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The open-pit mine block sequencing problem (OPBS) models a deposit of ore and surrounding material near the Earth’s
surface as a three-dimensional grid of blocks. A solution in discretized time identifies a profit-maximizing extraction
(mining) schedule for the blocks. Our model variant, a mixed-integer program (MIP), presumes a predetermined destination
for each extracted block, namely, processing plant or waste dump. The MIP incorporates standard constructs but also adds
not-so-standard lower bounds on resource consumption in each time period and allows fractional block extraction in a novel
fashion while still enforcing pit-wall slope restrictions. A new extension of nested Benders decomposition, “hierarchical”
Benders decomposition (HBD), solves the MIP’s linear-programming relaxation. HBD exploits time-aggregated variables
and can recursively decompose a model into a master problem and two subproblems rather than the usual single subproblem.
A specialized branch-and-bound heuristic then produces high-quality, mixed-integer solutions. Medium-sized problems (e.g.,
25,000 blocks and 20 time periods) solve to near optimality in minutes. To the best of our knowledge, these computational
results are the best known for instances of OPBS that enforce lower bounds on resource consumption.
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1. Introduction
The mining industry solves the open-pit mine block se-
quencing problem (OPBS), primarily for strategic planning
purposes, with typical models incorporating a yearly level
of detail over a 10- to 30-year time horizon (Rojas et al.
2007, Chicoisne et al. 2012, Epstein et al. 2012). This paper
extends a standard integer program (IP) for OPBS to a
mixed-integer program (MIP) and develops a specialized
solution procedure for that MIP. Although open-pit mines
may produce diamond ore, coal, and materials other than
metal ores, without loss of generality, we discuss OPBS
in terms of mining metal ores. Figure 1 illustrates a large
open-pit copper mine for reference.

In OPBS, a three-dimensional grid of box-shaped blocks
represents a deposit of potentially valuable ore containing
metals such as gold or copper, along with inevitable waste.
An IP or MIP for OPBS seeks a multi-period schedule for
extracting (mining) and processing these blocks, a sched-
ule that (i) maximizes net present value, (ii) satisfies con-
straints on the shape of the mine as it evolves over time,

and (iii) satisfies constraints on resource consumption in
each time period.

Our work begins by applying lower-bounding resource
constraints, in addition to the standard upper-bounding con-
straints, to one variant of a binary (0-1) IP for OPBS
(Chicoisne et al. 2012). More significantly, we relax the
IP, converting it into a MIP that allows selective, frac-
tional extraction of blocks: researchers typically assume
that restrictions on the shape of the mine require the
use of binary variables, but we show that our relaxed
regime also satisfies those restrictions. We then develop
a specialized solution procedure for the new MIP that
(i) defines the MIP’s linear-programming relaxation without
explicitly representing relaxed binary variables, (ii) solves
that linear program using a new “hierarchical” version
of nested Benders decomposition (Ho and Manne 1974),
and then (iii) incorporates that linear-programming solution
method within a specialized branch-and-bound heuristic
that enforces discrete relationships within the MIP through
constraint branching. Thus, the method avoids explicit use
of binary variables.
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Figure 1. The Bingham Canyon Mine as of 2003.

Source. http://commons.wikimedia.org/wik/File:Bingham_mine_5-10-03.jpg,
accessed July 11, 2013. Notes. This copper mine is one of the largest
open-pit mines in the world. Visible in this figure are the benches, or
“steps” from which ore and waste are extracted, and the haul roads,
which wind down past the benches to the bottom of the pit.

As with most work on OPBS (e.g., Dagdelen and
Johnson 1986, Caccetta and Hill 2003, Chicoisne et al.
2012), we solve only a deterministic model, even though
uncertainty surely plays a role in strategic mine planning
(Johnson 1968). For example, price estimates for met-
als 10 years in the future must have large variances, and
ore quality 500 meters below the Earth’s surface cannot
be known with certainty. Stochastic programming meth-
ods have been suggested for open-pit mine planning (e.g.,
Ramazan and Dimitrakopoulos 2007, Boland et al. 2008,
Gholamnejad and Moosavi 2012), but the current state of
the art does not permit the solution of full-scale stochas-
tic programming models. Thus, we assume that (i) core
samples from the deposit (Krige 1951) and radio-imaging
techniques (Stolarczyk 1992) yield accurate deterministic
estimates of each block’s weight and grade, with a block’s
grade being the percentage of metal it contains; (ii) those
values, together with economic forecasts, yield acceptable
deterministic estimates of the profitability of extracting
each block in each possible time period; and (iii) sources
of uncertainty can be handled in an ad hoc manner using a
deterministic model.

Several variants of OPBS exist (Espinoza et al. 2012),
but our variant incorporates two key features that at least
one standard mine-planning software system also uses
(Whittle 1998), namely, a “fixed cutoff grade” and “no
inventorying.” Fixed cutoff grade implies that if a block’s
estimated grade is at least g% for some pre-specified
value g, that block is sent to a processing plant to be con-
verted into salable ore; otherwise, it is sent to a waste
dump. No inventorying implies that a block must be pro-
cessed or dumped in the period in which it is extracted or
the block is never extracted at all.

1.1. Technical Background on OPBS

For computational reasons, OPBS normally defines extrac-
tion variables of this form: xbt = 1 if block b ∈ B is
extracted by (i.e., at or before) time period t ∈ T, and
xbt = 0, otherwise (Johnson 1968). Strategic planners typ-
ically seek an extraction schedule that covers 104–107

blocks and 10–100 time periods for a model instance that
spans 10–30 years.

If block b ∈B is not at the mine’s surface, then a unique
block denoted b̄ lies directly above b; let B̄b = 8b̄9 if b̄
exists, and let B̄b = � otherwise. Also, a specially defined
set of blocks B̂b may lie obliquely above b. The blocks
b′ ∈ B̄b ∪ B̂b ≡ Bb are the direct spatial predecessors
of b, and most of the constraints in OPBS enforce spatial
precedence:

xbt − xb̄t ¶ 0 ∀b ∈B � B̄b 6= �1 t ∈T (1)

xbt − xb′t ¶ 0 ∀b ∈B � B̂b 6= �1 b′
∈ B̂b1 t ∈T0 (2)

That is, block b cannot be extracted by period t unless all
of its direct spatial predecessors are extracted by t. Con-
straints (1) and (2) are typically written as a single set of
constraints, but we find it useful to split them into two
sets because of different interpretations. In particular, con-
straints (1) simply imply that a block cannot be extracted
until the top of the block forms part of the mine’s surface,
while constraints (2) mathematically enforce slope restric-
tions on the pit’s walls to prevent their collapse (John-
son 1968). The relationships expressed through block b’s
oblique predecessors b′ ∈ B̂b may vary throughout the
potential mine volume depending on local characteristics
of the rock and minerals.

In addition to spatial-precedence constraints, OPBS im-
plements temporal-precedence constraints, which imply
that if block b is extracted by time period t < T , then that
block must also be extracted by period t + 1:

xbt − xb1 t+1 ¶ 0 ∀b ∈B1 t = 11 0 0 0 1 T − 10 (3)

Note that both types of precedence constraints exhibit
“dual network structure,” with each defining a constraint-
matrix row whose nonzero coefficients are a single +1 and
a single −1. Certain solution methods exploit this structure
for efficiency; see Ahuja et al. (2003) for a general dis-
cussion of the topic, and see Chicoisne et al. (2012) for a
recent discussion with respect to OPBS.

A solution to OPBS must also satisfy resource con-
straints on production and processing in each time period
(Johnson 1968). Production constraints limit the total
weight of the blocks that are extracted, while process-
ing constraints limit the total weight that can be milled,
i.e., crushed and refined for sale. Upper-bounding con-
straints for both production and processing reflect lim-
ited equipment and labor capacities, while labor contracts
and requirements of exothermic processing reactions may
dictate lower bounds on production and processing,
respectively.

http://commons.wikimedia.org/wik/File:Bingham_mine_5-10-03.jpg
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1.2. Basic Solution Approaches for OPBS

Lerchs and Grossmann (1965) describe an efficient algo-
rithm for a simplified version of OPBS. Ignoring resource
constraints and time periods in OPBS produces the ultimate
pit limit problem (UPL). A solution to UPL estimates the
extent of the pit beyond which no profit is possible because
further mining would require the extraction of excessive
waste material to reach nominally valuable ore. This model
corresponds to a dual network with no complicating struc-
ture and, therefore, solves efficiently using network-flow
techniques. In fact, the max-flow/min-cut theorem applies,
and UPL may be viewed as a classical OR problem, appear-
ing in numerous textbooks and research papers (e.g., Ahuja
et al. 1993, pp. 721–722; Hochbaum and Chen 2000).

Johnson (1968) presents the first comprehensive descrip-
tion of OPBS. He gives formulations with “at-time-t vari-
ables” x′

bt (i.e., x′
bt equals 1 if block b is extracted at time t,

and x′
bt equals 0 otherwise), as well as formulations like

ours with “by-time-t variables” xbt . We refer the reader to
Lambert et al. (2014) for details on these models and on
their direct solution by LP-based branch-and-bound meth-
ods. (The abbreviation “LP” means “linear-programming”
or “linear program,” depending on the context.) For our
purposes, the key point in Lambert et al. is this: solution via
branch and bound of realistically sized OPBS models lies
beyond the capability of current-day integer-programming
solvers. We note that Caccetta and Hill (2003) apply branch
and cut to a version of OPBS and report promising results
on problems with up to 210,000 blocks and 10 time peri-
ods. Reported optimality gaps are large, however, and the
paper’s lack of detail makes its results irreproducible. These
difficulties with direct branch-and-bound solutions, and our
desire to avoid using heuristics and aggregation schemes
that provide no measure of solution quality (e.g., Gershon
1987, Denby and Schofield 1994, Ramazan 2007, Boland
et al. 2009), motivate us to pursue a decomposition-based
solution approach.

1.3. Decomposition Methods for OPBS

Dagdelen and Johnson (1986) appear to be the first to
apply mathematical decomposition in an attempt to solve
OPBS. Their Lagrangian relaxation of the model’s resource
constraints yields a subproblem having pure dual net-
work structure, which results in an integer solution to
the continuous relaxation just as the UPL model does.
One must eventually find a solution that satisfies the ini-
tially relaxed constraints, however, and Dagdelen and John-
son’s method often fails in this regard. Other work with
Lagrangian relaxation and OPBS has also had limited
success; for example, Akaike and Dagdelen (1999), Cai
(2001), and Kawahata (2007) all have difficulty finding
resource-feasible solutions.

Gleixner (2008) produces promising results using La-
grangian relaxation on the variant of OPBS described
by Boland et al. (2009). This model aggregates certain

standard constructs and relaxes others, but the validity
of these techniques remains unproven. Cullenbine et al.
(2011) obtain high-quality solutions using a Lagrangian-
based “sliding time window heuristic,” which is a type of
fix-and-relax heuristic (Pochet and Wolsey 2006). Lambert
and Newman (2014) use Lagrangian relaxation to speed
solutions of OPBS but guarantee a solution only through
what may evolve into a complete OPBS model that must
be solved by branch and bound. We seek a decomposition
method for solving OPBS that promises to be faster than
a brute-force, branch-and-bound solution of a monolithic
MIP and that provides an objective measure of solution
quality.

Chicoisne et al. (2012) apply an efficient method to solve
the continuous relaxation of an OPBS IP and then apply a
greedy heuristic to identify an integer solution. Because of
a strong bound from the relaxation and an effective heuris-
tic, this method yields solutions with optimality gaps of
approximately 2% on problems with up to 107 blocks and
25 time periods. These authors report solution times of
a few hours on a computer having two Quad-Core Intel
Xeon E5420 processors. We also note that Bienstock and
Zuckerberg (2010) model a variant of OPBS with a vari-
able cutoff grade and solve the corresponding continuous
relaxations efficiently. For instance, models with 105 blocks
and 25 time periods solve in only hundreds of seconds
using a single core of a 3.2 GHz Xeon processor on a com-
puter having 64 GB of memory. However, the papers men-
tioned in this paragraph omit lower-bounding constraints on
resource consumption, and evidence indicates that incorpo-
rating both constraint types can increase computation times,
even on small problems, by more than an order of magni-
tude (Cullenbine et al. 2011).

We aim to take advantage of OPBS’s staircase structure,
meaning that variables for period t interact directly through
constraints only with variables for periods t − 1 and t + 1.
Glassey (1971) first shows that LPs having such structure
can be solved using a nested decomposition, specifically,
a nested version of Dantzig-Wolfe decomposition (Dantzig
and Wolfe 1960). The key advantage of using a nested
decomposition to solve a staircase model is that a “nested
subproblem” involves only variables associated with a sin-
gle time period. “Branch and price” extends Dantzig-Wolfe
decomposition to integer problems (Johnson 1968, Barn-
hart et al. 1998), but this technique seems difficult to adapt
to our multistage problem. We have turned, therefore, to
nested Benders decomposition (NBD), first described by
Ho and Manne (1974).

Benders decomposition was originally developed for
solving MIPs (Benders 1962). It views the solution of a
maximizing MIP having integer variables x and continu-
ous variables y as maxx∈X �4x5, where �4x5 is a piecewise-
linear concave function in continuous x, and X is defined
through a polyhedral set with integrality requirements
added.
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The decomposition algorithm
1. creates an easy-to-evaluate approximating function

¯̄�4x5 with ¯̄�4x5¾ �4x5 for all x ∈X,
2. solves the “relaxed master problem” maxx∈X

¯̄�4x5 for
x̂ ∈X,

3. solves the LP subproblem in variables y that results
from fixing x = x̂ in the MIP,

4. extracts a dual extreme point or dual extreme ray from
the solution to that LP to generate a new constraint called
a “Benders cut” to help refine ¯̄�4x5, and

5. repeats steps 2–4 until the best x̂ found meets conver-
gence criteria.

NBD extends the two-stage method to multistage LPs or
to multistage MIPs with integer variables in the first stage
only. In concept, NBD views an LP in terms of a mas-
ter problem and subproblem and then recursively decom-
poses the subproblem into a master problem and subprob-
lem using the basic ideas from standard Benders decompo-
sition. We call the problem solved at any stage t of standard
NBD a “nested subproblem” even though it contains con-
structs of a master problem.

For simplicity, assume that each period-t nested Benders
subproblem with variables xt , t = 11 0 0 0 1 T , has a bounded,
feasible solution. The following procedure then outlines a
standard implementation of NBD, which solves a forward
recursion of an LP.

1. Vector x̂0 defines initial conditions.
2. A primal pass, in the order t = 11 0 0 0 1 T , solves a

period-t nested subproblem for primal solution x̂t given
x̂t−1. (Note that the existence of x̂t implies that a consistent
primal solution x̂t′ has been computed for t′ = 11 0 0 0 1 t − 1.)
This subproblem involves only variables xt but, except
when t = T , it does incorporate an approximate cost-to-
go function ¯̄�t+14xt5, which covers the beginning of period
t + 1 through the end of period T .

3. A dual pass, in the order t = T 1 0 0 0 12, solves a
period-t nested subproblem for dual solution Ï̂t to generate
a new Benders cut that refines the cost-to-go function for
the nested subproblem in period t − 1. (Actually, the solu-
tion to the period-T nested subproblem in the primal pass
yields the initial dual-pass result Ï̂T .)

4. Steps 2 and 3 are repeated until the pessimistic bound
from step 2 and the optimistic bound from step 3 are
sufficiently close.
(Note that some authors use “forward recursion” and “back-
ward recursion” to mean what we call “primal pass” and
“dual pass,” respectively.)

It is possible to reorganize computations above, for
instance, by iterating between a primal solution for period t
and a dual solution for period t + 1 until some local con-
vergence criterion is reached, then iterating between t + 1
and t + 2, etc. However, the outline above describes the
subproblem-processing method that both Wittrock (1985)
and Gassman (1990) find most efficient for implementing
NBD and that we therefore adopt or adapt, as needed. We
use Wittrock’s term for this method, “FASTPASS.”

Staircase structure lends nested decomposition its com-
putational advantage, but this structure is also its Achilles
heel. If strong linkages exist between distant time periods,
eventually those linkages must be represented by generat-
ing and applying Benders cuts in many time periods. Slow
convergence results. We seek to improve the empirical con-
vergence rate using several techniques.

First, we formulate the model using cumulative vari-
ables, that is, variables that are cumulative over time. Of
course, cumulative extraction variables in OPBS formula-
tions are actually standard: xbt = 1 if block b is extracted
by time period t, and xbt = 0, otherwise.

Next, we add redundant, aggregate resource constraints
to help guide the decomposition. For example, the decom-
position procedure’s first subproblem might aggregate all
time periods into a single cumulative period and, in
essence, ask, “What is the optimal ‘relaxed open-pit mine’
that could be excavated in a single period if each resource
constraint aggregates resource availability over the entire
time horizon?” Intuitively, this provides immediate, global
information to subsequent subproblems. By contrast, the
first primal pass of a standard forward recursion would
greedily excavate the “relaxed mine” from one period to the
next, with global information appearing only slowly as the
procedure refines approximating cost-to-go functions over
many iterations. (Section 3.6 covers this topic further and
compares our techniques to others in the literature.)

Finally, we show that the standard recursion used to cre-
ate a multistage Benders decomposition is a special case
of a tree decomposition: a standard decomposition recur-
sively decomposes a multistage problem into a master prob-
lem and a subproblem, while the tree decomposition can
recursively decompose that problem into a master prob-
lem and two subproblems. This more general decomposi-
tion framework may be viewed in terms of a binary tree
and, consequently, resembles the decomposition scheme
proposed by Kallio and Porteus (1977) for solving a set
of linear equations having a tree structure. Kallio and
Porteus intend for their decomposition to improve com-
putational efficiency but provide no supporting, computa-
tional results. We also note that these authors assume a
given tree structure, whereas we create various tree struc-
tures through problem reformulations. In the literature on
decomposition for optimization, only the work by Entriken
(1989) seems closely related to ours. Entriken proposes a
framework for decomposing an LP that could, in principle,
yield a formulation having a general tree structure. He pro-
vides computational results only for sequentially structured
decompositions, however; see also Entriken (1996).

For simplicity, we use the phrase hierarchical Ben-
ders decomposition (HBD) to refer to the combination of
all three techniques just described, i.e., cumulative vari-
ables, aggregate constraints, and a tree-structured decom-
position. While somewhat specialized, HBD should also
apply to a number of multistage production-scheduling
problems in the literature, including production-planning
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problems (Gabbay 1979), production-distribution problems
(Brown et al. 2001), short-term scheduling for forest har-
vesting (Karlsson et al. 2003), and short-term open-pit mine
scheduling (Eivazy and Askari-Nasab 2012). The key is
that production efficiencies or yields should not change
substantially over time.

Eventually we need a solution to a MIP, not just an LP.
For the same reason that Benders decomposition applies
to problems with integer variables in the first stage only,
NBD and HBD apply (directly) to staircase MIPs with inte-
ger variables in a single stage only (e.g., Wollmer 1980).
To address this limitation, we develop a branch-and-bound
heuristic that produces high-quality binary solutions for a
variety of test problems. For efficiency, the methods repre-
sent binary variables only implicitly.

1.4. Outline of the Remainder of the Paper

Section 2 begins the remainder of this paper by describ-
ing a new MIP for OPBS and justifying the changes from
more standard models. Section 3 demonstrates how stan-
dard NBD applies to solve the LP relaxation of the MIP and
then generalizes that method to HBD; Section 4 presents
corresponding computational results. Based on solving LP
relaxations with HBD, Section 5 devises a branch-and-
bound heuristic to obtain mixed-integer solutions to OPBS;
Section 6 presents corresponding computational results.
Section 7 summarizes all computational results, and Sec-
tion 8 concludes the paper.

2. A New Model for OPBS
Beginning with a standard IP for OPBS, this section devel-
ops a new MIP for that problem; defines a useful restriction
and a useful relaxation of the MIP; and then validates the
key, novel feature of the MIP, which is the modeling of
fractional block extraction.

2.1. A Mixed-Integer Programming Formulation

We use the “C-PIT” IP of Chicoisne et al. (2012) as a start-
ing point and describe a new MIP for OPBS by (i) imposing
lower as well as upper bounds on resource consumption
in each period and (ii) allowing selective, fractional block
extraction. Normally, spatial-precedence constraints (2),
together with strict integrality of variables, enforce pit-
wall slope restrictions, but we show that these restrictions
remain enforced even with the relaxation implied by (ii).
As is standard, our model represents the potential mine vol-
ume as a three-dimensional grid of blocks having common
dimensions, with blocks stacked directly on top of each
other. We denote the new model simply as “MIP.”

Indices and Index Sets

b ∈B extractable blocks
Bb ⊂B all direct spatial predecessors of block b
b̄ ∈Bb if it exists, the direct spatial predecessor that

lies above block b

B̄b ⊂Bb B̄b = 8b̄9 if block b̄ exists, and B̄b = �,
otherwise

B̂b ⊂Bb Bb\B̄b, i.e., the oblique direct spatial
predecessors of block b

t ∈T time periods defining the time horizon;
T= 811 0 0 0 1 T 9

r ∈R production and processing resources

Data: [units]

v′
bt net present value of block b if extracted in

period t [dollars]
vbt v′

bt − v′
b1 t+1, with v′

b1T+1 ≡ 0 for all b ∈B
qrb consumption of resource r associated with the

extraction of block b [tons] (Note that qrb = 0 if
r corresponds to processing a waste block b.)

qL
rt 4q

U
rt5 minimum (maximum) consumption limits for

resource r in time period t [tons]

Variables: [units, if defined]

xbt 1 if block b is completely extracted by time period t,
0 otherwise

ybt fraction of block b extracted by time t; nominally,
yb0 ≡ 0 for all b ∈B

Formulation:

MIP2

�∗

MIP = max
x1y

∑

b∈B

∑

t∈T

vbtybt (4)

s0t0 −
∑

b∈B

qrb4ybt−yb1t−15¶−qL
rt

∀r ∈R1 t∈T (5)
∑

b∈B

qrb4ybt−yb1t−15¶qU
rt ∀r ∈R1 t∈T (6)

−4ybt−yb1t−15¶0 ∀b∈B1 t∈T (7)

ybt−xb̄t¶0 ∀b∈B �B̄b 6=�1 t∈T (8)

ybt−yb′t¶0

∀b∈B �B̂b 6=�1 b′
∈B̂b1 t∈T (9)

xbt−ybt¶0 ∀b∈B1 t∈T (10)

xbt ∈80119 ∀b∈B1 t∈T (11)

ybt¾0 ∀b∈B1 t∈T (12)

yb0 ≡0 ∀b∈B (13)

Through its objective function (4), MIP seeks to maxi-
mize the total net present value of extracted blocks. For
each time period, constraints (5) and (6) restrict minimum
and maximum resource consumption, respectively. Con-
straints (7) enforce (relaxed) temporal-precedence relation-
ships for each block: if a fraction of block b is extracted
by time t − 1, then at least that fraction must be extracted
from block b by time t.
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Note that some blocks at a mine’s surface may be “par-
tial” at the beginning of time period 1 because the undis-
turbed surface is uneven or because some partial extraction
has already taken place. Although we assume that yb0 = 0
for all computational tests, partial blocks could be handled
by fixing certain instances of yb0 to appropriate nonzero
values in (13).

In effect, a standard OPBS model enforces spatial prece-
dence through constraints (8) and (9) while using only
binary variables: block b cannot be extracted until all
blocks b′ ∈ B̄b ∪ B̂b have been extracted completely. Our
OPBS model MIP uses a combination of binary and con-
tinuous variables to enforce the following, relaxed, spatial-
precedence requirements:

• assuming block b̄ lies above block b, constraints (8)
imply that block b cannot begin to be extracted until b̄ is
completely extracted; and

• assuming block b has some oblique spatial predeces-
sors, i.e., B̂b 6= �, constraints (9) imply that the fraction
of block b that is extracted by time t cannot exceed the
fraction that is extracted by time t from any b′ ∈ B̂b.

We validate this use of fractional block extraction in Sec-
tion 2.3 after describing important ways that we restrict and
relax MIP.

2.2. Restricting and Relaxing MIP

Later, we need to compare solutions of MIP to those of
a standard IP for OPBS. Since we derived MIP from
such an IP, it is easy to recreate it: (i) restrict all vari-
ables ybt to be binary; (ii) replace all xbt with ybt; (iii) delete
constraints (10)–(12), which have become redundant; and
(iv) call the resulting model “IP.”

As is standard, we begin the solution process for MIP by
first solving its LP relaxation. Actually, we solve a special
form of this relaxation, denoted RMIP: this is identical to
the LP relaxation of IP, just described

After solving RMIP, we apply a branch-and-bound
heuristic, which dynamically and implicitly enforces (8)
and (10) in MIP, ensuring that these restrictions hold
for every block b such that B̄b 6= �. Specifically, ybt >
0 ⇒ yb̄t = 1, whenever b̄ exists. The resulting solution
4ŷ∗

11 0 0 0 1 ŷ
∗

T 5 is said to be “MIP valid” for MIP.

2.3. Validating Fractional Block Extraction

The validity of constraints (8) as relaxed versions of con-
straints (1) is clear: no fraction of a block b can be extracted
until the block b̄, which lies directly above b, is com-
pletely extracted. That statement is true whether the frac-
tion in question lies between 0 and 1 or the “fraction”
must be exactly 0 or 1. The validity of constraints (9) as
relaxed versions of (2) is less clear, however. This sec-
tion demonstrates the geometrical validity of the fractional
block extraction modeled in MIP and then solves some
small instances of MIP and IP to investigate practical
implications. We note that Gershon (1983) also considers

fractional block extraction but uses a more restrictive def-
inition: fractional extraction of a block b is allowed pro-
vided that all blocks b′ ∈Bb have been extracted fully.

2.3.1. Theory. In IP, each spatial-precedence con-
straint defined by (2) restricts the local pit-wall slope angle.
We show here that each constraint defined by (9) restricts
the local slope in a solution to MIP to an angle that is no
steeper than that enforced by the corresponding constraint
in IP; Figure 2 illustrates. We demonstrate informally, first,
assuming that each block is a cube with each side having
a length of one in arbitrary units.

Figure 2(a) reflects a standard set of spatial-precedence
relations: block b0 cannot be extracted until each block
b′ ∈ B̄b0

∪B̂b0
= 8b̄09∪ 8b11 b21 b31 b49 is extracted. We sim-

plify to the two-dimensional model of Figure 2(b) so that
block b0 has oblique predecessors ̂Bb0

= 8b11 b29, only.
Dropping the subscript t for simplicity, these constraints

define the standard spatial-precedence relationships for the
two-dimensional example:

xb0
− xb̄0

¶ 0 (14)

xb0
− xb1

¶ 0 (15)

xb0
− xb2

¶ 00 (16)

Assuming that the block below b0 is not extracted, standard
slope restrictions associated with b0 may be interpreted as
follows (see Figure 2(c)):

(i) constraint (14) requires that b̄0 be extracted com-
pletely before b0 is extracted;

(ii) constraint (15) requires that the slope �01, measured
from the center of the extracted face of b0 to the center
of the extracted face of b1, not exceed arctan4d01/D015 =

arctan41/15= 45�; and, similarly,
(iii) constraint (16) requires that the slope �02, which

is analogous to �01, not exceed arctan4d02/D025 =

arctan41/15= 45�.
Thus, constraints (14)–(16) enforce pit-slope restrictions

of “at most 45�.”
Now, when allowing fractional block extraction in

MIP (see Figure 2(d)), the following constraints replace
(14)–(16), respectively:

yb0
− xb̄0

¶ 0 (17)

yb0
− yb1

¶ 0 (18)

yb0
− yb2

¶ 00 (19)

If yb0
= 0, then block b0 has not been extracted, and these

constraints impose no restrictions on the extraction of b̄0,
b1, or b2. (An analogous situation arises in the all-binary
model when xb0

= 0; see (14)–(16).) If yb0
= 1, and the

block below b0 has not been extracted, then standard slope
restrictions are enforced; i.e., yb1

= xb̄0
= yb2

= 1. Thus, we
only need to ensure that, when 0 < yb0

< 1,
(i) block b̄0 is completely extracted;
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Figure 2. Fractional extraction maintains slope restrictions.

(a)

(d)(c)

(b)

b1 b0 b2

b0 d02d01

D02D01

�01 = 45.0º �02 = 45.0º

b2

b0

b4

b3

b1

b0

b1 b0 b2

b0

b1 b0 b2

b0
d01 d02

D02D01

�01 = 45º �02 = 36.9º

Notes. Each block side has unit length. (a) Shows the six blocks, b0, b̄0, b11 0 0 0 1 b4, that are involved in maintaining slopes as measured from b0. (b)
Simplifies to two dimensions for purposes of illustration. (c) Shows how slope angles are defined from the blocks’ extracted faces (i.e., the bottom faces of
the blocks) when fractional extraction is disallowed. Assuming the blocks (not shown) directly beneath b0, b1, and b2 have not been extracted, �01 measures
the slope from b0 toward b1 and �02 measured from b0 toward b2. The illustrated angles of 45� are the maximum allowable: �01 = arctan4d01/D015 =

arctan41/15= 45� and �02 = arctan4d02/D025= arctan41/15= 45�. (d) Shows slope angles �
01

and �
02

, corresponding to �01 and �02, respectively, but with
fractional extraction allowed; unshaded regions have been extracted, while shaded regions have not. Now we see that �

01
= arctan4d01/D015= arctan41/15=

45� = �01, but �
02

= arctan4d02/D025= arctan40075/15= 3609� < 45� = �02.

(ii) the slope �
01

between extracted faces of b0 and b1

does not exceed 45�; and
(iii) the analogous slope �

02
does not exceed 45�.

Next, Figure 2(d) illustrates the case in which yb0
= yb1

=

0051 yb̄0
= 100, and yb2

= 0075. Now,
(i) is satisfied in general through constraint (17);
(ii) is satisfied because

�01 = arctan4d01/D015= arctan41/15= 45� = �01; and
(iii) is satisfied because

�
02

= arctan4d02/D025= arctan40075/15= 3609� < 45�.
In general, with respect to (ii) and (iii) when 0 < yb0

< 1,
a solution to MIP defines a slope � between b0 and
any block b′ ∈ B̂b such that � = arctan441 + 41 − yb′5 −

41 − yb0
55/15¶ 45� because (9) ⇒ 1 − yb′ + yb0

¶ 1. Thus,

the relaxed model also enforces pit-slope restrictions of “at
most 45�.”

In the following theorem, we extend the discussion above
to more general slope relationships and more general block
geometries.

Theorem 1. In allowing fractional block extraction, an in-
stance of MIP ensures that pit-wall slope angles do not
exceed those that the corresponding (all-binary) instance
of IP would enforce, provided that each block has common
dimensions and a rectangular base.

Proof. Given the discussion above, it suffices to show that
for any pair of blocks 4b1 b′5 such that b′ ∈ B̂b, the relevant
constraint from (9) enforces an angle between the extracted
faces of b and b′ that does not exceed the angle enforced
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Figure 3. Figure for proof of Theorem 1.

h

h

d = k ·h

D

dBlock b

90º

Block b�∈�b

h(1 – yb�t)

h(1 – ybt)

�

�

Notes. Block shapes are exaggerated for clarity; h denotes the blocks’
common height. The shaded portions of the blocks illustrate unextracted
portions that would be valid in MIP. Assuming an all-integer version of
MIP, � indicates the enforced angle from the extracted face of b to the
extracted face of b′ ∈ B̂b . For MIP, � indicates the corresponding angle
when the extracted fraction of block b is ybt and the extracted fraction
of b′ is yb′ t . Note that ybt < yb′ t in the figure, satisfying constraints (9) in
MIP.

constraint in (2). Figure 3 illustrates a general case in which
(i) each block has height h; (ii) the bottom center of block
b is located at general grid coordinates (x, y, z); and (iii) the
bottom center of block b′ is located at coordinates 4x +

Dx1y +Dy1 z + d5 such that Dx ¾ 0, Dy ¾ 0, Dx +Dy > 0,
and d = k ·h for some positive integer k. (None of x, y, z,
Dx, or Dy is indicated in the figure.)

Now, D = 4D2
x + D2

y5
1/2 > 0 defines the horizontal dis-

tance between the blocks’ centers, as indicated in the figure,
and we know from earlier discussion that constraints (2)
in the all-integer version of MIP enforce a slope of � =

arctan4d/D5, when that slope is defined. For MIP, let the
corresponding angle be �, and assume that this angle is
defined in period t. Thus,

� = arctan4d/D5 (20)

= arctan44d+ 41 − yb′t5h− 41 − ybt5h5/D5 (21)

= arctan44d+ 4ybt − yb′t5h5/D5 (22)

¶ arctan4d/D5 because constraints (9)
require that ybt − yb′t ¶ 0 (23)

= �0 � (24)

2.3.2. Practical Implications. Here, using data sets
for five different open-pit mine scenarios, we compare solu-
tions of MIP to solutions of IP. The data sets can create
problem instances that cover 10,819, 18,300 and 25,620
blocks, for 1 to 20 time periods, although we use a max-
imum of 10 time periods here. Cullenbine et al. (2011)
use the same data sets, plus one denoted “BD10819F,”

and we follow that paper’s naming conventions, with each
data set’s label specifying the relevant number of blocks.
(The current section omits results for BD10819F simply
because of space limitations in Table 1. Subsequent compu-
tational results for decomposition-based methods do cover
that data set, however.)

We consider only small values of T so that the problems
can be solved using LP-based branch and bound, that is,
without requiring the decomposition techniques developed
later in the paper. Computations are performed on a Lenovo
W541 laptop computer having a 64-bit, quad-core, Intel
processor running at 2.9 GHz. The computer has 16 GB
RAM and runs the Windows 7 Professional operating sys-
tem. A C++ program generates all models and CPLEX
12.6 (IBM Corp. 2014) solves them. We override CPLEX’s
default parameters in five different ways:

(i) the solver may use at most four threads (Threads = 4);
(ii) a relative optimality tolerance of 0.1% applies

(EpGap = 0.001);
(iii) computations are limited to 7,200 seconds of

elapsed time (TiLim = 7,200);
(iv) the barrier algorithm solves root-node LPs

(RootAlg invokes BarAlg); and
(v) because of the cumulative nature of the models’

variables, branching priorities for xbt are set to t, i.e.,
priority increases with t.

Table 1 displays results and “Notes” provide detailed
explanations of the table’s entries. We highlight the follow-
ing points from these results:

• Average profit for a solution to MIP compared to IP
improves by at least 1.0% but no more than 1.9%; the
inability to solve many instances of IP accurately makes
more precise statements impossible.

• No clear trend in improved profit for MIP versus IP
appears as T increases, i.e., as the mine pit expands.

• Because counting all fractional variables ybt in MIP
would imply some double counting when 0 < ybt ≈

yb1 t+1 < 1, the table lists the number of fractional variables
only for the last time period, T . No clear trend in that num-
ber appears as T increases.

• The number of fractional variables ybT in MIP may
constitute a small percentage of the total number of posi-
tive variables in period T (less than 3% for the two largest
instances of BD25620A), or it may constitute a substan-
tial percentage (almost 50% for the smallest instance of
BD18300A).

• Despite having more variables and constraints, the
flexibility provided by fractional block extraction in MIP
makes that model much easier to solve than IP.

2.3.3. Conclusion. The qualities of solutions to MIP
deserve further investigation, but Section 2.3 has shown
that (i) MIP’s fractional block extraction leads to extraction
schedules that satisfy pit-wall slope restrictions; (ii) solu-
tions to MIP may yield profits that are 1%–2% higher than
with IP; and (iii) MIP has computational advantages over
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IP, at least when trying to solve those models by LP-based
branch and bound. As discussed later, we have attempted
to solve IP using the decomposition-based heuristic that
successfully solves MIP. The branch-and-bound portion of
that heuristic requires orders of magnitude more time when
operating on IP than when operating on MIP, however.
Thus, MIP also appears to have computational advantages
over IP in the context of decomposition.

3. Solving RMIP by Decomposition
This section describes how to solve RMIP using standard
nested Benders decomposition and then develops our new
hierarchical variant of that decomposition, HBD. A novel
application of aggregate resource constraints, made possi-
ble by the use of cumulative variables, turns out to be cru-
cial for the computational effectiveness of HBD. For ease
of exposition, we add a dummy time period t = T + 1 and
present RMIP using matrix notation.

Additional Notation

T+ 811 0 0 0 1 T + 19
T0+ 801 0 0 0 1 T + 19
T̄ T + 1

ŷ01 ŷT̄ initial conditions and upper bound on ending condi-
tions for the mine, respectively; ŷ0 = 0 and ŷT̄ = 1
may be assumed

yt 4y1t1 0 0 0 1 y�B�t5
> for all t ∈ T0+; however, y0 ≡ ŷ0

and yT̄ ≡ ŷT̄
vt 4v1t1 0 0 0 1 v�B�t5 for all t ∈T0+; however, v0 = vT̄ = 0
qt 44−qL

1t1 0 0 0 1−qL
�R�t51 4q

U
1t1 0 0 0 1 q

U
�R�t55

> for all t ∈T+,
where −qL

b1 T̄
and qU

b1 T̄
are large enough to make

constraints (26) vacuous when t = T̄

The continuous relaxation of MIP then has the following
form:

RMIP2 �∗

RMIP = max
y010001yT̄

∑

t∈T+

vtyt (25)

s0t0 A4yt−yt−15¶qt ∀t∈T+ (26)

−I4yt−yt−15¶0 ∀t∈T+ (27)

Htyt¶0 ∀t∈T (28)

yt¾0 ∀t∈T (29)

y0 ≡ ŷ0 (30)

yT̄ ≡ ŷT̄ 1 (31)

where
1. the matrix A derives from constraints (5)–(6);
2. the �B� × �B� identity matrix I in (27) derives from

constraints (7);
3. the matrix Ht derives from constraints (9) as well as

the constraints that result from aggregating pairs of con-
straints taken from (8) and (10); and

4. we define a feasible solution ŷ = 4ŷ01 0 0 0 1 ŷT̄ 5 to
RMIP to be MIP-valid, if there exists x̂ = 4x̂01 0 0 0 1 x̂T̄ 5
such that 4x̂1 ŷ5 is a feasible solution to MIP.

Note that upper bounds yt ¶ 1 for all t are implied by (27)
and (31).

Observe that Ht is actually stationary in our applica-
tion (i.e., Ht = H for all t), but it need not be. The
matrix A need not be stationary for standard NBD, but
we exploit stationarity of A when using aggregate resource
constraints. (The final paragraph of Section 3.6 discusses
extensions to “nearly stationary” matrices At .) To simplify
later descriptions of NBD and HBD, we develop neces-
sary notation here in the context of standard, “non-nested”
Benders decomposition applied to a staircase LP.

To begin, let t1 t̄ ∈ T0+, t < t̄, and suppose that ŷ t and
ŷt̄ are given such that (i) ŷ0 ¶ ŷ t ¶ ŷt̄ ¶ ŷT̄ , (ii) Ht ŷ t ¶ 0,
and (iii) Ht̄ ŷt̄ ¶ 0. That is, except for not necessarily being
MIP-valid, ŷ t defines a valid pit through time period t,
which is “nested” inside of the pit defined by ŷt̄ .

Given the above conditions, the following model gener-
alizes the standard concept of a cost-to-go function to a
cost-to-operate function, which covers the end of period t
to the beginning of period t̄:

�∗4ŷ t1 ŷt̄5

≡ max
yt 10001yt̄

t̄−1
∑

t=t+1

vtyt (32)

s.t. 42651 4275 for t = t + 11 0 0 0 1 t̄, only (33)

42851 4295 for t = t + 11 0 0 0 1 t̄ − 1, only (34)

yt ≡ ŷ t (35)

yt̄ ≡ ŷt̄0 (36)

Remark 1. Strictly speaking, �∗4ŷ t1 ŷt̄5 should display an
additional identifier such as a subscript 6 t1 t̄7, but the rel-
evant information will be clear from the function’s argu-
ments so we omit it. Note also that we have dropped the
subscript RMIP for notational simplicity.

Remark 2. The actual implementation of RMIP uses elas-
tic resource constraints, so given conditions (i)–(iii) just
specified, �∗4ŷ t1 ŷt̄5 always has a finite value. For simplicity
here, we omit explicit representation of elastic constructs,
but Appendices A and B do cover the details.

Remark 3. The optimal objective value for RMIP is
�∗
RMIP = �∗4ŷ01 ŷT̄ 5.

Now, for any t1 t′1 t̄ ∈T0+ with t < t′ < t̄, define

Yt′4ŷ t1ŷt̄5

=















ŷ t¶yt′ ¶ ŷt̄

∣

∣

∣

∣

∣

∣

∣

Ht′yt′ ¶01

and A4yt′ − ŷt′−15¶qt′ if t′ = t+1

and A4ŷt′+1 −yt′5¶qt′+1 if t′ = t̄−1















0

(37)

Note that bounds ŷ t ¶ yt′ ¶ ŷt̄ must hold for any model
using cumulative variables yt′ ; see constraints (9).
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Next, consider the optimal solution of RMIP computed
using two functions of yt′ :

�∗4ŷ01ŷT̄ 5 = �t′4ŷ01ŷT̄ 5 (38)

≡ max
yt′ ∈Yt′ 4ŷ01 ŷT̄ 5

vt′yt′ +�∗4ŷ01yt′5+�∗4yt′ 1ŷT̄ 50 (39)

We know that constraint (37) is valid because yt′ must
satisfy the constraints of a (relaxed) pit that lies “nested
between” the pits defined by ŷ0 and ŷT̄ . From standard
LP theory, we also know that the functions �∗4ŷ01yt′5
and �∗4yt′ 1 ŷT̄ 5 are piecewise linear and concave for yt′ ∈

Yt′4ŷt01 ŷT̄ 5.
To solve RMIP, standard Benders decomposition would
1. view �∗4ŷ11yt′5 + �∗4yt′ 1 ŷT̄ 5 as a single, piecewise-

linear, concave function, say �∗4ŷ01yt′ 1 ŷT̄ 5;
2. replace �∗4ŷ01yt′ 1ŷT̄ 5 with a piecewise-linear approx-

imating function, say ¯̄�4ŷ01yt′ 1ŷT̄ 5, such that ¯̄�4ŷ01yt′ 1ŷT̄ 5¾
�∗4ŷ01yt′ 1ŷT̄ 5 for all yt′ ∈Yt′ ; and

3. solve a sequence of nested subproblems that succes-
sively improves the approximating function and converges
to an optimal solution. (Of course, the decomposition algo-
rithm typically terminates when the best solution found sat-
isfies a prespecified optimality criterion.)

Maintaining separate approximating functions for
�∗4ŷ01yt′5 and �∗4yt′ 1 ŷT̄ 5 leads to a multicut master prob-
lem defined with respect to two separate subproblems
(Birge and Louveaux 1988). Two special cases arise, how-
ever: if t′ = 1, then (39) simplifies to

�14ŷ01 ŷT̄ 5= max
y1∈Y14ŷ01 ŷT̄ 5

v1y1 + �∗4y11 ŷT̄ 51 (40)

and if t′ = T , then (39) simplifies to

�T 4ŷ01 ŷT̄ 5= max
yT ∈YT 4ŷ01 ŷT̄ 5

vT yT + �∗4ŷ01yT 50 (41)

Section 3.5 shows how to recursively decompose both
functions �∗4ŷ01yt′5 and �∗4yt′ 1 ŷT̄ 5 to create a general
tree decomposition. First, however, Section 3.1 presents a
standard forward recursion for NBD, Section 3.2 indicates
how applying aggregate resource constraints may improve
the decomposition algorithm’s efficiency, and Sections 3.3
and 3.4 describe simple variants of NBD that make use of
those constraints. From this point on, “subproblem” implies
“nested subproblem.”

3.1. A Forward Recursion for Nested Benders
Decomposition (FBD)

RMIP exhibits a staircase structure, which seems ideal
for solution through a nested decomposition, either nested
Dantzig-Wolfe decomposition (Glassey 1973) or NBD (Ho
and Manne 1974). We implement NBD because construct-
ing a MIP valid solution for MIP from the continuous
solution to RMIP seems easier with NBD. For reference,
then, this section describes a standard version of NBD. We

note that NBD was first proposed for solving deterministic
problems but has become particularly important for solv-
ing multistage stochastic programs (Birge 1997). Perhaps
this fact will make NBD useful for solving certain stochas-
tic versions of OPBS, for example, with probabilistically
modeled net present values for blocks.

The following equations describe a forward recursion of
RMIP, which leads to a “forward NBD” (FBD). This is the
classical nested Benders decomposition of Wittrock (1985).

�∗4ŷ01ŷT̄ 5

= max
y1∈Y14ŷ01 ŷT̄ 5

v1y1 +�
��
�*0

�∗4ŷ01y15+�∗4y11ŷT̄ 5 (42)

= max
y1∈Y14ŷ01 ŷT̄ 5

v1y1 +�24y11ŷT̄ 5 (43)

= max
y1∈Y14ŷ01 ŷT̄ 5

v1y1 +

{

max
y2∈Y24y11 ŷT̄ 5

v2y2 +�34y21ŷT̄ 5
}

(44)

000

= max
y1∈Y14ŷ01 ŷT̄ 5

v1y1 +

{

max
y2∈Y24y11 ŷT̄ 5

v2y2

+

{

···

{

max
yT ∈YT 4yT−11 ŷT̄ 5

vT yT +��
��*

0
�∗4yT 1ŷT̄ 5

}

···

}}

(45)

More simply, the FBD recursion may be summarized
through the repeated application of the following relation-
ships, starting with t = 0 and with fixed values t̄ = T̄ , y0 =

ŷ0, and yT̄ = ŷT̄ :

�∗4yt1yt̄5 = �t+14yt1 ŷT̄ 5 (46)

= max
yt+1∈Yt+14yt 1 ŷT̄ 5

vt+1yt+1 + �∗4yt+11 ŷT̄ 50 (47)

To exploit the FBD recursion, an FBD algorithm re-
places each function �t+14yt1 ŷT̄ 5 with an upper-bound-
ing, piecewise-linear, concave approximation ¯̄�k

t+14yt1 ŷT̄ 5,
which it improves in each iteration k using standard opti-
mality and feasibility cuts (although our implementation
requires only optimality cuts). In our FASTPASS imple-
mentation (see below), this approximating function actually
depends on dual variables Ï̂k′

t+1, evaluated in iterations k′ =

11 0 0 0 1 k− 1. Thus, more explicitly,

max
yt∈Yt4ŷt−11 ŷT̄ 5

vtyt +
¯̄�k
t+14yt1 ŷT̄ 3 Ï̂

1
t+11 0 0 0 1 Ï̂

k−1
t+1 5 (48)

defines the general, primal subproblem for period t and iter-
ation k. Slightly different dual subproblems are also solved,
as described below.

One might “process” subproblems using a variety of
sequences or methods, and we simply use the FASTPASS
method identified by Wittrock (1985) as the most effec-
tive method among the three tests. (See also Gassman
1990.) Specifically, iteration k includes (i) a primal pass,
which, for t = 11 0 0 0 1 T , uses ŷt−1 and the period-t sub-
problem to solve for ŷt , and (ii) a dual pass, which, for
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t = T − 11 0 0 0 12, uses the most recent dual solution Ï̂t+1 to
solve for Ï̂t , which generates a new Benders cut to improve
the approximating function for period t−1. (The dual pass
initializes with Ï̂T taken from the last step in the preceding
primal pass.) Figure 4 illustrates a generic iteration k of this
algorithm for T = 4; Figure 5(a) gives a condensed illus-
tration, which simplifies comparison to other algorithmic
variants. Appendix A provides details on the subproblems
solved in an FBD algorithm, including the elastic formula-
tion, an expanded representation of the vector Ï̂t , and the
recursive definition of optimality cuts.

3.2. Aggregate Resource Constraints

Computational results in Section 4 show that standard FBD
runs slowly. To improve upon these results, we exploit
aggregate resource constraints. Note that, in effect, we have
already exploited aggregations of temporal-precedence con-
straints (27) to define the bounds ŷ t ¶ yt′ ¶ ŷt̄ used in
Yt′4ŷ t1 ŷt̄5; see Equation (37).

The idea is simple: total resource consumption from the
end of time period t1 to the end of time period t2, t2 > t1,
must satisfy both lower and upper bounds on resource con-
sumption accumulated from periods t1 +1 through t2. More
specifically, by summing constraints (26) appropriately and
noting the cancellations that occur because of the station-
ary matrix A, we see that Yt′4ŷ t1 ŷt̄5 as used in (39) can be

Figure 4. A generic FASTPASS iteration of a standard NBD algorithm that solves the forward recursion of a staircase
LP with T = 4 periods; see constraints (42)–(45).

Start iteration k End iteration k

4.

1.

2.

3.

Notes. The number on the left indicates time period t, the left box represents the primal subproblem for t, and the right box represents the dual subproblem
for t. Downward-pointing arrows correspond to the primal outputs of the subproblems, and upward pointing arrows to dual outputs. The dashed arrow here
and in other figures indicates that no other subproblem uses the indicated output. (That output is saved, however, in case it constitutes part of an optimal
primal solution.) The dual vector Ï̂k

t represents 4Á̂k
t 1 Â̂

k
t 1 Ä̂

k
t 1 Ã̂

k
t 5 as described in Appendix A.

replaced by the following set of constraints, again for any
t1 t′1 t̄ ∈T0+ with t < t′ < t̄:

Y +

t′ 4ŷ t1ŷt̄5

=







































ŷ t¶yt′ ¶ ŷt̄

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ht′yt′ ¶01

and A4yt′ − ŷ t5¶
t′
∑

�=t+1

q� if t′¾ t+1

and A4ŷt̄−yt′5¶
t̄
∑

�=t′+1

q� if t′¶ t̄−1







































0

(49)

In general, Y +

t′ 4ŷ t1 ŷt̄5 ⊆ Yt′4ŷ t1 ŷt̄5, with strict inclusion
possible, except that the two constraint sets become identi-
cal when t′ = t + 1 = t̄ − 1.

The aggregate constraints in (49) (i.e., the constraints
involving the matrix A) link period t′ with periods t and t̄,
thereby enabling the use of (39) to derive more general
problem recursions. To illustrate, the following subsections
describe three different HBD recursions. Variations on these
recursions could be made theoretically valid for any staircase
model with cumulative variables, but they seem unlikely
to be computationally attractive without the use of aggre-
gate constraints. We also note that the ideas described
below have led us to experiment with more direct aggre-
gation/disaggregation heuristics for solving MIP and IP
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Figure 5. Simplified diagrams for a FASTPASS iteration of NBD for a staircase LP with T = 4.

2.

3.

4.

4.

2.

Start iteration k Start iteration kEnd iteration k End iteration k

(a) (b)

1.

3.

1.

Notes. (a) Represents the standard forward recursion (FBD), which Figure 4 depicts in more detail. (b) Represents an iteration of FBD enhanced with
aggregate constraints (FBD-A); see Equations (50)–(52).

approximately; for example, see Van Den Heever and Gross-
mann (2000). Thus far we have been unsuccessful, however.

3.3. Forward Nested Decomposition with
Aggregate Resource Constraints (FBD-A)

The use of aggregate resource constraints, together with
a slight reordering of the recursion, can improve FBD
substantially. Intuitively, by initiating the recursion with a
model that aggregates constraints over the complete time
horizon, the solution process obtains some initial guid-
ance from a “weakly constrained UPL solution,” which the
standard forward recursion cannot supply. Specifically, this
recursion, denoted “FBD-A,” can begin based on period T
to take advantage of the aggregate constraints defined
through Y +

T 4ŷ01 ŷT̄ 5:

�∗4ŷ01 ŷT̄ 5

= max
yT ∈Y+

T 4ŷ01 ŷT̄ 5
vT yT + �14ŷ01yT 5 (50)

= max
yT ∈Y+

T 4ŷ01 ŷT̄ 5
vT yT +

{

max
y1∈Y14ŷ01yT 5

v1y1 + �24y11yT 5
}

(51)

000

= max
yT ∈Y+

T 4ŷ01 ŷT̄ 5
vT yT +

{

max
y1∈Y14ŷ01yT 5

v1y1

+

{

· · ·

{

max
yT−1∈YT−14yT−21yT 5

vT−1yT−1

}

· · ·

}}

0 (52)

Figure 5(b) depicts a single FASTPASS iteration of this
recursion for T = 4. Note that, after the first step to identify

a value for yT , the recursion simply follows the pattern set
out in Equations (46) and (47), but with T replacing T̄ .

To gain some insight into the value of the aggregate sub-
problem, consider the first subproblem of the first primal
pass of FBD-A. (See Equation (50) and Figure 5(b).) That
subproblem is

max
yT ∈Y+

T 4ŷ01 ŷT̄ 5
vT yT +

¯̄�14ŷ01yT 5= max
yT ∈Y+

T 4ŷ01 ŷT̄ 5
vT yT (53)

because ¯̄�14ŷ01yT 5, the approximation to �14ŷ01yT 5, is null.
Given the aggregate constraints, this recursion begins by
identifying a weakly constrained UPL solution and then
identifies a period-by-period extraction schedule for this
“estimated ultimate pit.” (Each iteration of FBD-A then
updates its estimates of both the aggregate and disaggregate
quantities.) Compare that to FBD, which begins by solving
an LP that corresponds to greedily excavating the pit from
period 1 to period T : profitable but poor, initial, global
myopic decisions in early time periods may lead to a poor
initial global solution, from which the algorithm recovers
only at the expense of extra iterations.

3.4. Reverse Nested Decomposition with
Aggregate Resource Constraints (RBD-A)

For a standard staircase model without cumulative vari-
ables, say, a production-inventory problem (e.g., Gabbay
1979), a reverse nested decomposition does not seem sensi-
ble, especially in early iterations. In particular, in the order
t = T 1T − 11 0 0 0 12, a reverse decomposition would try to
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estimate optimal production quantities in time period t, but
without having a reasonable approximation of the optimal,
total production up to time period t − 1 (i.e., without hav-
ing a reasonable approximation of the optimal inventory at
the beginning of period t). Cumulative variables yt in RMIP
do represent total production (extraction) for each block up
through time period t, but a mirror image in time of the
simple forward recursion (see Equations (42)–(45)) would
provide little guidance as to resource consumption in early
iterations.

By applying aggregate resource constraints, however,
we can also obtain global guidance in a reverse recur-
sion. Specifically, using (49), the following recursion de-
scribes a “reverse decomposition with aggregate constraints”
(RBD-A):

�∗4ŷ01 ŷT̄ 5

= max
yT ∈Y+

T 4ŷ01 ŷT̄ 5
vT yT + �T−14ŷ01yT 5 (54)

= max
yT ∈Y+

T 4ŷ01 ŷT̄ 5
vT yT +

{

max
yT−1∈Y

+
T−14ŷ01yT 5

{

vT−1yT−1

+ �T−24ŷ01yT−15
}}

(55)

000

= max
yT ∈Y+

T 4ŷ01 ŷT̄ 5
vT yT +

{

max
yT−1∈Y

+
T−14ŷ01yT 5

vT−1yT−1

+

{

· · ·

{

max
y1∈Y

+
1 4ŷ01y25

v1y1 + �0�
�
�>

0

4ŷ01y15
}

· · ·

}}

(56)

Figure 6. A single iteration for two versions of nested Benders decomposition with cumulative variables and aggregate
constraints: (a) a reverse decomposition (RBD-A) and (b) a bisection decomposition (BBD-A).

(a) (b)

Start iteration k End iteration k Start iteration k End iteration k

4.

2.

2.

1. 3.

4.

1.

3.

Notes. A FASTPASS processing method, or a generalization thereof, applies to both recursions. Note that Y +

1 4ŷ01 ŷ
k

25= Y14ŷ01 ŷ
k

25 in both (a) and (b) and
that Y +

3 4ŷk21 ŷ
k

45= Y34ŷ
k

21 ŷ
k

45 in (b).

More simply, the RBD-A recursion may be summarized
through the repeated application of the following relation-
ships, starting with t̄ = T̄ and with fixed values t = 0,
y0 = ŷ0, and yT̄ = ŷT̄ :

�∗4yt1yt̄5 = �t̄−14ŷ01yt̄5 (57)

= max
yt̄−1∈Y

+

t̄−14ŷ01yt̄5
vt̄−1yt̄−1 + �∗4ŷ01yt̄−150 (58)

Figure 6(a) illustrates a FASTPASS iteration of RBD-A
for T = 4.

3.5. A Tree Decomposition Using Aggregate
Resource Constraints (BBD-A)

We would not use a reverse decomposition without aggre-
gate resource constraints, and we would not create a gen-
eralizing tree decomposition without them, either. For a
particular application, a user might tailor a recursion to
characteristics of the modeled system but, for simplicity,
we describe “BBD-A,” which defines a “bisection decom-
position with aggregate resource constraints.” Also for sim-
plicity, we specialize to T = 2n for some integer n> 1:

�∗4ŷ01ŷT̄ 5= max
yT ∈Y+

T 4ŷ01 ŷT̄ 5
vT yT +�T /24ŷ01yT 5 (59)

= max
yT ∈Y+

T 4ŷ01 ŷT̄ 5
vT yT +

{

max
yT /2∈Y+

T /24ŷ01yT 5
vT /2yT /2 +�T /44ŷ01yT /25

+�3T /44yT /21yT 5
}

1 (60)

where �T /44ŷ01yT /25= max
yT /4∈Y

+
T /44ŷ01yT /25

vT /4yT /4 +�T /84ŷ01yT /45

+�3T /84yT /41yT /251 (61)
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Figure 7. Tree representation of nested and hierarchical
Benders decompositions: (a) FBD (b) FBD-A
(c) RBD-A (d) BBD-A.
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Note. The numbers in each vertex are 6 t1 t1 t̄7, with t in a bold font to
emphasize that the value for yt is being determined at that vertex.

and �3T /44yT /21yT 5

= max
y3T /4∈Y

+
3T /44yT /21yT 5

v3T /4y3T /4 +�5T /84yT /21y3T /45

+�7T /84y3T /41yT 51 (62)

etc.
After the first step to identify a value for yT , we may

summarize the recursion for BBD-A through the repeated
application of the following relationships, starting with t =

0 and t̄ = T , and with fixed values y0 = ŷ0 and yt̄ = ŷT :

�∗4yt1yt̄5 = �t4yt1yt̄51 where t = 4t + t̄5/2 (63)

= max
yt∈Y

+
t 4yt 1yt̄5

vtyt + �∗4yt1yt5+ �∗4yt1yt̄50 (64)

If T is not a multiple of 2, t may be defined as the integer
floor or ceiling of 4t+ t̄5/2; in fact, computational tests in
Sections 4 and 6 apply the integer-floor operator.

Figure 6(b) illustrates an iteration of BBD-A for T = 4.
We generalize the FASTPASS subproblem processing
method by (i) viewing the decomposition diagram as a di-
rected tree with all arcs pointing downward, away from the
root vertex; (ii) processing primal subproblems in any topo-
logical (acyclic) ordering of that tree; and (iii) processing
dual problems in a reverse topological ordering of the tree,
but skipping leaf vertices. Figure 7(d) shows the diagram of
Figure 6(b) viewed as a tree, while Figures 7(a)–(c) show
how other, simpler decomposition schemes may be viewed
as trees, also.

3.6. Hierarchical Benders Decomposition (HBD)

For simplicity, we refer to a tree decomposition that uses
cumulative variables and aggregate resource constraints as a
hierarchical Benders decomposition” (HBD). Both RBD-A
and BBD-A are examples, even though the tree associated
with RBD-A has an especially restricted structure. FBD-A
uses aggregate constraints only in its first stage, but we also
include that as a special case of HBD. On the other hand, it

should be clear that HBD allows even more general recur-
sions than those described. For instance, seasonal effects
might make this decomposition scheme possible over two
years at a monthly level of detail: two years, one year, one
quarter, one month.

One difficulty with standard Benders decomposition is
that early iterations make only slow progress to an opti-
mal solution because the few cuts available provide a
poor approximation of the subproblem’s or subproblems’
contribution to the overall objective function (Geoffrion
and Graves 1974). When NBD is used to solve multi-
stage stochastic programming problems, several authors
have shown how the application of special “preliminary
cuts” can help address this issue (Infanger 1994, pp. 96–99;
Morton 1996). In particular, Infanger generates preliminary
cuts based on an aggregate, “expected-value model.” By
contrast, we exploit an aggregate model directly in the Ben-
ders recursion rather than through specialized cuts. To the
best of our knowledge, complete aggregate models have not
been exploited in multistage stochastic programming.

As a final point in this discussion, we note that, in the-
ory, HBD could be applied to certain staircase LPs that
lack the stationary matrix A that appears in resource con-
straints (26). For example, suppose that RMIP represents a
production-inventory-distribution model with time-of-year
effects in production-line yields (e.g., Brown et al. 2001)
and that these are represented by replacing constraints (26)
with the following:

At4yt − yt−15¶ qt ∀ t ∈T0 (65)

The cancellations that enable creation of aggregate con-
straints in (49) no longer apply. But if we define A =

mint∈8t10001t̄9At , where the minimization is taken element-
wise across the matrices At , then Y +

t′ 4ŷ t1 ŷt̄5 defined using
this matrix A is valid, although it may not be as tight as
when At = A for all t. Intuitively, the weaker constraints
would still give useful guidance to the decomposition pro-
vided that the matrices At vary only modestly with t, i.e.,
are “nearly stationary.”

4. Computational Tests: Solving RMIP
This section describes computational tests of HBD for solv-
ing instances of RMIP. We use all six data sets described
by Cullenbine et al. (2011), which create problem instances
that cover 10,819, 18,300, and 25,620 blocks, for 1 to 20
time periods; the problem’s name indicates the number of
blocks modeled in the data. (Five of these data sets were
used for testing in Section 2.3.2.) Potential solution meth-
ods include a simplex algorithm applied to the “monolithic
LP” and each of the four variants of nested Benders decom-
position: FBD, FBD-A, RBD-A and BBD-A.

A 64-bit workstation with 16 GB RAM and a 3 GHz
quad-core Intel processor performs all computations, run-
ning under a Windows operating system. A C++ pro-
gram generates all LPs, and CPLEX 12.5 (IBM Corp.
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2013) solves those LPs. Default parameters apply except as
follows:

(i) the solver may use at most four threads (Threads = 4);
(ii) CPLEX’s barrier algorithm solves the monolithic

LPs (LPMethod = Barrier);
(iii) monolithic LPs are limited to 7,200 seconds of

elapsed computation time (TiLim = 7,200);
(iv) the dual simplex algorithm solves the

decomposition’s LPs (LPMethod = Dual); and
(v) that algorithm emphasizes numerical stability

(NumericalEmphasis = true).
Note that the barrier algorithm typically solves an LP

“from scratch” more quickly than does the dual simplex
algorithm, hence (ii). But within a decomposition algorithm
with cuts being added to an LP from one iteration to the
next, the dual simplex algorithm becomes quicker because
it can exploit standard “warm starts,” hence (iv).

A penalty of 100 dollars/ton, discounted at the model’s
standard rate, applies to the violation of each resource con-
straint in period t; this penalty corresponds to p−

rt and p+
rt

defined in Appendix A. Also, all decomposition algorithms
enforce a relative optimality tolerance of �RMIP = 10−4.

Problem-specific preprocessing, adjusted for poten-
tially fractional blocks, helps reduce model sizes. This

Table 2. BD25620A: Model sizes for instances of RMIP generated as monolithic LPs and sizes for nested subproblems
encountered during solution by decomposition.

Initial Reduced

LP or nested subproblem Variables (num.) Constraints (num.) Variables (num.) Constraints (num.)

RMIP, T = 20 6431424 310081805 4861008 219821412
RMIP, T = 5 1281101 6441240 1021072 5911389
Avg. FBD subproblem w/o cuts 321040 1291862 271904 1251726
Avg. FBD-A subproblem w/o cuts 251623 1091634 71130 21241
Avg. RBD-A subproblem w/o cuts 251622 1081353 107 11022
Avg. BBD-A subproblem w/o cuts 251623 1091634 11455 71009

Notes. “RMIP, T = 20” corresponds to the largest monolithic LP generated, and “RMIP, T = 5” corresponds to the largest such model that solves in under
7,200 seconds. Averages (“Avg.”) are taken across all periods in a 20-period model. “Initial” statistics are generated using problem-specific preprocessing,
while “Reduced” statistics are those obtained after applying CPLEX’s “prereduce” methods.

Table 3. BD25620A: Solution statistics for instances of RMIP solved by a barrier algorithm and by decomposition.

Decomposition

Mono-lith FBD FBD-A RBD-A BBD-A

T (sec.) (sub.) (piv.) (sec.) (sub.) (piv.) (sec.) (sub.) (piv.) (sec.) (sub.) (piv.) (sec.)

1 507 — — — — — — — — — — — —
2 4806 4 61091 900 4 61773 804 4 61773 804 4 61773 804
3 33301 11 121965 1507 7 201302 2602 7 71099 808 7 201302 2603
4 1124008 16 191854 2208 10 71098 1103 10 71114 1103 9 71050 1102
5 6132004 29 291830 3305 21 81716 1505 13 81217 1404 19 101736 1608
10 † 82 761141 8906 46 171510 3408 64 101171 2306 40 111334 2201
15 † 211 1781743 23503 99 181228 4401 127 171744 4309 103 291631 7308
20 † 248 1841473 23506 172 161957 5700 324 211825 7601 175 161000 6007

Notes. This table lists solution seconds “(sec.)” for all methods and, for the decomposition algorithms, it lists the number of subproblems solved “(sub.)”
and simplex pivots “(piv.).” The symbol “†” indicates that the problem could not be solved within 7,200 seconds. Decomposition algorithms skip the
solution of a subproblem if that subproblem immediately follows the generation of a nonviolated cut.

preprocessing eliminates variables and constraints by
bounding the earliest and latest time periods in which a
block can be extracted. (See Lambert et al. 2014 for details,
but note that we do not use the “enhanced early starts”
described in that paper.) Preprocessing requires only a few
seconds of computation and is performed just once for each
data set, so we do not report the corresponding computation
times. Reported times do include CPLEX’s standard “pre-
reduce” methods, however.

Initial computation focuses on one of the two largest
data sets, BD25620A. For reference, Table 2 displays some
model-size statistics for (i) the monolithic LP that is gen-
erated for T = 5 and for T = 20 and (ii) the average sub-
problem sizes observed while applying the decomposition
algorithms for T = 20. Table 3 shows solution times over
a range of values for T .

General trends seen for BD25620A in Table 3 hold for
all data sets, so we use these results to cull the clearly
inferior methods, which are solution as a monolithic LP
and solution via FBD. In particular, the barrier algorithm
applied to the monolith cannot compete with FBD, but FBD
cannot compete with the hierarchical decomposition meth-
ods. (When T = 3, BBD-A does perform poorly, and FBD
is faster, but this is the only such case for BD25620A.)
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The smaller subproblem sizes shown in Table 2 for HBD
compared to FBD result from HBD’s aggregate constraints
enabling the fixing of more variables to zero or one, and
these statistics do help explain the computational superior-
ity of HBD methods over FBD. Other problem instances do
not show such stark differences, but in no case does FBD
outperform any HBD method.

We have experimented with several methods to improve
the computational performance of FBD, but with no suc-
cess. First, neither the primal simplex algorithm nor the
barrier algorithm in CPLEX is faster than the dual sim-
plex algorithm for solving the relevant LPs. Second, our
attempts at “stabilizing” primal and/or dual solutions by
solving primal and/or dual subproblems using CPLEX’s
barrier algorithm all fail. In particular, the use of interior-
point solutions can improve the empirical convergence
of decomposition algorithms (e.g., Rousseau et al. 2007,
Singh et al. 2009), but the extra time required to find
such solutions produces at best minor reductions in the
number of major iterations for FBD while greatly increas-
ing solution times. With some significant implementational
effort, other specialized techniques might yield computa-
tional benefits (Ruszczyński 1986, Gondzio et al. 1997,
Elhedhli and Goffin 2004). However, as seen in Table 3,
the use of aggregate constraints to create FBD-A produces
definite computational benefits; furthermore, the implemen-
tational effort for this “specialized technique” is modest.

Table 4 shows the results for all six data sets using
the solution methods that pass the “culling test” described
above. Solution times remain reasonable for all hierarchi-
cal decompositions, even as the number of time periods
becomes large. This suggests that the technique common
to all, namely, the use of aggregate constraints, is key to
computational efficiency. We postpone further discussion of
these computational results until Section 7.

5. Combining HBD and Heuristic
Methods to Solve MIP

Computational tests above show that HBD can solve
medium-sized instances of RMIP that have both upper- and
lower-bounding resource constraints, but OPBS requires
MIP-valid solutions for MIP. This section describes a
heuristic that combines HBD and branch and bound to pro-
duce high-quality solutions for MIP to all of the test prob-
lems solved as LPs above.

As in Section 3.5, a graph G = 4V 1E5 describes the
hierarchy tree, with vertices i ∈ V labeled in the order
of a primal pass for HBD. We adjust the notation so
that RMIPt4i54ŷ

∗

t4i51 ŷ
∗

t̄4i55, which has solution ŷt4i5, denotes
the LP subproblem at vertex i in the tree. The notation
MIPt4i54ŷ t4i51 ŷt̄4i55 indicates the corresponding MIP (with-
out explicit binary variables), which has MIP-valid solu-
tion ŷ∗

t4i5. The following describes the complete heuristic
for solving MIP.

Table 4. Solution times, in seconds, for 10k-, 18k-, and
25k-block instances of RMIP solved using
HBD.

BD10819A BD10819F

T FBD-A RBD-A BBD-A FBD-A RBD-A BBD-A

2 008 008 008 008 008 008
3 104 105 104 106 106 106
4 203 205 203 203 205 205
5 304 308 309 303 307 305
10 1607 1706 1608 1704 1901 1509
15 4504 4504 3702 4409 4600 3507
20 8802 9705 6600 10409 9403 5500

BD18300A BD18300B

T FBD-A RBD-A BBD-A FBD-A RBD-A BBD-A

2 1901 1901 1901 102 101 101
3 205 204 205 108 107 107
4 303 302 305 503 503 502
5 401 1806 406 1000 803 301
10 1103 1600 1600 1005 909 1405
15 11407 3404 2607 1808 2603 2701
20 3600 5606 4103 4705 6900 3206

BD25620A BD25620B

T FBD-A RBD-A BBD-A FBD-A RBD-A BBD-A

2 804 804 804 700 700 700
3 2602 808 2603 905 909 905
4 1103 1103 1102 1303 1302 1302
5 1505 1404 1608 1600 1600 1506
10 3408 2306 2201 6605 5903 6300
15 4401 4309 7308 16004 9908 7004
20 5700 7601 6007 25102 57407 19803

Procedure HMIPH (“Hierarchical MIP Heuristic”)
Input: Full problem data for MIP, relative optimality

tolerance �SUB > 0 for subproblem MIPs.
Output: A MIP valid solution to MIP, 4ŷ∗

11 0 0 0 1 ŷ
∗

T 5.
Notation: ŷt (ŷ∗

t ) denotes an LP (MIP-valid) solution of a
model for period t.

{
Step 0: Using a specific version of HBD, solve RMIP

for 4ŷ1,…,ŷT 5;
For (i = 1 to T ) { /∗ In the order of a primal pass of

the decomposition tree ∗/

Step 1: If (i 6= 1) {
Beginning with cuts generated in step 0, and
generating new cuts as necessary, use the same
version of HBD to solve RMIPt4i54ŷ

∗

t4i51 ŷ
∗

t̄4i55

for ŷt4i5;
/∗ ŷt4i5 serves as a starting point to solve
MIPt4i54ŷ

∗

t4i51 ŷ
∗

t̄4i55. The MIP-valid inputs ŷ∗

t4i5

and ŷ∗

t̄4i5 are available because of the
vertex-processing order. ∗/

}
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/∗ The next step solves a “MIP subproblem.” ∗/
Step 2: With relative optimality tolerance �SUB1 solve

MIPt4i54ŷ
∗

t4i51 ŷ
∗

t̄4i55 for ŷ∗

t4i5 using the branch-
and-bound procedure outlined in the text
below;

9
Print(“The MIP-valid, approximate solution to
MIP is,” 4ŷ∗

11 0 0 0 1 ŷ
∗

T 5);
}

The branch-and-bound procedure used in step 2 resem-
bles the “SOS2 constraint branching” of Beale and Tom-
lin (1970). Specifically, if at vertex i the solution ŷt4i5
to RMIPt4i54ŷ

∗

t4i51 ŷ
∗

t̄4i55 does not satisfy integrality require-
ments for an implicitly determined x̂t4i5, blocks b and b̄
must exist such that ŷbt4i5 > 0, but ŷb̄t4i5 < 1. That is, some
block b is partially extracted in the current solution, yet
block b̄ directly above b is not completely extracted. When
this happens, we branch by enforcing “ybt = 0” or “yb̄t = 1.”
(This does not enforce a partition of MIP’s feasible region
in terms of y, but it does correspond to a partition of
the full feasible region defined in terms of 4x1y5.) Nodes
in the branch-and-bound tree are always feasible and thus
are fathomed by bound. The following three rules control
branching:

1. Choose the next node for branching based on a “best-
bound criterion” (e.g., Linderoth and Savelsbergh 1999).

2. Given the branching node i, among blocks b such
that ŷbt4i5 > 0 and ŷb̄t4i5 < 1, branch on the block b

˜

having
the largest number of fractional, direct predecessors and
successors. (Block b′ is a direct successor of b if b is a
direct predecessor of b′.)

3. Branch first in a direction analogous to “branch up,”
by enforcing this restriction: yb̄

˜

t = 1. (The complementary
branching direction is thus yb

˜

t = 0.)
HMIPH is not an exact algorithm because branch and

bound applies only to individual MIP subproblems in the
hierarchy. But the always-feasible, MIP-valid, final solu-
tion 4ŷ∗

11 0 0 0 1 ŷ
∗

T 5 defines a lower bound on �∗
MIP, and the

optimal objective value for MIPt4154ŷ
∗

t4151 ŷ
∗

t̄4155 defines an
upper bound, a bound that may be better than �∗

RMIP.

6. Computational Results: Solving MIP
Based on the instances of RMIP already investigated (see
Table 4), this section evaluates the computational perfor-
mance of HMIPH for solving MIP, i.e., the full MIP model
for OPBS. Settings for LP subproblems in steps 0 and 1
of the procedure remain as in Section 4; MIP subprob-
lems in step 2 incorporate a relative optimality tolerance
of �SUB = 5 × 10−4. (The values for �SUB and �RMIP are
selected together based on empirical tests, which show the
pair to yield a good trade-off between solution speed and
“accuracy,” that is, observed optimality gap.)

Table 5 shows the results for all six instances of MIP
using HMIPH with the three versions of HBD. Solution
times remain reasonable. For example, based on BBD-A,

each 20-period instance of MIP solves in less than twice
the time required to solve the corresponding instance of
RMIP. Moreover, the computed relative optimality gaps
indicate that the heuristic consistently yields high-quality
solutions. We also note that any resource-constraint viola-
tions are negligible.

The bisection decomposition BBD-A leads to good solu-
tions to MIP more quickly than do the other decomposi-
tions. The next section indicates why this may be true.

7. Discussion of Computational Results
for Both RMIP and MIP

The results presented in Table 3 indicate the superiority
of all HBD variants over a standard implementation of
nested Benders decomposition (FBD) for solving RMIP:
the HBD variants are usually faster than FBD, and when
T ¾ 10, they are always two to five times faster. No clear
trend appears in Table 4, however, to indicate a clear
computational winner among the HBD variants. But it
should be easy to parallelize BBD-A and, with T /2 pro-
cessors and sufficient computer memory, total solution time
might reduce by a factor approaching 4logT 5/T . Thus, we
believe that, of the HBD variants, BBD-A holds the great-
est promise for solving staircase LPs.

Although no HBD method is clearly faster than any
other for solving RMIP, Table 5 shows that BBD-A does
gain a computational advantage when used to help solve
the largest instances of MIP. Specifically, applications of
HMIPH based on BBD-A produce solution times on the
20-period instances that range from 47% to 94% of the
nearest rival, with an average of 77%. Average subproblem
sizes for RMIP based on BBD-A are not smaller than for
the other HBD variants (see Table 2), so we attribute most
of this advantage to the more “balanced branching” that
must take place in HMIPH when basing computations on
BBD-A.

More specifically, well-balanced branch-and-bound enu-
meration avoids branching such that one side of the branch-
ing partition is strongly restricted while the other side
is not. Balanced branching explains much of the effi-
ciency improvements seen with (i) branching based on spe-
cial ordered sets (Beale and Tomlin 1970, Hummeltenberg
1984), (ii) the implicit-constraint branching exploited by
Ryan and Foster (1981) to help solve set-partitioning prob-
lems, and (iii) the explicit-constraint branching exploited by
Appleget and Wood (2000) to help solve certain binary IPs.

To give a simple, intuitive example, suppose that based
on FBD-A or BBD-A, HMIPH is applied to an all-binary,
T -period instance of OPBS with variables xbt . For either
variant, at vertex i = 1, HMIPH determines x̂T , which
specifies for each block b whether or not the block is
extracted over the full time horizon. At vertex i = 2,
HMIPH based on FBD-A would select a fractional variable
xb1 and branch as follows: (i) block b is extracted in period
t = 1, or (ii) if it is extracted, block b is extracted in some
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Table 5. Solution statistics for 10k-, 18k- and 25k-block instances of MIP solved using HMIPH.

BD10819A BD10819F

Gap (%) Soln. time (sec.) Gap (%) Soln. time (sec.)

T FA RA BA FA RA BA FA RA BA FA RA BA

2 008 008 008 202 202 203 008 008 008 203 203 204
3 007 007 007 301 301 301 008 007 008 302 302 302
4 006 006 006 408 406 403 008 007 007 407 408 408
5 007 006 006 509 600 601 007 006 006 506 601 601
10 005 005 005 2309 2206 2406 005 005 005 2502 2406 2203
15 006 006 006 6001 5808 5209 005 005 005 5907 5800 4802
20 005 006 006 12101 12003 9602 005 006 006 13507 11707 8905

BD18300A BD18300B

Gap (%) Soln. time (sec.) Gap (%) Soln. time (sec.)

T FA RA BA FA RA BA FA RA BA FA RA BA

2 002 002 002 2501 2407 2408 000 000 000 102 102 102
3 004 004 004 907 1200 906 000 000 000 200 200 200
4 004 004 004 900 808 804 000 000 000 507 509 506
5 003 003 003 1005 2506 905 000 000 000 1104 904 404
10 002 002 002 2101 2903 2904 000 000 000 1408 1406 1805
15 002 002 002 13800 8202 5804 000 000 000 3803 3903 3503
20 002 002 002 8300 12806 7802 000 000 000 7600 11009 5408

BD25620A BD25620B

Gap (%) Soln. time (sec.) Gap (%) Soln. time (sec.)

T FA RA BA FA RA BA FA RA BA FA RA BA

2 000 000 000 809 805 805 000 000 000 1008 1006 1006
3 000 000 000 2607 903 2609 001 001 001 2407 2107 2404
4 000 000 000 1203 1109 1200 002 002 002 2709 2501 2506
5 000 000 000 1704 1503 1801 004 004 005 5304 4806 5001
10 000 000 000 4404 2900 3109 102 102 102 19702 13008 28906
15 000 000 000 6102 6803 9000 103 104 102 85304 26604 15803
20 000 000 000 9603 15400 8602 102 102 101 85206 1144104 40306

Note. “FA” = FBD-A, “RA” = RBD-A, “BA” = BBD-A, and “Gap” = relative optimality gap.

period t > 1. The first element in this partition is strongly
restricted while the second is only weakly restricted, so
this branching scheme is unbalanced. By contrast, at vertex
i = 2, HMIPH based on BBD-A would identify a fractional
variable xb1�T /2�, and branching would execute this better-
balanced partition: (i) block b is extracted in the first half
of the time horizon, or (ii) if it is extracted, block b is
extracted in the second half of the time horizon.

For computational evidence of balanced branching, con-
sider the most computationally challenging problem in-
stance, BD25620B. BBD-A and FBD-A have about the
same number of violated integrality restrictions when
branching commences at each decomposition-tree vertex,
about 950 when summed over all i. But BBD-A creates
a total of only 98 branch-and-bound nodes across all MIP
subproblems while FBD-A creates 369. (RBD-A is worse
than FBD-A on both measures.)

As a final point on computation, note that HMIPH can
be applied to solve IP rather than MIP. Steps 0 and 1 of
HMIPH remain the same because the solution to RMIP is

also the solution to the LP relaxation of IP. But then, step 2
uses branch and bound to solve the integer-programming
analog of RMIPt4i54ŷ

∗

t4i51 ŷ
∗

t̄4i55. We have experimented with
such a heuristic, but with little success. Specifically, while
the heuristic should yield an elastically feasible solution,
the lack of flexibility in the model formulation yields indi-
vidual integer-programming subproblems in step 2 that,
typically, do not solve in an hour of computation time.

8. Conclusions and Future Research
This paper has described a new mixed-integer-programming
model for an open-pit block sequencing problem and
has developed a special decomposition procedure for that
model’s solution. Unlike most other work on OPBS, our for-
mulation MIP incorporates lower bounds on resource con-
sumption in each period in addition to the standard upper
bounds. Uniquely, this formulation also allows for fractional
block extraction in a mine while still satisfying pit-wall
slope restrictions.
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The staircase constraint structure of MIP enables a new
“hierarchical” Benders decomposition for solving MIP’s
linear-programming relaxation “RMIP.” HBD generalizes
nested Benders decomposition, taking advantage of two
special techniques: it formulates the model using cumu-
lative variables and adds time-aggregated resource con-
straints that provide useful guidance to the overall solution
procedure.

Computational testing in this paper does not exploit par-
allel solution of nested subproblems, but we believe that
this will be a fruitful line of work to follow. A standard
implementation of a forward recursion in NBD leaves lit-
tle room for parallel computation because the kth primal
pass of approximate subproblems RMIPk

t solves those in
the order t = 11 0 0 0 1 T , and a dual pass solves them in the
reverse order. But HBD includes “tree decompositions” in
which a subproblem RMIPt decomposes into RMIPt1

and
RMIPt2

such that approximating subproblems RMIPk
t1

and
RMIPk

t2
could be solved in parallel, both in primal and dual

passes. In fact, given �T /2� processors, it may be possible
to reduce solution time for RMIP by a factor approaching
4logT 5/T .

We also note that NBD has been used extensively for
solving multistage stochastic programs, so the usefulness
of HBD needs to be explored for such applications.
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Appendix A. Solving RMIP with a Forward
Nested Benders Decomposition, FBD

This appendix outlines how standard nested Benders decomposi-
tion solves a variant of RMIP in Section 2.2 using the forward
recursion (FBD), as described by Equations (42)–(45) in Sec-
tion 3.1.

The variant of RMIP allows penalized violation of resource
constraints (26) using elastic variables

st = 44s−

1t1 0 0 0 1 s
−

�R�t51 4s
+

1t1 0 0 0 1 s
+

�R�t55
>1 (A1)

where s−
rt and s+

rt correspond to violations of the lower-bounding
and upper-bounding constraints (5) and (6), respectively. The cor-
responding vector of constraint-violation penalties, in units of dol-
lars/ton, is

pt = 44p−

1t1 0 0 0 1 p
−

�R�t51 4p
+

1t1 0 0 0 1 p
+

�R�t550 (A2)

Extending the model (46)–(47) with elastic resource constraints,
the following recursively defines the full model and the cost-to-go
function �t4ŷt−11 ŷT̄ 5. Given ŷ0 and ŷT̄ , for t = 11 0 0 0 1 T ,

RMIPt4ŷt−11 ŷT̄ 52 �t4ŷt−11 ŷT̄ 5

= max
0¶yt¶ŷT̄ 1 st¾0

vtyt −ptst + �t+14yt1 ŷT̄ 5 (A3)

s0t0 Ayt − Ist ¶ qt +Aŷt−1 (A4)

−Iyt ¶−I ŷt−1 (A5)

Htyt ¶ 01 (A6)

where �T 4yT−11yT̄ 5 ≡ 0, and the constraints −AŷT ¶ qT̄ − AŷT̄
implied by (37) are omitted because they are constructed so as to
be vacuous. (See the definition of qt under “Additional Notation”
in Section 3. Note that constraints analogous to these do appear
in BBD-A, namely, constraints (B2), provided that t̄ 6= T̄ .)

Theorem 2. FBD, as described in Section 3.1 for solving RMIP,
converges when applied to the version of RMIP (A3)–(A6) that
replaces standard resource constraints with elastic ones.

Proof. (For reference, (25)–(31) directly define RMIP in the
text, and (42)–(47) define that model recursively.) Viewing yt−1 =

ŷt−1 as a parameter vector, RMIPt4yt−11 ŷT̄ 5 above may be rewrit-
ten as

RMIPt4yt−11 ŷT̄ 52

�t4yt−11 ŷT̄ 5= max
yt∈Y 4yt−11 ŷT̄ 5

vtyt −pt4A4yt − yt−15−qt5
+

+ �t+14yt1 ŷT̄ 51 (A7)

where Yt4yt−11 ŷT̄ 5 ≡ 8yt � yt−1 ¶ yt ¶ ŷT̄ 1Htyt ¶ 09. Letting t =

t − 1 and t̄ = T̄ , we see that RMIPt4yt−11 ŷT̄ 5 simply relaxes
Yt+14yt1 ŷT̄ 5 in the formulation (46)–(47) and also replaces the
piecewise-linear concave function of yt , �t+14yt1 ŷT̄ 5, with a dif-
ferent piecewise-linear concave function of yt . Thus, standard
convergence theory holds. �

The variables st are auxiliaries that help us compute approxi-
mations to a revised piecewise-linear function, but the model can
be stated without them. The revised formulation ensures feasibility
of the period-t subproblem provided that that ŷ0 ¶ ŷt ¶ ŷT̄ , which
is guaranteed, so only Benders optimality cuts need be generated.

FBD replaces �t+14yt1 ŷT̄ 5 in RMIPt4ŷt−11 ŷT̄ 5 for each itera-
tion k with a piecewise-linear, concave, upper approximation:

¯̄�kt+14yt1 ŷT̄ 5≡ min
k′=110001k−1

hk′

t + gk
′

t yt1 (A8)

with the cut coefficients hk′

t and gk
′

t defined in Equations (A14)
and (A15) below. Making the replacement yields the following
“approximate (nested) subproblem,” with dual variables for the
relevant constraints shown in brackets:

RMIPk
t 4ŷt−11ŷT̄ 52

¯̄�kt 4ŷt−11ŷT̄ 5

≡ max
yt¾01st¾01 ¯̄�t+1

vtyt −ptst +
¯̄�t+1 (A9)

s.t. Ayt −Ist¶qt +Aŷt−1 6Ák
t 7 (A10)

−Iyt¶−I ŷt−1 6Âk
t 7 (A11)

Htyt¶0 6Äk
t 7 (A12)

−gk
′

t yt +
¯̄�t+1¶hk′

t

for k′
=110001k−11 6�kk′

t 7 (A13)

where ¯̄�T̄ ≡ 0 and cuts (A13) are omitted for t = T . Note that
(i) Ák

t , Âk
t and Äk

t are vectors while �kk′

t is not; (ii) the generic
dual variables Ïk

t in the body of the paper now correspond to
4Ák

t 1Â
k
t 1Ä

k
t 1Ã

k
t 5, where we do now define the vector Ãk

t = 4�k1
t 1

0 0 0 1 �kk
t 5; and (iii) the vector Äk

t is not actually used in the cut-
creation process because the right-hand side of the relevant con-
straints is 0.
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Finally, we recursively define cut coefficients as follows:

gkt−1 = Á̂k
tA−Â̂k

t I for t=T 1 T −11000121 (A14)

hk
t−1 = Á̂k

t qt +

k−1
∑

k′=1

Ã̂kk′

t hk′

t for t=T 1 T −11000120 (A15)

FBD adds cuts (A13) dynamically, alternating between a primal
pass and a dual pass. In this forward decomposition, the kth pri-
mal pass solves each approximate subproblem RMIPk

t 4ŷt−11 ŷT̄ 5
for ŷkt in the order t = 11 0 0 0 1 T , given ŷ0 ≡ 0. Next, in the order
t = T 1 0 0 0 12 and using values ŷt obtained in the most recent
primal pass, the kth dual pass solves RMIPk

t 4ŷt−11 ŷT̄ 5 for dual
variables and adds cuts to update the approximating functions
¯̄�kt 4yt−11 ŷT̄ 5. (The last step of the primal pass, i.e., when t = T ,
actually implements the first step of the dual pass.)

Given elastic resource constraints, the kth primal pass yields
a primal feasible solution to RMIP, namely, 4ŷk11 0 0 0 1 ŷ

k
T 5. Thus,

�k ≡
∑T

t=1 vt ŷ
k
t ¶ �∗. Because ¯̄�k14ŷ01 ŷT̄ 5¾ �∗, testing ¯̄�k14ŷ01 ŷT̄ 5

− maxk �
k ¶ �RMIP, for some �RMIP > 0, yields an appropriate

stopping criterion for the decomposition algorithm.

Appendix B. Solving RMIP with Hierarchical
Benders Decomposition, BBD-A

This appendix describes the implementation of BBD-A, a bisec-
tion version of HBD that solves an elastic version of RMIP.

Assume that time periods t < t < t̄ are given, with

t = f 4t1 t̄5=

{

T 1 if t = 0 and t̄ = T̄ ;

�4t + t̄5/2�1 otherwise.

Also, assume the existence of solution estimates ŷ t and ŷt̄ , with
ŷ0 ¶ ŷ t ¶ ŷt̄ ¶ ŷT̄ . As in Appendix A, we solve a revised model
with elastic resource constraints. In general, two groups of con-
straints must be elasticized, however, so we (i) define st and s̄t
analogous to st (see (A1)) and (ii) define pt and p̄t analogous to
pt (see (A2)).

Expanding on Equations (63) and (64), the following recursion
defines the LP that is solved through BBD-A.

RMIPt4ŷ t1ŷt̄52 �t4ŷ t1ŷt̄5

= max
yt¾01 st 1 s̄t¾0

vtyt −ptst −p̄t s̄t +�t′ 4ŷ t1yt5+�t′′ 4yt1ŷt̄5 (B1)

s0t0 Ayt −I st¶
t
∑

�=t

q� +Aŷ t (B2)

−Ayt −I s̄t¶
t̄
∑

�=t+1

q� −Aŷt̄ (B3)

−Iyt¶−I ŷ t (B4)

Iyt¶ I ŷt̄ (B5)

Htyt¶01 (B6)

where t′ = f 4t1 t5 and t′′ = f 4t1 t̄5. Of course, the recursion begins
with t = t0 and t̄ = T̄ = T + 1 and is not carried further when
t̄ = t + 1.

In the most general case, an iteration k of HBD identi-
fies cut coefficients hk′

tt , gk
′

tt
, ḡk

′

tt , hk′

tt̄ , gk
′

tt̄ , and ḡk
′

tt̄ for k′ =

11 0 0 0 1 k − 1 (see Equations (B17)–(B19), below) and replaces

�t′ 4ŷ t1yt5 and �t′′ 4yt1 ŷt̄5. with these piecewise-linear, concave,
upper approximations

¯̄�kt′ 4ŷ t1yt5 = min
k′=110001k−1

8hk′

tt + gk
′

tt ŷ t + ḡk
′

ttyt9 and (B7)

¯̄�kt′ 4yt1 ŷt̄5 = min
k′=110001k−1

8hk′

tt̄ + gk
′

tt̄ yt + ḡk
′

tt̄ ŷt̄91

respectively. (B8)

Note that because t′ is determined by 6 t1 t7 and t′′ is determined
by 6t1 t̄7, t′ and t′′ are omitted in defining (B7) and (B8). Also
note that ¯̄�kt′ 4ŷ t1yt5≡ 0 if t = t+1 and ¯̄�kt′′ 4yt1 ŷt̄5≡ 0 if t = t̄−1.
In the decomposition’s kth iteration, the approximating model for
RMIPt4ŷ t1 ŷt̄5 is thus

RMIPk
t 4ŷ t1 ŷt̄52 �kt 4ŷ t1 ŷt̄5

= max
yt 1 st 1 s̄t¾0

vtyt − ptst − p̄t s̄t +
¯̄�tt +

¯̄�tt̄ (B9)

s0t0 Ayt − I st ¶
t
∑

�=t

q� +Aŷ t 6Ák
tt7 (B10)

−Ayt − I s̄t ¶
t̄
∑

�=t+1

q� −Aŷt̄ 6Ák
tt̄7 (B11)

− Iyt ¶−I ŷ t 6Âk
tt7 (B12)

Iyt ¶ I ŷt̄ 6Âk
tt̄7 (B13)

Htyt ¶ 0 6Äk
t 7 (B14)

− ḡk
′

ttyt +
¯̄�tt ¶ hk′

tt + gk
′

tt ŷ t

for k′
= 11 0 0 0 1 k− 1 6�kk′

tt 7 (B15)

− gk
′

tt̄ yt +
¯̄�tt̄ ¶ hk′

tt̄ + ḡk
′

tt̄ ŷt̄

for k′
= 11 0 0 0 1 k− 1 6�kk′

tt̄ 7 (B16)

Note that (i) Ák
t t , Á

k
tt̄ , Â

k
t t , Â

k
tt̄ and Äk

t are vectors, while �kk′

tt

and �kk′

tt̄ are not; (ii) the generic dual vectors Ïk
t in the text (see

Figure 6(b)) correspond here to 4Ák
t t1Á

k
tt̄1Â

k
t t1Â

k
tt̄1Ä

k
t 1Ã

k
tt1Ã

k
tt̄5,

where we do now define vectors Ãk
tt = 4�k1

tt 1 0 0 0 1 �
kk′

tt 5 and Ãk
tt̄ =

4�k1
tt̄ 1 0 0 0 1 �

kk′

tt̄ 5; and (iii) the vectors Ä̂k
t remain unused as in FBD

and any other decomposition.
As before, we recursively define cut coefficients for (B15) and

(B16):

hk
tt̄ = Á̂k

tt

t
∑

�=t

q� +Á̂k
tt̄

t̄
∑

�=t+1

q� +

k−1
∑

k′=1

�̂kk′

tt hk′

tt +

k−1
∑

k′=1

�̂kk′

tt̄ hk′

tt̄ 1 (B17)

gktt̄ = Á̂k
ttA−Â̂k

ttI+

k−1
∑

k′=1

�̂kk′

tt gk
′

tt 1 (B18)

ḡktt̄ = −Á̂k
tt̄A+Â̂k

tt̄I+

k−1
∑

k′=1

�̂kk′

tt̄ ḡk
′

tt̄ 1 (B19)

where these formulas must be applied in a dual-pass order in the
decomposition tree, with leaf vertices omitted.

We do not provide a formal proof that BBD-A converges
because it may be viewed as a variant on FBD-A, which does
converge. To see this equivalence, suppose that BBD-A performs
primal passes in level order and dual passes in the reverse order.
This means that all subproblems at the same depth in the tree
are solved sequentially. But because the individual subproblems
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within a level are effectively independent, we could solve them
simultaneously, as part of a single “level subproblem.” Suppose
we take this view and modify the decomposition algorithm to
apply a single cut for each level subproblem. The “new algorithm”
is really just FBD-A applied to a model that has been rearranged
into O4logT 5 stages. Because BBD-A derives from this new algo-
rithm by using a cut for each independent subproblem, we see
that BBD-A is just a multicut version of FBD-A.
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