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1 Introduction

Deregulation from the Staggers Rail Act along with improved technology and pro-
ductivity has led to a 50% increase in rail freight transportation since 1980. Railroads
transport over 40% of the ton-miles of intercity freight, including 70% of new auto-
mobiles, 40% of farm products and 65% of coal in the U.S. (Association of American
Railroads, 1999). With increased profit incentives and better availability of com-
puter systems, railroads have begun to adopt optimization-based decision support
with some success.

We focus on problems that are specific to the rail industry because of special
features of infrastructure, operations, or cost structures, and that are amenable to
solution by optimization methods. We first describe these industry-specific charac-

teristics and then discuss problem areas and commonly-used modeling constructs.

1.1 Special Characteristics of the Rail Industry

The nature of travel and freight handling are the most distinctive characteristics of
rail transportation. Trains operate on limited-capacity tracks over long distances,
and their hauling capabilities depend on the assigned set of locomotives. Moreover,
railcars, containers (traveling on stack cars) and truck trailers (traveling on flatcars)
can be transferred between trains only at rail yards.

Due to the high cost of installing and maintaining track ($9 billion is spent an-
nually in the U.S. on maintenance alone), many railway networks consist of single
tracks with periodic sidings, where trains may wait while others pass. This necessi-
tates detailed meet-pass plans that specify when and where trains meet and pass or
overtake one another, and related train timetables.

Train crew costs exhibit strong economies of scale; they depend on the number of
crew-shifts and are fairly insensitive to the number of transported railcars. Locomo-
tive operating costs include a fixed-charge component for their use, and variable (per
ton-mile) costs for the transported freight. Different combinations of locomotives, or

consists, may be assigned to a train. These assignments must satisfy constraints on



minimum tractive power or number of locomotives, that depend on the topography of
the rail segment. Train scheduling problems are complicated by fixed charges for each
train and for each additional locomotive. Moreover, the possibility of assigning mul-
tiple locomotives to a train results in motive planning problems quite different from
those encountered in truck or air transportation. The long travel distances involved
in rail transport also increase the importance of minimizing equipment deadheading
and empty car movement because of both direct costs and opportunity costs of idling
expensive equipment (e.g., $1 million locomotives or $65,000 railcars) for long periods.
Both space for storage and capacity to handle railcars and containers are limited
at rail yards, which have various track configurations and use different mechanisms
for sorting or classifying railcars. Typically, each track segment is allocated to a block,
which consists of a group of cars traveling together for one or more portions of the
journey. Train makeup refers to the assignment of these blocks to trains. The layout of
the yard and the capacity of the handling equipment constrain the number of blocks,
and the workload imposed on the yard affects in-transit delays. Containerized freight
may be handled differently because of its fragility. The containers, rather than the
stack cars, may be rearranged, but doing so imposes additional workload on expensive,
specialized cranes which are often the bottlenecks at intermodal rail terminals.
Figure 1 depicts a simple rail network. Trains may carry grain and coal to urban
areas and manufacturing sites. Container ships may generate intermodal traffic bound
for domestic sites while an automobile factory may provide intermodal exports. The
trains may visit rail yard(s) where cars are reclassified. Sidings allow trains to meet
and overtake along single-tracked lines. Signals at sidings and intersections govern

traffic flow.

1.2 Rail Decision Problems

We review several major categories of rail optimization models. Section 2 covers
infrastructure planning models concerned with the design of a railway network, loca-
tions of track sidings, and track maintenance and improvement. These are strategic

decisions that require a long-term, systemwide view. Problems of sizing fleets of lo-
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comotives and rail cars, which are covered in Section 3, also are strategic decisions.
However, they commonly are addressed using more detailed data on demand, train
schedules and motive power constraints because these factors strongly influence fleet
requirements.

Section 3 also surveys models for short- to medium-term locomotive, railcar, and
container repositioning. Some are tactical models that rely on steady-state analysis
and suggest long-run rebalancing strategies, but most are designed to consider the
state of the system and detailed demand forecasts, train schedules, etc., to determine
when and how locomotives, and empty railcars and containers should be repositioned.

Section 4 discusses train scheduling and freight routing. Tactical models in this
section are concerned with the service frequency of direct and indirect trains, blocking
patterns (i.e., paths specifying intermediate transfer locations) to be utilized, and
allocation of freight to the blocking patterns. As in other tactical models, these
decisions are based on average costs and demand rates. Operational models focus on
constructing more detailed train schedules and/or freight routing to satisfy demands
while considering other factors (such as due dates, blocking plans, and locomotive
availability). The level of precision may extend to minute-to-minute timetables which
are often determined concurrently with meet-pass plans.

Space limitations preclude us from covering models of rail yard operations; most
are descriptive models based on queueing concepts. Related discussion appears in
Petersen (1977a, 1977b) and Turnquist and Daskin (1982). We also omit real-time
decisions for train scheduling, freight routing and equipment repositioning. Most work
in these areas relies on short-term planning approaches for decision-support, and does
not address the real-time problem directly. More commonly, real-time decisions are
based on judgment and experience. We omit railcar loading and unloading. Inter-
esting applications of optimization to these areas appear in Bard (1997) and Vasko
(1994). Finally, we do not discuss crew scheduling. Models for rail crew management
and relevant references can be found in Caprara et al. (1997).

Several survey papers cover topics that we discuss. Assad (1980) provides excellent

background on institutional aspects of and operating policies for rail transportation.
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We cite more focused surveys within the corresponding section of this chapter. We
have attempted to describe representative models that collectively provide the reader
with both a broad perspective of decision problems and an understanding of how

researchers and practitioners have addressed them using optimization models.

1.3 Modeling Constructs

Several modeling constructs are commonly used for rail planning and scheduling prob-
lems. One important construct is a time-space network; a simple example with in-
stantaneous travel times appears in Figure 2. Each node represents a time-location
pair. Arcs connect nodes if it is feasible for a railcar or locomotive to move from one
time-location pair to the other. Arcs from one period to the next at the same location
represent holding inventory and “reverse” arcs from one period to a previous period

represent backordering of demand for applicable equipment.



Time-space networks lead naturally to problem representations as single or multi-
commodity networks. When train capacity and timing are given, the network contains
one capacitated arc per train and the flows represent railcars, locomotives and/or
containers. The “commodities” in the network may be distinguished by their origin,
destination, priority, and their physical attributes (e.g., coal versus automobiles). The
latter distinction is important due to differences in the rail cars used for various goods.
When the train service and/or timing are to be decided, the resulting models become
network design problems. In some cases, arc capacities may also be decided (e.g., by
selecting the number of locomotives). Some fleet sizing problems may be modeled by
adding arcs for external supply of capital equipment to the basic time-space network.
Research on single and multicommodity network flow and design problems has ad-
vanced rapidly in the past decade; many algorithms applicable to rail planning and
scheduling problems can be found in Ahuja et al. (1993) and Magnanti and Wong
(1984).

The rail industry commonly uses string diagrams to represent detailed scheduling
problems in continuous time and space domains. In string diagrams, the locations of
trains, usually along a single rail line, are plotted, with the x-axis representing time
and the y-axis representing the distance from one end of the line. Thus, the slope
of line segment corresponds to the velocity of the train, and horizontal segments
represent waiting at a siding or a rail yard. Note that string diagrams are designed
for representing trains, not railcar, container, or locomotive movements.

The string diagram in Figure 3 illustrates a meet-pass plan and timetable for two
southbound trains (I and II) and a northbound train (/II) over three hours. There
are three sidings, A, B, and C. The pass that occurs between trains I1 and I1] at
siding C' is feasible. However, a collision would then ensue between trains I and 117

which could be avoided if train I waits at siding B.

2 Infrastructure Design and Maintenance

U.S. railroads are making significant investments in both track and rail yards. Burling-

ton Northern Santa Fe Railway (BNSF) has improved and added track along its main-
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line in five states in the past year. Union Pacific has expanded its lines in Iowa and
recently upgraded a bridge crossing in Louisiana. Norfolk Southern opened new inter-
modal terminals in North Carolina and, jointly with Kansas City Southern Railway,
in Texas. Despite this growth, few optimization models have been developed for rail
infrastructure planning.

Higgins et al. (1995) address the problem of determining the location of sidings on
a single rail line to minimize total tardiness for a planned train schedule. Construction
costs are not considered. The solution method involves iteratively optimizing the train
schedule (meet-pass plan, departure and arrival times of trains) for revised siding
locations, and optimizing the locations of sidings for a revised train schedule. They
report that modifying siding locations leads to a substantial reduction in tardiness.

The ambitious task of planning expansions of the Brazilian Railway is addressed
by Crainic et al. (1990). Much of their work involves parameter estimation. The op-
timization model itself seeks to minimize the average cost per unit time of loaded and
empty freight flows, expressed in tons, for a given network configuration. The model
permits multiple transportation modes (e.g., different track gauges) and freight trans-
fers between modes. The authors present an application of the model for proposed
rail lines.

Improved track maintenance reduces travel times, which increases labor productiv-
ity and customer service, and reduces the probability of derailment. LeBlanc (1976)
develops a nonlinear optimization model in which investments in track improvements
have decreasing marginal returns for improving train speed and decreasing operating
costs. The problem is to simultaneously select investment levels (including implied
abandonments) for each track segment and freight routing to minimize overall costs.
For a particular relation between the investment cost and the variable transportation
cost on each segment, he shows that the problem can be solved optimally.

Re-laying track involves moving used rail to a lower-traffic or lower-speed location
where it can still be used effectively. Acharya et al. (1989) address the problem
of determining when stretches of track should be re-laid after an expert system has

identified candidates for replacement. There are economies of scale from re-laying



nearby stretches of track, even if immediate replacement is not required. Operating
costs, future maintenance and derailment costs, the salvage value of the re-laid rail,
and the total value of the rail are considered. Constraints ensure that track is replaced
before its wear limits have been reached. Labor, operating budgets, and equipment
use may be limited. This constrained shortest path problem is solved via Lagrangian
relaxation of the capacity constraints.

A discussion of issues and models for rail maintenance planning, including the
scheduling of rail repair facilities, appears in Genser (1982). Ferreira and Murray
(1997) highlight the need for methods to maximize net financial benefit considering
design standards, maintenance expenditures, and the capability of a rail segment to

handle increased loads or train speeds.

3 Fleet Sizing and Repositioning

Minimizing empty car and locomotive repositioning contributes to reducing the own-
ership and operating costs for locomotives and railcars. In this section we address
these issues for a fixed train schedule. The integrated problem of scheduling trains
and routing loaded and empty railcars is discussed in Section 4. We first concentrate

on repositioning and then discuss fleet sizing.

3.1 Fleet Repositioning

For a fixed train schedule, fleet management entails the assignment of loaded and
empty railcars and locomotives to trains to satisfy shipment requirements and empty
car demands. Most research on fleet management, however, takes the freight move-
ments as given and optimizes empty car and/or locomotive repositioning.

Turnquist and Markowicz (1989) address the problem of minimizing the total
cost of moving, holding inventory and backordering of empty cars. Their model
permits multiple car types and limited substitutability among them. The problem is
formulated as a single-commodity minimum-cost network flow problem. A decision-
support tool based on this model was used regularly by CSX from 1990 to 1996.

An interesting repositioning problem pertains to railroad autoracks, which are



multi-level railcars that carry automobiles. An empty autorack generally had been
returned to its last loading location, a practice that resulted in many empty car miles.
In 1982, all railroads that move automobiles entered into a pooling agreement under
which an unloaded autorack is repositioned to an economically efficient location,
possibly another auto manufacturer’s site.

Sherali and Suharko (1998) develop a decision support system which is used daily
by RELOAD, a central management group that controls autorack repositioning. It
incorporates two discrete-time optimization models. The first model seeks, in effect,
to minimize the maximum tardiness in filling demands for each autorack type at each
location. Constraints ensure that each automaker’s cumulative car-day utilization is
consistent with its contribution to the pool. Each automaker’s prioritization of its
plants is incorporated via priority weights. Travel time uncertainty is considered by
using chance constraints to exclude repositioning options that are unlikely to meet the
target transit time. This problem can be decomposed by autorack type and solved
by standard network flow algorithms. For the second model which also considers
blocking, the authors evaluate several heuristic procedures based on priority schemes
and approximate dual prices. They also present a method to modify the solution to
the first model to account for blocking.

The need to select among available locomotive consists for assignment to trains is
a major distinction between railcar and locomotive management problems. Ziarati et
al. (1997) seek to optimize the schedule for locomotive movements between “power
change points” (where locomotives may be transferred between trains) to support a
one-week train schedule, requirements of “outposts” for locomotives handling local
pick-up and delivery, and scheduled maintenance. The sub-network for each locomo-
tive type is a single-commodity time-space network, with costs for hauling and dead-
heading. Bundle constraints limit the total locomotives of each type, and additional
constraints ensure that assigned consists satisfy power requirements. The authors de-
velop a branch-and-bound procedure with lower bounds derived using Dantzig-Wolfe
decomposition. There is a subproblem for each locomotive type and the master prob-

lem links the types. The authors test the procedure on a data set from Canadian
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National North America for one week in 1994 (about 2000 trains) and report the
potential for substantial savings.

Fleet management problems typically are formulated as large, integer programs
that become extremely difficult to solve if there are complex constraints. Some re-
searchers have developed approximate decomposition approaches as a step toward
surmounting these challenges.

Powell and Carvalho (1998a) consider the problem of routing vehicles and assign-
ing full or empty loads to them to maximize profit over a finite horizon. Each full
load earns revenue only if delivered within a specified time window, and costs are in-
curred for both loaded and empty vehicle movements. They develop an approximate
decomposition method for their dynamic program. The state of the system is defined
by the vector of empty-vehicle inventories by location and the set of uncovered tasks.
They assume that the “value-to-go” for additional vehicles at each time and location
is a linear function, with the estimated incremental value as its coefficient. With this,
the optimal solution for each state is determined easily using a greedy procedure:
available vehicles should be dispatched or held in inventory in descending order of
the incremental benefit of the available assignments. The coefficients are updated
and the process repeats until the objective value converges.

Powell and Carvalho (1998b) apply the aforementioned approach to container
and flatcar management. They also implement it within a decision support system
for locomotive fleet management to be launched at the Norfolk Southern in 1999. A
forecasting module predicts loads on outbound trains for the next 14 days. Using
these forecasts, a scheduling system determines the assignments of locomotives to
trains and estimates the incremental value of each locomotive type at each yard in
each period. A real-time heuristic is employed to select a consist for each train during
the upcoming 24 hours, considering factors such as repositioning costs and the value
of each consist at the train’s destination.

In reality, supplies and demands of railcars and travel times are stochastic. Jordan
and Turnquist (1983), Crainic et al. (1993), and Beaujon and Turnquist (1991; see

Section 3.2), among others, model the stochastic aspects of this problem. For surveys
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on fleet management and empty flows, see Dejax and Crainic (1987), Haghani (1987)
and Cordeau et al. (1998). Recent references also appear in Holmberg et al. (1998).

3.2 Fleet Sizing

Beaujon and Turnquist (1991) develop a multi-period stochastic program to simul-
taneously determine fleet size and routing decisions to maximize expected revenues
from moving loads less costs of empty and loaded car movement, ownership, lease and
shortages. Demands for loaded movements are stochastic and non-stationary. Travel
times are represented by probability mass functions on the integers. The authors ap-
proximate the inventory and backorder costs as deterministic, nonlinear functions of
the mean and variance of on-hand inventory or backorders at the corresponding time
and location. They propose a heuristic which iterates between solving the underlying
network flow problem for assumed variances (from the last iteration, if available), and
computing updated variances resulting from the network flow solution. In computa-
tional experiments, the procedure produces solutions superior to those obtained from
heuristics based on deterministic travel times.

Sherali and Tuncbilek (1997) address the problem of minimizing the number of ad-
ditional autoracks required to satisfy demand in all time periods and locations. They
propose a network flow model with time-varying demands, and with recirculation of
flows from sink to source to account for end-of-horizon effects. The problem is decom-
posed heuristically into overlapping time intervals. This model is used annually by
RELOAD to develop recommendations for autorack purchases and the apportionment
of costs among the automakers.

Little research has been done on locomotive fleet sizing. Gertsbach and Gurevich
(1977) address the problem of minimizing the size of a fleet of homogeneous loco-
motives to cover a fixed schedule by assigning a “chain” of transport segments to
each locomotive. Their procedure relies on properties of good chains in constructing
an optimal solution and is applicable to both finite-horizon and periodic, repeating
schedules. Florian et al. (1976) appears to be the only paper that permits nonho-

mogeneous locomotive consists. The objective is to minimize the total cost of capital
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investment and maintenance for the locomotives. The model is an aggregate one
which ensures a balance of locomotive flows among locations, but does not account
for the effects of the train schedule and connections on fleet requirements.

Table 1 characterizes the articles reviewed in this section, including the decisions,
major assumptions, objective function, and important constraints. Note that self-
evident constraints, such as conservation of flow, are omitted. For reviews of fleet
management and sizing, including empty car repositioning, see Dejax and Crainic

(1987) and Haghani (1987).

4 Scheduling and Routing

In this section, we discuss train scheduling and freight routing, including blocking and train makeup
decisions. These problems are addressed, both in research articles and in practice, at different levels
of demand aggregation across time. The most aggregate models use average demand rates over an
appropriate time horizon. At an intermediate level, customer shipments may be aggregated within
each origin-destination pair, but not across time, leading to time-varying demands. At the most
detailed level, the current system status is considered for real-time decision-making (not discussed
here).

We first discuss meet-pass planning and closely-related timetabling problems, followed by routing
problems for conventional railcars, where blocking decisions are integral, and for intermodal traffic
where blocking is not required. We then continue with joint train scheduling and freight routing

problems, and finally discuss more comprehensive models.

4.1 Meet-Pass Planning and Timetabling

Most timetabling models involve single-track paths shared by multiple trains, often with bi-directional
traffic. Brannlund et al. (1998) address a timetabling problem on a single rail line, assuming a con-
stant velocity for each train. The track is divided into segments, each with a capacity of one train.
The goal is to maximize profits from the selected train itineraries, where profits depend on the
departure time and enroute delay. The problem is solved via a Lagrangian heuristic in which the
segment capacities are relaxed. See Carey and Lockwood (1995) for related work.

Sauder and Westerman (1983) develop a meet-pass planning system for a set of intersecting
tracks at Southern Railway (a predecessor of Norfolk Southern Railway). Their model seeks to

minimize total weighted delay, where tardiness is weighted according to the train’s priority, and
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Paper/year | Decisions Major Assumptions | Objective Function | Constraints
Fleet Management and Fleet Sizing
Turnquist & | Empty car -Backorders allowed Minimize railcar -Supply & demand
Markowicz routing -Fixed train schedule transporta- of cars by time
(1989) -Partial substitutability | tion, holding & back- | & location
of car types order costs
Sherali & Empty car -Backorders allowed Minimize maximum | -Consistent cumulative
Suharko repositioning | -Fixed train schedule weighted car-day use vs.
(1998) -Travel times uncertainty | tardiness pool contribution
considered
Ziarati et al. | Locomotive -Known train makeup Minimize -Power requirements
(1997) scheduling -Fixed train schedule locomotive -Scheduled maintenance
transportation -Shop capacities
costs -Locomotive demands
at outposts
Powell & Scheduling of | -Fixed train schedule Maximize revenue -Only loaded
Carvalho empty & -Single equipment type less vehicle movements within
(1998a) loaded movement time window
movements costs earn revenue
Powell & Flatcar/ -Fixed train schedule Maximize profit -Container assignments
Carvalho container -Multiple equipment (as above) to flatcars
routing
Jordan & Empty car -Stochastic empty Maximize expected -Car availability
Turnquist distribution car supplies, demands revenue less
(1983) & travel times car trans., holding &
shortage costs
Crainic Empty -One container type Minimize sum of -Demand satisfaction
et al. container -Demands, supplies operating & ex- -Limits on
(1993) distribution partially dynamic pected holding container movements
& uncertain & leasing costs between depots
Beaujon & Fleet sizing -Dynamic & Maximize revenue —_—
Turnquist & vehicle stochastic demands less expected
(1991) routing -Travel times uncertain car movement,
use & shortage costs
Sherali & Fleet sizing -Fixed train schedule Minimize fleet -Demand satisfaction
Tuncbilek -Time-varying demands size
(1997)
Gertsbach Fleet sizing, | -Fixed train schedule Minimize fleet -Arrival &
& Gurevich | locomotive -Homogeneous size departure time
(1977) scheduling fleet
Florian Fleet sizing, | -Fixed train schedule Minimize capital -Power
et al. locomotive -Multiple locomotive & maintenance requirements
(1976) scheduling types costs

Table 1: Literature Classification: Fleet Management and Fleet Sizing
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delays within the scheduled arrival time have unit weight. The optimal solution is obtained by
enumerating all meets and passes. The meet-pass plans are integrated with a real-time simulator to
support on-line decisions. In 1.5 years of monitored performance, delay declined by 15% with steady
or increasing volume. Savings in fuel, crew and cost of capital were estimated at over $300,000
annually during the early 1980’s.

Jovanovic and Harker (1991) develop the SCAN-I model to construct timetables and meet-
pass plans over a set of interlinked traffic lanes, with a focus on robustness against travel time
randomness. To assess whether a timetable is feasible under deterministic assumptions, they employ
a branch-and-bound variant called a process-interaction simulation which proceeds forward in time,
resolving conflicts between trains sequentially, while avoiding deadlock. Backtracking occurs when
a feasible continuation cannot be constructed. Whenever a schedule is identified that is feasible for
the deterministic travel times, simulation is used to estimate the probability that the schedule is
achievable for random travel times. The SCAN-I model has been used by BNSF for special studies.

See Kraay et al. (1991) for a timetabling approach allowing variable train velocity, which permits

more flexibility in scheduling and fuel cost reductions.

4.2 Routing

The need to make blocking decisions complicates the routing of conventional railcars. Virtually all
blocking models are based on aggregate, deterministic, steady-state assumptions. The first successful
solution of a blocking optimization model appears to be that of Bodin et al. (1980) who utilize
commercial software to solve their mixed-integer program. Van Dyke (1986) provides an excellent
discussion of practical issues related to blocking.

Newton et al. (1998) seek to minimize total mileage, handling and delay costs subject to on-time
delivery constraints that vary with priority class, and constraints on blocks and railcar handling at
the yards. For each origin-destination pair, a set of blocking patterns and the railcar flow on each
must be decided. They devise a branch-and-price procedure in which column generation is used to
construct and price candidate paths. The binary blocking decisions are handled via branch-and-
bound. The model is being extended and tested with a view toward implementation at CSX.

Kwon et al. (1998) formulate a multicommodity flow problem to determine car routes assuming
the train schedule, blocking plan, and block-to-train assignments are given. The goal is to minimize
late delivery penalties while ensuring demand is met, cars are appropriately assigned to blocks,
blocks are appropriately assigned to trains, and train capacity restrictions are enforced. They use
a column generation approach to solve realistic problem instances. This model has proved useful

for modifying train schedules when the initial train schedule does not provide adequate customer
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service.

All major North American railroads currently use MultiRail software, which, among other things,
assigns railcars to existing blocks. The objective is to minimize variable transportation and handling
costs incurred for all transit segments, but costs may be modified to reflect routing preferences. Block
and yard capacities are not explicitly modeled, allowing car routing to be determined using a shortest
path algorithm (van Dyke, 1999).

Blocking decisions are not essential for intermodal freight because less reclassification occurs en-
route. Furthermore, intermodal goods are promised more rapid delivery, so due dates are important
and steady-state models are no longer adequate. Nozick and Morlok (1997) address a finite-horizon,
discrete-time problem of minimizing the total variable cost of moving loaded and empty trailers
and flatcars given a fized train schedule while satisfying due dates. They develop a procedure that
involves iteratively solving a linear programming relaxation and rounding some of the resulting
fractional values until a feasible integral solution is found. The heuristic is shown to provide good

results.

4.3 Combined Scheduling and Routing Models

Morlok and Peterson (1970) introduce one of the first models for concurrent routing and scheduling
decisions. The objective is to minimize the sum of fixed costs for trains, variable costs for transporta-
tion, handling and storage of freight, and opportunity costs of using rail equipment, while providing
on-time deliveries of time-sensitive goods. Each potential train has a departure time, routing, set
of stops, and an upper limit on cars. Decisions are which trains to operate and which freight to
assign to each train. The authors apply branch-and-bound to solve a small instance of the resulting
multicommodity network design problem.

Gorman (1998) treats the discrete-time problem of simultaneously deciding train service on
all possible non-stop links and freight allocation. The model seeks to minimize the cost of labor,
locomotive utilization, fuel, freight handling, and the opportunity cost for equipment use subject
to on-time delivery, train capacity, rail yard handling and aggregate track capacity constraints.
The proposed tabu-enhanced genetic search procedure is tested on small problems. Because of
difficulties making widespread changes, a heavily constrained version of this model is used by BNSF
for evaluating new routing and scheduling plans. A similar problem is addressed by Newman and
Yano (1998), who present both centralized and decentralized approaches for solving the problem.

Huntley et al. (1995) devise a procedure for scheduling trains and routing cars to transport
the one billion bushels of grain handled by CSX Transportation each fall. Each potential train is

defined by a non-stop route between two locations and a departure time. Routing decisions are
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made for batches of cars with the same origin, time of availability at origin, and destination. The
objective is to minimize a complex nonlinear cost function, including labor, fuel, freight car rental,
and locomotive capital expenditures, while ensuring that no cars miss train connections, and no
trains exceed car-carrying capacity. Starting from a simple initial solution, simulated annealing is
used to search for improved solutions by considering addition or deletion of stops or changing train
departure time. The company reports substantial savings from using this procedure.

Marin and Salmerén (1996) address an aggregate, steady-state freight planning model in which
train routes (including stops), their frequency, and the number of cars using each service are deter-
mined. Costs include a fixed charge for each train, handling and delay costs, and costs of investments
in additional trains. Constraints are imposed on the number of cars transported on each track seg-
ment, the number of cars using each yard, and the number of trains. They suggest heuristics in
which service frequency decisions are handled by simulated annealing or tabu search and freight
routing is addressed using a network flow model.

For surveys of rail scheduling and routing for freight, see Cordeau et al. (1998) and Assad

(1980).

4.4 Integrated Models

More comprehensive models can provide better-coordinated decisions. The resulting size of such
models, however, dictates that detailed decisions (e.g., blocking or train timing) and local constraints
(e.g., yard capacity) must be ignored or modeled approximately.

Keaton (1989) examines the problem of simultaneously deciding which pairs of terminals are
provided direct train service and its frequency, car routing, and allocation of blocks to trains, to
satisfy constant demand rates among the terminals. The objective is to minimize the average cost
per unit time incurred from a fixed cost for each unlimited-capacity train, variable costs for the use
of cars, and delays for classification and train assembly. Constraints are imposed on the number of
blocks formed at each yard but delays due to block formation are not modeled. Keaton develops a
Lagrangian procedure, relaxing constraints on the number of blocks, as well as a simpler heuristic
in which, starting from a feasible solution, train frequencies are reduced and some connections are
eliminated.

Haghani (1989) considers the discrete-time problem of simultaneously determining train service,
train makeup, and loaded and empty car movements. The objective is to minimize the sum of fixed
charges for trains, variable car movement, classification, delay and empty car backorder costs, and
penalties for undelivered goods. Constraints ensure that the allocation of locomotives to each route is

adequate to handle the flow of loaded and empty cars. The solution procedure involves heuristically
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rounding the train variables. An example illustrates that the integrated approach provides better
customer service at a lower cost than a sequential solution approach.

Abel et al. (1981) develop a model for scheduling sugar cane harvesting times at growers and
scheduling trains to transport it to mills in Queensland, Australia. Only one route exists between
each grower and its associated mill, but a train need not visit all growers on its route. The goals,
in ranked order, are to minimize total operating cost, minimize “staling” of sugar cane, minimize
locomotive and railcar capital costs, and minimize the number of shifts required at the mills. The
authors develop a heuristic to find the lowest-cost set of locomotive trips while satisfying demand.
The timing of the trips is then determined considering the mill operating schedules. Mill labor cost
considerations are handled by imposing constraints to ensure that sugar cane arrivals at the mills
allow them to operate continuously while open. Equipment is added only if needed. The authors
report that the solution provides improvements in operating cost, cane age and capital requirements.

Tables 2 and 3 characterize the major articles reviewed in this section.

5 Conclusions and Directions for Further Research

Our review of many dozens of papers revealed areas where opportunities exist for development
of new frameworks and paradigms. An important opportunity lies in the development of formal
methods for linking decisions at different levels of the hierarchy. For example, aggregate, steady-state
scheduling and routing models specify train service frequency and average freight flow patterns, but
no systematic procedures exist for making short-term train scheduling and freight routing decisions
as demand evolves using the results from the aggregate model as guidelines or constraints. Scheduling
and routing models do exist for short-term, discrete-time problems with time-varying demands, but
they do not account for any longer-term considerations.

We similarly found few papers that incorporate the effects of short-term and local dynamics
upon longer-term, aggregate decision models. Turnquist and Daskin (1982) and Powell and Carvalho
(1998a) take important steps, but more research is needed.

Another opportunity lies in extending models to handle system-wide circulation of locomotives
and railcars. Nearly all discrete-time, finite-horizon scheduling and routing models terminate in
states of the system that may be undesirable in the longer term. Optimization methods can handle
minimum cost circulation problems for periodic, repeating, plans, but the problems become much
more difficult when demands are not periodic. Likewise, considerable opportunity exists to account
for randomness. Most of the models described above are deterministic, and because optimization

methods identify “extreme point” solutions, they are often not robust to uncertainty.
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Paper/year

| Decisions

Major Assumptions |

Objective Function

Constraints

Timetabling

Brannlund Detailed train -Single track Maximize value of -Train capacity on
et al. (1998) | itineraries -Fixed train velocity selected itineraries each segment
Carey & Train paths -One-way traffic Minimize deviations | -Arrival &
Lockwood & schedules -Fixed velocity from preferred departure time
(1995) departure time windows
Sauder & Train timetables, | ——— Minimize -Maximum
Westerman | meet-pass plans total weighted train velocity
(1983) delay -Siding length
Jovanovic Detailed train -Fixed velocity (High probability -Deadlock avoidance
& Harker timetables, -Travel times of feasibility) -Siding capacity
(1991) meet-pass plans uncertain
Kraay Train velocity -Single track Minimize -Maximum
et al. profile & -Variable velocity fuel consumption, train velocity
(1991) meet-pass plan deviation from
schedule
Blocking
Bodin Car classification | -No freight priorities Minimize trans- -Demand satisfaction
et al. strategy for all -Constant demand portation, class- -Yard & block capacity
(1980) yards ification & -Block formation
delay costs & strategy
Van Dyke Assignment of -Existing blocking plan | Minimize -Demand satisfaction
(1999) cars to blocks -Train schedules fixed | transportation
-Constant demand & handling costs

Newton Blocking patterns, | -Blocks with different Minimize mileage, -Demand satisfaction
et al. assignment, of priority classes handling & -Number of
(1998) cars to blocks -Constant demand delay costs containers classified

& blocks built

at each rail yard
Kwon Car routing -Train schedules, Minimize late -Train capacity
et al. block definitions, delivery -Correct car-to-
(1998) block-to-train penalties block, block-to

assignments fixed
-Time-varying demand

train assignments

Table 2: Literature Classification: Scheduling and Routing, I
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Paper/year | Decisions

Major Assumptions |

Objective Function

Constraints

Intermodal Routing

Nozick Assign -Fixed train schedule Minimize costs of -Demand satisfaction
& Morlok equipment & -Known demands repositioning & -Fleet size
(1997) loads to trains satisfying demand -Terminal capacity
Scheduling
Morlok & Train schedule -Deterministic Minimize fixed, -Delivery windows
Peterson & freight routes | demand & variable oper- -Power requirements
(1970) transit times ating, storage & -Train capacity
opportunity costs
Gorman Train schedules | -Deterministic Minimize fixed & -Freight due dates
(1998) & freight routes | transit times variable oper- -Train, yard
-Time-varying demand | ating & oppor- & line capacity
-Limited feasible routes | tunity costs
Newman Train schedules | -Deterministic Minimize fixed & -Freight due dates
& Yano & freight routes | transit times variable oper- -Train & line
(1998) -Time-varying demand | ating & storage capacity
costs
Huntley Train schedules | -Deterministic Minimize fixed, -Demand satisfaction
et al. & routes for transit times & variable trans., -Train capacity
(1995) car “batches” -Constant demand capital & car
-No handling costs rental costs
Marin & Train routes -Deterministic Minimize fixed & -Demand satisfaction
Salmerdén & car routing transit times variable trans., -Yard, line & train
(1996) frequencies -Constant demand holding, handling, & | capacity,
investment costs -Limited cars on track
Integrated Models
Keaton Frequency of -Constant demand Minimize fixed, -Demand satisfaction
(1989) direct train -Block formation variable car use -Yard & train
service, block delays ignored & delay costs capacity
allocation, car
routes
Haghani Locomotive & -Constant demand Minimize trans., -Tractive power
(1989) loaded car congestion,
routing & classification,
empty car undelivered goods
distribution & backorder costs
Abel Train & har- -Perishable freight Minimize operating | -Mill operation
et al. vesting sched- costs, staling loss -Equipment
(1981) ule, fleet & capital costs availability
size -Train capacity

Table 3: Literature Classification: Scheduling and Routing, II
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There is opportunity to develop models with greater realism and solution methods that facilitate
more effective implementation. Martland and Sussman (1995) point out that even fairly realistic
optimization models must be customized to suit a railroad’s operating policies and user capabilities.

Research areas that have become popular in other transportation industries are beginning to
touch the rail industry, including demand management, yield management and crew scheduling. Al-
though there are many dozens of articles on optimization in the rail industry, the use of optimization

in the industry is young, leaving many doors open for further contributions.
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