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Introduction
Academic research over the past 

three decades has focused on using 
the Lerchs-Grossmann algorithm as 
a mechanism for solving more gener-
al openpit mine scheduling problems. 
This knowledge base has transferred 
to industry and, at present, a number 
of software firms, including Geovia, 
Maptek and MineMax, offer produc-
tion scheduling optimization solu-
tions for openpit mining operations. 
Because openpit mines comprise the 
vast majority of mining operations in 
the United States (Hartman, 2007), 
the commercial focus on optimizing 
their production schedules is under-

standable. However, while compa-
nies strive to produce next-genera-
tion tools for openpit mines—such 
as optimization of integrated mine 
design and production problems—
scheduling software for underground 
mines remains limited to supporting 
manual production planning, a com-
plex and difficult task that can re-
quire months to complete. 

Integer programming review
Johnson’s (1968) integer para-

digm for modeling openpit produc-
tion scheduling continues to be the 
predominate approach. Optimal so-
lutions to integer programs (whether 
they also contain continuous variables 
representing the amount of material 
extracted, or in a stockpile, for exam-
ple) can be identified by executing the 
branch-and-bound algorithm (Rar-
din, 1998). A process of intelligent 
enumeration, this algorithm system-
atically examines a tree of potential 
solutions, eliminating those that are 
clearly dominated based on their ob-
jective function values. Commercial 
solvers like CPLEX (IBM) imple-
ment variations of this algorithm in 
combination with other advanced op-
timization techniques, that is, heuristic 
methods and cutting planes (Klotz 
and Newman, 2013b). In theory, as 
the size of an integer program grows, 
the time required for the branch-and-

bound algorithm to solve the problem 
increases exponentially. For this rea-
son, despite phenomenal increases in 
computing power, large and complex 
mine scheduling models continue to 
challenge researchers and practitio-
ners alike.

Mine design and scheduling 
models

Before examining the complexity 
of production scheduling problems, 
we first review two common math-
ematical formulations as they appear 
in Espinoza et al. (2013). The math-
ematical formulations are as follows:

Indices and sets: 
	 : set of time periods t in the 
	 horizon
	 : set of blocks b
	 : set of blocks bʹ that are pre-
	 decessor blocks for block b
	 : set of operational resource 
	 types r

Parameters: 
	 : profit obtained from
	 extracting (and processing) 
	 block b (at time period t)($) 
	 : the amount of operational 
	 resource r used to extract 
	 and, if applicable, process, 
	 block b (tons) 
	 : minimum availability of
	 operational resource r in 	
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	 time period t (tons)
	 : maximum availability of operational resource r 
	  in time period t (tons) 

Variables: 	
	 : 1 if block b is in the final pit design; 0 otherwise 
	 : 1 if we extract block b in time period t; 0 otherwise 
      

(UPIT)

 subject to	 (1)
	
	 (2)

The (UPIT) problem is the openpit design problem 
that the Lerchs-Grossmann algorithm solves. It maxi-
mizes profit by determining the pit size that contains the 
most economic selection of blocks. Each block b has a 
value, pb, and is associated with the binary variable,    ,  
that assumes a value of 1 if    is chosen for extraction  
and 0 otherwise. Precedence constraints [the inequality 
shown as Eq. (1)] ensure that any block,        , can only 
be extracted once all of its predecessors,          , have  
been extracted. The number of variables corresponds to 
the number of blocks in the problem, while the number 
of constraints depends on the precedence relationships 
between blocks. 

The (CPIT) problem introduces the time dimension 
that (UPIT) lacks: 

(CPIT) 

subject to	 (3)
	
	 (4)
	
	
	 (5)
	
	 (6)

 
The objective now maximizes discounted profits, while 
the constraints in Eq. (3) enforce precedence rules. 
The additional constraints in Eq. (4) restrict a block 
to be extracted at most once, and the constraints in 
Eq. (5) ensure that total resource usage does not ex-
ceed its availability in any given time period. The  

number of variables in the problem is given by            ,  
considerably more than the     contained in a (UPIT)  
problem of commensurate size. In addition to the prece-
dence constraints, which also depend on time in (CPIT), 
the formulation has             resource constraints that 
may limit, for example, extraction and processing capac-
ity. Although (CPIT) problems contain fewer resource 
constraints than precedence constraints, even a single 
such constraint destroys the network structure present in 
(UPIT). 

Relative tractability of (UPIT) and (CPIT) problems
The tractability of models such as (UPIT) and (CPIT) 

depends on: (i) the size of the problem, in terms of the 
number of variables and constraints, and (ii) the structure 
of the constraint sets, including the resulting density of 
those constraints. Practical scheduling problems exhibit-
ing simple and repeatable patterns are solved with spe-
cialized techniques that take advantage of their structure, 
that is, the underlying network in the (UPIT) problem, 
for which network algorithms can expedite solutions. 
Ahuja et al. (1993) show that by considering each block as 
a node and representing the precedence relationships be-
tween blocks with directed arcs, (UPIT) can be modeled 
as a maximum weight closure problem and solved with a 
polynomial-time algorithm quickly relative to solving the 
original problem with branch and bound. This structure 
allows for integer solutions even when the integrality re-
quirements are ignored in the solution procedure.

To see the special structure of the (UPIT) problem, let 
us rearrange the constraints in Eq. (1) so that all variables 
are on the left-hand side:

	 (7)

The matrix of left-hand-side constraint coefficients for 
this problem populate the so-called A-matrix with values 
of ±1 or 0, with at most one +1 and one −1 in each column: 

	

On the other hand, the (CPIT) problem’s constraint 
set does not possess as “easy” a structure. The precedence 
constraints contain the dimension of time, and while they 
still constitute a network, one can see that, without refor-

Resumen ■  A pesar de que parte del predominio de software de programación de 
producción a cielo abierto se puede explicar por la preponderancia de la minería a cielo 
abierto en todo el mundo, hay otros factores que han dado lugar a un retraso en el software 
subterráneo correspondiente. Explicamos por qué matemáticamente la programación de la 
producción subterránea es más difícil que su contraparte a cielo abierto y daremos pautas 
para la investigación en el campo de la programación subterránea.
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mulation, there are many more +1’s and −1’s on the left-
hand side of the constraint set (owing to the summation 
on t). A reformulation (Bienstock and Zuckerberg, 2010) 
retains the maximum closure network structure that the 
constraint set in (UPIT) possesses. However, the resource 
constraints [Eq. (5)] not only add rows with strings of co-
efficients corresponding to the amount of resource con-
sumed in a time period (that is, the coefficients qbr), but 
also destroy the structure that admits integer solutions 
without those requirements (Lambert et al., 2014). Gener-
ally, there are few resource constraints relative to the pre-
cedence constraints, which is noteworthy for tractability 
purposes since the performance of commercial optimiz-
ers is significantly affected by the density of a problem’s 
A matrix, that is, the ratio of nonzero to zero values. These 
solvers reduce problem size by storing only nonzero ma-
trix coefficients in memory. However, when the A matrix 
averages more than 10 nonzero elements per column, it is 
considered dense. Consequently, with a large number of 
nonzero values with which the solver must compute, solu-
tion time slows considerably (Klotz and Newman, 2013a). 

We observe that for the most “difficult” openpit 
scheduling models, the ease with which they can be 
solved is far greater than that with which an underground 
model instance of commensurate size can be solved (Fig. 
1). We examine two principal reasons that, at the time of 
this writing, underground production scheduling models 
are more difficult to formulate and solve than their corre-
sponding openpit counterparts: (i) the difference in struc-
ture between the two types of mines and (ii) the charac-
teristics of the entities requiring “action.”

Openpit versus underground mine structure 
The characteristics of a mining operation define the 

mathematical structure of its corresponding production 
scheduling optimization problem; this structure, in turn, 
determines the tractability of the problem. 

Precedence constraint structure. Perhaps the most 
significant difference between openpit and underground 
mine scheduling problems is in the structure that under-
lies the precedence rules governing the sequence of ex-
traction between blocks of ore. For openpit mines that 
employ a repeatable precedence rule, such as the “plus 
sign convention” (Lambert et al., 2014), this underly-
ing structure forms a network that can be exploited by 
the Lerchs-Grossmann algorithm when (i) solving the 
(UPIT) problem or (ii) solving the (CPIT) problem with 
a heuristic or exact method, for example, a Lagrangian 
relaxation procedure (Dagdelen and Johnson, 1986; Lam-
bert and Newman, 2013). The mathematical structure of 
these types of constraints for (UPIT) and (CPIT) is given 
in Eq. (1) and Eq. (3), respectively.

Underground mine precedence structure can differ 
greatly from one mine to the next. For the most part, 
the method of extraction used in an area, for example, 
a stope panel, of an underground mine dictates the or-
der of mining in that area; underground mines often use 
a combination of mining methods, and precedence rules 
can relate extraction activities to non-extraction activi-
ties, such as ventilation requirements (Brickey, 2013), 
structural support or safety protocols. Consequently, even 
when underground mines possess a single, uniform min-
ing method with a repeatable precedence pattern, such as 
sublevel caving at the Kiruna Mine in Sweden (Newman 
and Kuchta, 2007), other precedence rules may preclude 
the underlying network structure that commercial solv-
ers could exploit to produce timely solutions. In addition, 
complex precedence logic (for example, Martinez and 
Newman, 2011) results in constraints with more variables, 
and this produces a dense A matrix, slowing computation.

As another example, consider Fig. 2, in which the 
Lisheen mine in Ireland possesses precedence rules be-
tween panel activities and haulage pillars, that is, desig-
nated pillars that are left in place to support the haulage 
routes (O’Sullivan and Newman, 2014). While the major-
ity of the precedence constraints in the model are similar 
to the constraints in Eq. (3), which possess an underlying 
network structure, others are more mathematically trou-
blesome. Specifically, while extracting a haulage pillar is 
optional, it may prevent extraction in other areas of the 
mine. This type of precedence constraint incorporates an 
“or” decision and cannot be incorporated into a network 
model. Because precedence rules governing haulage pil-
lars do not have an underlying network structure, the 
tractability of the Lisheen scheduling problem is largely 
determined by the number of haulage pillars included in 
the model (Fig. 3).  

Operations and activities. The openpit scheduling 
problem can be segmented into a series of smaller, more 
tractable subproblems; blocks are assigned a phase num-
ber that can be included in the precedence constraints 

The total time to develop and solve an integer program for mine 
scheduling depends on the quality of the solution required. 
For openpit mines, solutions are often close to optimality or at 
least better than current practice. The more complicated and 
heterogeneous characteristics of underground mines result in 
more difficult problems that take longer to solve. In general, 
underground mine planners must be satisfied with a solution 
that is better than current practice and that can be produced in 
a reasonable amount of time.

Figure 1
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when determining a schedule in linear- or mixed-integer-
programming-based scheduling software. Because the 
(UPIT) problem is specific to openpit mines, there is no 
equivalent decomposition technique that can be applied 
to underground mines.

A fundamental difference between openpit and un-
derground mining is the treatment of scheduling waste 
material. From an analytical perspective, the openpit 
mining process from ore to product can be separated 
into three decisions: (1) which blocks to extract at time t; 
(2) whether, upon extraction, to send a block to the mill, 
leaching heap, stockpile or dump and (3) what ore blocks 
to select from the stockpiles at time t to satisfy grade 
control. While there is a degree  of interdependency be-
tween these decisions, there may be sufficient separation 
to model and optimize each one independently and then 
employ a heuristic to provide a solution for the monolith. 
Consequently, for openpit mining operations, each model 
need only consider the subset of operational constraints 
that is relevant to the particular decision, and each con-
straint has fewer relevant decisions associated with it. 
Fewer variables in each constraint reduces the density of 
the A matrix; this, combined with fewer constraints over-
all, improves tractability. 

By contrast, underground miners seek to extract 
only the stopes, referred to as activities, that they decide 

We show a conceptual illustration of precedence rules at the Lisheen underground mine. In (a), we render 
a panel of ore extraction activities adjacent to a haulage route comprising haulage pillars containing ore. 
Within the panel, strict precedence rules, similar to the constraints in Eq. (1), dictate that Activity A must 
be taken before Activity B and Activity B before Activity C, that is, it is impossible to take Activity C without 
extracting both Activity A and Activity B in advance. Precedence rules of this type have an underlying 
network structure – that is, by representing the activities as nodes, arcs between pairs of nodes define the 
precedence rules; (b) illustrates that once a haulage pillar (Pillar 2) is extracted, the roof caves in, blocking 
access to pillars (Pillar 1) and activities (A, B, and C) upstream of the extracted pillar. Consequently, this 
precedence rule, that is, of the form of a packing constraint that if you extract Pillar 2, you cannot extract 
Pillar 1 nor perform activities (A, B, and C), cannot be incorporated into a network model.

Figure 2

We illustrate the effect of complex precedence rules on 
tractability. For the Lisheen mine, if we exclude haulage pillars 
from the scheduling problem, we can solve a 52-week instance 
of the model in a matter of seconds. As we introduce haulage 
pillars, complexity and solution time increase (approximately 
exponentially) until problem instances are no longer tractable.

Figure 3
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In the section of the Lisheen mine shown here, Pillar 1 contains 
34,000 tonnes of ore and requires 100 days for extraction. By 
contrast, Pillar 2 containing 634 tonnes of ore can be extracted 
in two days. Such heterogeneity complicates precedence rules 
and makes the choice of a time fidelity difficult.

Figure 4

a priori will be processed. Many underground mines do 
not stockpile ore; consequently, underground mines that 
blend must coordinate the extraction of blocks so that the 
flow of ore directly satisfies the blending requirements at 
the mill. It is difficult to decompose the problem into se-
quences of phases. Therefore, decomposition heuristics 
cannot be applied as frequently, and the monolith re-
mains difficult to solve. 

Openpit versus underground development activity 
characteristics

In addition to the factors mentioned above, the num-
ber of ore blocks (openpit) or activities (underground), 

the shapes and sizes (of underground activities), and the 
number and types of blocks or activities being scheduled, 
can significantly influence the tractability of mine sched-
uling problems, particularly with respect to the applica-
tion of heuristic techniques that rely on spatial and/or 
temporal aggregation to produce solutions. 

Block shape and size. Characterization of blocks in 
an openpit mine as identical cuboids allows researchers 
to formulate more tractable openpit scheduling problems 
(Johnson, 1969). The regularity of block size and shape fa-
cilitates: (i) the definition of repeatable precedence rules 
(ii) the selection of a suitable time fidelity for the problem 
and (iii) the aggregation of ore blocks to reduce prob-
lem size. An obvious way to cope with heterogeneously 
sized blocks is to aggregate them, for example, based on 
a measure of similarity (Tabesh and Askari-Nasab, 2011). 
An aggregated solution that must be disaggregated, even 
heuristically, is better than no solution at all. 

In underground mining, the volume and dimensions 
of the ore extraction activities, that is, stopes, can vary 
greatly (Fig. 4). This heterogeneity is most often a con-
sequence of the technical design, which is based on the 
mining method and the distribution of mineral concen-
tration. Once the mine is operational, additional factors, 
such as fissures in the rock and/or unpredictable results 
of blasting, can impact heterogeneity. As a consequence, 
precedence rules cannot necessarily be easily articulated 
mathematically (see discussion on precedence constraint 
structures). 

Additionally, it can be difficult to choose a time fidel-
ity for the schedule; the fidelity must be small enough so 
that activities of shorter duration do not unnecessarily 
push the schedule forward (Fig. 5). However, because we 
must account for finer fidelity  by defining variables for 
each activity and start-time combination, we must also be 

At weekly fidelity, the total scheduling gap between Block A, Block B and Block C is much smaller than at 
bi-weekly fidelity. These gaps unnecessarily extend the start times for extraction of dependent blocks. While 
Block C can start during week 3 with weekly fidelity, at bi-weekly fidelity, the same block must wait until 
period 2 (week 4) before it can start.

Figure 5
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mindful to select a time fidelity that is large enough to 
produce a tractable model. 

For underground mines that blend ore, possess com-
plex precedence rules relating extraction activities to 
non-extraction activities, and/or contain irregular ore 
activities, aggregation of these activities is not a viable 
approach to reduce problem size and improve tractabil-
ity, even for long-term planning. The activities are simply 
too different, in too many ways, even if they lie in close 
proximity to each other. Aggregation would lead to faulty 
precedence rules, and, depending on the nature of the de-
posit, could grossly mis-estimate the ore grade recover-
able from the aggregated activity. 

 
Entity types. In openpit production scheduling, the 

principal decision is always whether or not to extract a 
given block (cuboid) of ore, and when. In underground 
production scheduling models, there are many activities 
that need to be scheduled, for example, access, develop-
ment and extraction, before the “block” is extracted, and 
the subsequent backfill of a void after extraction. Because 
these different activities do not need to occur in an unin-
terrupted sequence, aggregating, say, a development-ex-
traction-backfill chain into a single “super activity” could 
grossly compromise solution quality. Therefore, model 
size cannot be as easily reduced as in a corresponding 
openpit production scheduling model. Additionally, each 
of these activities requires different resource constraints 
of the form given in Eq. (5). The incorporation of these 
constraints in and of themselves makes the model less 
tractable [see discussion on the relative tractability of the 
(UPIT) and (CPIT) problems]. 

Future directions
Bienstock and Zuckerberg (2010) present a novel 

algorithm for production scheduling in openpit mines. 
Their method solves the linear programming relaxation 
of the integer programming problem, that is, the original 
problem with the integer variables relaxed to be continu-
ous. Their linear programming algorithm, combined with 
rounding heuristics (Chicoisne et al., 2012), produces re-
sults for large problem instances significantly faster than 
standard techniques. Despite the reported results at the 

time of this writing on problem types as simple as (CPIT), 
their approach, like the Lerchs-Grossmann algorithm of 
the 1960s, highlights a new research direction. ■
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