal cut Ec, and checks if ¢ € Ec. If not, an SEC is
appended to the IP to eliminate E¢ as a solution, and the IP
is re-solved. Assuming the problem is feasible, the process
repeats until E¢c 2 {¢} and the cut is therefore optimal. The
algorithm is finite, but its scalability is questionable, at least
for some problem classes. For example, the algorithm adds
at most 458 SECs in any of Cho’s test problems, but that
algorithm might require millions of such constraints to solve
one of our test problems. In particular, the 25 x 25 star-mesh
network mentioned above contains more than 5 x 10% min-
imal cuts Ec 2 {€’}, each of which has a weight less than
that of an optimal solution to ND. (We established this fact
by running Erken’s algorithm [15] on the specified network
for several days.)

Curet [12] (see also [9]) solves DND, approximately, by
applying Lagrangian relaxation to a weaker variant of the
mixed-integer programming (MIP) “P;,” which we present
in Section 5.1. (Curet defines a 0-1 IP, but could have allowed
some variables to be continuous, thereby yielding a MIP.)
Computational results will show that our improved formula-
tions dramatically outperform P; when solved by standard
branch and bound. We do not pursue Lagrangian relaxation,
but note that our formulations’ tighter relaxations could be
useful for that purpose.

The remainder of the paper is organized as follows. Section
2 provides technical definitions for DND and UND, and
establishes the polynomial equivalence of a model with a sin-
gle diversion edge and a model with multiple diversion edges.
Section 3 formalizes the known NP-completeness result on
DND, provides a new, stronger proof, and then extends that
proof to cover other variations of ND. Section 4 extends some
of the NP-completeness results from the previous section to
undirected networks and describes a polynomial-time solu-
tion method for ND on certain planar graphs. Section 5
describes our specialized implementation of Curet’s IP and
develops our stronger MIP in two variants. Section 6 presents
computational results for those models. Section 7 concludes
the paper.

2. PROBLEM DEFINITION

We consider initially a directed graph G = (V, E) with
vertex set V and edge set E C V x V\{(i,i)|i € V}. Source
vertex s € V and sink vertex t € V, t # s, are also defined,
along with a diversion edge ¢’ € E. If ¢” denotes an edge
that may or may not exist in G, and E” denotes a subset of
edges that may or may not exist in G, the notation G + ¢”,
G—¢",G+E",and G—E" signify (V,EU{e"}), (V,E\{e"}),
(V,EUE"), and (V,E\E"), respectively.

Each edge e € E\{¢'} has weight w, € Z7, which repre-
sents the cost to interdict or “delete” that edge. For simplicity,
and because ¢’ is never actually interdicted, w,, = 0. The total
weight of E’ C E is denoted w(E') =), We.

A (directed) s-f path in G is a set of edges of the form E; =
{(s,i1), (i1,82)5 - - ., (in—2, In—1), (in—1,1)}. A path is simple if
no vertices are repeated. Throughout, we assume that the
original graph G, with no interdicted edges, contains at least
one s-t path. A simple s- path E5; D {¢’} is a diversion path
with respect to {s, ¢} and ¢'.

A (directed) cycle in G is a set of edges of the form
Ep = {(ip,i1), (1,12), . - ., (fn—2,1u—1), (in—1,10)}. The cycle
is simple if no vertices except iy are repeated.

The set Ep is an s-t diverting set for G with respect to
¢ € E if (a) G — Ep contains an s-t path, and (b) all s-¢
paths in G — Ep contain ¢’ (or, equivalently, all s-¢ paths in
G — Ep are diversion paths). The directed network-diversion
problem (DND) defined on G, {s, ¢} and ¢, and given edges
weights w, for all e € E, seeks a diverting set Ep such that
w(Ep) is minimum among all such sets.

DND may be characterized in a useful, alternative fashion.
An s-t cut E¢ is any disconnecting set of edges with respect

NETWORKS—2013—DOI 10.1002/net 3

to s and ¢. That is, G — E¢ allows no s-t paths. The s-t cut
E¢ is minimal if no proper subset is also an s-¢ cut. Through
basic definitions, it is clear that DND is equivalent to finding a
minimum-weight, minimal s-¢ cut E¢ in G such that ¢’ € Ec.

UND is defined analogously to DND, with obvious modi-
fications for an undirected graph. (We do specify the direction
in which we wish the network user to traverse the diversion
edge in UND, although another definition of the problem
might not.)

Recall from Section 1.3 that DNDm defines a set of diver-
sion edges E’ and seeks a minimum-weight, minimal s-7 cut
Ec such that |E' N Ec| > 1. Proposition 1, below, justi-
fies our focus on DND rather than on DNDm, as studied
in [12] and elsewhere; the analogous result holds for UND and
the multiple-diversion-edge version of UND, “UNDm.” We
require this definition: problem P; is polynomially reducible
to problem P, if (a) a polynomial number of calls to an algo-
rithm for solving P> will solve Py, and (b) any conversions
of input data for P to input data for P, can be performed in
polynomial time (Korte and Vygen [30, p. 368]). P is not
fundamentally more difficult than P, if P; is polynomially
reducible to P5.

Proposition 1. DNDm is polynomially reducible to DND.

Proof. Let DND(¢') denote DND with diversion edge
¢ € E' explicitly identified and, similarly, let DNDm(E")
denote DNDm with diversion-edge set E’ identified. Let
Ef(¢) denote an optimal solution to DND(¢) (ie., a
minimum-weight, minimal s-f cut containing ¢’), and let
zj(¢’) denote that solution’s objective value. For simplic-
ity, but without loss of generality, assume that DND(¢’) is
feasible for each ¢’ € E’. Also, let E5(E’) denote an opti-
mal solution to DNDm(E’) with objective-function value
denoted z3(E’). Now, for any ¢” € E’, Ej(e”) is feasible
for DNDm(E"), and thus z3(E') < mingep zj(e”). Con-
versely, for ¢’ € E5(E")NE’, E5(E") is feasible for DND(¢'),
implying that 2} (E') > z{(¢’) > mingep 2 (¢”). Therefore,
73 (E') = mingcp zj(¢”) and DND(e”) solves DNDm(E")
for some ¢” € E’. Polynomial reducibility of DNDm to DND
then follows, because DNDm(E’) can be solved by making
|E’| calls to an algorithm for solving DND(¢’) using input
data that is a subset of that required by DNDm(E"). .

Nothing in the above proof depends on the directed nature
of the graph, so the following corollary is immediate:
Corollary 1. UNDm is polynomially reducible to UND.

Proposition 1 and Corollary 1 suffice to justify this paper’s
focus on DND and UND rather than on DNDm and UNDm,
but the following result is also clear:

Corollary 2. DND (UND) is polynomially equivalent to
DNDm (UNDm).

Proof. Polynomial equivalence requires that each prob-
lem be polynomially reducible to the other (Booth [5]).

4 NETWORKS—2013—DOI 10.1002/net

Proposition 1 proves that DNDm is polynomially reducible to
DND. For the directed case, the other half of the proof follows
from the fact that DNDm(E") is equivalent to DND(e") when
E' = {¢'}. The undirected version of this corollary follows
similarly. .

3. COMPUTATIONAL COMPLEXITY FOR DND

This section and the next investigate the theoretical com-
plexity of the decision problems associated with network
diversion. Until further notice, G = (\7, E) denotes an undi-
rected graph, and square brackets denote an undirected edge,
for example, [i,j]. Also, “DND” and “UND” now refer to
decision-problem variants of the corresponding optimiza-
tion problems defined in Section 2. For instance, DND now
corresponds to the following:

DIRECTED NETWORK DIVERSION (DND)

Given: Directed graph G = (V,E), {s,t} € V, diversion
edge ¢ € E,w, € Z¥ for all e € E\{'}, wy = 0, and
threshold W € Z+.

Question: Does G contain a minimal s-¢ cut E¢ such that
e € Ecand w(Ec) < W? =

3.1. Existing Complexity Results for DND

Curet [12] makes an informal claim that DND is NP-
complete based on a reduction from the directed subgraph
homeomorphism problem (“DSH”; see [19]). Yang and Park
[45] formalize that argument, but their proof is available only
in Korean. For later reference, and to clarify the contributions
of the current paper, we provide here a brief proof follow-
ing Yang and Park. The essence of the argument is that the
existence of any minimal diverting set for diversion edge ¢’
implies the existence of a simple directed s-# path that con-
tains ¢’. Determining whether or not such a path exists is
NP-complete, and thus DND must be NP-complete as well.
We begin with two formal definitions.

DIRECTED NETWORK DIVERSION FEASIBILITY
(DNDF)

Given: Directed graph G = (V, E), vertex set {s,t} C V,and
diversion edge ¢’ € E.

Question: Does G contain a minimal s-¢ cut E¢ such that
e € Ec? .

DIRECTED EDGE-RESTRICTED s-r PATH (DER-
PATH)
Given: Directed graph G = (V,E), {s,t} C V, and “required

edge” ¢’ € E.
Question: Does G contain a simple, directed s- path E; such
that e/ € Es[? []

Fortune et al. [19] establish the following proposition as
a corollary of an NP-completeness theorem for DSH (see
Theorem 2 and Lemma 3 in that paper):

Proposition 2. DERPATH is strongly NP-complete.

Following [45] then, we can formally establish this
theorem:
Theorem 1. DND is strongly NP-complete.

Proof. DND is a member of NP because, given a poten-
tial solution E¢, we can check in linear time whether or not the
following holds: (a) ¢’ € E¢, (b) w(E¢) < W, (¢) no s-t path
exists in G — E¢, but (d) for each edge ¢’ € E¢, an s-t path
does existin G — Ec\{e”}. (Items (c) and (d) can be checked
using a single call to a simple variant on breadth-first or
depth-first search along with |E¢| constant-time operations.)

To prove the theorem, it suffices to show that DNDF is NP-
complete, because DND is a member of NP and the following
restrictions convert DNDF to DND: define w, = 1 for all
e € E\{¢'}, we = 0, and W = |E|. Now we show that an
instance of DNDF, with inputs G, {s, ¢} and ¢, is feasible if
and only if DERPATH with the same inputs is feasible. Strong
NP-completeness will follow because no edge weights other
than O or 1 are used in the proof.

Suppose DNDF is feasible, as demonstrated by a minimal
s-t cut Ec 2 {€’}. No s-r path can exist in G — E¢ by the
definition of an s-f cut, but such a path mustexistin (G—E¢)+
¢’ by the definition of minimal. This implies the existence of
a simple s-i’ path in G — E¢, say Ej;, and a non-intersecting,
simple j’-r path, say Ej,. It is easy to identify such paths
using, say, breadth-first search, so assume this has been done.
(These paths were difficult to find in G, but become easy to
find in G — E¢, which is created from G knowing a solution
to DNDF.) Then, E; = Es; U {e'} U Ej is a feasible solution
to DERPATH.

Conversely, suppose DERPATH is feasible, as demon-
strated by a simple s-¢ path Ey; 2 {¢/}. Let G = (V,E),
where £ = Eg\{e'}: we know that vertex s is disconnected
from vertex ¢ in G, but is connected in G + ¢'. Now, in any
fixed order, check each edge e € E \E ,and add e to E if and
only if s and 7 remain disconnected in G + e. In the final
instance of G = v, E) created in this fashion, no edge can
be added to E without reconnecting s and ¢, and we know that
e eEc= E\E . Consequently, E¢ is a minimal s-¢ cut such
that ¢ € Ec, and DNDF is therefore feasible. "

We note that the proof above does not translate into a
complexity proof for UND, because the undirected version
of DERPATH is solvable in polynomial time (Shiloach [41],
Verdieren and Schrijver [13]).

3.2. Stronger Complexity Results for DND

We have shown that DND is NP-complete in a proof based
on the complexity of finding a simple, directed s-¢ path that
contains a particular edge. This approach leaves open the
possibility of stronger proofs that specify special conditions
under which DND remains NP-complete. For instance, we
know that DND is trivially solvable when ¢’ = (s, r), but does
it remain that easy if ¢’ = (i,t) or if ¢ = (s,j) for i # s and
Jj # t? For these cases, DERPATH is solvable efficiently as

a shortest-path problem, so the complexity of DND remains
unclear. (In fact, we will see that DND is NP-complete in
these cases.)

The rest of this section provides a stronger proof and
addresses special cases for DND. The proof is based on a
transformation from the following well-known, NP-complete
problem.

VERTEX COVER (Karp [29])

Given: Undirected graph G = (V,E) and positive integer
K <|V|.

Question: Does there exist Ve € V with |Ve| < K such that
Ve is incident to each e € E? "

Theorem 2. DND is NP-complete.

Proof. The proof of Theorem 1 already shows that DND
is a member of NP. To complete the current proof then,
we demonstrate a polynomial transformation of VERTEX
COVER to DND. For simplicity, the demonstration charac-
terizes DND through a diversion edge ¢’ and a corresponding
diverting set Ep, rather than through a minimal cut. The trans-
formation shows that an undirected graph G = (V, E) has a
vertex cover of size K < |V| if and only if an instance of
DND, constructed on directed graph G = (V, E), together
with designated vertex set {s,#} C V and designated edge
¢ € E, has diverting set Ep with respect to ¢’ such that
w(Ep) < KGB|E| + 1) +3|E| — 1.

Given an instance of VERTEX COVER defined on undi-
rected graph G= (\7, E), we construct an instance of DND on
directed graph G = (V,E) = (VyUV 1 UV,, EgUE{UE,UE3)
using the following algorithm (see Fig. 2):

1. Begin: Define threshold W < K(3|E| + 1) + 3|E| — 1
and define weights M; < 3|E|+1, M; < W + 1, and
M3 <~ 1.

2. Create miscellaneous vertices Vo < {s,¢,i’'} and “origi-
nal vertices” V; < V.

3. Define diversion edge ¢’ = (7', 1) and let Ey < {¢'}.

4. Create “main edges” E; < Uey{(i, 1)}, and let w, <«
M, foralle € E;.

5. Arbitrarily order all e € Easepl=1,..., |E\.

6. Initialize V, <« @ for “split vertices” and E, <« @ for
“split edges.”

Fort =1,..., |E |, split undirected edge e, = [i,j] into
two directed edges, (ug, i) and (v¢,j), and let V, < Vo U
(e, ve} and Ey < Ep U {(ug, 1), (ve,)}

Letw, < M, foralle € E,.

7. Initialize E3 < ¢ for “potential-diversion-path edges.”
Connect adjacent split vertices with such edges:

Fort =1,...,|E|—1,E3 < E3U{(ug,ups1), (e, ves1),
vesues1)s Ve, ver)}

Add potential-diversion-path edges from s and into i’
E3 < E3 U {(s,u1), (s,v1), (”|E\s i), (V\E|s i)}

Let w, < Mj for all e € E5. End.

Note that ¢’ cannot be deleted by definition, and every
edge e € E» is essentially “undeletable” because the weight
of each exceeds the threshold W. Thus, in the following, we

NETWORKS—2013—DOI 10.1002/net 5

(a) G

(b) G

FIG. 2. Transformation from undirected graph G (Figure 2a) to directed graph G (Figure 2b) used in the proof
of Theorem 2. In G, the thick black edge is the diversion edge and defines Ey = {¢'}; gray “main edges” define
Ej; thin black “split edges” define E>; and dashed “potential-diversion-path edges” define E3. The set of “original
vertices” is V| = {a, b, ¢, d} and the set of “split vertices” is Vo = U2=| {ug,ve}.

may disregard all edges e € Ey U E; = {¢'} U E;, while
creating a diverting set Ep with acceptable weight.

Now, suppose G has a vertex cover V¢ with |V¢| = K.
Let E be the main edges in G corresponding to that cover,
thatis, E{ = {(v,)|v € V¢}. Then, consider any split-vertex
pair {u¢,v¢} in G — E}. Since V¢ is a cover in G, for each
£ =1,...,|E|, either the u,-t path along a main edge or the
v¢-t path along a main edge, or both, are eliminated in G—E.
Thus, we can construct an s-i’ path E;; C E3 in G — E that
never visits a split vertex that is connected to 7 through a main
edge. It follows that G — E| — E3\E; includes an s-i’ path,
but no path to 7 through a main edge. Thus, G — E| — E3\Ej;
contains the s-7 path Eg; U {¢’}, but no other. Consequently,
Ep=E ; UE3\Ey isadiverting set with respect to ¢’. Because
(a) |[E}| = K andw, = My = 3|E|+ 1 forall e € E{, and (b)
|E3\ES,'/| = 3|E| — 1 and We = M3 = 1foralle € E3\ES,'/,
w(Ep) = KB|E| + 1) 4+ 3|E| — 1, as required.

Conversely, suppose Ep solves DND with w(Ep) < W =
K|E| 4+ 1) +3|E| — 1 for some K € Zt, K < |V|. The set
of main edges Ep N E| must correspond to a (possibly non-
minimal) vertex cover Ve because (a) G — Ep must maintain
at least one s-i’ path, (b) any such path visits at least one
split vertex associated with each undirected edge e € E , and
(c) each main edge in E; along an s-¢ path that bypasses the
diversion edge must be deleted for each split vertex along an
s-i’ path; that is, at least one deleted main edge of Ep must
“cover” every undirected edge e € E. Now, if |[Ep N Ej| >
K, then w(Ep) > (K + 1) - 3(|E| + 1) > W, which is a
contradiction. Thus, the cover V¢ corresponding to Ep must
have |V¢| < K. "

Note that the proof of Theorem 2 modifies trivially if we
wish to force a path through a given “diversion vertex” instead
of a diversion edge: simply modify G by splitting the diver-
sion edge (7', t) into undeletable edges (', i") and (i”, 1) and
by declaring i” to be the diversion vertex.

More importantly, the proof of Theorem 2 also extends
to a version in which all edges except ¢’ have weight 1 by
replacing edges in E and E> with M| and M, parallel edges,

6 NETWORKS—2013—DOI 10.1002/net

respectively. Since M} and M, are polynomially bounded in
|V| and |E]|, this corollary follows:

Corollary 3. DND is strongly NP-complete.
Finally, we present a simple, but important, corollary.

Corollary 4. Assuming ¢ # (s,t), DND is strongly NP-
complete (a) when G is acyclic, and (b) even when the
diversion edge is incident into t, or (c) incident from s.

Proof. The proof of Theorem 2 uses an acyclic graph,
so that covers case (a). Case (b) follows because ¢’ is incident
into ¢ in the proof of Theorem 2. Case (c) follows because
edge directions, and the identities of s and 7, could be reversed
in that proof. .

4. COMPUTATIONAL COMPLEXITY FOR UND

Theorem 1 presented in Section 3.1 does not lead to a
complexity proof for UND because its proof is based on
DERPATH, which happens to be solvable efficiently on undi-
rected graphs. Unfortunately, Theorem 2, presented above,
does not extend to a simple complexity proof for UND either.
We might try replacing each directed edge in G with an
undirected edge in the proof of Theorem 2, but undirected
edges between split vertices and original vertices in G per-
mit an s-¢ path Ey; D {¢} that may bypass original vertices
and, consequently, Eg may not correspond to a solution to
VERTEX COVER. The proof of Theorem 2 does lead to
an NP-completeness proof for a vertex-deletion version of
UND, however. This section presents that proof, shows how
to solve UND in polynomial time for s-# planar graphs, and
then summarizes all complexity results in this paper.

4.1. Vertex Deletion

Let g_; — ‘_/c_de_note the subgraph induced from undirected
graph G = (V,E) by deleting V¢ from G, along with all

edges incident to ‘_/C~ Also, let ‘_/C - \7\{5, t} be a minimal
s-t disconnecting vertex set for G if s and ¢ are disconnected
in G — V¢ but are connected in G — V’C for any V/C C Ve.

VERTEX DELETION FOR UNDIRECTED
WORK DIVERSION (VUND)

Given: Undirected graph G = (V,E), {s,1} C V, diver-
sion vertex v € _/\{s, t}, vertex weights w, € Z% for all
v e V\{V'}, and w,, = 0, and threshold W € Z*.

Question: Does there exist a minimal s-¢ disconnecting ver-
tex set Ve C V\{s,1} in G = (V,E) such that v/ € V¢ and
Zve_/c wy < W? -

Note that the complexity of VUND would not change
whether we defined it with respect to a diversion edge or
diversion vertex, and we use the latter just for the sake of
maintaining symmetric definitions. VUND models an inter-
dictor trying to funnel an enemy through a diversion vertex
V' by interdicting vertices rather than edges. In a communi-
cations network, for instance, it might be the hubs, that is,
vertices, that are susceptible to interdiction rather than the
links, that is, edges.

To see that VUND is NP-complete, consider the directed
graph G = (V,E) constructed in the proof of Theorem
2. First, replace the undeletable diversion edge (i) with
undeletable, undirected split edges [i/,v'] and [V/,;']. Now,
the requirement that “all s-# paths in the interdicted graph
must pass through ¢’” becomes ... must pass through v'.”
Next, suppose that, for any original vertex u € V, we replace
the option “delete directed main edge e = (u,t) € E at cost
w,” with “delete original vertex u € V at cost w, = w,
where e = (u,t).” The proof of Theorem 2 holds then, after
defining “deletions” to cover both edges and vertices in a
restricted fashion. Furthermore, because deletion of origi-
nal vertices prohibits the bypasses mentioned earlier, each
remaining (directed) edge (i,j) of G may be replaced by
the undirected edge [i,j], keeping its status as “deletable”
or “undeletable.” Then, as we did with main edges, split each
deletable edge e = [i,j] into undeletable edges [i, v] and [v, j],
where v is a deletable vertex with w, = w,. Denote the newly
constructed undirected graph as G. The proof of Theorem 2
still holds, except that vertex deletion in G replaces edge
deletion in G and “diversion vertex” in G replaces “diversion
edge” in G. We could have begun the procedure just described
by first replacing each edge (i,j) € E — ¢’ with w, parallel
edges, so Corollary 3 also applies here. Thus, we have proven:

NET-

Corollary 5. VUND is strongly NP-complete.

In the remainder of the paper, we return to standard
notation for both undirected and directed graphs. That is,
G = (V,E) denotes a graph, (i,j) € E denotes an edge, and
“undirected” or “directed” will be clear from the context.

4.2. UND on Planar Graphs

The definitions and facts stated here are well known, but
the reader may wish to refer to Ford and Fulkerson [18] and/or

Deo [pp. 90-95]. An undirected graph G = (V, E) is planar
if it can be embedded in a plane without edges crossing.
Assuming G has no parallel edges, a face is a region in some
embedding of G that is incident to three or more edges. The
planar graph together with {s,¢} € V is said to be s-f planar
if vertices s and # border a common face. An s- planar graph
can always be embedded in the plane such that s and 7 appear
on the outer face. Indeed, s-t planar graphs are typically pre-
sented in such fashion. (Replacing every directed edge in
Figure 3 of Section 6.1 with an undirected edge results in
an s-t planar graph, although the definition of “face” must
then be extended to incorporate parallel edges.) This section
shows the polynomial solvability of UND defined on an s-¢
planar graph.

The class of s-f planar graphs is relevant to network diver-
sion because one of these graphs might reasonably model a
planar transportation network with a source and sink located
on the periphery. For example, Harris and Ross [25] illustrate
a network-interdiction problem on a railway network of the
western Soviet Union and eastern Europe and, by deleting
one irrelevant edge and adding super-source and super-sink
constructs, that network becomes s-¢ planar.

The planar graph G* = (V*, E*), which is the planar dual
to G, is constructed as follows:

1. Embed G in the plane.

2. Place a dual vertex i* € V* in each face of the primal
graph, including the exterior face.

3. Connect each dual vertex pair {i*,;*} in adjacent primal
faces with a dual edge ¢* = (i*,j*). Let E* denote the
set of all dual edges, and note that a one-to-one corre-
spondence has been created between crossing primal and
dual edges.

4. For the purposes of studying network diversion, let ¢’* =
(i™*,j") denote the dual edge that crosses the diversion
edge. Also, define w = w, for all e* € E*, where ¢*
and e denote corresponding (crossing) dual and primal
edges, respectively.

The key connection between dual and primal graphs is that
E§ C E*isasimple cycle in G* if and only if the correspond-
ing primal edge set Es C E defines a minimal separating set
in G. Invoking the Jordan Curve Theorem, Phillips [36] shows
that a minimum-weight s-f cut in G (i.e., a minimum-weight,
minimal set that separates s from ¢) can be found by (a) defin-
ing a simple s-¢ path in G, which we shall call the reference
path, and (b) by then finding a minimum-weight cycle E(. in
G* with odd parity, that is, which crosses the reference path
an odd number of times. For UND, the following proposition
is then obvious:

Proposition 3. A solution to UND on a planar graph G cor-
responds directly to a minimum-weight, simple, odd-parity
cycle E§. D {e™*}, where parity is measured with respect to a
simple s-t reference path in G that contains é'.

It is easy to identify a reference path as required by
the proposition if one exists. And then, using shortest-path

NETWORKS—2013—DOI 10.1002/net 7

n columns of vertices

|

LA N] () LN]
n rows 4
e
Of - [N) ’(y [N}
vertices| § ! t
LN] U LN]
LN] O LN
— LN} U LN]
FIG. 3. Ann x ndirected grid network with a difficult orientation for ¢’ = (i,). Edges of the form (s, i) and

(i, 1) are undeletable or, equivalently, have infinite interdiction weights. Other edge weights are as specified in the

text.

techniques, it is easy to find a minimum-weight odd-parity
cycle E{ in G* such that ¢* e Ej (Letchford and Pear-
son [33]). Unfortunately, such an approach does not lead to a
general, efficient method for solving UND on planar graphs,
because E§ may not be simple, and because minimality of
the corresponding s-¢ cut demands a simple cycle. The fol-
lowing special case of a planar graph does admit an efficient
solution, however.

Theorem 3. UND is solvable in polynomial time whenever
G is s-t planar.

Proof. (a) Embed G in the plane so that s and 7 are on the
outer face, (b) split the outer face by adding edge (s, ¢) such
that it preserves the planarity of G, (c) create dual graph G*
from G in the standard fashion, and identify one of the dual
vertices in the “split face” as s*, and the other as 1*, (d) delete
the dual edge (s*,t*), and (e) find a simple path from s* to ¢*
passing through ¢™* (which can be accomplished efficiently
using, say, network-flow techniques). Let Ej; be the primal
edges crossed by this path. It is well-known that E; created
in this fashion is a minimum-weight, minimal s-¢ cut in G
(e.g., [1, p. 263-264]). By construction, ¢’ € Ej,. .

We note that the proof applies if we start with a directed
graph and replace the undirected dual graph with a directed
one; see Schrijver [38] for general background on directed
planar graphs and their duals; see [36] for an application to an
interdiction problem; and note that step (e) in the proof can
be carried out in polynomial time in a directed graph as long

8 NETWORKS—2013—DOI 10.1002/net

as that graph is planar [38]. Thus, the following corollary is
immediate.

Corollary 6. DND is solvable in polynomial time whenever
G is s-t planar.

We include the following simple result for the sake of
completeness.

Corollary 7. DND is solvable in polynomial time whenever
G is planar and acyclic.

Proof. Because G = (V,E) is acyclic, any vertex that
precedes s or follows ¢ in an acyclic ordering of V' is unreach-
able given that the network user must start at s and end at 7.
Any such vertices may be deleted to create an s-¢ planar graph,
and Theorem 3 then applies. "

4.3. Inclusive Vertex and Edge Connectivity

To complete the discussion on the complexity of ND, we
note that two graph measures seemingly related to network
diversion arise in the context of social networks, namely,
“inclusive vertex connectivity of a vertex v’ and “inclusive
edge connectivity of an edge ¢’ (e.g., Boland and Ringeisen
[4]). (Other versions of inclusive connectivity have been
defined, but we limit discussion to these two for the sake
of brevity. Note also that early papers, e.g., Ringeisen and
Lipman [37], use the term “cohesion” rather than “inclusive
connectivity.”)

Given a connected, undirected graph G = (V,E), and
specified vertex v/ € V, the inclusive vertex connectivity of
V', denoted k (V') here, is the minimum number of vertices that
must be deleted from G to cause V' to become a cut vertex.
Thus, it appears that computing « (') might be related to solv-
ing VUND. But, « (V') can be computed using the following,
polynomial-time procedure [37]:

1. Begin: Set all vertex capacities in G to 1, set all edge
capacities to 0o, and define N(v') = U{i|(i,V") € E}.

2. For each {i,j} € N(V'), identify a minimum-capacity i-
J cut in G with respect to vertex capacities and let Vj;
denote the vertices of that cut.

3. Define « (v') = ming jycn) |Vijl. End.

Given the polynomial computability of x(v') and the NP-
completeness of VUND, we see only one useful connection
between the two concepts, a connection that is apparent in the
above procedure: VUND can be solved in polynomial time
whenever s and ¢ are both adjacent to v'.

The inclusive edge connectivity of ¢/, denoted A(¢’) here,
is the minimum number of edges that must be deleted from G
to cause ¢’ = (i, /) to become a bridge. Thus, it appears that
computing this measure might be related to solving UND.
But, A(¢') is easily computed by setting edge capacities in
G to 1, defining vertices as uncapacitated, and by solving
for a (minimal) minimum-capacity i’-j’ cut in G. Computing
A(€") involves a substantial relaxation of the requirements for
solving UND, specifically, that a solution define a minimal
i’~j’ cut and a minimal s-¢ cut. Computation of inclusive edge
connectivity does point to an easy solution of UND when
¢ = (s,1), but this special-case solution is obvious.

4.4. Summary of Complexity Results

Table 1 summarizes our computational-complexity results
and lists important problem variants whose complexity
remains open. We lack an NP-completeness proof for UND
because neither DERPATH nor Theorem 2 applies to undi-
rected graphs.

For several reasons, we also lack complexity results for
DND and UND on general planar graphs. On the one hand,
showing NP-completeness for these problems seems diffi-
cult: (a) DERPATH does not apply to UND at all, because
DERPATH is solvable in polynomial time on an undirected
graph, (b) DERPATH does not apply to DND on planar
graphs, because the planar version of DERPATH is solvable
in polynomial time [38], and (c) although VERTEX COVER
is NP-complete on planar graphs (Garey and Johnson [21,
p. 190]), the transformation from VERTEX COVER used
in Theorem 2 does not maintain planarity for DND. On the
other hand, attempting to find polynomial-time algorithms
for these algorithms also seems difficult. Phillips [36] solves
a maximum-flow network-interdiction problem in polyno-
mial or pseudopolynomial time on general, directed, and
undirected planar graphs, not just on s-¢ planar ones. Her

TABLE 1. Summary of complexity results for ND. We provide four new
theoretical complexity results (x) and one stronger result (s:).

Type of ND Complexity
Directed Planar Acyclic Polynomial*
General Open
Nonplanar Acyclic Strongly NP-complete*
General Strongly NP-complete™**
Undirected s-t Planar Polynomial*
General planar Open
Nonplanar Open

Vertex deletion Strongly NP-complete*

“Open” indicates a variant for which the computational complexity remains
unknown.

algorithm involves finding an odd-parity simple cycle in G*,
but that cycle need not contain any particular edge such as
¢’*. This restriction seems to increase, in a significant man-
ner, the difficulty of solving UND and DND on general planar
graphs.

In the next section, “DND” and “UND” again refer to
optimization problems. The section describes mathematical-
programming formulations for solving general instances of
DND and, through an appendix, general instances of UND.

5. MATHEMATICAL-PROGRAMMING
FORMULATIONS FOR DND

This section first describes Curet’s original, “single-
commodity IP” for DND [12]. It then presents a new “two-
commodity MIP” for that problem and, finally, proposes valid
inequalities for that MIP. We prove that the new MIP is at least
as strong as the original IP, and show later, empirically, that it
can be strictly stronger. “DND” now refers to the optimization
problem defined in Section 2.

The models in this section use the following definitions
and facts. An s-f cutset C = [S, T'] is a partition of V into S
and 7T =V — S, such that s € S and ¢ € T. The set of edges
Ec={(,j) e E|i€S,je T}isclearly an s-f cut, although
it may not be minimal. E¢ defines the forward edges of the
corresponding cutset.

5.1. A Basic Single-Commodity IP Formulation for DND,
Py

Curet [12] defines a set of diversion edges E’ C E in
directed graph G = (V,E), and formulates DNDm as the
problem of finding a minimum-weight s-¢ cut E¢ and a diver-
sion path E,; such that Ec N Eg; C E’. The following model
specializes Curet’s formulation to a single diversion edge ¢’
(ie., E' = {e'} = {(7,j)}), and strengthens that formulation
by applying these facts that the specialization permits: (a) an
optimal solution must have i/ € S and j/ € T, and (b) any
diversion path must include ¢'.

NETWORKS—2013—DOI 10.1002/net 9

Indices and Index Sets: Previous definitions apply here.
Parameters:
Wij interdiction cost, w;; € Z7T forall (i,j) € E, except
Wiy = 0
e a small penalty on the length of a diversion path,
e>0
d; supply and demand values for flow: d; = 1,d; = —1
andd; = 0fori e V\{s, 1}
Variables:
o 1if vertex i € T of cutset C = [S, T'], O otherwise
Bij 1 if edge (i,) is a forward edge of the cutset C (i.e.,
if (i,j) € Ec), 0 otherwise
Vij > 0 if edge (i,j) is part of a diversion path from s
to ¢, 0 otherwise
In the subsequent text, bold letters denote vectors of
the corresponding variables.

Note:

Formulation P;:

min Z wiiBij + & Z Vij €))]

(ij)eE (ij)€E
s.t. ai—aj+pB; >0 V() ek 2)
oy, =0, a,=1 3
ap =0, ap =1 4)
By =1)
Doovi—) vi=diVieV 6)
JIGHeE JIG.DHeE
yiy =1 (7
Bij + Bji +yij +yi <1 ¥V (i,)) € E\{¢'}, i <jand (j,i) € E
®)
Bi+yij <1 Y (@G.j) e E\le}), (i) ¢ E ©))
i =0 V(@) €eE (10)
a; € {0,1} VieV, B;€{0,1} V(,j) €E (11)

The objective function (1) minimizes the total interdiction
cost for edges in the identified cut E¢, plus a small penalty
for path length. The path-penalty term may be viewed as
a symmetry-breaking device (e.g., Sherali and Smith [39]).
Intuitively, it helps avoid enumerating certain solutions that
are equivalent from the interdictor’s point of view. (Specify-
ing ¢ < 1/|V| implies that the total penalty in any optimal
solution is less than 1. Given that all relevant edge weights are
positive integers, an optimal solution to this model identifies
a minimal, minimum-weight cut and an associated diversion
path with minimum cardinality.)

Constraints (2) and (3) identify an s-t cut Ec with cut-
set [S,T] (e.g., [35, pp. 118-119]). Constraints (4) and (5)
force inclusion of the diversion edge ¢’ = (¢,j") in the cut
Ec. Constraints (6) and (7) require that one unit of flow be
sent from s to ¢ through ¢/, provided that other constraints
eliminate the possibility of flow traversing a cycle containing
¢'. Constraints (8) and (9) allow an edge (i,j) # ¢’ to be an

10 NETWORKS—2013—DOI 10.1002/net

element of E¢ or to form part of a diversion path, but not
both. Of course, ¢ must be included in both.

The fixed variables in constraints (4), (5), and (7) apply
because we assume a single diversion edge; they have no
counterparts in Curet’s original formulation. Constraints (8)
are strengthened versions of constraints (9) that take advan-
tage of antiparallel edges. Curet’s original formulation does
not account for potential antiparallel edges, but our new for-
mulations P, and P;‘ do, so we account for them in P,
also.

We also note that Curet requires all variables to be
binary, yet only & and f need be so. Furthermore, given a
fixed, feasible @ € {0, 1}|V|, extreme-point solutions of the
(restricted) linear-programming (LP) relaxation of P auto-
matically yield 8 € {0, 1}/El. Thus, we can simply require
o € {0,1}Vl, B > 0 and y > 0. Extensive testing shows that
this combination of binary and continuous variables solves
most efficiently.

5.2. A Two-Commodity MIP Formulation for DND, P;

The LP relaxation of Py allows a fractional solution that is
caused, at least in part, by flow around a cycle that contains
¢’. This difficulty can be eliminated by replacing model-
ing constructs for the single-diversion path by constructs
for two separate “diversion subpaths,” one from s to i, and
one from j to t. Indeed, no flow is then possible around
a cycle that includes ¢’ and, in effect, we have strength-
ened a single-commodity MIP by reformulating it for two
commodities, one for each subpath. (See Wolsey [43] for sim-
ilar reformulation techniques.) The improved formulation P,
follows.

Additional Variables:
yl.Sj > 0 if edge (i,j) is part of a diversion subpath from
sto 7', 0 otherwise
yiTj > 0 if edge (i,)) is part of a diversion subpath from
J' to t, 0 otherwise
Additional Parameters:
d’ supply and demand for “commodity S”: d5 =
1,di = —1landd? =0fori e V\{s,i'}
T « . . T __
d; supply and demand for “commodity 7”: d o=
1,dT = —landd! =0fori e V\{j,1}
Formulation P5:

min Y wify+e . (35 +h) (12)
(ij)eE (i) €E

s.t. constraints (2)—(5), (11)

dYovi— Y vi=di Viev (13)
JGDEE — jlGieE

Soovk= > yi=d viev (14)
JGDEE jIGi)EE
Bij + Bji + ¥y + ¥ + v i < 1

V(G,j) e E\{¢} | (,i)e Eandi<j (15)

Bi+yi+yh <1V @) eE}|G.i)¢E (16)
ygj, =0, y; =0 (17)

iy =0V (i.j) €E (18)

The formulation for P, is easy to understand given the
preceding explanation for Py, so we omit a description.

The following proposition hints that P, has a general
advantage over Pi. Let F| and F, denote the feasible sets
for the LP relaxations of P and P, respectively. Then, we
can say that P, is at least as strong as P if, after converting F';
and F, into commensurate terms, we can show that F, C F
(Bertsimas and Weismantel [3, p. 12]).

Proposition 4. P, is at least as strong as Py.

Proof. Consider an arbitrary feasible solution
(@&, B.§5,§7) to F». Constructa new vector § = §° +37 +eip,
where e;; is the unit vector of length |E| with a 1 in the
position associated with ¢’ = (i/,j'). It is easy to verify that
(o, ﬁ, y) defines a feasible solution to the LP relaxation of P;.
Because we begin with an arbitrary feasible solution from F»

in this construction, it is clear that F, C F. "

5.3. An Improved Two-Commodity Formulation for ND, PEL

P splits the single diversion path of P; into two separate
subpaths. Let [S, T] denote the s- cutset associated with a
feasible solution for P,, and let y° and y” be feasible for
that cutset. Then, the following properties must hold: (a)
Y,'Sj > 0= {i,j} C S, and (b) yg > 0 = {i,j} C T. These
properties lead to the following valid inequalities for P;:

Y itas1VieV\iy (19)
JIG)EE

Y v —ai<0Viev\(s) (20)
JIG))EE

“P;‘ ” denotes P, with these valid inequalities added.

Because P; simply adds valid inequalities (19) and (20)
to Py, P;’ is at least as strong as the former model (and Py).
Empirical results below show strict improvement is possible
for P} over P, and for both P and P; over P;.

6. COMPUTATIONAL RESULTS

This section demonstrates the computational advantages
and empirical strengths of the new network-diversion formu-
lations P and P;’ compared to the original formulation P;.
Wolsey [43] defines “percentage of the duality gap closed” as
a reasonable measure of the strength of a reformulated MIP
P’ compared to a “baseline MIP” P:

zp(P") — z1p(P)

(P, P/) = 100% -
£ T P

; 2y

where z;p(P) and zzp(P’) denote the optimal objective-
function values for the LP relaxations of P and P’, respec-
tively, and where z* denotes the optimal objective value for
problem P. For a wide variety of network topologies and
sizes, wereport ¢ (P, P2) and ¢ (Py, P;) to compare strengths
of the three formulations, and we report computational times
to compare practical efficiencies.

Computational tests cover four network types, two artifi-
cially constructed “structured networks” and two extracted
from real-world data. The structured “grid” and “star-mesh”
networks have been used by other authors for testing other
solution methods for ND, so they provide useful, direct com-
parisons to those earlier methods. Tests on road networks
and communications networks will indicate whether or not
our new methods can help solve practical applications.

The network of primary and secondary roads in California
defines the largest real-world network tested here, comprising
10,770 vertices and 11,975 undirected edges. The smallest
real-world network tested is a fiber-optic communications
network in the Seattle metropolitan region: it comprises 221
vertices and 441 undirected edges. We ensure that tests on
structured networks more than cover that range of network
sizes. Specifically, the smallest structured networks have
about 100 vertices and 400 directed edges, and the largest
about 90,000 vertices and 360,000 directed edges.

We carry out all computational tests on a 64-bit work-
station with 12 GB of RAM and four 2.27-GHz processors
running under version 2.6.32 of the Linux operating system.
AMPL 12.1 ([20, pp. 203-217], [26]) generates the models
and CPLEX 12.1 [27] solves them. A relative optimality tol-
erance of 1% applies, solution time is limited to 1 h for each
problem instance, and ¢ = 1/100,000. (As required, ¢ <
1/]V] for all test problems.) Solver parameters are set sepa-
rately for each formulation based on guidance from CPLEX’s
automated “tuning tool” [27, pp. 295-311]. Instructed to min-
imize heuristically the maximum solution time across a set of
tuning-problem instances, this tool produces parameter set-
tings that favor the solution of as many test-problem instances
as possible given the per-instance computational limit of one
hour. The tool identifies these non-default CPLEX parame-
ter settings: “heuristicfreq —1,” “cutpass 1,” “probe —1” and
“varselect 4” for Py, and “heuristicfreq —1” and “varselect
4” for both P, and P ; see [26, pp. 53—74] for descriptions
of these parameters.

6.1. Structured Test Networks

This section describes tests on weighted and unweighted
grid and star-mesh networks. Curet [12], Cintron-Arias et al.
[9], and Yang and Park [45] test only grid networks while
Erken [15] and Cho [8] test both types. Edge weights are
drawn from a discrete uniform distribution on [1,5] asin [15].
(Curet [12] uses a discrete uniform distribution on [1,10].
Solution times using this distribution have more variabil-
ity, but the conclusions reached regarding one formulation
solving faster than another do not change.) We generate ten
instances for each chosen size of grid and star-mesh network

NETWORKS—2013—DOI 10.1002/net 11

TABLE 2. Solution statistics for Py, P, and P;r on weighted and unweighted, grid, and star-mesh networks.

Py soln. stats

P, soln. stats

PJ soln. stats

Weighted?/ Avg. S.d. No. Avg. S.d. No. Avg. S.d. No.
Topology \4] |E| (s) (s) solved (s) (s) solved (s) (s) solved Z(P1,P2) (P ,P;r)
Unweighted
Grid 10 102 380 0.0 0.0 10 0.0 0.0 10 0.0 0.0 10 None None
Grid 20 402 1,560 0.1 0.1 10 0.1 0.1 10 0.1 0.1 10 None None
Grid 30 902 3,540 1.4 14 10 0.3 0.1 10 0.4 0.2 10 None None
Grid 50 2,502 9,900 33.7 93.0 10 0.9 0.5 10 1.0 0.4 10 None None
Grid 100 10,002 39,800 3089 6433 10 6.2 33 10 8.5 4.1 10 None None
Grid 200 40,002 159,600 - - 9 56.3 12.9 10 93.8 323 10 None None
Grid 300 90,002 359,400 - - 8 387.8 129.8 10 648.1 2124 10 None None
Weighted
Grid 10 102 380 0.2 0.1 10 0.1 0.1 10 0.1 0.1 10 49.7% 49.7%
Grid 20 402 1,560 17.8 27.8 10 0.9 1.3 10 0.4 0.2 10 24.2% 25.7%
Grid 30 902 3,540 - - 7 2.7 1.7 10 1.2 0.9 10 18.2% 18.8%
Grid 50 2,502 9,900 - - 3 115.1 302.0 10 4.6 2.4 10 11.9% 12.3%
Grid 100 10,002 39,800 - - 0 200.1 137.4 10 50.1 39.6 10 16.2% 18.5%
Grid 200 40,002 159,600 - - 0 - - 4 - - 8 - -
Grid 300 90,002 359,400 - - 0 - - 1 - - 4 - -
Unweighted
SM 10 101 400 0.4 0.4 10 0.3 0.3 10 0.2 0.1 10 30.9% 30.9%
SM 15 226 900 26.7 39.5 10 34 43 10 2.0 2.6 10 20.6% 28.7%
SM 20 401 1,600 - - 6 4054 496.7 10 39.2 49.5 10 25.9% 32.3%
SM 25 626 2,500 - - 2 - - 3 7194 6545 10 12.3% 22.7%
SM 30 901 3,600 - - 2 - - 3 - - 3 - -
Weighted
SM 10 101 400 0.6 0.2 10 0.6 0.5 10 0.2 0.1 10 18.4% 23.1%
SM 15 226 900 84.0 117.3 10 59 6.1 10 1.5 1.3 10 13.7% 26.1%
SM 20 401 1,600 - - 5 388.1 5043 10 12.5 9.5 10 11.4% 22.2%
SM 25 626 2,500 - - 3 - - 7 78.9 96.1 10 12.6% 23.3%
SM 30 901 3,600 - - 0 - - 1 - - 8 - -

Each row represents 10 randomly generated problem instances of the indicated indicated topology: “Grid n”” and “SM n” correspond to an n X n grid network
and an n x n star-mesh network, respectively; E includes the edge that is antiparallel to ¢’. Each row displays average solution time in seconds (“avg.”), the
standard deviation of those times (“s.d.”), and the number of problems solved within the 1-h time limit (“no. solved”). Columns 13 and 14 show the average
duality gap closed by P, and P3, respectively, relative to P1; see Equation (21). Py has no duality gap for unweighted grid networks, and “none” signifies

this. [Equation (21) is undefined in this case.]

using the programs developed by Balcioglu and Wood [2]
and by Erken [15], respectively.

The grid networks (see Fig. 3) approximate road networks
with many intersections and potential routes from one side
of the network to the other (Xie and Levinson [44]). Their
design corresponds to that used in [12] and [15], although
neither of these papers specifies placement and orientation of
diversion edges. For a weighted grid network with n rows and
n columns of vertices—rows and columns are ordered here
from bottom to top and left to right, respectively—we place
the diversion edge ¢’ = (/') such that i is in row r = [5|
and column ¢ = |4 |, and j is in row r and column ¢ — 1.
The diversion edge (i’,) is chosen randomly for unweighted
grid networks, except that i’ = ¢ and j/ = s are disallowed.

In the weighted grid networks, the orientation for the diver-
sion edge, “toward s,” opposes the general orientation of a
diversion path, and this tends to make the problems more dif-
ficult to solve: typically, this orientation increases the number
of edges in an optimal s-7 cut, and empirical results show that
number to be positively correlated with solution difficulty.

12 NETWORKS—2013—DOI 10.1002/net

For instance, when we reverse the orientation of the diver-
sion edge for the 100 x 100 weighted grid networks covered
in row 7 of Table 2, solutions average about three times faster
for P, and about 2.5 times faster for P; . (Independent of the
diversion edge’s orientation, however, P cannot solve any of
these instances within the 1-h time limit.)

We test star-mesh networks similar in design to those
tested in [15] and [8]; see Figure 4 for an example, and see
Miller [34] for a detailed description of this network type. A
version of this topology has been proposed for wireless sensor
networks [6], but practical sensor networks would probably
be much smaller than the star-mesh networks tested here. For
each weighted or unweighted problem instance, we disallow
i’ = t and j/ = s, but otherwise randomly select ¢ from
among ray edges directed toward s. (Neither [15] nor [8]
specify how ¢’ is chosen.)

For each network type and size, Table 2 presents solution
statistics, including the average duality gap closed by P and
P;“ relative to P;. Table 3 provides detailed results on the
ten 100 x 100 weighted-grid-network test instances to show

> = (1))
® g

ot

H T
Q‘\\“"’O
SN,
% S
QLT
CERX

FIG. 4. An n x n star-mesh network (with » rays and n rings). Crossing
line segments represent a vertex. Except for the diversion edge, each line
segment between two vertices represents two, directed, antiparallel edges.

the ranges for solution times, objective-function values, and
duality-gap improvements.

We note that the LP relaxation for each model can be
solved, so duality gaps and their improvements can be com-
puted as long as at least one MIP formulation identifies
z*. In fact, given the nonzero optimality tolerance, the best
objective value found, zypp, may not equal z*. Because the
tolerance at 1% is small, however, little error results in replac-
ing z* with zyp in duality-gap calculations, so we make that
replacement.

Results may be summarized as follows. P, and P;“ close
the average duality gap relative to P; by 20 and 27% on
unweighted star-mesh networks, and on weighted star-mesh
networks by 19 and 24%, respectively. P exhibits no duality
gap on unweighted grid networks. Given the 1-h time limit

for each problem instance, P; solves 155 of 240 instances
(65%), P; solves 199 (83%) and P2+ solves 223 (93%).

For a few, small, test instances of unweighted grid
networks—these have no duality gap—P) can actually solve
more quickly than P, or P; . On larger unweighted grid net-
works, however, both P, and P;r solve more quickly, because
a near-optimal solution is found at or near the root node for
those formulations, while P; often requires a great deal of
enumeration to find such a solution. (For this class of prob-
lems only, P; is faster than P; because, apparently, CPLEX
enumerates about the same number of nodes in the respective
branch-and-bound trees, but the per-node computation time
is higher for P; because of its extra constraints, i.e., valid
inequalities.) In general, P; is faster than Py, and P; is faster
yet. Indeed, P; is often an order of magnitude faster than P
on these problems.

The reader may have noted that the grid networks have an
s-t-planar topology, and could actually be solved in poly-
nomial time. On the other hand, the star-mesh networks
are planar, but not s-f-planar, and thus their theoretical
complexity remains open. Clearly, DND on a star-mesh
network seems much more difficult to solve than on a grid net-
work of comparable size. Perhaps this points to a difference
in theoretical complexity.

All tests described above use the AMPL/CPLEX option
“heuristicfreq —1,” meaning that CPLEX does not search
for feasible solutions using its internal heuristic (because
parameter-tuning shows it to be unproductive). For the
topologies tested, however, a simple, fast, problem-specific
heuristic might provide a feasible starting solution that could
reduce solution times. We have carried out only preliminary
computations with heuristics, however, because it is clear
that no heuristic can eliminate the advantage provided by the
tighter LP relaxations of P, and P;“ compared to P;. For
instance, in one test on a 25 x 25 unweighted star-mesh net-
work, even when initialized with an optimal solution which
a heuristic might just produce, P fails to prove that solution

TABLE 3. Solution details on 100 x 100 weighted grid networks.
Soln. time (s) ZLP
Instance P Py Py ZMIP P P, 2 C(P1,Py) ¢(P,PY)
1 [68%] 193 133 242 228.0 230.4 230.8 16.9% 20.0%
2 [69%] 60 18 240 233.0 2333 233.3 4.7% 4.7%
3 [3%] 223 18 228 222.0 224.5 225.1 41.7% 51.8%
4 [63%] 399 98 243 222.0 2245 225.0 11.9% 14.3%
5 [35%] 184 37 244 230.0 230.7 230.7 4.8% 4.8%
[§ [75%] 307 50 241 232.0 2322 232.4 2.0% 4.4%
7 i 416 32 237 223.0 224.0 224.0 7.1% 7.1%
8 [4%] 50 19 242 231.0 234.7 2347 33.3% 33.3%
9 [44%] 121 74 243 229.0 231.3 231.3 16.7% 16.7%
10 [6%] 48 22 231 226.0 227.2 227.4 23.3% 27.7%
Average - 200 50 NA NA NA NA 16.2% 18.5%

The results illustrate the range of solution statistics for the 10 problem instances summarized in row 12 (Weighted, Grid 100) of the data in Table 2. Py fails
to solve any of the 10 instances within the 1-h time limit: in column 2, a percentage in square brackets indicates the relative optimality gap remaining after
1 h of computation, and “}” indicates no feasible solution was obtained in that time. “zyp” is the the best objective value found, ignoring the contribution
from ¢; this objective value is within 1% of the true optimum. “zzp” is the optimal objective value of the respective model’s LP relaxation.

NETWORKS—2013—DOI 10.1002/net 13

TABLE 4. Input-data statistics for tests on road-network models for the
U.S. states of Rhode Island, Colorado, and California.

Original network Reduced networks

State V] |E| Min |V| Min |E| Max |V| Max |E|
Rhode Island 1,364 1,838 622 2,128 628 2,146
Colorado 4,045 4,678 860 2,934 867 2,952
California 10,770 11,975 2,104 7,178 2,113 7,202

“Original network” represents data for what we view as an undirected
network as extracted from U.S. Census data files. “Reduced networks” rep-
resents the corresponding data after applying topological reductions. The
size of a reduced network depends on the choice of s, ¢, i’, and j/, so we
report minimum and maximum sizes.

to be within 1% of optimality in over 4 h of computation.
By contrast, P; solves this problem instance in about five
minutes without the benefit of any initial solution.

Above, we have presented “parallel” computational results
on two classes of structured networks. This is easy to do
because similar techniques generate all of these networks.
Our real-world test networks have completely different ori-
gins, however, and we adjust methods on the two classes
differently. Consequently, below, we describe computational
tests on these network classes separately.

6.2. Road Networks

Table 4 presents statistics for network models of the pri-
mary and secondary roads in U.S. states of Rhode Island,
Colorado, and California, extracted from U.S. Census Bureau
data [42]. These states range from the smallest measured by
land area in the United States (Rhode Island) to the second
largest by that measure in the contiguous 48 states (Califor-
nia); the Rhode Island and Colorado data might therefore
represent networks in geographically constrained regions of
a larger country, whereas the California data might repre-
sent the complete road network of a fairly large country.

Appendix 1 describes how these data are created and manip-
ulated, including how standard (e.g., series) topological
reductions apply.

Note that | E| specifies the number of undirected edges: we
assume that traffic can flow in both directions on each road
segment, and interdiction of any segment would stop traffic
in both directions. Thus, tests here reflect solutions of UND.
Appendix 2 provides a formulation of P; that is converted to
handle undirected edges. Similar conversions of P, and P;‘
apply, also.

Most of the problem instances here require that we first
apply certain topological reductions to make the instances
solvable. Series reductions appear to be crucial because (a)
the original networks include many series segments, (b) this
structure leads to an enormous number of near-optimal solu-
tions, and (c) empirically, we find that many of these solutions
must be explored during a branch-and-bound enumeration.

Table 5 presents computational results for these prob-
lems using the previously specified CPLEX parameters. The
results parallel those seen above: in general, P, solves more
quickly than Py, and P; solves more quickly than P. The
results also indicate that, in fact, P;r can handle fairly large,
real-world networks successfully, although one of the 30
unweighted California test instances does elude solution.

6.3. Communications Networks

To compare the network-diversion formulations on com-
munications networks, we imagine the need to intercept
communications in a fiber-optic network that covers a
metropolitan area in some foreign country. For simplic-
ity and reproducibility, we test on networks in the United
States extracted from a fiber-optic network owned and oper-
ated by Zayo Group LLC [46]. Specifically, we create
five basic test models by extracting a subset of Zayo’s
“Metro Z” network for the metropolitan area surrounding
each of the cities of Seattle, Minneapolis, Denver, Phoenix,
and Indianapolis. The network data are extracted from the
compressed KML file “Zayo-US-Network-EXTERNAL-11-
1-2012.kmz” obtained at the Zayo Group’s website [47].

TABLE 5. Computational results for UND on topologically reduced road-network data for Rhode Island, Colorado, and California.
P soln. stats P» soln. stats P;r soln. stats

Weighted?/ Avg. S.d. No. Avg. S.d. No. Avg. S.d. No.

Topology (s) (s) solved (s) (s) solved (s) (s) solved ¢(Py,P2) {(Pl,P;r)
Unweighted

Rhode Island - - 28 - - 28 49 11.1 30 10.4% 12.0%

Colorado - - 22 9.3 20.7 30 35 2.7 30 19.3% 21.5%

California - - 26 - - 28 - - 29 - -
Weighted

Rhode Island - - 28 - - 29 2.6 3.7 30 17.9% 23.5%

Colorado - - 22 9.2 20.4 30 35 2.7 30 19.3% 21.5%

California - - 27 - - 28 23.7 99.3 30 30.3% 32.2%

Each row gives results averaged over 30 instances, for which s, ¢, and ¢’ are chosen randomly. (Appendix 1 describes general data preparation and the rules

used to choose these entities.) Table 2’s caption defines the column entries.

14 NETWORKS—2013—DOI 10.1002/net

TABLE 6.

Input-data statistics on fiber-optic test networks, listed in order of increasing |V|.

Min lat. (N) Max lat. (N) Min long. (W) Max long. (W)
City (degrees) (degrees) (degrees) (degrees) V| |E|
Seattle, WA 47.50 47.75 122.25 122.40 221 241
Minneapolis, MN 44.90 45.10 93.00 93.40 562 668
Denver, CO 39.60 39.80 104.90 105.10 666 941
Phoenix, AZ 33.20 33.50 111.70 112.30 2,088 3,148
Indianapolis, IN 39.40 39.60 86.00 86.30 2,502 3,092

The network data are extracted from compressed KML data (KMZ format) as described in the text. An extracted network comprises vertices whose latitudes
and longitudes fall within the specified region, and all edges with both endpoints in the region, with one exception: a vertex is deleted if it has no incident

edges using this construction scheme.

(See [24] for background on the Keyhole Markup Language,
and on the KML and KMZ file formats for that language.)
For each city, Table 6 lists the latitude and longitude lim-
its that define the metropolitan area for our purposes, and
the resulting values for |V| and |E| for each extracted net-
work. Note that our metropolitian areas are unofficial, but
the roughly rectangular regions more than cover the relevant
cities’ boundaries.

Table 7 provides computational results for UND on the
five networks for each of the three formulations. The results
correspond to thirty feasible instances, each with a randomly
selected source, sink, and diversion edge. Because P;’ suc-
cessfully solves all instances of all five test problems, we
have not applied any topological reductions in these tests.
The results follow the same pattern as seen in other tests:
P; is the best formulation, P; is the worst, and P, falls in
between.

7. CONCLUSIONS

The network diversion problem (ND) specifies a “diver-
sion edge” ¢ = (7,;') in a graph G = (V, E), along with a
source vertex s, sink vertex ¢, and non-negative edge weights.
It then seeks a minimum-weight, minimal s-f cut E¢c in G
such that ¢’ € E¢. “DND” and “UND” correspond to ND on
directed and undirected graphs, respectively.

DND was known to be strongly NP-complete, but we
present a new proof that provides more information on special
topologies. For instance, the proof implies that DND is NP-
complete even when the diversion edge is incident from s or

into 7 (but not both), and even when G is acyclic. Additionally,
we describe polynomial-time algorithms for DND and UND
on s-t planar graphs, and show that a vertex-deletion ver-
sion of UND is strongly NP-complete. The complexity of
the nominal edge-deletion version of UND remains open,
however.

This paper also presents a new MIP formulation for DND.
“P1” denotes the only previously known formulation, “P,”
denotes our new, basic formulation, and “P;“ ” denotes a
strengthened variant. P identifies (a) a minimum-weight cut
E¢ containing ¢/, and (b) a “diversion path” from s to 7 that
intersects the cut only at ¢’. The path, modeled using stan-
dard flow-balance constraints, ensures the minimality of E¢.
The continuous relaxation of P allows flow around a cycle
that includes ¢’ = (7, '), which P; avoids by separating the
diversion-path flow into two, mutually exclusive “commodi-
ties,” namely, flow from s to i’ and flow from j to r. P; adds
valid inequalities to P, that the two-commodity formulation
enables.

We test all formulations on (a) artificially generated grid
networks with up to 90,002 vertices and 359,400 directed
edges, (b) artificially generated “star-mesh networks,” (c)
road networks from the states of Rhode Island, Colorado,
and California, and (d) fiber-optic communications net-
works from five metropolitan areas in the United States. We
successfully solve unweighted instances of the largest grid-
network problems, although some some smaller real-world
networks elude consistent solutions. For example, the Cali-
fornia road-network problems have roughly 11,000 vertices
and 12,000 undirected edges; these values reduce to about

TABLE 7. Computational results for UND on fiber-optic networks in five metropolitan areas of the United States.
P soln. stats P, soln. stats P2+ soln. stats
Avg. S.d. No. Avg. S.d. No. Avg. S.d. No.
City (s) (s) solved (s) (s) solved (s) (s) solved ¢(P1,P2) ;(Pl,Pzr)
Seattle, WA 0.05 0.06 30 0.03 0.05 30 0.02 0.02 30 20.0% 27.7%
Minneapolis, MN 2.13 8.58 30 2.28 7.05 30 0.26 0.17 30 6.7% 21.4%
Denver, CO 95.10 318.99 30 122.24 438.15 30 0.70 0.94 30 10.4% 27.1%
Phoenix, AZ - - 29 - - 29 3.12 9.78 30 18.7% 28.1%
Indianapolis, IN - - 24 - - 26 2.06 1.82 30 21.4% 37.2%

Each row gives results averaged over 30 feasible instances, for which s, z, and ¢’ are chosen randomly. Table 2’s caption defines the column entries.

NETWORKS—2013—DOI 10.1002/net 15

2,100 and 7,200, respectively, after topological reductions;
all 30 weighted instances solve in about 30 s on average; but
one of the unweighted instances cannot be solved in 1 h.

In brief, we find that the new formulation P; often solves
an order of magnitude faster than does Py, P; is usually faster
than P1, but rarely faster than P;’ . Improved efficiency for P;’
can be attributed to its tighter linear-programming relaxation:
typically, P;“ reduces the duality gap with respectto P1 by 10—
50%. We also demonstrate that P;‘ can solve problems that
cannot be solved by exact methods based on combinatorial
Benders decomposition or enumeration of near-minimum-
weight cuts. Thus, except for special cases or until improved
formulations appear, P;r should be viewed as the standard for
solving network-interdiction problems. We further note that
topological (e.g., series) reductions can prove key to solving
certain sparse-network problems.

APPENDIX 1: ROAD-NETWORK TEST DATA

This appendix describes data preparation for the road-
network tests described in Section 6.2.

Data for each state are taken from census data [42] in
“shapefile” format. Using ArcGIS software [16], each file
is converted to a “coverage” (Zeiler [48, pp. 4-5]), which,
in turn, is converted to an “e00-format” text file (Sherman
[40, pp. 148-149]). Nodes are identified by latitudes and
longitudes taken out to three decimal places. This implies
an accuracy of 100-200 m, so some short road segments
are merged into single vertices; all resulting self-loops are
deleted.

Once the basic conversion above is made for a given state,
the algorithm below creates 30 different problem instances.
The algorithm uses this definition: two undirected edges e; =
(i,j) and e» = (j, k), i # k, are series edges if degree(j) = 2,
that is, if no other edges are incident to j.

1. Begin. Select s randomly from among vertices in the
northern third of the state, with the north-south range
being measured in terms of minimum and maximum
latitudes.

2. Choose t similarly, but from the southern third of vertices
in the state.

3. View the original network as undirected and merge any
parallel edges to create G = (V,E). (We assume that
interdiction of undirected edge (i,j) would halt traf-
fic flowing on both underlying directed edges (i,j) and
(j,i). Appendix B shows how to modify P; to handle
undirected edges; similar modifications apply to P, and
P

4. Choose ¢’ = (i,j") € E randomly such that both i’ and j’
lie in the middle third of the latitude range for the state.

5. Using a network-flow model, test feasibility of UND and
return to Step 3 if the problem is infeasible.

6. Forall e € E\{w,}, if the model is unweighted, setw, =
1, and otherwise choose w, randomly as a uniformly
distributed integer in [1, 5].

7. Recursively delete any vertex i € V\{s, ¢} with degree(i)
=1, along with incident edges.

16 NETWORKS—2013—DOI 10.1002/net

8. While any pair of series edges e; = (i,j) and ex = (j, k)
remains in E, replace e; and e, with e3 = (i, k), define
We, = min{w,,,w,,}, and delete j. (Note: If two edges
are in series, an optimal solution to UND would interdict
at most one, and it would be the one with the smaller
weight.)

9. Merge any new parallel edges e; = (i,j) and e, = (i,j)
into a single edge e3 = (i,j) with weight w3 = w; + wy.
(Note: Unlike initial parallel edges identified in Step
3, we assume that interdiction of parallel edges here
would require separate attacks. This assumption seems
reasonable as parallel edges at this step can result from
reductions on edges that are distant except at intersec-
tions. By contrast, we find that most initially parallel
edges lie in close proximity to each other. For instance,
such edges can arise from a freeway segment and its
adjacent segment of frontage road.)

10. Repeat Steps 8 and 9 recursively until no series or parallel
reductions can be made.

11. The resulting network becomes one instance of a
“reduced network”™ as listed in Table 5. End.

APPENDIX 2: FORMULATION P1 MODIFIED FOR
AN UNDIRECTED GRAPH

This formulation converts P; from Section 5 to handle an
undirected graph G = (V,E), that is, to solve UND. The
road-network tests in Section 6.2 use this formulation and
analogous formulations for P, and P; . Note that the formu-
lation does specify that the diversion path should traverse
from s to 7/, from i’ across ¢’ to j/, and then from j’ to t.

min > wiBj+e Y i+ i) (22)
(ij)eE (ij)eE

s.t. @i —aj+Bij =0V (i,j) cE (23)

@ —ai+ ;>0 V(i) eE (24)

oy =0, ay=1 (25)

a =0, ay=1 (26)

Bij =1 27

> iy =diVieV (28

J 1 G)€EE or (ji)eE

yij =1, yyi =0 (29)
Bij +vij +yi =1 ¥ (i,)) € E\{e'}
(30)

yij =0 V(@) eE (31)

o € (0,1} VieV, Bje{0,1} V(i,j) €E
(32)

Acknowledgments

The authors thank two anonymous referees for their help-
ful comments on the first draft of the paper, and thank Pro-
fessor Douglas Shier for pointing out the work by Ringeisen
and others on inclusive connectivity.

REFERENCES

(1]

(2]

(3]

(4]

(3]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows:
Theory, algorithms and applications, Prentice Hall, 1993.
A. Balcioglu and R.K. Wood, “Enumerating near-min s-¢
cuts,” Network interdiction and stochastic integer program-
ming, D. Woodruff (Editor), Kluwer Academic Publishers,
Boston, 2003, pp. 21-49.

D. Bertsimas and R. Weismantel, Optimization over integers,
Dynamic Ideas, Belmont, Massachusetts, 2005.

J. Boland and R. Ringeisen, On super i-connected graphs,
Networks 24 (1994), 225-232.

K.S. Booth, Isomorphism testing for graphs, semigroups, and
finite automata are polynomially equivalent problems, STAM
J Comput 7 (1978), 273-279.

N. Boudriga and M. Obaidat, Mobility, sensing, and security
management in wireless ad hoc sensor systems, Comput Elect
Eng 32 (2006), 266-276.

G.G. Brown, WM. Carlyle, R.C. Harney, E.M. Skroch, and
R.K. Wood, Interdicting a nuclear-weapons project, Oper Res
57 (2009), 866-877.

D.H. Cho, An optimization algorithm for the network
diversion problem using combinatorial Benders’ cut, Mas-
ter’s Thesis, Department of Industrial Engineering, Korea
Advanced Institute of Science and Technology, Daejon,
Korea, 2009.

A. Cintron-Arias, N. Curet, L. Denogean, R. Ellis, C. Gon-
zalez, S. Oruganti, and P. Quillen, A network diversion
vulnerability problem, Technical report 1752, Institute for
Mathematics and its Applications: Mathematical Modeling
in Industry Summer 2000 Program for Graduate Students,
Minneapolis, Minnesota, February 2001.

G. Codato and M. Fischetti, Combinatorial Benders’ cuts
for mixed-integer linear programming, Oper Res 54 (2006),
756-766.

D. Cribb, Stability properties of inclusive connectivity for
graphs, Ph.D. Thesis, Clemson University, Clemson, South
Carolina, 1993.

N.D. Curet, The network diversion problem, Mil Oper Res 6
(2001), 35-44.

de Verdiere, E.C. and A. Schrijver, “Shortest vertex-disjoint
two-face paths in planar graphs,” 25th Int Symp Theoret
Aspects Comput Sci (STACS), Dagstuhl, Germany, Vol. 1,
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2008,
pp. 181-192.

N. Deo, Graph theory with applications to engineering and
computer science, Prentice-Hall, Inc., Upper Saddle River,
New Jersey, USA, 1974.

O. Erken, A branch and bound algorithm for the net-
work diversion problem, Master’s Thesis, Naval Postgraduate
School, Monterey, California, December 2002.

ESRI, ArcGIS 9, what is ArcGIS?, ESRI, Redlands, Califor-
nia, 2004.

FE. Finelli, Transforming aerospace power, Airpower J 12
(1999), 4-14.

L. Ford and D. Fulkerson, Maximal flow through a network,
Can J Math 8 (1956), 399-404.

S. Fortune, J. Hopcroft, and J. Wyllie, The directed subgraph
homeomorphism problem, Theoret Comput Sci 10 (1980),
111-121.

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

[36]

[37]

[38]

[39]

R. Fourer, D. Gay, and B.W. Kernighan, AMPL: A mod-
eling language for mathematical programming, 2nd edition,
Duxbury Press, Pacific Grove, California, 2003.

M.R. Garey and D.S. Johnson, Computers and intractability:
A guide to the theory of NP-completeness, W. H. Freeman &
Co., New York, New York, 1979.

A. Gayash, V. Viswanathan, and D. Padmanabhan, SQUARE-
lite: Case study on VADSoft project, Special report
CMU/SEI-2008-SR-017, Carnegie Mellon Software Engi-
neering Institute, Pittsburgh, Pennsylvania, 2008.

E. Glover, Tabu search — Part I, ORSA J Comput 1 (1989),
190-206.

Google Developers KML tutorial, webpage. Available at:
https://developers.google.com/kml/documentation/kml_tut.

Accessed 21 January 2013.

T. Harris and F. Ross, Fundamentals of a method for evalu-
ating rail net capacities, Research memorandum RM-1573,
The RAND Corporation, 1955.

IBM, IBM ILOG AMPL Version 12.1 User’s Guide, Inter-
national Business Machines Corporation, 2009.

IBM, IBM ILOG CPLEX V12.1 User’s Manual for CPLEX,
International Business Machines Corporation, 2009.

B.A. Jackson, P. Chalk, K. Cragin, B. Newsome, J.V. Para-
chini, W. Rosenau, E.M. Simpson, M. Sisson, and D. Temple,
Breaching the fortress wall: Understanding terrorist efforts to
overcome defensive technologies, RAND Corporation, Santa
Monica, California, 2007.

R. Karp, “Reducibility among combinatorial problems,”
Complexity of computer computations, R. Miller and J.
Thatcher (Editors), Plenum Press, New York, New York,
1972, pp. 85-103.

B. Korte and J. Vygen, Combinatorial optimization: The-
ory and algorithms, 3rd edition, Springer-Verlag, Berlin-
Heidelberg, Germany, 2006.

M.E. Krause, Decision dominance: Exploiting transforma-
tional asymmetries, Defense Horizons 23 (2003), 1-8.

M.S. Laughton, “Operational fires in support of counterdrug
campaigns,” Working paper, Department of Joint Military
Operations, Naval War College, Newport, Rhode Island,
1996.

A.N. Letchford and N.A. Pearson, A fast algorithm for mini-
mum weight odd circuits and cuts in planar graphs, Oper Res
Lett 33 (2005), 625-628.

L.E. Miller, Catalog of network connectivity models,
webpage. Available at: http://w3.antd.nist.gov/wctg/netanal/
netanal_netmodels.html. Accessed 14 July 2011.

C.H. Papadimitriou and K. Steiglitz, Combinatorial opti-
mization: Algorithms and complexity, Dover Publications,
Mineola, New York, 1998.

C.A. Phillips, “The network inhibition problem,” Proc
Twenty-Fifth Ann ACM Symp Theory Comput, San Diego,
California, 1993, pp. 776-785.

R. Ringeisen and M. Lipman, Cohesion and stability in
graphs, Discr Math 46 (1983), 191-198.

A. Schrijver, Finding k disjoint paths in a directed planar
graph, SIAM J Comput 23 (1994), 780-788.

H.D. Sherali and J.C. Smith, Improving discrete model rep-
resentations via symmetry considerations, Manag Sci 47
(2001), 1396-1407.

NETWORKS—2013—DOI 10.1002/net 17

[40]

[41]

[42]

[43]

[44]

G. Sherman, The geospatial desktop, Locate Press, Williams
Lake, British Columbia, Canada, 2012.

Y. Shiloach, The two paths problem is polynomial, Techni-
cal report STAN-CS-78-654, Stanford University, Stanford,
California, 1978.

U.S. Census, 2011 TIGER/Line shapefiles, webpage.
Available at: ftp:/ftp2.census.gov/geo/tiger/TIGER2011/
ROADS/. Accessed 10 March 2012.

L. Wolsey, Strong formulations for mixed integer program-
ming: A survey, Math Program 45 (1989), 173-191.

F. Xie and D. Levinson, Topological evolution of surface

transportation networks, Comput Environ Urban Syst 33
(2009), 211-223.

18 NETWORKS—2013—DOI 10.1002/net

[45]

[46]

[47]

(48]

H. Yang and S. Park, A tabu search algorithm for the network
diversion problem, J Mil Oper Res Soc Korea 30 (2004),
30-47.

Zayo Group, Form 10k (annual report), webpage. Avail-
able at: http://www.zayo.com/sites/default/files/Annual %
20Report%20FY %202012.PDF. Accessed 18 January 2013.
Zayo Group, U.S. network KMZ (11-01-12), webpage.
Available at: http://www.zayo.com/sites/default/files/
images/Zayo-US-Network-EXTERNAL-11-1-2012.kmz.
Accessed 18 January 2013.

M. Zeiler, Modeling our world: The ESRI guide to geo-
database design, Environmental Systems Research Institute,
Inc., Redlands, California, 2000.

