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A classical problem in the mining industry for open-pit mines involves scheduling the production of notional
three-dimensional production blocks, each containing a predetermined amount of ore and waste. That is, given
operational resource constraints on extraction and processing, we seek a net present value-maximizing schedule
of when, if ever, to extract each block in a deposit. We present a version of the problem, which some literature
refers to as (CPIT). This constrained ultimate pit limit problem (i.e., open-pit production-scheduling problem
variant) produces a sequence of blocks to extract given minimum and maximum bounds on production and
processing capacity, and geospatial precedences. Our tutorial demonstrates methods to expedite solutions for
instances of this model through variable definition, preprocessing, algorithmic choice, and the provision of an
initial feasible solution. As such, our paper is relevant for any mining practitioner interested in production
scheduling, and any operations researcher interested in a basic introduction before extending the boundaries of
algorithmic development in this area.

Keywords : mine scheduling; mine planning; open-pit mining; surface mining; optimization; integer
programming applications.
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Mine production scheduling is the process of
determining an extraction sequence for notional

three-dimensional blocks, each containing prespec-
ified amounts of ore and waste. Large excavators
and haul trucks extract and subsequently transport
these blocks of material to a mill (i.e., processing
plant) or to a waste site, depending on the expected
profitability of the material. The rate at which the
material is excavated and processed depends on ini-
tial capital expenditure decisions, permitting, contract
agreements, projected sales, processing capacities, the
presence of equipment (e.g., haul trucks and load-
ers), and the existence of infrastructure (e.g., roads
and rail lines). Processed ore can be sold according to
long-term contracts or on the spot market. Waste is
left in piles, which must ultimately be remediated or
reclaimed when the mine is closed.

Researchers have studied mine production schedul-
ing since the late 1960s (Johnson 1968). Common
variables in this integer-programming formulation
include when, if ever, to extract a block to maxi-
mize the operation’s net present value (NPV). Con-
straints include spatial sequencing between blocks
and restrictions on available operational resources.
However, hardware and software capabilities have
only recently allowed solutions to realistic variants of
the production-scheduling problem (Newman et al.
2010). Commercial software exists to address produc-
tion scheduling in open-pit mines; under some cir-
cumstances it works well. Nonetheless, researchers
have also shown that such software does not neces-
sarily provide an optimal, or even a feasible, solu-
tion for realistic variants (De Kock 2007, Gaupp 2008,
Somrit 2011). These shortcomings may stem from the
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fact that every mine possesses different attributes and
policies. For example, some mines may stockpile (in a
variety of ways) and some mines may invoke a pol-
icy whose decisions also include whether to send a
block to a waste dump or to a processing plant. Our
objective in this paper is to provide a tutorial for min-
ing practitioners and applied operations researchers
who are interested in building customized models for
open-pit mine production scheduling and (or) who
are interested in increasing the tractability of existing
models. For a basic model, we provide fundamental
insights often left unstated or even untested in the
literature.

This paper is organized as follows: The Model sec-
tion provides a description and mathematical formu-
lation of the production scheduling model variant
with which we work. In the Solution Methodologies sec-
tion, we discuss methods for increasing the tractabil-
ity of this model. Some of these methods are used,
but are not well documented in the literature; others
are novel. In Results, we give numerical results based
on the application of these methodologies, and we
conclude with a summary and directions for future
research in Conclusions.

Model
This paper focuses on solving real-world instances of
an open-pit production-scheduling model, also called
the open-pit block-sequencing (OPBS) problem. At the
strategic level, the ultimate pit limit (UPL) problem,
based on the seminal work of Lerchs and Grossmann
(1965), provides a solution for the ultimate pit limit
contours of a deposit with the objective of maximiz-
ing total profit. This formulation includes geometry
constraints; however, it does not factor in the effects of
time, production, or blending constraints. At the tac-
tical level, the OPBS problem includes the dimension
of time, answering the question of when, if at all, to
extract each block. Next, we show our formulations of
the OPBS problem and methodologies to reduce their
solution time. See Espinoza et al. (2013) for a discus-
sion of the relationship between these two problems
and their important attributes.

Three-dimensional block models used to determine
the optimal block sequence can vary in size and block
characteristics according to the deposit, or even the
area within a deposit, being modeled. The geology,

shape, and scale of a deposit can influence the block
size, typically given by the dimensions of the block
in x-, y-, and z-directions. For a narrow-vein gold
deposit, the blocks may be oriented along strike with
block size dependent on the width of the vein. For
other deposits in which the mineral formation is
highly dispersed, the height of the blocks may cor-
respond to the scale of the equipment being utilized.
In this tutorial, we depict the deposit of interest using
a three-dimensional block model, where each block’s
characteristics are known with certainty.

Block models can include extensive data represent-
ing many physical properties of each block, includ-
ing, but not limited to, their volume, tonnage, cost,
metal recovery, and grade. In a deterministic model,
such as the one we present in this paper, these data
are assumed to be certain, enabling the a priori cal-
culation of each block’s value, and the calculation of
operational resources (i.e., production and process-
ing) required for its extraction and destination (e.g., a
processing plant). The information stored in a block
model are estimations based on the available data,
such as drillhole samples, existing operations, and
metallurgical testing. Metal recoveries represent the
percentage of metal that can be recovered from pro-
cessed ore. Ore grades reported in a block model can
be in-situ grades, with a recovery percentage applied
during revenue calculations, or as recovered grades
with the recovery factor already applied. For this tuto-
rial, we compute the revenue associated with a block
as the product of the amount of metal recovered from
the processing plant and an estimated sale price; we
compute the operational cost as the product of the
amount of ore and the mining and processing costs
less the product of the amount of waste and the asso-
ciated mining cost. If the difference between the rev-
enue and the operational cost is negative, we classify
the block as waste and compute its extraction cost
as simply the product of the amount of waste and
the associated mining cost. Otherwise, the block qual-
ifies as an ore block. Based on this classification, we
categorize each ore block as destined for the process-
ing plant and each waste block as destined for the
dump. Although this a priori categorization is gen-
erally regarded as a strong assumption in short-term
scheduling models, it can be an appropriate simplifi-
cation for strategic block-sequencing models.
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These calculated block values, in turn, enable the
generation and economic valuation of block extraction
schedules, accounting for costs associated with dif-
ferent mining and processing methods, transportation
modes, and revenues based on the expected market
value of the mineral. However, depending on the size
of the deposit and the block size, block models can
contain millions of blocks, which precludes fast calcu-
lations of solutions to scheduling models. To improve
the speed of these calculations, algorithms (typically,
that of Lerchs-Grossman applied with an estimated
metal price) can be used to determine the ultimate pit
limits and to reduce model sizes by eliminating those
blocks that fall outside of the limits. When conduct-
ing any model size reduction, we must ensure that
all blocks that might be included in an optimal pro-
duction schedule are retained. It is possible, for exam-
ple, in the presence of lower bounds on operational
resource constraints in the block extraction scheduling
model, that certain techniques to reduce model size
may exclude blocks that would otherwise be included
in an optimal production schedule. Therefore, if the
practitioner wishes to reduce the problem size by
solving a series of (ultimate pit limit) problems, the
authors recommend choosing higher economic (price)
parameters, which would result in removing fewer
blocks from the original model, and thus, a lower like-
lihood of removing a block that should be contained
in the optimal solution to a block extraction schedule.

Aggregating adjacent blocks is a technique to fur-
ther reduce model size. The decision to aggregate
blocks from a model could be based on the location
of blocks that share common characteristics (e.g., ore
or waste content), deposit characteristics, the num-
ber of blocks in the model, the time fidelity in the
formulation, and the required accuracy necessary in
the resulting solution. Aggregation can be used when
sufficient operational resources exist to extract many
blocks in a given period, and must be used if the
initial block size is not consistent with the mining
method (e.g., the equipment is not capable of selec-
tively mining at that block size). For our paper, we
assume that the initial block size is suitable for the
analysis. However, our techniques are valid for any
large instance, regardless of whether that instance was
arrived at by aggregating blocks.

Although mining only valuable ore blocks would
be preferable, the order in which blocks can be mined

1

2

Figure 1: Block 1 must be mined prior to mining block 2.

is dictated by a maximum allowable slope angle of
the deposit and by the blocks’ relative positions to
each other. The slope angle is determined by geo-
logical conditions, such as rock strength, and design
parameters, such as roads. Typical geospatial prece-
dence constraints between blocks in an open-pit mine
require that the block immediately above the block
in question be mined before the block in question
can be mined (see Figure 1). The literature com-
monly contains more elaborate precedence constraints
to preserve the necessary pit slope angles or adequate
working areas for equipment. To retain the focus of
this tutorial on optimization modeling, we address
slope angles with the common, but simplified, “+”
sign convention. Here, we assign precedences such
that prior to mining a block b, the block b′ directly
above b, and those blocks adjacent to and on the same
level as b′ must first be mined (see Figure 2). Although
these precedence constraints are an oversimplification

4

3

6
5

21

Figure 2: Blocks 1–5 must be mined prior to mining block 6.
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of reality, they are commonly used in the academic lit-
erature; as of this writing, they are thought to be rea-
sonable approximations of reality. For cases in which
they are not reasonable approximations, the mod-
eler may specify other precedence rules without any
loss of generality. See Espinoza et al. (2013) for a
discussion. The complete set of blocks on all levels
above b, which must be mined prior to mining b,
constitute b’s complete predecessor set, or b’s prede-
cessor pit. A transitivity relationship exists between
block precedences. By transitivity, we can say that
a precedence relationship is immediate if no other
pair of precedence relationships implies it. The sub-
set of blocks within the complete predecessor set that
possesses an immediate precedence relationship with
b constitutes b’s direct predecessor set.

It is important to ensure that the problem being
solved is well defined. Different specifications of the
open-pit mining problem exist, from the strategic ulti-
mate pit limit problem, which identifies the most eco-
nomical subset of blocks to extract, to the tactical
precedence-constrained production-scheduling prob-
lem that identifies which blocks to extract and when
and where to send them. In this paper, we focus
on the deterministic, constrained pit limit problem
(CPIT), as named in Chicoisne et al. (2012), which is
a simplified version of the formulation presented in
Johnson (1968). We use this variant, but generalize
the problem in Chicoisne et al. (2012) by including
nonzero minimum operational resource constraints,
which require some extraction and (or) processing
activities in each period. The solution to (CPIT) pro-
vides a NPV-maximizing block extraction sequence
that satisfies minimum resource requirements and
maximum resource capacities, in addition to the
geospatial precedences. We also refer to (CPIT) as
the monolith, in that it encompasses the entire for-
mulation, as opposed to a formulation produced via
a mathematical decomposition procedure, such as
Lagrangian relaxation or Benders decomposition.

The mathematical formulation of the (CPIT) prob-
lem is a mixed-integer linear program. The objec-
tive is to determine the period in which each block
has to be mined to maximize the NPV over a
given time horizon. We represent the block mining
precedence requirements and the resource availability
requirements as constraints in the model. A detailed

mathematical formulation of the problem is available
in Appendix A.

Solution Methodologies
Reducing solution time for instances of the OPBS
problem is imperative, because these can contain
between 10,000 and millions of blocks, and between
10 and 100 periods, as Chicoisne et al. (2012) illus-
trate. Most commercial solvers, such as CPLEX (IBM
2011), utilize the branch-and-bound (B&B) algorithm
to solve integer programs. Our solution method-
ologies are intended to enhance the solver’s func-
tionality by exploiting the special structure of the
OPBS problem. The following solution methodolo-
gies attempt to reduce the solution time for instances
of (CPIT) by (1) tightening the formulation; (2) solv-
ing the linear programming (LP) relaxation of the
integer program at the root node with the proper
algorithm and corresponding algorithmic settings;
(3) reducing the problem size through variable elim-
ination; and (4) providing the optimizer with an ini-
tial integer feasible solution. A reduction in solution
time corresponds to a reduction in costs associated
with in-house or consulting engineers who develop
and analyze scheduling scenarios, and the reduction
should contribute to an improved ability to solve
larger-sized block models.

Improved Formulations
The formulation described in Appendix A can be
improved by making the constraint set tighter and
by replacing the set of decision variables that deter-
mine when a specific block must be mined, by a
set of variables that indicate the period before which
a block must be mined. We denote the formulation
with the first and second improvements, (CPITatt) and
(CPITby), respectively. Appendix B provides a detailed
description of the improved formulations.

Space precludes us from presenting all methods
that improve our (CPIT) formulation; however, sig-
nificant academic work exists based on adding valid
inequalities (i.e., cuts). For a formulation with binary
variables, such as ours, a valid inequality can assume
the form of a packing constraint, explicitly preclud-
ing the simultaneous assignment of a value of 1 to a
combination of variables, where such an assignment
has been determined a priori to be infeasible. For
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example, if it is infeasible to extract both blocks b

and b′ in period t because of, for example, the
resources required versus those available to extract
the blocks, then the corresponding valid inequality
is wbt +wb′t ≤ 1. Although numerous types of valid
inequalities (e.g., covers, cliques) are available, a chal-
lenge for their generation lies in identifying valid
(and helpful) infeasible variable combinations. Park
and Park (1997) and Boland et al. (2012), respec-
tively, identify techniques to generate valid cover and
clique inequalities for precedence-constrained knap-
sack problems in general, whereas Gaupp (2008)
presents empirical evidence of their benefit to the
OPBS problem in particular.

Root Node Algorithm Performance
Attempting to solve large-scale integer programming
problems using the incorrect LP algorithm at the root
node can result in excessive run time before branch-
ing, whereas solving the same instance with the cor-
rect LP algorithm may yield a root node solution in
a matter of seconds. The two problems (primal and
dual), and three algorithms (primal simplex, dual sim-
plex, and barrier), yield six problem-algorithm combi-
nations. Testing these six combinations is worthwhile
for practitioners who repeatedly solve instances using
a single block model. Additionally, some optimizers,
such as CPLEX (IBM 2011), include a network sim-
plex algorithm that is able to more rapidly solve the
LP when a significant portion of that LP’s constraint
matrix forms an underlying network structure. For
an in-depth treatment of LP algorithmic selection, see
Klotz and Newman (2013a).

Variable Elimination
The optimization model need not include variables
that must assume a value of 0 in any feasible solution;
therefore, the act of identifying and eliminating such
variables a priori results in a smaller model. In the
OPBS problem, the variables ybt indicate whether to
extract block b at period t. Periods t′, in which it
is infeasible to extract block b, imply that the vari-
able ybt′ must assume the value of 0 in any feasible
solution, allowing us to then exclude ybt′ from the
formulation. For example, consider the simple two-
block model, which Figure 1 depicts for two periods,
with production sufficient to extract only one block

per period. Because block 1 must be extracted prior
to block 2, it is infeasible in mathematical terms (i.e.,
impossible in practice) to extract block 2 in period 1.
Therefore, the variable value of y21 must equal 0 in
any feasible solution; thus, including y21 in the model
is unnecessary.

For each block b, there exists a period t before
which it is not possible to extract b while satisfying all
constraints in periods 81 0 0 t9. We refer to this period t

as block b’s true early start time (TESb). Calculating
TESb is not trivial, because it requires identifying the
earliest period by which all blocks b′′ in b’s prede-
cessor pit Bb may be extracted while satisfying all
constraints in each period; performing this identifica-
tion could require solving an integer program for each
block b. Although identifying TESb for each block b

may not be practical, we can still determine periods
before which it is impossible to extract b, and thereby
identify variables to eliminate from the formulation.
This is possible by comparing the aggregate material
in the predecessor pit Bb with the aggregate opera-
tional resource requirements and capacities for multi-
ple periods (e.g., the aggregate capacity for t′ periods
is given by the sum of the capacities in periods {100t′}).
Next, for a given block b, we review early starts (ESb),
before which b may not be extracted because of maxi-
mum resource capacities, and develop enhanced early
starts (EESb), before which b may not be extracted
because of both maximum resource capacities and
minimum resource requirements. The value of TESb

may be later than these early starts; however, it can-
not be earlier. Equation (1) shows the relationship
between these three periods before which block b may
be extracted:

ESb ≤ EESb ≤ TESb0 (1)

There also exists analogous late starts (LSb) (Gaupp
2008), in which variable values are fixed to 1 in
(CPITby) and eliminated in (CPITat), corresponding to
those block-period combinations for which block b

must already have been extracted. Late starts exploit
the fact that, as a result of precedence constraints,
if block b is included in the predecessor pit of another
block b̂, then b̂ may not be extracted before b is ex-
tracted. This, combined with the minimum resource
requirements, forces block b to be extracted no later
than some period LSb. We find that although helpful
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for improving tractability in some instances, late start
times do not generally reduce (via fixing or elimina-
tion) a sufficient number of variables, such that their
inclusion has a significant performance impact.

Variable Elimination: Early Starts (ES). One nec-
essary, but not sufficient, condition for block b to be
extracted by t is that all of the blocks b′′ in b’s prede-
cessor pit Bb be extracted no later than period t. The
earliest possible time any block b may be extracted is
after all blocks b′′ in b’s predecessor pit Bb have been
extracted, while operating at maximum production
capacity. Once extracted, the earliest possible time an
ore block b̌ may be processed is after all ore blocks b̌′′

in b̌’s predecessor pit Bb have been processed, while
operating at maximum processing capacity. Because
(CPIT) does not consider stockpiling, a block may not
be extracted prior to the more conservative (later) of
the earliest times in which the block may be extracted
or processed. More generally, a block b may not be
extracted prior to the latest period in which the most
constraining operational resource may handle all of
b’s predecessors. We call this earliest extraction time
based on maximum resource capacities the block’s
early start (ES). Gaupp (2008), Amaya et al. (2009),
and Chicoisne et al. (2012) employ the technique of
using early start times to reduce variables in open-pit
models. We present notation, used in the text in the
following sections, and an algorithm for determining
a block’s early start time in Appendix C.

Variable Elimination: Enhanced Early Starts (EES).
Although the incorporation of minimum operational
resource constraints further complicates the problem
of finding an optimal solution, it also affords opportu-
nities for eliminating additional variables. In general,
imposing additional constraints renders more variable
values infeasible, and by identifying those variables
whose value must equal 0 in any feasible solution, we
may further reduce the problem’s size.

From Gaupp (2008), the period ESb is determined
by the maximum resource capacities, which limit the
rate at which the blocks b′′ in Bb may be extracted
and processed. Block b may not be extracted earlier
than ESb; however, it may also be true that block b

may not be extracted earlier than some period later
than ESb, if block b’s predecessor set is not feasible
regarding the minimum resource requirements. In this

sense, ESb, as calculated previously, could be loose
and may be tightened by accounting for additional
constraints. Therefore, we define the enhanced early
start time (EESb) as that period before which it is
infeasible to extract block b based on both the min-
imum resource requirement and maximum resource
capacity constraints.

Consider the determination of block 7’s early start
time in the eight-block example shown in Figure 3.
All blocks weigh 10 tons, blocks 6 and 8 are ore
blocks, and lower-level blocks’ predecessors include
the three overlying blocks (e.g., block 6’s predecessors
are blocks 1, 2, and 3). For the case of a maximum
production capacity of 40 tons per period, and no
minimum processing requirement (i.e., ē1 = 40, e2 = 0),
block 7 may be extracted during period t = 1 using
an extraction sequence of 2-3-4-7. Hence, in this case,
block 7 has an early start time of ES7 = 1.

For the case in which there is an additional min-
imum processing requirement of 10 tons of ore ton-
nage per period (ē1 = 401 e2 = 10), the one-period
extraction sequence of 2-3-4-7 does not contain an
ore block to process in t = 1, and is therefore infea-
sible. A two-period feasible extraction sequence of
1-2-3-6 in t = 1 and 4-7-5-8 in t = 2 provides total
tonnage no greater than ē1, and ore tonnage no less
than e2, in both periods. Therefore, extracting 7 in
t = 1 satisfies the maximum production constraint,
yielding ES7 = 1, but extracting block 7 prior to t = 2
violates the minimum processing constraint, yielding
EES7 = 2. Because EES7 = 2 is greater than ES7 = 1,
we may eliminate additional variables, excluding w71

1 2 3 4 5

6 7 8

Figure 3: In this cross-sectional view of an eight-block pit, blocks 6 and
8 are ore blocks, and precedences follow the “+” sign convention in two
dimensions, similar to that depicted in Figure 2. For example, a feasible
schedule must call for extracting blocks 1, 2, and 3 prior to extracting
block 6.
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and y71 from the (CPITby) and (CPITat) formulations,
respectively.

The preceding EES discussion focuses only on the
minimum processing requirement, because satisfy-
ing the minimum production requirement is always
possible. This follows because extracting any block,
ore or waste, from anywhere in the pit, including
surface blocks unconstrained by precedence require-
ments, contributes to satisfying minimum production.
Therefore, for a case in which minimum processing is
binding in the ESth

b period (i.e., the period correspond-
ing to ESb) and minimum production is not satisfied,
extracting any blocks external to Bb can be used to
increase total tonnage and satisfy minimum produc-
tion during the ESth

b period.
Unlike in the small preceding example, we can-

not generally determine block b’s EESb by inspection.
In Appendix D, we present both an algorithm for
determining a block’s enhanced early start time and
associated notation, which is also used next. A posi-
tive residual processing requirement (ê2b) in the ESth

b

period after extracting Bb (i.e., ê2b = e2 ·ESb − S2b > 0)
indicates that EESb ≥ ESb. However, eliminating
the variable wb1ESb

(or yb1ESb
) requires proving that

EESb > ESb, which is not always trivial. Specifically,
determining EESb can be complicated for the situa-
tion in which ê2b > 0, and there also exists a positive
residual production capacity (ê1b) in the ESth

b period,
(i.e., ê1b = ē1 · ESb − S1b > 0).

For the case in which ê1b ≥ ê2b, it may still be pos-
sible to extract sufficient ore blocks outside of Bb to
satisfy e2 in the ESth

b period. Adequate residual pro-
duction capacity exists to extract the ore blocks nec-
essary to satisfy the residual processing requirement,
if those ore blocks are accessible and can be extracted
in a feasible sequence. Therefore, showing EESb > ESb

generally requires proving that there does not exist an
extraction sequence of blocks external to Bb contain-
ing sufficient ore blocks to meet or exceed ê2b, while
not exceeding ê1b. In the worst case, this is an expo-
nentially complex problem of enumerating each pos-
sible block sequence, likely requiring the solution of
an integer program. Therefore, for the case in which
ê1b ≥ ê2b, without solving an integer program, we must
make the conservative assignment of EESb = ESb, and
are unable to eliminate the variable wb1ESb

(or yb1ESb
).

For the case in which ê1b < ê2b, even if sufficient ore
blocks are available, it is impossible to satisfy e2 in
the ESth

b period without violating ē1, guaranteeing that
EESb > ESb. Although EESb may exceed ESb by more
than one period, establishing this requires proving the
nonexistence of feasible extraction sequences in suc-
cessive periods. Therefore, in this situation, EESb >
ESb, but we cannot prove by how much; therefore,
we make the conservative assignment EESb = ESb + 1,
and eliminate the variable wb1ESb

(or yb1ESb
).

Again, it is possible to relax the assumption of time-
invariant maximum resource capacities, although we
do not include the corresponding more general algo-
rithm here. However, a formula analogous to Equa-
tion (C1) would require interaction between different
resources (e.g., r and r ′). This complicates a generic
formula, because it would then be highly dependent
on the resources to which r and r ′ refer; in our case,
r and r ′ have a very specific relationship, not a gen-
eral relationship. Our formulation contains resource r
(i.e., production) with a nonzero value for all blocks
and resource r ′ (i.e., processing) with a nonzero value
for some of the blocks. And, by comparing r and r ′

in a particular way (i.e., the lower bound on r ′ with
the upper bound on r) we can, under certain cir-
cumstances, increase the start time of a block by one
period.

Initial Integer Feasible Solution (IIFS)
Providing the optimizer with an IIFS should expedite
the B&B search for an optimal solution both by allow-
ing an initial lower bound to preclude evaluation of
dominated solutions (i.e., solutions not guaranteed to
be feasible, but if feasible, are guaranteed to have
an objective function value lower than that achieved
with the IIFS), and by assisting the optimizer to more
effectively tailor its search strategies. The challenge
is identifying such a solution. Some heuristics to this
end are as follows:

• Greedy algorithms can quickly identify an initial
solution to a problem specification in which resources
are only constrained by maximum capacities (i.e., no
minimum requirements exist). For example, we may
order blocks, descending by profit, and then choose
to extract each block, along with its predecessor set,
if sufficient resource capacity exists. We repeat this
procedure for each period, creating a block extraction
schedule for the entire time horizon.
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• Chicoisne et al. (2012) and Moreno et al. (2010)
extend this simple approach by exploiting the prece-
dence constraints’ underlying network structure to
induce a topological sorting of nodes (i.e., blocks).
This sorting may be based on any attribute, includ-
ing LP relaxation values, as demonstrated by their
Expected-Time TopoSort heuristic. Using these tech-
niques, Moreno et al. (2010) show that initial feasible
solutions may be obtained quickly for large data sets.

• Although greedy heuristics work well when
the problem specification includes only maximum
resource capacities, finding a feasible solution is
significantly complicated by including minimum
resource requirements. A sliding time-window heuris-
tic (STWH) (Pochet and Wolsey 2006) may be more
likely to determine an integer feasible solution than a
simple greedy approach. With the STWH, a subprob-
lem is formed by partitioning the set of periods in the
horizon T into windows (i.e., T ≡ T Fix ∪ T Cont ∪ T Int),
within which variable values are fixed (T Fix), or their
integrality is either relaxed (T Cont) or enforced (T Int).
Solving this subproblem produces a partial solution,
which is integer feasible for variables in T Int. Then,
a subsequent subproblem is formed by changing the
partition of T (i.e., the window slides), so integral-
ity is enforced in a separate set of periods, and the
procedure is repeated. Finally, linking the partial inte-
ger feasible solutions from each subproblem creates a
complete solution. Although this approach does not
guarantee an integer feasible solution for a monolith
with minimum resource requirements, even an infea-
sible solution may assist the optimizer in its search
for an optimal solution. See Cullenbine et al. (2011)
for further discussion.

• An alternative approach leverages the seminal
work of Lerchs and Grossmann (1965) by finding,
within the entire pit, a maximum-value subpit con-
taining sufficient ore and material to fulfill the total
resource requirements over the problem’s time hori-
zon. Then, an integer program may identify an integer
feasible sequence within that subpit, which satisfies
the resource constraints in each period. This resulting
solution, combined with setting variable values to 0
for all blocks outside the subpit, forms a complete ini-
tial feasible solution, as Lambert and Newman (2013)
fully explain.

Results
We empirically test the strategies outlined in the pre-
vious section using 12 open-pit mine block models
derived from two master data sets. The first master
data set is an open-pit mine block model consisting
of 10,819 blocks, approximately 5,600 tons each, after
the elimination of irrelevant blocks (e.g., waste blocks
at the bottom level of the pit, and air blocks of 0 ton-
nage used for graphical display). From this master
data set, referred to as 10k, we perturb each block’s
mineral content by ±5 percent to generate seven more
block models, identified as 10kA110kB1 0 0 0 110kG; we
collectively refer to them as the 10k data sets.

The second master data set is the well-known
Marvin test data set available from Whittle soft-
ware, which Norm Hanson created while at the Royal
Melbourne Institute of Technology (Hanson 2012).
This fictional, yet realistic, data set models typi-
cal deposits found in New South Wales, Australia,
and contains 53,668 blocks, approximately 62,400 tons
each, after eliminating air blocks from the top of the
pit. We use four smaller subsets from this full Marvin
for test cases, two each of size 18,300 (18kA and 18kB),
and 25,620 (25kA and 25kB) blocks. We refer to these
collectively as the Mrv data sets. Table 1 displays
summary characteristics of all data sets.

Number of blocks Tonnage (Mtons)

Data set Total Ore Waste
∑

b∈B a1b
∑

b∈B a2b

10k 10,819 1,423 91396 60057 7092
10kA 10,819 1,423 91396 60057 7092
10kB 10,819 1,414 91405 60057 7087
10kC 10,819 1,414 91405 60057 7087
10kD 10,819 1,410 91409 60057 7085
10kE 10,819 1,418 91401 60057 7089
10kF 10,819 1,423 91396 60057 7092
10kG 10,819 1,420 91399 60057 7090
10k avg 10,819 1,418 91401 60057 7089
18kA 18,300 2,032 161268 11145047 146062
18kB 18,300 1,436 161864 11137042 103039
25kA 25,620 2,248 231372 11595062 162003
25kB 25,620 2,805 221815 11601013 199095
Mrv avg 21,960 2,130 191830 11369091 153000

Table 1: We test our solution strategies on these 12 data sets with charac-
teristics including the number of blocks by type (e.g., total, ore, waste),
and the tonnage required to extract all blocks and process all ore blocks.
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We formulate our models in the AMPL program-
ming language, version 11.11 (AMPL 2009) and then
pass this formulation to the CPLEX solver, version
12.2.0, (IBM 2011), which runs on a Sun X4150, with
2 × 2083 GHz processors, and 16 GB RAM.

Root Node Algorithm Performance
The algorithm selection for solving the LP relaxation
of the problem instance at the root node can dra-
matically impact overall solution time. Consider the
results displayed in Table 2 from solving the LP relax-
ations with a horizon of � = 10. For the 10k data sets,
solving with CPLEX default parameter settings (i.e.,
dual simplex performed on the dual problem as in
IBM 2011) finds no feasible solution within 1,800 sec-
onds for any of the instances tested, whereas solving
the primal problem using the primal simplex method
finds an optimal solution within 1,800 seconds for six
of the eight instances. The barrier algorithm gener-
ally performs best on the 10k sets, finding the optimal
solution in less than 900 seconds. The Mrv instances
exhibit the best performance using the primal simplex
method, whereas the barrier algorithm is unable to

4P 5—Primal problem 4D5—Dual problem
CPLEX

Data set default PS∗ DS∗ Barrier PS DS Barrier Netopt

10k †b 998a ‡a 807 †a †a 831 992
10kA †b 11606a ‡a 732 †a †a 740 11587
10kB †b 11298a ‡a 707 †a †a 737 11291
10kC †b 11478a ‡a 712 †a †a 805 11470
10kD †b 11093a ‡a 733 †a †a 852 11075
10kE †b †a ‡a 732 †a †a 743 11976
10kF †b 11464a ‡a 730 †a † 691 11451
10kG †b †a ‡a 684 †a † 758 21036
18kA 352b 105 11380a † †a †a † 85
18kB 210b 86 11374a ‡ †a †a † 66
25kA ‡b 135 11086a ‡ †a † † 107
25kB ‡b 604 11008a ‡ †a † ‡ 577

Table 2: When solving problem instances for � = 10 years with no ES vari-
able reductions, we obtain varying LP relaxation solution times (in sec-
onds) by using different problem-algorithm combinations.

aCPLEX introduces a perturbation, suggesting degeneracy.
bCPLEX reports default settings result in solution being found with dual

simplex on the dual problem; however, CPLEX uses different algorithms
on multiple threads during concurrent optimization.

†Time limit of 1,800 secs in phase I.
‡Time limit of 1,800 secs in phase II.
∗PS: primal simplex; DS: dual simplex.

find an optimal solution within 1,800 seconds. A com-
mon approach that gives good performance across
all of our instances suggests CPLEX’s network sim-
plex algorithm (Netopt), which is able to extract and
exploit the problem’s underlying network structure.

The difference in performance between the primal
simplex method and barrier algorithm on the Mrv
and 10k data sets can be explained as follows: using
the primal simplex on the latter data sets requires a
significant amount of solution time in phase I, has
difficulty because of degeneracy, and fails to utilize
a favorable pricing scheme until a significant num-
ber of phase II iterations have passed. By contrast,
the same algorithm on the Mrv data sets spends little
time in phase I, exhibits no degeneracy, and recog-
nizes a good pricing scheme (i.e., devex) upon switch-
ing to phase II. Using the barrier algorithm on the 10k
data sets requires little time in crossover (i.e., find-
ing a basic solution from one lying on the boundary),
whereas the Mrv data sets require a long time for
this procedure. Arguably, alternate parameter settings
(e.g., those to address degeneracy up front, or those to
diminish the time spent in crossover) might help mit-
igate the performance discrepancies between the two
algorithms applied to these two data sets. However,
experimentation at this level was beyond the scope of
our numerical testing.

“By” vs. “At” Formulation
In solving integer programs, the tighter the bound
(i.e., LP relaxation objective function value), the bet-
ter the B&B algorithm performance (Bertsimas and
Weismantel 2005, p. 11). In Table 3, we present LP
relaxation objective function values 4zLP) to quantify
the benefit of tighter formulations. The second and
third columns contain LP relaxation values from the
at formulation with no variable reductions, and with
our greatest variable reductions from enhanced early
starts, respectively. Although this preprocessing does
tighten the bound, using either the att or by formu-
lation (because they provide the same LP relaxation
objective function value, and as such, are equivalently
strong), in conjunction with these reductions, tight-
ens the bound to a much greater extent. As such,
we achieve all further results using the by (equiv-
alently, att) formulation. We present the percentage
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Linear program relaxation
objective function value ($ M)

Data set zLP 4CPIT
at
5 zEES

LP 4CPIT at
5 zEES

LP 4CPIT by
51 �4at1 by5 (%)

10k 25080 18084 10097 4108
10kA 25093 18087 11001 4107
10kB 25092 18090 10098 4109
10kC 25080 18077 10091 4109
10kD 25079 18076 10096 4106
10kE 25071 18077 10090 4200
10kF 25092 18095 11001 4109
10kG 25077 18083 10096 4108

10k avg 25083 18084 10096 4108

18kA 146057 146019 133008 900
18kB 117033 117033 114026 206
25kA 143015 143015 140078 107
25kB 132069 123082 85070 3008

Mrv avg 134094 132062 118046 1100

Table 3: When solving problem instances for � = 10 years, using both
variable reductions (EES ) and the by formulation provide tighter LP relax-
ation values than solving the same problem instances with no variable
reductions and the at formulation.

1zEES
LP 4CPIT att

5 possesses the same objective function value as
zEES
LP 4CPIT by

5.

Number of variables Solution time (secs)1 Solution time reduction (%)

Data set NoES 2 ES EES NoES ES EES 4NoES − ES 5/NoES 4ES − EES 5/ES

10k 108,190 421185 401373 161876 41886 31678 71% 25%
10kA 108,190 421185 401362 171026 71072 31502 58% 50%
10kB 108,190 421185 401366 291059 31897 31538 87% 9%
10kC 108,190 421185 401379 211535 41191 31529 81% 16%
10kD 108,190 421185 401353 161750 41714 41278 72% 9%
10kE 108,190 421185 401371 241024 61256 31983 74% 36%
10kF 108,190 421185 401380 181044 31976 51814 78% −46%
10kG 108,190 421185 401359 161356 41377 41223 73% 4%
10k avg 108,190 421185 401368 191960 41921 41068 74% 17%
18kA 183,000 1781711 1721113 ‡ ‡ 351449 ∗ ∗

18kB 183,000 1781818 1721129 1819733 2713994 261553 −44% 3%
25kA 256,200 2291808 2161586 ‡ ‡ ‡ ∗ ∗

25kB 256,200 2301013 2161634 ‡ ‡ ‡ ∗ ∗

Table 4: When solving problem instances for � = 10 years within a time limit of 10 hours, IP solution times are
generally shorter with a greater number of variable reductions.

1Solution times do not include the time required to calculate ESs and EESs. We generate both ESs and EESs
for all blocks in a given data set in fewer than 10 seconds.

2NoES indicates no variable reductions.
3Heuristic found first and final integer solution after 18,844 seconds.
4Heuristic found first and final integer solution after 27,350 seconds.
‡Time limit (36,000 secs) reached with no integer solution.
∗Unable to calculate due to lack of solution time values.

reduction in the LP relaxation value, which quantifies
the relative strength of (CPITby) over (CPITat) as:

�4at, by5= 100% ·
zEES

LP 4CPITat5− zEES
LP 4CPITby5

zEESLP 4CPITat5
0 (2)

Variable Elimination
Our data sets each contain a significant number of
variable reductions attributable to ES and EES, as
Table 4 shows. Although instances with fewer vari-
ables and constraints generally lead to faster solu-
tion times than instances with no variable reductions
(NoES), occasionally CPLEX’s proprietary heuristics
are able to find solutions more quickly than would
be suggested by theory (e.g., in the cases of 10kF
and 18kB). However, Table 4 demonstrates an addi-
tional savings of 17 percent in solution time, on aver-
age, for the 10k data sets beyond what the early start
reductions alone can achieve. We find the number
of variable values fixed by late starts, introduced by
Gaupp (2008), does not justify the effort required for
their calculations. For example, in the 10k master data
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set, only 48 of the 108,190 variable values may be
fixed because of late starts. Hence, none of our runs
include variables fixed to their LS values. The relevant
CPLEX parameter settings for all runs include primal
(i.e., set up the primal formulation), predual − 1 (i.e.,
solve the primal problem), startalgorithm 3 (i.e., use
the network simplex algorithm to solve the LP relax-
ation at the root node), subalgorithm 1 (i.e., use the pri-
mal simplex algorithm to solve the linear programs
at all nodes of the B&B tree, other than at the root
node), mipemphasis 1 (i.e., emphasize feasibility over
optimality when searching through the B&B tree),
varsel 4 (i.e., branch in the tree based on pseudo-
reduced costs), probe − 1 (i.e., preclude spending time
to explore binary variable assignment implications,
and then preset variables accordingly), mipgap 0.02
(i.e., solve the problem to within two percent of opti-
mality); the meanings of these parameter settings are
specified in IBM (2011).

Initial Integer Feasible Solution (IIFS)
Providing the optimizer with an IIFS expedites the
B&B algorithm by precluding the optimizer from
evaluating dominated solutions and by enhancing the
optimizer’s search path (Klotz and Newman 2013b).

Objective function value ($ M) Solution time (secs)

Data set zEES
LP zEES

STWH Mono with no IIFS STWH+Mono with IIFS IIFS % reduction

10k 10097 10064 31678 21323 37%
10kA 11001 10065 31502 21523 28%
10kB 10098 10058 31538 21595 27%
10kC 10091 10027 31529 21145 39%
10kD 10096 10072 41278 9241 78%
10kE 10090 10048 31983 21447 39%
10kF 11001 10054 51814 31430 41%
10kG 10096 10061 41223 21285 46%
10k avg 10096 10056 41068 21334 42%
18kA 133008 125020 351449 241256 32%
18kB 114026 112073 261553 117651 93%
25kA 140078 † ‡ † ∗

25kB 85070 † ‡ † ∗

Mrv avg2 123067 118096 311001 131011 62%

Table 5: We see improvements in both solution quality and time (secs) for the monolith when provided with an
IIFS from the STWH for � = 10, and solved to within a mipgap tolerance of two percent.

1STWH generated initial solution within 2% mipgap for monolith.
2Only includes completed runs for Mrv data sets.
†Time limit (36,000 secs) reached during STWH with no integer solution.
‡Time limit (36,000 secs) reached with no integer solution.
∗Unable to calculate as a result of a lack of solution time values.

Additionally, the optimizer can leverage aggressive
cut generation to tighten the upper bound and exploit
the use of its own heuristic more frequently to search
for better integer solutions. Our technique requires
two phases; in the first, we generate the IIFS with
the STWH; in the second, we solve the monolith with
that IIFS. Deducting the total time required for these
two phases from that required to solve the monolith
without an IIFS yields the reduction in solution time
attributable to the use of an IIFS.

Implementing the STWH requires selecting the
number of windows, and in each of those windows,
how many periods in which to enforce integrality and
to fix variable values. Enforcing integrality in fewer
periods requires more windows of relatively easier
integer programs to solve. Conversely, enforcing inte-
grality in more periods requires fewer windows of
relatively more difficult integer programs to solve. We
find the best STWH solution times for � = 10 result
from implementing five windows, fixing and enforc-
ing integrality in two periods (i.e., �T Fix� = �T Int� = 2)
for each window.

The results in the objective function value columns
of Table 5 show that the STWH generates good qual-
ity solutions. The solution time columns of Table 5
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show that generating the IIFS and then solving the
monolith with that IIFS reduces solution time relative
to solving the monolith outright. These reductions in
solution time are 42 and 62 percent, on average, for
our 10k and Mrv data sets, respectively.

Conclusions
Practitioners face numerous challenges when imple-
menting mathematical programs to solve difficult
real-world problems, such as the OPBS problem.
This paper demonstrates a variety of techniques that
expedite solutions: (1) alternative variable definitions
enabling a tighter formulation, (2) algorithmic selec-
tion for solving the root node linear programming
relaxation, (3) variable elimination, and (4) providing
the solver with an initial feasible solution. Although
we show that all techniques can be effective, the suc-
cess of their implementation can be highly depen-
dent on the specific problem instance (e.g., data set
characteristics, time horizon). For example, recall from
Table 2 that when solving the root node LP relax-
ation for the 10k data sets, the barrier algorithm per-
forms best, whereas for the Mrv data sets, primal
simplex performs best. Also, although fixing variable
values via late starts did not justify their calculation
for our data sets, they may provide justifiable ben-
efits for problem instances with tight lower bounds
on resource constraints or for instances that represent
mines with different topologies.

Theory suggests that the aforementioned tech-
niques should reduce solution time; however, this is
not always the case when using a modeling language
and commercial optimizer. Next, we describe some of
the more frustrating, and sometimes surprising, diffi-
culties we encountered in our implementation.

Optimizer Presolve and Heuristics. Commercial
optimization software may improve overall perfor-
mance with various presolve activities (e.g., problem
size reduction, generation of the equivalent dual, val-
idation of mixed-integer programming (MIP) starts),
and with heuristics that modify search strategies. Pre-
solve can provide significant improvements in per-
formance; however, in doing so, the problem may
be modified in ways the user might not prefer. For
example, one method to reduce time spent in solving
the LP relaxation of a MIP’s root node is to pass the

optimizer an optimal basis, previously determined
when finding an IIFS. However, to do so requires
turning off the MIP presolve to ensure no basic vari-
ables are eliminated via, for example, CPLEX’s prob-
ing feature, which fixes deduced variable values, prior
to solving the root relaxation. Hence, the user saves
time otherwise spent solving the LP at the root node,
but loses time savings that might have been achieved
during B&B.

Heuristics (see Achterberg 2007), can also signif-
icantly improve performance. However, by defini-
tion, their application does not constitute an exact
approach, and as such, provides no guarantee of
performance. Introducing a technique that theoreti-
cally should provide superior performance does not
always result in reduced solution time, because a
heuristic implemented within the solver’s B&B algo-
rithm may get lucky and find a solution more quickly
(e.g., see the 10kF results in Table 4). Still, superior
formulations, problem reduction techniques, and pro-
viding the solver with an initial solution all result in a
simpler problem to solve; therefore, they should gen-
erally yield faster solution times.

Optimizer Parameter Settings. Commercial solvers
afford the user some control, via the use of algo-
rithmic parameter settings, over how an algorithm
is executed. Although these user-adjusted parameters
can impact solution time, each parameter’s individ-
ual effectiveness is not always explicitly clear. Inter-
nal heuristics, influenced directly by the parameter
settings and only indirectly by the user, determine
the actual search path, which has a large impact on
solution time. Therefore, modifying any one param-
eter setting, in conjunction with other parameter set-
tings, may alter the heuristic’s search path, resulting
in a significant change in solution time. This indirect,
interactive nature of the numerous parameters, each
with their various settings, can make it difficult to
find the single combination providing the best perfor-
mance (i.e., the fastest solution time).

CPLEX includes a tuner tool (IBM 2011) to help
identify that best combination of parameter settings.
The tuner, however, can recommend very different set-
tings for slight problem variations (i.e., the same data
set with different time horizons, or slightly different
data sets, such as 10kA and 10kC, with the same time
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horizon). These different recommended parameter set-
tings are not just artifacts of the tuner, but result
from the varying search paths previously mentioned.
A reasonable approach is to obtain initial settings from
the tuner and then test modified parameter settings
based on the user’s knowledge of the problem. For
example, tuning for some of the 10k data sets sug-
gests precluding initial probing and using pseudo-
reduced costs to select the subnode variable on which
to branch (CPLEX probe − 1 and varsel 4, respectively).
Although these perform better than CPLEX default
settings, even faster solution times result from adding
a search strategy of emphasizing feasibility over opti-
mality (CPLEX mipemphasis 1). This follows from the
inherent difficulty of finding feasible solutions to the
OPBS problem. To select a consistent group of settings
to employ when solving all models, the user must
sometimes accept significant performance trade-offs,
such as those that Table 2 discusses.

The aforementioned lack of direct user control over
the solver suggests that reductions in solution time
may not all be the result of our techniques. Although
theory supports our results, it is possible that our
techniques happen to provide (this magnitude of)
reductions because of the solver’s internal algorithms
and heuristics. A valid avenue for future research is
to implement the techniques described in this paper
with other solvers to verify similar solution-time
reductions.

Solving Linear Programs. As discussed in the Root
Node Algorithm Performance section, effectively solv-
ing LPs may significantly reduce solution times. For
example, the number of LPs solved in the monolith
alone versus with an IIFS provided by the STWH dif-
fers significantly, on average. Solving the monolith
requires solving one root relaxation, whereas solv-
ing the monolith with an IIFS (via our variant of
the STWH) requires solving the monolith’s root relax-
ation, in addition to the five root relaxations required
for the STWH (one for each window). In the STWH,
the cumulative time required to solve the root relax-
ation LPs can be greater than that required to exe-
cute the B&B algorithm. For example, in one instance
(10kG), the STWH solves in 1,940 seconds, but only
executes B&B for 40 seconds. This means 96 per-
cent of the time is spent performing presolve, execut-
ing heuristics, and solving LPs. We find it helpful to

approach solving the OPBS problem by explicitly rec-
ognizing the separate and very significant challenge
to solving these LPs.

Despite performance irregularities and the intrac-
tability of many large detailed models that use current
state-of-the-art hardware and software, computing
power has made great strides in the past several
decades (Bixby and Rothberg 2007). Knowing how to
carefully formulate models and appropriately invoke
solvers can transform an intractable instance into
a solvable one. In this tutorial, we concentrate on
(CPIT), a specific variant of the OPBS problem. The
reader should be able to glean computational insights
not only for this problem variant, but for other integer
programming mine production scheduling problems.
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Appendix A. Mathematical Formulation of the
Constrained Pit Limit Problem (CPIT)
Indices and sets:

• b ∈ B: set of all blocks b,
• b′ ∈ Bb : set of blocks that must be extracted directly

before block b, (i.e., b’s direct predecessors),
• b′′ ∈ Bb : set of all blocks which must be extracted

before block b, (i.e., b’s predecessor pit: Bb ⊆Bb),
• t ∈ T : set of periods t,
• r ∈R: set of operational resources r (1 = production of

ore and waste, 2 = processing of ore).

Data:
• � : length of time horizon (i.e., �T � ≡ �),
• vbt : NPV generated by extracting block b in period t ($),
• arb : nonnegative amount of operational resource r used

to process block b (tons),
• er/ēr : nonnegative, per-period minimum required

usage/maximum usage capacity for operational resource r
(tons).

Decision Variables:

ybt =

{

1 if block b is extracted at time t,

0 otherwise.
(A1)
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Objective Function:

4CPIT 5 max
∑

b∈B

∑

t∈T

vbtybt (A2)

Constraints:

ybt ≤
∑

t′≤t

yb′t′ ∀ b ∈ B1 b′
∈ Bb1 t ∈ T 1 (A3)

er ≤
∑

b∈B

arbybt ≤ ēr ∀ r ∈R1 t ∈ T 1 (A4)

∑

t∈T

ybt ≤ 1 ∀ b ∈ B1 (A5)

ybt ∈ 80119 ∀ b ∈ B1 t ∈ T 0 (A6)

The objective function (A2) seeks to maximize the NPV
of all extracted blocks. Although intuitive, our maxi-
mization of NPV is not a formulation requirement, and
without loss of generality, we could consider other objec-
tive functions provided they are linear. Constraints (A3)
ensure block b is not extracted at period t unless every
block b′ in b’s direct predecessor set (Bb) is extracted at,
or prior to, period t. Constraints (A4) enforce minimum
resource requirements and maximum resource capacities in
each period. Although our definition of r considers only
two resources, this is for expository purposes only; with-
out loss of generality, the formulation can accommodate
other side constraints in the form of knapsacks. Regarding
the data used in these knapsack constraints (i.e., arb , er , ēr ),
without loss of generality in the formulations we consider,
we express the data in tonnages. Constraints (A5) prevent
any block b from being extracted more than once, whereas
constraints (A6) restrict all decision variables to be binary.

Appendix B. Improved Formulations
The (CPIT) decision variables ybt , as defined in Equa-
tion (A1), assume a value of 1 if block b is extracted at
time t, and 0 otherwise. We therefore designate the (CPIT)
problem thus formulated and presented in objective func-
tion (A2) and constraints (A3) to (A6) as (CPIT at). Although
formulating (CPIT) with variables defined this way appears
in previous work, for example, Dagdelen and Johnson
(1986), Ramazan (2007), and Osanloo et al. (2008), the for-
mulation may be tightened. Specifically, constraint (A3) pre-
vents block b from being extracted in the single period t
prior to b’s direct predecessors b′, which implies that block b
may also not be extracted in all periods prior to t. There-
fore, summing ybt′ over all t′ ≤ t, as in constraint (B1), is
valid and is stronger than constraint (A3) because of the
additional variables (with positive coefficients) included on
the left side of the constraint

∑

t′≤t

ybt′ ≤
∑

t′≤t

yb′t′ ∀ b ∈ B1b′
∈ Bb1 t ∈ T 0 (B1)

For an in-depth comparison of OPBS models and formu-
lations, see Newman et al. (2010); regarding dominance of
valid inequalities, see Wolsey (1998, p. 141). Replacing con-
straint (A3) in (CPIT at) with constraint (B1) provides a
tighter formulation, which we refer to as the tightened at
formulation, and denote as (CPIT att). This tightened formu-
lation yields a lower (tighter) LP relaxation value for the
root node, thereby leaving a smaller integrality gap for an
integer programming solver to close.

Another formulation-tightening approach is to define
decision variables that assume a value of 1 if block b is
mined by period t and 0 otherwise, as in Expression (B2):

wbt =

{

1 if block b is extracted by time t1

0 otherwise.
(B2)

This requires a variable substitution, where the by variable
values may be translated to their corresponding at variable
values using Equation (B3):

ybt = wbt −wb1 t−1 ∀ t ∈ 811 0 0 0 1 T 91

where wb0 ≡ 01∀ b ∈ B0 (B3)

For example, if a solution requires block b to be extracted in
period t = 3 during a time horizon of T = 5, the at variable
values for block b are:

yb1 = 01 yb2 = 01 yb3 = 11 yb4 = 01 yb5 = 01

while the corresponding by variable values for block b are:

wb1 = 01 wb2 = 01 wb3 = 11 wb4 = 11 wb5 = 10

The corresponding by formulation is as follows:

Objective Function:

4CPIT by5 max
∑

b∈B

∑

t∈T

vbt

(

wbt −wb1t−1

)

(B4)

Constraints:

wbt ≤wb′t ∀ b ∈ B1b′
∈ Bb1 t ∈ T 1 (B5)

er ≤
∑

b∈B

arb
(

wbt −wb1t−1

)

≤ ēr ∀ r ∈R1 t ∈ T 1 (B6)

wb1t−1 ≤wbt ∀ b ∈ B1 t ∈ T 1 (B7)

wbt ∈ 80119 ∀ b ∈ B1 t ∈ T 3wb0 ≡ 0 ∀ b0 (B8)

The objective function value (B4) and constraints (B6)
and (B8) of (CPIT by) are identical to expressions (A2),
(A4), and (A6) of (CPIT at), respectively, where the at vari-
ables (ybt) are replaced either with their by variable coun-
terparts (wbt) or with their transformation (wbt − wb1t−1).
The number of precedence constraints (B5) equals that
in constraint (A3); however, the by variable definition in
constraints (B5) yields a less dense representation in the
constraint matrix than that in constraint (A3). The prob-
lem (CPIT by) does not require constraints equivalent to
constraint (A5), but instead contains the additional con-
straints (B7), which enforce the by behavior. Although
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(CPIT by) has an additional �B� · �T − 2� constraints more than
(CPIT at) (where �N � denotes the cardinality of the set N ),
our results show that (CPIT by) provides a tighter LP relax-
ation bound than does (CPIT at), and consequently improves
overall performance when solving (CPIT).

The problems (CPIT by) and (CPIT att) produce the same
LP relaxation objective function values; however, (CPIT by)
has a less dense constraint matrix than does (CPIT att).
More importantly, constraints (B5) make explicitly clear the
underlying network structure. This insight, and use of the
by variables, was first proposed in Johnson (1968).

Appendix C. Early Start Algorithm

Early Start (ES) Algorithm —Additional Notation
• Srb : Total tonnage of blocks in the set Bb consuming

operational resource r (tons).
• ESrb : Earliest start time of block b based on the maxi-

mum capacity of operational resource r .
• ESb : Earliest start time of block b based on the most

constraining operational resource.

Early Start (ES) Algorithm
DESCRIPTION: An algorithm to calculate the earliest time a
block may be extracted and, if applicable, processed, based
on maximum resource capacities.

NOTE: We use the ceiling function (�a/b�), which rounds
a/b up to the next largest integer if a/b is fractional, and
returns a/b otherwise.

INPUT: B, ēr ≥ 0, and arb ≥ 0, Bb1∀ b ∈ B.
OUTPUT: ESb1∀ b ∈ B, the earliest time block b may be

extracted and, if applicable, processed, based on maximum
resource capacities. The “←” notation indicates the assign-
ment of maxr 8ESrb9 to ESb .
{

for (all blocks b ∈ B) {
Srb =

∑

b′′∈Bb

arb′′

ESrb = �Srb/ēr�

ESb ← max4ESrb5
}

}

Note that we could relax the assumption of a constant
operational resource capacity for all periods and, based on a
generalization of the previous computation, define the early
start time for block b as follows:

ESb = max
r∈R

min
{

t 2
∑

b′′∈Bb

arb′′ ≤

t
∑

t′=1

ērt′

}

0 (C1)

Appendix D. Enhanced Early Start Algorithm

Enhanced Early Start (EES) Algorithm—Additional
Notation

• Trb : Number of periods for which the minimum
resource requirement er is supportable by Srb (periods).

• ê1b : Residual production capacity after extracting S1b in
ESb periods (tons).

• ê2b : Residual processing requirement after extracting
S2b in ESb periods (tons).

• EESb : Period before which it is infeasible to extract
block b given minimum resource requirement and maxi-
mum resource capacity constraints (period).

Enhanced Early Start (EES) Algorithm
DESCRIPTION: An algorithm to calculate the earliest time
a block may be extracted and, if applicable, processed, con-
sidering the aggregate minimum and maximum resource
capacities over ESb periods.
NOTE: We use the floor function (�a/b�), which rounds a/b
down to the next smallest integer if a/b is fractional, and
returns a/b otherwise.
INPUT: B1 ē11 e21 and ESb1 S1b1 S2b1 ∀ b ∈ B.
OUTPUT: EESb , the time period before which it is infeasi-
ble to remove block b considering the aggregate minimum
resource capacities, ∀ b ∈ B.
{

for (all blocks b ∈ B) {

T2b = �S2b/e2�

If ESb ≤ T2b then {
EESb ← ESb

}

Else {

ê1b = ē1 ∗ESb − S1b

ê2b = e2 ∗ESb − S2b

If ê1b < ê2b then {

EESb ← ESb + 1

}

Else {

EESb ← ESb

}

}

}

}
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