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The open pit mine production scheduling (OPMPS) problem seeks to determine when, if ever, to ex-
tract each notional, three-dimensional block of ore and/or waste in a deposit and what to do with each,
e.g., send it to a particular processing plant or to the waste dump. This scheduling model maximizes
net present value subject to spatial precedence constraints, and resource capacities. Certain mines use

Keywords: stockpiles for blending different grades of extracted material, storing excess until processing capacity is
OR in natural resources available, or keeping low-grade ore for possible future processing. Common models assume that material
Stockpiling in these stockpiles, or “buckets,” is theoretically immediately mixed and becomes homogeneous.

Linear and integer programming
Mine planning
Open pit mining

We consider stockpiles as part of our open pit mine scheduling strategy, propose multiple models to
solve the OPMPS problem, and compare the solution quality and tractability of these linear-integer and
nonlinear-integer models. Numerical experiments show that our proposed models are tractable, and cor-
respond to instances which can be solved in a few seconds up to a few minutes in contrast to previous

nonlinear models that fail to solve.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Open pit mine production scheduling (OPMPS) is a decision
problem involving which blocks, within the final pit limits, should
be mined in each year, and where the blocks should be sent, e.g.,
mill, waste dump or stockpile, to maximize the net present value
(NPV) subject to the constraints that: (i) mining and processing
consume limited resources and affect the production profile in
each period; and (ii) spatial precedence must be obeyed among
the blocks (Fig. 1).

In open pit mine scheduling, the question arises as to how
mathematically to model the stockpile and determine a strategy,
and how to assess the value associated with using a stockpile.
While some researchers do not consider a stockpile as part of
OPMPS, others suggest using a stockpile without providing the
mathematical framework. In this research, we focus on proposing
tractable models which provide practical solutions.

Initially, researchers proposed linear programs to solve OPMPS
without considering a stockpile. Johnson (1969) describes the first
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such model to maximize net present value (NPV) of an open pit
mine while determining whether each block should be sent to the
mill or the waste dump, subject to precedence and operational re-
source constraints. Because his model contains only continuous-
valued variables, his precedence constraints enforce that in order
to extract a certain amount of block b/, at least that same amount
of predecessor block b must be extracted. The author uses Dantzig-
Wolfe decomposition to solve several instances. Given hardware
and software limitations at the time, he illustrates with some small
examples.

An important challenge in solving OPMPS is that model in-
stances can contain many blocks and time periods, and each block-
time period combination has an associated binary decision vari-
able in order to capture the more realistic constraint that all
of a predecessor block must be extracted before any of a suc-
cessor block is extracted. One way to decrease the number of
decision variables in these linear-integer programs is to aggre-
gate some blocks with similar characteristics. Askari-Nasab, Frim-
pong, and Szymanski (2007) discuss different aggregation tech-
niques that can be used to fit the geology of the deposit and the
time fidelity of the model. They also develop an open-pit pro-
duction method which depicts the stochastic dynamic expansion
of an open pit using discrete incremental pushbacks in different
directions.
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Fig. 1. Block precedence relationships. In order to extract the lower blocks, all up-
per blocks inside a predefined slope should be previously extracted. Figure courtesy
of Nelson Morales.

Ramazan (2007) uses the concept of “fundamental trees” to
aggregate blocks for an open pit production scheduling problem.
Boland, Dumitrescu, Froyland, and Gleixner (2009) suggest that
variables or constraints which are determined to be “similar” ac-
cording to some criteria can be grouped together into new vari-
ables or constraints, called aggregates. The new OPMPS problem
is then solved, causing some decisions to lose their fidelity in the
aggregated model. By disaggregating, i.e., reverting to the origi-
nal variables, a solution for the initial problem, which is usually
not optimal and possibly infeasible, is obtained. Jélvez, Morales,
Nancel-Penard, Peypouquet, and Reyes (2016) present a number of
heuristics to tackle the open-pit block scheduling problem. Their
approach is mainly based on block aggregation. The authors first
solve the aggregated problem and then obtain a feasible solution
for the original instance.

Bienstock and Zuckerberg (2010) provide a new algorithm for
solving the linear programming relaxation of the precedence con-
strained production scheduling problem by reformulating it such
that many constraints are modeled as a single one. They also con-
sider multiple processing options. Their maximum weight closure
problem can be solved as a minimum cut problem with a small
number of side constraints, making it amenable to Lagrangian-
based approaches. Chicoisne, Espinoza, Goycoolea, Moreno, and Ru-
bio (2012) propose a new algorithm to solve linear programming
relaxations of large instances of the same problem, and a set of
heuristics to solve the corresponding integer program.

Martinez and Newman (2011) present a mixed-integer model
to schedule long- and short-term underground production which
minimizes deviations from preplanned production quantities while
adhering to operational constraints. The authors develop an
optimization-based decomposition heuristic that solves large in-
stances quickly. O’Sullivan and Newman (2015) schedule extraction
and backfill at an underground Lead-Zinc mine that uses three dif-
ferent underground methods; their heuristic enables them to solve
real-world instances.

Shishvan and Sattarvand (2015) present a metaheuristic ap-
proximation based on Ant Colony Optimization for open-pit
mine production planning which considers any type of objective
function and nonlinear constraints. Montiel and Dimitrakopou-
los (2015) propose a risk-based method which incorporates ge-
ological uncertainty to optimize mining operations comprised of
multiple pits, stockpiles, blending requirements, processing paths,
operating alternatives and transportation systems. Their method

perturbs an initial solution iteratively to improve the objective
function. Lamghari and Dimitrakopoulos (2016) and, similarly,
de Freitas Silva, Dimitrakopoulos, and Lamghari (2015) propose dif-
ferent heuristics such as tabu search and variable neighborhood
descent to solve models that consider metal uncertainty and multi-
ple destinations for the extracted material; low-grade material sent
to the stockpile is mixed homogeneously, and the corresponding
average grade is successively approximated.

Although linear and mixed integer programming models are
recognized as having significant potential for optimizing produc-
tion scheduling in both open pit and underground mines, most
of these approaches focus on the extraction sequence and do not
consider the material flow post-extraction. In particular, the use of
stockpiling to manage processing plant capacity, and the interplay
of material flows from the mine to a stockpile, the mine to a pro-
cessing plant, and a stockpile to a plant, have not been treated as
an integrated part of mine extraction sequence optimization. While
industrial uses of mine planning software with stockpiling exist,
these have limited benefit due to the nature of their modeling and
solution techniques.

1.1. Existing industrial software

While some mining software such as Mintec (2013) and
MineMax (2016) have tried to consider the stockpile as part of
open pit mine scheduling, such software does not guarantee global
optimal solutions. Whittle, one of the leading pieces of software
in mine planning, has a stockpiling module and considers mixing
material with different grades in the stockpile:

As material is moved to the stockpile, the tonnage and metal infor-
mation is accumulated, so that at any point in time, the average
grade is known. Stock withdrawals are considered to be at the av-
erage grade. Stockpiles are only used if they return a positive cash
flow (Whittle, 2010).

Whittle does not use optimization techniques to model the
stockpile, so there is no guarantee of obtaining an optimal solu-
tion with respect to the number of stockpiles and/or the grade
contained in each stockpile. Academic researchers have been de-
veloping models to address these shortcomings.

1.2. Linear-integer models considering a stockpile

Smith (1999) uses mixed integer programming to solve a short-
term production scheduling problem with blending, considering
stockpiles both at the mine and at the mill. He notes that correctly
capturing the contents of the stockpile requires nonlinear con-
structs, and enhances tractability of the original model by intro-
ducing piecewise linear constructs to approximate separable terms
(after reformulation) representing the product of the average grade
in the stockpile and the quantity retrieved from the stockpile in a
given time period. After aggregation and variable elimination, he
applies the model results to a phosphorus mine in Idaho. This re-
search represents an early attempt to correctly model the grade of
a stockpile, but requires approximations whose accuracies are not
quantified, to ensure tractability.

Caccetta and Hill (2003) propose an exact approach to solve
a monolithic OPMPS problem by defining variables representing
whether a block is mined by time period t. The model includes
constraints on: precedence, operational resources, and processing
grade requirements. They also discuss the possibility of consider-
ing a stockpile in their model but without an associated mathe-
matical formulation. The authors propose a branch-and-cut strat-
egy combined with a heuristic. Asad (2005) describes a simple
optimization model designed to assess the tradeoffs between cut-
off grades and stockpile levels for a two-mineral deposit. His static
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model omits production scheduling decisions. Ramazan and Dimi-
trakopoulos (2013) explain that the OPMPS problem typically con-
tains uncertainty in the geological and economic input data. They
use a stochastic framework to incorporate stockpiling since the
amount of material to be stockpiled is determined by the block
grades in the orebody model. In these models, the authors ig-
nore mixing of material in the stockpile. Koushavand, Askari-Nasab,
and Deutsch (2014) quantify oregrade uncertainty by including a
term for its cost in the objective function; their model captures
typical constraints on extraction and processing limits, and on
block precedence, as well as on blending, and on over- and under-
production. Stockpile levels are bounded above and below, and are
tracked in aggregate by time period; the authors demonstrate their
model using a case study in which they assume that the stock-
pile has its grade set a priori and that it is used to mitigate uncer-
tainty, i.e., overproduction can be carried over until the next time
period. Smith and Wicks (2014) use a mixed-integer program (MIP)
that maximizes recovered copper and accounts for constraints on
shovel, extraction, stockpiling, and processing capacities, as well as
blending. Here, the stockpiling constraints result in an optimistic
bound on the model, in that each block is retrieved from the stock-
pile having preserved its characteristics upon entry to the stock-
pile. The authors’ life-of-mine model, solved using a sliding time
window heuristic to incorporate a 60-month horizon, yields infor-
mation regarding stripping ratios and qualities and quantities of
ore mined.

1.3. Nonlinear-integer models considering a stockpile

Nevertheless, some researchers do consider material mixing in
the stockpile. When placing an ore block on a stockpile, the block
characteristics (e.g., grade and tonnage) are known. However, as
blocks are mixed in the stockpile, the characteristics of the mate-
rial removed from the stockpile must be treated as variables. Since
the amount of ore removed from the stockpile is not known a pri-
ori, the model has some non-convex, nonlinear constraints. Efforts
to solve this problem result in local optimal solutions or consist of
linearizing the model, which might introduce unrealistic assump-
tions.

Tabesh, Askari-Nasab, and Peroni (2015) acknowledge that
stockpiling should theoretically be modeled nonlinearly to opti-
mize a comprehensive open-pit mine plan, and linearizes the for-
mulation by using a “sufficient number” of stockpiles, each with a
tight range of grades. No numerical results are given, however. (We
will return to this model later.)

Although there have been efforts to consider stockpiling as part
of OPMPS, some of these models result in locally optimal solutions
and/or are intractable for big data sets. Attempting to decrease the
size of the problem instances results in aggregation, which causes
a loss of information regarding each type of material (Tabesh &
Askari-Nasab, 2011).

Bley, Boland, Froyland, and Zuckerberg (2012a) propose two
different models considering one stockpile with the following as-
sumptions:

1. Material in the stockpile mixes, resulting in a grade equal to the
average grade of all the material inside the stockpile.

2. Material is extracted from the stockpile at the beginning of
each period, so the grade of the resulting material is the av-
erage of that of the material at the end of the previous period.

In Section 3.2, we present (PP), which tracks the ore and min-
eral in the stockpile in each period, considering material mixing
by adding a non-convex quadratic constraint for each period. In
Section 3.3, we discuss (PY), in which the fraction of each block in
the stockpile in each period is tracked, and additional non-convex
constraints force the fraction of each block in the stockpile that is

sent to be processed in a given time period to be the same. Bley
et al. (2012a) prove that (PP) and (P¥) are equivalent, but the lat-
ter model provides a stronger formulation of the problem, resulting
in a better upper bound.

Bley et al. (2012a) focus on exact algorithmic approaches. They
study a relaxation of (P") by removing the non-linear constraints,
and instead enforcing these restrictions using a scheme, integrated
within a branch-and-bound framework, that (i) branches on the
variable representing the value of the proportion of metal (versus
ore) removed from the stockpile in each time period, and (ii) forces
the violation of all non-linear constraints to be arbitrarily close to
0. Additionally, the authors propose a primal heuristic to obtain
feasible solutions of the exact problem from a relaxed solution, and
cuts and inequalities to strengthen the relaxation. Finally, they ap-
ply these techniques on two small instances, showing the impact
of each solution procedure they propose.

Our research, by contrast, focuses on proposing new models,
rather than on developing new algorithms, and compares how
their assumptions affect solution quality and tractability. These
linear-integer models include blending requirements without un-
realistic assumptions, and yield good approximations using state-
of-the-art methodologies on large-scale instances.

We organize the remainder of this paper as follows. In
Section 2, we explain an existing model that does not incorpo-
rate stockpiling; in Section 3, we present existing nonlinear models
that incorporate stockpiling. In Section 4, we propose linear models
with stockpiling. In Section 5, we graphically represent the differ-
ence between our proposed models, and in Section 6, we compare
the results. We conclude with Section 7.

2. Lower bound model

In this section, we present the formulation of a model that pro-
vides a lower bound on the objective function value of the OPMPS
problem in which the option of stockpiling does not exist; such
a model can be found in Caccetta and Hill (2003), Boland et al.
(2009), and as a special case of Bienstock and Zuckerberg (2010).
The first section introduces notation, and the following sections
provide the math. We use the term “material” to include ore, i.e.,
rock that contains sufficient minerals including metals that can be
economically extracted, and to include waste.

2.1. Notation

Indices and sets:
be B: blocks; 1,...,B
b e B, : blocks that must be mined directly before block b
re R : resources {1 = mine, 2 = mill}
t € T : timeperiods; 1,...,T
Parameters:
8¢ : discount factor for time period t(fraction)
C™ : mining cost per ton of material (dollars per ton)
CP : processing cost per ton of material (dollars per ton)
P : profit generated per ton of metal (dollars per ton)
W, : tonnage of block b (ton)
M, : metal obtained by completely processing block b (ton)
Decision variables:
yp; © fraction of block b mined in time period t
yb.: fraction of block b mined in time period t and sent
(directly) to the mill



E. Moreno et al./European Journal of Operational Research 260 (2017) 212-221 215

ype + fractionof block bmined in time period t and sent to waste

Xy - 1 if block b has finished being mined by time t; 0 otherwise

=3

2.2. Model without stockpiling (P™)

The following model omits stockpiling:

(P™) :max ) &P (Z Mby£t> —CP (Z W,,ygt)

teT beB beB
- Wy (1)
beB
Yo+ =Yn VYbeBVteT 2)
dyp<1 VbeB (3)
teT
X <Y Ym VbeBNVteT (4)
t'<t

Syl <x;, VbeBbeByteT (5)
t'<t
(x,y) €  (other constraints) (6)

The objective function is the sum of the revenues of blocks sent
directly to the mill, minus the sum of the extraction and process-
ing costs. All terms are multiplied by an appropriate discount rate
according to the time period, t.

The first constraint forces the material sent to the mill or waste
to equal the quantity of extracted material. Constraint (3) ensures
that extracted fractions of each block summed across all time pe-
riods must be less than or equal to one. Constraint (4) forces the
sum of the fractional variables to 1 by time t if the block has
been mined by that time. Constraint (5) enforces mining prece-
dence constraints by ensuring that for each block, all predeces-
sors are completely mined before any amount of the successor
block is mined. Constraint (6) might represent geometrical and op-
erational restrictions (e.g., block-level or bench-phase scheduling,
mining and processing bounds, blending constraints, and/or the
maximum number of phases opened), and could involve bound
and integrality constraints on x and y.

3. Nonlinear models that consider stockpiling

In this section, we provide nonlinear formulations that consider
a stockpile. Because we propose models with just one stockpile,
we define “buckets” that represent different parts of a stockpile,
where each bucket incorporates material within a specific grade
range. The grade of material when removing it from the stockpile
is the minimum grade of the associated bucket. First, we define
additional notation:

3.1. Notation

Indices and sets:
k e K : buckets; 1,...,K
Parameters :

Ch : rehandling cost per ton of material (dollars per ton)
L : average grade in the stockpile (grams per ton)
L, : average grade in bucket k(grams per ton)

Decision variables:

¥}, o fraction of block b mined in time period t and sent
to the stockpile
Vi - fraction of block b mined in time period t and sent
to bucket k of the stockpile
zP : fraction of block b sent from the stockpile to the mill
in time period t
z;, » fraction of block b remaining in the stockpile at the
end of time period t
ft : relative proportion of blocks from the stockpile
processed in time period t

i, mP : tonnage of ore and metal sent from the stockpile to
the mill in time period t, respectively
if, m{ : tonnage of ore and metal remaining in the stockpile
at the end of time period t, respectively
i* . tonnage of ore sent from bucket k in the stockpile
to the mill in time period t
1, . tonnage of ore remaining in bucket k in the stockpile

at the end of time period t

3.2. Basic model that considers stockpiling (P)

The OPMPS+S with a single stockpile is similar to the formu-
lation in Section 2.2 except that the objective function and con-
straint (2) are modified and five more constraints are added. Close
variants of the following two formulations are given in Bley et al.
(2012a). The objective function becomes:

(P?) : max ) & P(ZMbygt + mf’) e (Z Wyy? + if)

teT beB beB
—C™( > Wy | - P (7)
beB

The profit of the blocks sent from the stockpile to the mill is added
to (P™)'s objective function, and processing and rehandling costs
are subtracted. Constraint (2) becomes:

YAV + Y=Y VbeBNteT (8)

The original constraints from (P™) are:

> ym<1 VbeB (3 revisited)
teT
X < Vi VbeBNteT (4 revisited)
t'<t
Symo<x, VbeBbeByteT (5 revisited)
t'<t
(x,y) € 2 (other constraints) (6 revisited)
The five new constraints are:
iP<i, VteT (9)
mP<mi, VteT (10)
Z WbyZ[ t=1
I (1)

t iffl—if+bZBWbyg[ teT:t>2
€
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bX: Mby?)[ t=1
eB
mi = s  _mP S . (12)
mi_,—mi+ > Mpy;, teT:t>2
beB
m? :
M Dol veer (13)
It o

Constraints (9) and (10) ensure that what we send from the
stockpile to the mill in time period ¢ is less than or equal to the
material and the metal, respectively, in the stockpile in time pe-
riod t — 1. Constraints (11) and (12) enforce inventory balance for
an initial time period and a general time period t, ensuring that the
amount of material and metal, respectively, in the stockpile during
time period t is equal to that of the last period plus anything that
was added and minus anything sent to the mill from the stockpile.
Constraint (13) forces the ratio of the metal contained in the ma-
terial (i.e., grade) sent to the processing plant to be less than or
equal to that ratio in the stockpile at the end of the previous time
period.

3.3. Warehouse model (P")

The formulation with one stockpile and homogeneous mixing
requires different variable definitions but follows the same logic as
the formulation of the Basic Model (P?). The new variables (de-
fined in Section 3.1) express stockpile amounts in terms of frac-
tions of the block instead of in terms of tons, which is necessary
to track the grade of each block going to the stockpile. The new
objective function is:

(P¥) :max )& P(ZMh(y{,’t +z{,’t)) e (ZWb(Vgt +ng))

teT beB beB
—C( oWyt | - €t D_Waz, (14)
beB beB
subject to:
YO AYE 4V =y VbeBVteT (8 revisited)
Y yi<1 VbeB (3 revisited)
teT
Xoe <) Vo VbeBVteT (4 revisited)
t'<t
>y <x, VbeB beByteT (5 revisited)
t'<t
A t=1
Ze=1y2r VbeB.teT (15)
Za TV~ teT itz 2
2P
B =fi VbeBteT (16)
Zye T 2
(x,y) € 2 (other constraints) (6 revisited)

As before, constraint (8) forces the material sent directly to
the mill, to the stockpile, or to waste to be equal to the quan-
tity of extracted material. The following constraints duplicate those
in (P™): Constraint (3) ensures that extracted fractions of each
block summed across all time periods must be less than or equal
to one. Constraint (4) forces the sum of the fractional variables
to 1 by time t if the block has been mined by that time. Con-
straint (5) enforces mining precedence constraints by ensuring that

for each block, all predecessors are completely mined before any
amount of the successor block is mined. Constraints specific to
(P%) include: constraint (15) indicates that the fraction of block
b remaining in the stockpile at period t will be the remaining frac-
tion from the previous period, plus the fraction of b extracted at
period t and sent to the stockpile, minus the fraction of b sent
from the stockpile to mill at period t. Constraint (16), which in-
troduces a new variable, f;, requires that the relative proportion of
each block in the stockpile that is processed is the same for all
blocks in each time period. As in (P™), constraint (6) might rep-
resent geometrical and operational restrictions (e.g., block-level or
bench-phase scheduling, mining and processing bounds, blending
constraints, and/or the maximum number of phases opened), and
could involve bound and integrality constraints on x and y. Bley
et al. (2012a) prove that (PP) and (PY) are equivalent.

4. Approximate linear models

In Sections 4.1-4.3, we formalize results from models in the lit-
erature, i.e., Akaike and Dagdelen (1999), Hoerger, Seymour, and
Hoffman (1999) and Tabesh et al. (2015), respectively. In the latter
case, the authors present a model that is similar to K-bucket (see
Section 4.3), in which the authors categorize the possible grades in
the buckets; there are, however, three differences: (i) they define
a lower and an upper bound for the average grade sent to each
bucket in each period, and (ii) they assess an “output grade” from
each bucket, which does not necessarily correspond to the upper
or to the lower bound, and (iii) there is no linking constraint be-
tween the buckets. The model we present in Section 4.4 is new. We
conclude Section 4 with a summary of our models and an example
of where they appear seminally in the literature, if at all.

4.1. Upper bound model (P!)

A model that provides an upper bound on (P%) can be ob-
tained by removing the nonlinear constraint (16) such that each
block can be sent (individually, maintaining its original character-
istics) from the stockpile to the processing plant. The solution of
this upper bound model, (P"}), is generally infeasible for the basic
and warehouse models. A different upper bound can be obtained
by removing non-linear constraints (13) from (P?); however, Bley
et al. (2012a) show that the corresponding upper bound is never
better than that provided by (PUb).

4.2. L-bound model (P')

We can assume that the stockpile has a pre-defined output
grade, denoted by L. In order to obtain a feasible solution for (PP)
or (P%), only blocks with grade greater than or equal to L may be
sent to the stockpile. Hence, we replace constraint (13) in (PP) by
the following constraints:

mP=L.i" VteT (17)

¥ =0 Vb e B such that %Z <LVteT (18)

Lemma 1. Let vP be the optimal objective function value of the non-
linear model (P"), and v'* be that of model (P'?); then v < vb.

Proof. We will show that the optimal solution of (P®) is feasi-
ble for (P?) to demonstrate that an optimal solution for the latter
problem must be at least as good as that for the former. The objec-
tive functions of the two models are the same, and all constraints
are the same with the exception of (13) (see Table 1). So, we only
need to prove that a solution satisfying (17) and (18) satisfies (13):
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Table 1

Summary of principal open-pit mine scheduling models that include inventory; we provide: (i) our naming
convention for each model, (ii) the section of this paper in which we introduce it, (iii) the associated variables,
objective function and constraints, and (iv) an example of related, seminal work that uses such a model or a

close approximation thereof.

Model  Section  Variables Objective  Constraints Related seminal reference

(P™) 22 Xoe, Vit Vi Vi (1) (2)-(6) Johnson (1969)

(Pb) 3.2 Xpe Vi Y. Vi ym - (7) (3)-(6), (8)-(13) Bley et al. (2012a)
i§,i?, m§, m?

(Pv) 33 Xpts Vb Vo Vi (14) (3)-(6), (8), (15) Bley et al. (2012a)
Vi 2y s Jo (16)

(PUb) 41 Xpe Y Yoo Vo (14) (3)-(6), (8), (15) Akaike and Dagdelen (1999)
Yo 2y Ziy

(Ph) 4.2 X YL YL Yy (7) (3)-(6), (8)-(12) Hoerger et al. (1999)
if.m¢. i, m; (17), (18)

(PkbY 43 )fm,y_b"},ygt,y‘é“[ (7) (3)-(6), (10), (12),  Hoerger et al. (1999)
Vie: T ME T (21)-(27) Tabesh et al. (2015)

Py 44 Koo Voo Yo Yoo Ve (7) 8)—<6>, (8)-(12),  New model

iP P s S
I, me, i, my

Constraints (11) and (12), which are contained in (P'%), can be
rewritten as:

B=Y "YWy - i teT (19)
t'<t beB t'<t

mi=>"% My, —> mh teT (20)
t'<t beB t/<t

by cumulating on t. (Note that the case in which t = 1 is addressed
by the loose inequality for the summation on time in the first term
and the corresponding strict inequality in the second for both ex-
pressions: if and mj.)

By the contrapositive, constraint (18) implies that if yj > 0 then
My > L - W, If we multiply Eq. (19) by L and compare it to Eq. (20),
we see from (17) that the second term on the right hand side of
both equations is the same, while the first term is larger in (20),
because the condition stated in (18) does not hold. This implies
that the left hand side of (20) is larger than that of (19) (with
the left hand side multiplied by L). This yields that m{ > L-if =

S p
% >L VteT.Since L= % from (17), this proves that constraint
t t

(13) holds. O
4.3. K-bucket model (P*P)

The L-bound model can be too conservative, because blocks
sent from the stockpile with a grade greater than L are under-
valued, and blocks with a grade lower than L cannot be sent to
the stockpile to make up for this undervaluation. A better lower
bound can be obtained assuming that we have several buckets of
different grades. That is, we define K buckets, each of them with
an associated minimum required grade I, such that [, < I, 41 for
all k=1...K—1. Hence, a block that is sent to the stockpile can
go to any bucket if it has the minimum required grade. We re-
place variables y; by variables y; . representing the fraction of
each block sent to the kth-bucket of the stockpile. Then, constraint
(8) is replaced by:

YR+ T +Vh =y VbeBVteT
kek

(21)

Also, we track the material in each bucket by using variables 7,
and Tﬁt for each bucket k, replacing constraints (9) and (11) by

t

1_5[517(’[71 VieT:t>2,Vkek (22)
Z Wbyzkt t=1

Bo=120 _ Vkek (23)
Y1 " lhe T EBWbyb,q VteT:t>2

and, as in the L-bound model (P'®), we replace constraint (13) by:

mP =L VteT (24)
keK
_ M, -
Ve =0 Vb e B such that W< L, Yke KNt eT (25)
b

where ik is the pre-defined output grade of bucket k.

Note that with constraints (21)-(25) (see Table 1), the model is
not a lower bound nor an upper bound of the nonlinear models
(PP) and (PW). In fact, for K = 1, we recover the L-bound model
with L = [; because we have just one bucket in the stockpile; for
K=Band [, = (,WV—Z for all k=1...K, we recover the upper bound

model because we have as many buckets as we have blocks. In or-
der to obtain a lower bound on the objective function of the non-
linear model (P?), we must add these constraints:

?=1, VkKeKVieT (26)
ZWbﬁakt = ZWbﬁ;k't Vk.K' ek.VteT 27

beB beB

Lemma 2. Let v¥ be the optimal objective function value of the non-
linear model (PP), and vk be that of model (P*), then v*b < vb.

Proof. We show that from the optimal solution of (P*’) we can
construct a feasible solution for (PP). Define i = YK, i, =
YK, B, and y3 = ZL; Viye- Constraint (2) is satisfied owing to
the revision expressed in (21); constraints (9) and (11) are satis-
fied based on our variable definitions in which we cumulate over
k. From constraint (24), we have Vt € T:

K
p o3P
m; Z L - Lt
k=1

K
L)% (by (26))
k=1

1 &
K ZLk ' (K ’ l_fr)
k=1

18
Esz -iP
k=1

where the last implication follows from the definition of i at the
beginning of the proof and (26).
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Hence, as in the proof of Lemma 1, this equality implies that

=22 My =3 my

beB t'<t t'<t

-Erym -

beB k=1 t'<t

1
K
K
> ZZZLkaybkﬂ - <]< Z&) > ih (by (25))

beB k=1 t'<t t'<t

= iLkZZWbybkﬂ - < f ) S

k=1 beB t'<t t'<t

beB t'<t t' <t

[
M=

) ) (i

1 K
=% K-> Wi, <I<2Lk>21
k=1 beB t'<t t'<t
1 K
= (K ) ZZWbybf/_<KZLk>ZI
k=1 beB t'<t t'<t
1 K
= (< ) (Z > Wayi — er')
k=1 beB t'<t t'<t

i (by (19))

proving the result. O

44. L-average bound model (P'9)

A novel way to approximate the nonlinear models similar to the
L-bound is to fix the grade of the material leaving the stockpile to
a fixed value L, but instead of requiring each block to have a grade
greater than or equal to L, this model requires all the blocks that
are going into the stockpile to have a grade greater than or equal
to L “on average.” Formally, we replace constraint (13) with the
following constraints:

mP=L-i" VieT (28)

L- ZZWb}’Zﬂ = ZZMbyztr VteT. (29)

beB t'<t beB t'<t

Lemma 3. Let vP be the optimal objective function value of nonlinear
model (P?), and v be that value of model (P'?), then v'@ < vb.

Proof. Let us reconsider the definitions of the variables if and
mj as given in constraints (19) and (20). We can multiply con-
straint (19) by L and use the following version of constraint (28):
Y emb =LYy i to cancel the last term in (20) and the last
term in (19) multiplied by L. Constraint (29) implies that the first
term on the right hand side of (20) is greater than that same term
in (19) multiplied by L. We can then compare left-hand sides of
these same two equations to conclude that m{ > L-if for all t € T,

. . p
proving that constraint (13) holds (because L = %
(28)). O

by constraint

Moreover, we can prove that this model provides a better ap-
proximation to the nonlinear model (P%).

Lemma 4. Let v'°, ¥ and v'® be the optimal objective function val-
ues of models (P'?), (PX0) and (P!¢), respectively. For the best pos-
sible value of parameters L'®, IXb and 1'%, respectively, the following

inequalities hold:

U < Ukb < 1/

Proof. The first inequality holds because for any value of L for

(Pb), we can define two buckets, one with grade [; =L'» and a

second with grade L, > L'®. The optimal solution of model (P'?) can

be reassigned to this 2-bucket model with a profit at least equal to
Ib

Vo,

For the second inequality, given an optimal solution of (Pkb)
with variables y}, . representing the material in each bucket, if we
define y§, = 04 V5, and L= 4 Y% L then y; satisfies con-
straint (29) for grade L = L. In fact, by (25), we have that if y},, > 0
then M, > L, - W,. Hence,

K K
DD My = Y Y LW,

> Myy;, = >
beB beB k=1 beB k=1
K R
= ZLk : Z Wiy | (by (27))
k=1 beB
1 K .
= K ZLk K- Zwby;][
k=1 beB
=L Z Wbth
beB

In other words, we can construct an equivalent feasible solution
for model (P!¢) using L =L with the same objective, proving the
result. O

4.5. Summary of all models

This section provides a summary of all models, listing the vari-
ables, the objective function and constraints associated with each
model (see Table 1).

5. Graphical representations

We can assume that in a mine, some material is sent to the
stockpile in the first time period and is processed at the mill in
the second period. Since profit per ton is a linear function of the
grade, we assume that the “grade” g of the material is defined by
units of profit per ton. We can represent the total tonnage sent to
the stockpile with grade greater than or equal to g using a function
G(g). An illustrative example of this function appears in Fig. 2. Note
that if all of this material is sent to mill, the total profit recovered
from the stockpile is equivalent to the area below G(g).

In the case of the L-bound model, the total profit obtained from
the stockpile is L - G(L), equivalent to the area of a rectangle below
the curve (see Fig. 2a). Material with grade less than L cannot be
sent to the stockpile in this model, and the material with grade at
least L is extracted with a grade equal to L.

Fig. 2b represents, for the K-bucket model, the specific case of
two buckets with grade L; and L,, where G(L,) tons are extracted
at profit Ly, and G(L;) — G(L,) tons are extracted at grade L;; we
obtain a higher profit in this case than for the L-bound model, be-
cause the grade attributed to the material in the stockpile is more
precisely matched with the true grade, and more material overall
is allowed to be stockpiled. Note that constraint (26) requires that
G(L1) — G(Ly) = G(Ly). Fig. 2c shows a selection for grade L, that
improves the value of the material processed from the stockpile.
Hence, the best selection of grades L, for this example must sat-
isfy the condition that G(L;) — G(L;.1) = G(Lg) fork=1,..., K- 1.
Fig. 2d shows an example with five buckets of equal tonnage.
When K increases, a higher fraction of the total profit can be re-
covered from the stockpile.
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(a) L-bound model
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profit=g
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(d) 5-bucket model

L

(e) L-avg model (case a)
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Tons with
profitzg

G(Ly)

g profit per ton

Tons with
profit=g

g profit per ton L g profit per ton

(f) L-avg model (case b)

Fig. 2. Graphical examples of L-bound, K-bucket and L-average models. The green area shows the obtained profit by processing the material in the stockpile. The light green
color shows the profit above G(L) which compensates for the profit that was not obtained below G(L). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Table 2
Problem instance characteristics.

Instance # blocks  # blocks in ultimate pit ~ Discount factor (%)  Mining cap (MT/year)  Mill cap (MT/year)
newmanl 1,060 1,059 8 2 11

marvin 53,271 8,516 10 60 20.0

zuck-small 9,400 9,399 10 60 20.0

sm2 99,014 18,388 10 12 14,18, 21, 2.2,..,2.2
zuck-medium 29,277 27,387 10 18 8.0

zuck-large 96,821 96,821 10 3 1.2

Fig. 2e shows an example of the L-average model in which we
can extract more than G(L) tons with grade L. This is possible be-
cause the green area above the curve is compensated for by the
profit of material with a grade greater than L (light green region).
The figure shows that we can increase the value of L, allowing us
to obtain a higher profit by extracting the same material. In fact,
there exists a value L* such that we gain the maximal profit, equiv-
alent to the area below G(L) (see Fig. 2f).

6. Computational experiments

In this section, we examine the solution quality associated
with different linear-integer and nonlinear-integer models. In
Section 6.1, we compare the proposed models to the nonlinear
model. This requires a reduction in problem size, accomplished
by fixing the block extraction time in all models. In Section 6.2,
we compare two linear-integer models using a customized solver
called OMP (Rivera, Brickey, Espinoza, Goycoolea, & Moreno, 2016)
without fixing the block extraction time. Unless otherwise stated,
we perform all computation on a Dell R620 with eight Xeon E5-
2670 2.0 gigahertz cores and 128 gigabytes RAM.

6.1. Comparing different linear models to the nonlinear model

Our first computational experiment compares the quality of our
linear-integer models against that of the nonlinear models pre-
sented by Bley et al. (2012a). We coded the models in AMPL
(2014) and solved models (P™), (PU), (P'a), (Pkb), and (P'P) using
CPLEX (2009). Nonlinear models (P?) and (P") were solved using
SCIP 3.1.0 (Vigerske & Gleixner, 2016) with CPLEX 12.6 as the linear
solver.

We use six instances: newmanl, marvin, sm2, zuck-small, zuck-
medium, and zuck-large, available on the Minelib website (Espinoza,

Goycoolea, Moreno, & Newman, 2013). Table 2 presents the unique
characteristics of these instances, which include two capacity con-
straints for each time period: one for the total mined material,
and a second for the total processed material; the latter restriction
makes inventory relevant. We add one stockpile using a rehan-
dling cost equal to 10% of the original mining cost. Standard solvers
are not able to produce optimal solutions for such large instances,
even without stockpiles. Hence, in order to compare solver perfor-
mance more precisely, i.e., through an optimal objective function
value, we simplify our instances by fixing the extraction time pe-
riod (i.e., the x-variables) in all models to that of the best-known
solution for each instance presented on the Minelib website. Note
that resulting problems have only continuous variables. We later
relax this assumption.

Bley, Gleixner, Koch, and Vigerske (2012b) explain that the non-
linear model (P%) performs considerably better than (P?), but re-
quires a substantial amount of memory, e.g., we are only able to
obtain solutions to (PW) for instances newmanl, zuck-small, sm2
and marvin due to memory requirements; the latter instance re-
quires more than 100 gigabytes of RAM to obtain a solution within
a 0.13% optimality gap after two weeks of run time.

On the contrary, we found the optimal solution using each of
the linear models (P'?), (P¥) and (P') in a few seconds of run
time for all instances. For models (P!?) and (P!b), we tested sev-
eral values of L with a view to improving the objective function
for which our numerical experiments indicate unimodality in L,
enabling us to perform a simple line search for its optimal value
corresponding to each model and instance. In the case of (P*), for
ease of comparison, we consider four buckets for all instances and
explore several bucket k grade values L, under the assumption that
by increasing the number of buckets in the stockpile, the objective
function value of (P*) approaches the upper bound of the prob-
lem given by (PUb),



220

Table 3
NPV normalized to (P™) model.
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Instance Original mill capacity 50% of original mill capacity
(P) (P) (P') (P*) (P') (P*) (P*) (P') (P*) (P
newmanl 1 1 1 1 1 11957 1.1858 11857 1.1145 1.0959
marvin 1.0212 1.0170 1.0169 1.0114 1.0081 1.2823 1.2246 1.2226 1.1647 11420
zuck-small 1.0199 1.0157 1.0157 1.0104 1.0073 1.2735 1.2165 1.2132 11548 11342
sm2 1.0025 1.0019 1.0016 1.0011 1.0005 1.2589 - 1.1406 1.0749 1.0693
zuck-medium 1.0159 - 1.0126 1.0086 1.0062 13237 - 1.2429 1.1608 1.1451
zuck-large 1.0061 - 1.0047 1.0031 1.0029 1.1883 - 1.1262 11013 1.0935
Table 3 displays the resulting NPV, normalized to that of the Table 4

(P™) model. The objective function values corresponding to all
models for the newman1 instance are the same because we have
extra mill capacity and therefore there is no incentive to stockpile.
The differences in objective function values between the most ex-
treme models, models (P™) and (P"?), for the marvin and zuck-
small instances (i.e., those that benefit most from stockpiling) are
2.07% and 1.95%, respectively. For the newmanl, marvin, sm2 and
zuck-small instances, that difference between (P%) and (P'?), the
theoretical nonlinear “mixing model” and our closest approxima-
tion to it, is less than 0.17%, and the difference between (P") and
(P*) is less than 0.7%. In other words, the (P'?) model provides a
very close approximation to the objective function given by (P").

A comparison of the objective function values from the models
whose instances can all be solved in our numerical experiments in-
dicate a difference between (P"?) and (P*) of less than 0.97%, and
a difference between (P"?) and (P!?) of less than 0.42%. In other
words, these linear models approximate the nonlinear model very
well, provide solutions with corresponding objective function val-
ues that are close to the theoretical optimum, and are much more
tractable.

Changing the maximum mill production capacity illustrates that
there is some trade-off between stockpiling and this parameter. In
order to better demonstrate the difference between our proposed
models, we decrease the milling capacity relative to the mining ca-
pacity, which increases the value of the stockpile, especially with
a fixed extraction sequence, and a corresponding relative increase
in the amount of material left on the stockpile relative to what is
extracted. Table 3 illustrates the trade-off between stockpiling and
mill capacity for all instances. Decreasing mill capacity results in as
much as 20% value added at half of the original for the newmani
instance. Relative to each other, the models perform similarly; the
difference in objective function value between (P%) and (P'9) is
less than 0.03% for the three instances that we were able to solve.

6.2. Comparing linear-integer models considering the extraction
sequence

Our set of computational experiments in Section 6.1 shows that
(P'e) provides a very close objective function value to that of (PW)
for a model with a predefined extraction sequence. In this sec-
tion, we first compare the quality of the LP relaxation provided by
(P™s), (Pub), and (P!9) without fixing the extraction time. Note that
state-of-the art solvers based on the Bienstock-Zuckerberg algo-
rithm only solve the corresponding linear program of our linear-
integer production scheduling problems in an exact way, and then
apply other techniques that use this relaxed solution to generate
a near-optimal integer solution, e.g., the academic solver OMP. The
nonlinear model cannot be solved with the current state-of-the-
art algorithms, e.g., SCIP and BARON, even with the size of ma-
chine we use. Therefore, we focus on the difference between the
LP-relaxation of our L-average and the upper bound models, be-
cause they can be computed in an exact way.

NPV normalized to (P™) for the original mill capacity
case without fixing the extraction time, and solved with

OMP.

Instance (PHb) (P')
newmanl 1 1
marvin 1.0500 1.0365
zuck-small 1.0516 1.0377
sm2 1.0087 1.0047
zuck-medium 1.0489 1.0373
zuck-large 1.0108 1.0091

Table 4 displays the resulting NPV, normalized to that of the
no-stockpile model. The time required by OMP to solve these
problems varies from a few seconds (newmanl) to 19 minutes
(zuck_large). Because of the limitations of the OMP solver, and for
the sake of consistency between models, for these instances, we
do not consider rehandling costs. The upper bound model and the
solution provided by the L-average model differ in objective func-
tion value by less than 0.9%, on average, with a difference for the
zuck-small instance of 1.4%. These ranges show that the L-average
model provides upper bounds that are a good approximation to
those provided by the nonlinear model for the more general case
in which we include extraction decisions.

Finally, we show that standard rounding techniques, e.g.,
TopoSort (Chicoisne et al., 2012), still provide good integrality gaps
for the mixed-integer version of the (P!?) model. Table 5 shows the
objective value of the LP relaxation compared with that from the
integer solution obtained by running TopoSort considering a stock-
pile, i.e., using model (P'?) and without considering a stockpile,
i.e.,, using model (P™). Standard rounding heuristics yield near-
optimal solutions for both models, demonstrating that the addi-
tional variables and constraints required to model a stockpile do
not loosen the LP relaxation, a crucial property for solving large-
scale instances of the problem. In fact, this is not true for the (P4P)
model.

All the models we present can be easily adapted to the case of
scheduling clusters of blocks (e.g., predefined bench-phases, bins
or panels) by redefining extraction binary variables x;,. Specifically,
we can replace these variables by x for clusters ¢ € C of blocks,
and modify (4) and (5) such that these constraints apply to each
block in its corresponding cluster. In this way, the number of bi-
nary variables can be reduced considerably, making it possible to
obtain optimal integer solutions using a Bienstock-Zuckerberg al-
gorithm embedded in a branch-and-bound scheme, e.g., within the
spatial branching proposed by Bley et al. (2012a), enabling us to
solve these instances exactly; however, doing so is outside of the
scope of this paper.

7. Conclusion
Considering stockpiling as part of open pit mine planning

presents numerous challenges: (i) the most precise model in the
literature at the time of this writing is nonlinear and integer,
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Table 5

Objective function values of the LP relaxation (LP), the integer program obtained via TopoSort (IP),
and the corresponding integrality gaps (Int. Gap) obtained with OMP for our best stockpiling model,
(P), and the corresponding model with no stockpiling, (P™)

Instance LP (Ple) IP (Pla) Int. Gap (%) | LP (P™) IP (P™) Int. Gap (%)
newman1 24.486 24.486 0.000 24.486 24.486 0.000
marvin 944.767 935.024 1.031 911.480 889.729 2.386
zuck-small 939.728 927.599 1.291 905.544 879.886 2.833
sm2 1660.120 1658.475 0.099 1652.393 1650.818 0.095
zuck-medium 776.037 718.464 7419 748.150 710.379 5.049
zuck-large 58.468 57.891 0.986 57.938 57.391 0.945

yielding a non-convexity and therefore no guarantee of a global
optimum; (ii) nonlinear-integer models are often intractable, espe-
cially for realistically sized instances; (iii) even if we obtain a so-
lution for these models, the way in which some assumptions are
handled, in particular, that of homogeneous mixing of the mate-
rial in a single stockpile in each time period, is unrealistic. This
paper proposes several variants of linear-integer models that ex-
pedite solutions. Computational experiments show that the linear-
integer model, (P!?), the best for the realistic instances we test, is
tractable and possesses an objective function value very close to
that of (P¥) and (PP), the nonlinear models.

Blending ore with contaminants can be modeled with (P!9); in
this case, the economical impact of stockpiles could be consider-
ably higher than in our cases. The proposed L-average model can
easily be extended to consider more than one grade, and to ac-
count for degradation in the stockpile. In practice, since model in-
stances solve sufficiently quickly, it is possible to iteratively deter-
mine an optimal value of L using a binary search. However, an in-
teresting avenue for future research would integrate the branching
scheme proposed by Bley et al. (2012a) to this end, which would
prove to be of particular importance for the trivial extension of the
L-average model to the case in which a different value of L exists
for each time period.
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