
European Journal of Operational Research 260 (2017) 212–221 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Decision Support 

Linear models for stockpiling in open-pit mine production scheduling 

problems 

Eduardo Moreno 

a , Mojtaba Rezakhah 

b , Alexandra Newman 

b , ∗, Felipe Ferreira 

a 

a Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Avda. Diagonal Las Torres 2700, Peñalolen, Santiago, Chile 
b Operations Research with Engineering Doctoral Program, Mechanical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden CO 80401, USA 

a r t i c l e i n f o 

Article history: 

Received 4 March 2016 

Accepted 6 December 2016 

Available online 9 December 2016 

Keywords: 

OR in natural resources 

Stockpiling 

Linear and integer programming 

Mine planning 

Open pit mining 

a b s t r a c t 

The open pit mine production scheduling (OPMPS) problem seeks to determine when, if ever, to ex- 

tract each notional, three-dimensional block of ore and/or waste in a deposit and what to do with each, 

e.g., send it to a particular processing plant or to the waste dump. This scheduling model maximizes 

net present value subject to spatial precedence constraints, and resource capacities. Certain mines use 

stockpiles for blending different grades of extracted material, storing excess until processing capacity is 

available, or keeping low-grade ore for possible future processing. Common models assume that material 

in these stockpiles, or “buckets,” is theoretically immediately mixed and becomes homogeneous. 

We consider stockpiles as part of our open pit mine scheduling strategy, propose multiple models to 

solve the OPMPS problem, and compare the solution quality and tractability of these linear-integer and 

nonlinear-integer models. Numerical experiments show that our proposed models are tractable, and cor- 

respond to instances which can be solved in a few seconds up to a few minutes in contrast to previous 

nonlinear models that fail to solve. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

m  

m  

s  

v  

t  

o

W  

a  

e

 

s  

t  

a  

o  

c  

d  

g  

p  
1. Introduction 

Open pit mine production scheduling (OPMPS) is a decision

problem involving which blocks, within the final pit limits, should

be mined in each year, and where the blocks should be sent, e.g.,

mill, waste dump or stockpile, to maximize the net present value

(NPV) subject to the constraints that: (i) mining and processing

consume limited resources and affect the production profile in

each period; and (ii) spatial precedence must be obeyed among

the blocks ( Fig. 1 ). 

In open pit mine scheduling, the question arises as to how

mathematically to model the stockpile and determine a strategy,

and how to assess the value associated with using a stockpile.

While some researchers do not consider a stockpile as part of

OPMPS, others suggest using a stockpile without providing the

mathematical framework. In this research, we focus on proposing

tractable models which provide practical solutions. 

Initially, researchers proposed linear programs to solve OPMPS

without considering a stockpile. Johnson (1969) describes the first
∗ Corresponding author. 
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uch model to maximize net present value (NPV) of an open pit

ine while determining whether each block should be sent to the

ill or the waste dump, subject to precedence and operational re-

ource constraints. Because his model contains only continuous-

alued variables, his precedence constraints enforce that in order

o extract a certain amount of block b ′ , at least that same amount

f predecessor block b must be extracted. The author uses Dantzig–

olfe decomposition to solve several instances. Given hardware

nd software limitations at the time, he illustrates with some small

xamples. 

An important challenge in solving OPMPS is that model in-

tances can contain many blocks and time periods, and each block-

ime period combination has an associated binary decision vari-

ble in order to capture the more realistic constraint that all

f a predecessor block must be extracted before any of a suc-

essor block is extracted. One way to decrease the number of

ecision variables in these linear-integer programs is to aggre-

ate some blocks with similar characteristics. Askari-Nasab, Frim-

ong, and Szymanski (2007) discuss different aggregation tech-

iques that can be used to fit the geology of the deposit and the

ime fidelity of the model. They also develop an open-pit pro-

uction method which depicts the stochastic dynamic expansion

f an open pit using discrete incremental pushbacks in different
irections. 
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Fig. 1. Block precedence relationships. In order to extract the lower blocks, all up- 

per blocks inside a predefined slope should be previously extracted. Figure courtesy 

of Nelson Morales. 
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Ramazan (2007) uses the concept of “fundamental trees” to

ggregate blocks for an open pit production scheduling problem.

oland, Dumitrescu, Froyland, and Gleixner (2009) suggest that

ariables or constraints which are determined to be “similar” ac-

ording to some criteria can be grouped together into new vari-

bles or constraints, called aggregates. The new OPMPS problem

s then solved, causing some decisions to lose their fidelity in the

ggregated model. By disaggregating, i.e., reverting to the origi-

al variables, a solution for the initial problem, which is usually

ot optimal and possibly infeasible, is obtained. Jélvez, Morales,

ancel-Penard, Peypouquet, and Reyes (2016) present a number of

euristics to tackle the open-pit block scheduling problem. Their

pproach is mainly based on block aggregation. The authors first

olve the aggregated problem and then obtain a feasible solution

or the original instance. 

Bienstock and Zuckerberg (2010) provide a new algorithm for

olving the linear programming relaxation of the precedence con-

trained production scheduling problem by reformulating it such

hat many constraints are modeled as a single one. They also con-

ider multiple processing options. Their maximum weight closure

roblem can be solved as a minimum cut problem with a small

umber of side constraints, making it amenable to Lagrangian-

ased approaches. Chicoisne, Espinoza, Goycoolea, Moreno, and Ru-

io (2012) propose a new algorithm to solve linear programming

elaxations of large instances of the same problem, and a set of

euristics to solve the corresponding integer program. 

Martinez and Newman (2011) present a mixed-integer model

o schedule long- and short-term underground production which

inimizes deviations from preplanned production quantities while

dhering to operational constraints. The authors develop an

ptimization-based decomposition heuristic that solves large in-

tances quickly. O’Sullivan and Newman (2015) schedule extraction

nd backfill at an underground Lead–Zinc mine that uses three dif-

erent underground methods; their heuristic enables them to solve

eal-world instances. 

Shishvan and Sattarvand (2015) present a metaheuristic ap-

roximation based on Ant Colony Optimization for open-pit

ine production planning which considers any type of objective

unction and nonlinear constraints. Montiel and Dimitrakopou-

os (2015) propose a risk-based method which incorporates ge-

logical uncertainty to optimize mining operations comprised of

ultiple pits, stockpiles, blending requirements, processing paths,

perating alternatives and transportation systems. Their method
erturbs an initial solution iteratively to improve the objective

unction. Lamghari and Dimitrakopoulos (2016) and, similarly,

e Freitas Silva, Dimitrakopoulos, and Lamghari (2015) propose dif-

erent heuristics such as tabu search and variable neighborhood

escent to solve models that consider metal uncertainty and multi-

le destinations for the extracted material; low-grade material sent

o the stockpile is mixed homogeneously, and the corresponding

verage grade is successively approximated. 

Although linear and mixed integer programming models are

ecognized as having significant potential for optimizing produc-

ion scheduling in both open pit and underground mines, most

f these approaches focus on the extraction sequence and do not

onsider the material flow post-extraction. In particular, the use of

tockpiling to manage processing plant capacity, and the interplay

f material flows from the mine to a stockpile, the mine to a pro-

essing plant, and a stockpile to a plant, have not been treated as

n integrated part of mine extraction sequence optimization. While

ndustrial uses of mine planning software with stockpiling exist,

hese have limited benefit due to the nature of their modeling and

olution techniques. 

.1. Existing industrial software 

While some mining software such as Mintec (2013) and

ineMax (2016) have tried to consider the stockpile as part of

pen pit mine scheduling, such software does not guarantee global

ptimal solutions. Whittle, one of the leading pieces of software

n mine planning, has a stockpiling module and considers mixing

aterial with different grades in the stockpile: 

As material is moved to the stockpile, the tonnage and metal infor-

mation is accumulated, so that at any point in time, the average

grade is known. Stock withdrawals are considered to be at the av-

erage grade. Stockpiles are only used if they return a positive cash

flow ( Whittle, 2010 ). 

Whittle does not use optimization techniques to model the

tockpile, so there is no guarantee of obtaining an optimal solu-

ion with respect to the number of stockpiles and/or the grade

ontained in each stockpile. Academic researchers have been de-

eloping models to address these shortcomings. 

.2. Linear-integer models considering a stockpile 

Smith (1999) uses mixed integer programming to solve a short-

erm production scheduling problem with blending, considering

tockpiles both at the mine and at the mill. He notes that correctly

apturing the contents of the stockpile requires nonlinear con-

tructs, and enhances tractability of the original model by intro-

ucing piecewise linear constructs to approximate separable terms

after reformulation) representing the product of the average grade

n the stockpile and the quantity retrieved from the stockpile in a

iven time period. After aggregation and variable elimination, he

pplies the model results to a phosphorus mine in Idaho. This re-

earch represents an early attempt to correctly model the grade of

 stockpile, but requires approximations whose accuracies are not

uantified, to ensure tractability. 

Caccetta and Hill (2003) propose an exact approach to solve

 monolithic OPMPS problem by defining variables representing

hether a block is mined by time period t . The model includes

onstraints on: precedence, operational resources, and processing

rade requirements. They also discuss the possibility of consider-

ng a stockpile in their model but without an associated mathe-

atical formulation. The authors propose a branch-and-cut strat-

gy combined with a heuristic. Asad (2005) describes a simple

ptimization model designed to assess the tradeoffs between cut-

ff grades and stockpile levels for a two-mineral deposit. His static
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model omits production scheduling decisions. Ramazan and Dimi-

trakopoulos (2013) explain that the OPMPS problem typically con-

tains uncertainty in the geological and economic input data. They

use a stochastic framework to incorporate stockpiling since the

amount of material to be stockpiled is determined by the block

grades in the orebody model. In these models, the authors ig-

nore mixing of material in the stockpile. Koushavand, Askari-Nasab,

and Deutsch (2014) quantify oregrade uncertainty by including a

term for its cost in the objective function; their model captures

typical constraints on extraction and processing limits, and on

block precedence, as well as on blending, and on over- and under-

production. Stockpile levels are bounded above and below, and are

tracked in aggregate by time period; the authors demonstrate their

model using a case study in which they assume that the stock-

pile has its grade set a priori and that it is used to mitigate uncer-

tainty, i.e., overproduction can be carried over until the next time

period. Smith and Wicks (2014) use a mixed-integer program (MIP)

that maximizes recovered copper and accounts for constraints on

shovel, extraction, stockpiling, and processing capacities, as well as

blending. Here, the stockpiling constraints result in an optimistic

bound on the model, in that each block is retrieved from the stock-

pile having preserved its characteristics upon entry to the stock-

pile. The authors’ life-of-mine model, solved using a sliding time

window heuristic to incorporate a 60-month horizon, yields infor-

mation regarding stripping ratios and qualities and quantities of

ore mined. 

1.3. Nonlinear-integer models considering a stockpile 

Nevertheless, some researchers do consider material mixing in

the stockpile. When placing an ore block on a stockpile, the block

characteristics (e.g., grade and tonnage) are known. However, as

blocks are mixed in the stockpile, the characteristics of the mate-

rial removed from the stockpile must be treated as variables. Since

the amount of ore removed from the stockpile is not known a pri-

ori, the model has some non-convex, nonlinear constraints. Efforts

to solve this problem result in local optimal solutions or consist of

linearizing the model, which might introduce unrealistic assump-

tions. 

Tabesh, Askari-Nasab, and Peroni (2015) acknowledge that

stockpiling should theoretically be modeled nonlinearly to opti-

mize a comprehensive open-pit mine plan, and linearizes the for-

mulation by using a “sufficient number” of stockpiles, each with a

tight range of grades. No numerical results are given, however. (We

will return to this model later.) 

Although there have been effort s to consider stockpiling as part

of OPMPS, some of these models result in locally optimal solutions

and/or are intractable for big data sets. Attempting to decrease the

size of the problem instances results in aggregation, which causes

a loss of information regarding each type of material ( Tabesh &

Askari-Nasab, 2011 ). 

Bley, Boland, Froyland, and Zuckerberg (2012a) propose two

different models considering one stockpile with the following as-

sumptions: 

1. Material in the stockpile mixes, resulting in a grade equal to the

average grade of all the material inside the stockpile. 

2. Material is extracted from the stockpile at the beginning of

each period, so the grade of the resulting material is the av-

erage of that of the material at the end of the previous period. 

In Section 3.2 , we present ( P 

b ), which tracks the ore and min-

eral in the stockpile in each period, considering material mixing

by adding a non-convex quadratic constraint for each period. In

Section 3.3 , we discuss ( P 

w ), in which the fraction of each block in

the stockpile in each period is tracked, and additional non-convex

constraints force the fraction of each block in the stockpile that is
ent to be processed in a given time period to be the same. Bley

t al. (2012a) prove that ( P 

b ) and ( P 

w ) are equivalent, but the lat-

er model provides a stronger formulation of the problem, resulting

n a better upper bound. 

Bley et al. (2012a) focus on exact algorithmic approaches. They

tudy a relaxation of ( P 

w ) by removing the non-linear constraints,

nd instead enforcing these restrictions using a scheme, integrated

ithin a branch-and-bound framework, that (i) branches on the

ariable representing the value of the proportion of metal (versus

re) removed from the stockpile in each time period, and (ii) forces

he violation of all non-linear constraints to be arbitrarily close to

. Additionally, the authors propose a primal heuristic to obtain

easible solutions of the exact problem from a relaxed solution, and

uts and inequalities to strengthen the relaxation. Finally, they ap-

ly these techniques on two small instances, showing the impact

f each solution procedure they propose. 

Our research, by contrast, focuses on proposing new models,

ather than on developing new algorithms, and compares how

heir assumptions affect solution quality and tractability. These

inear-integer models include blending requirements without un-

ealistic assumptions, and yield good approximations using state-

f-the-art methodologies on large-scale instances. 

We organize the remainder of this paper as follows. In

ection 2 , we explain an existing model that does not incorpo-

ate stockpiling; in Section 3 , we present existing nonlinear models

hat incorporate stockpiling. In Section 4 , we propose linear models

ith stockpiling. In Section 5 , we graphically represent the differ-

nce between our proposed models, and in Section 6 , we compare

he results. We conclude with Section 7 . 

. Lower bound model 

In this section, we present the formulation of a model that pro-

ides a lower bound on the objective function value of the OPMPS

roblem in which the option of stockpiling does not exist; such

 model can be found in Caccetta and Hill (2003) , Boland et al.

2009) , and as a special case of Bienstock and Zuckerberg (2010) .

he first section introduces notation, and the following sections

rovide the math. We use the term “material” to include ore, i.e.,

ock that contains sufficient minerals including metals that can be

conomically extracted, and to include waste. 

.1. Notation 

Indices and sets: 

b ∈ B : blocks ; 1 , . . . , B 

ˆ 
 ∈ 

ˆ B b : blocks that must be mined directly before block b 

r ∈ R : resources { 1 = mine , 2 = mill } 
t ∈ T : time periods ; 1 , . . . , T 

arameters: 

δt : discount factor for time period t( fraction ) 

C m : mining cost per ton of material ( dollars per ton ) 

C p : processing cost per ton of material ( dollars per ton ) 

P : profit generated per ton of metal ( dollars per ton ) 

 b : tonnage of block b (ton) 

 b : metal obtained by completely processing block b ( ton ) 

Decision variables : 

 

m 

bt : fraction of block b mined in time period t 

 

p 

bt 
: fraction of block b mined in time period t and sent 

(directly) to the mill 
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w 

bt : fraction of block b mined in time period t and sent to waste 

x bt : 1 if block b has finished being mined by time t; 0 otherwise 

.2. Model without stockpiling ( P 

ns ) 

The following model omits stockpiling: 

(P 

ns ) : max 
∑ 

t∈T 
δt 

[ 

P 

( ∑ 

b∈B 
M b y 

p 

bt 

) 

− C p 

( ∑ 

b∈B 
W b y 

p 

bt 

) 

−C m 

( ∑ 

b∈B 
W b y 

m 

bt 

) ] 

(1) 

 

p 

bt 
+ y w 

bt = y m 

bt ∀ b ∈ B, ∀ t ∈ T (2) 

 

t∈T 
y m 

bt ≤ 1 ∀ b ∈ B (3) 

 bt ≤
∑ 

t ′ ≤t 

y m 

bt ′ ∀ b ∈ B, ∀ t ∈ T (4) 

 

t ′ ≤t 

y m 

bt ′ ≤ x ˆ b t ∀ b ∈ B, ̂  b ∈ 

ˆ B b , t ∈ T (5) 

(x, y ) ∈ � (other constraints) (6) 

The objective function is the sum of the revenues of blocks sent

irectly to the mill, minus the sum of the extraction and process-

ng costs. All terms are multiplied by an appropriate discount rate

ccording to the time period, t . 

The first constraint forces the material sent to the mill or waste

o equal the quantity of extracted material. Constraint (3) ensures

hat extracted fractions of each block summed across all time pe-

iods must be less than or equal to one. Constraint (4) forces the

um of the fractional variables to 1 by time t if the block has

een mined by that time. Constraint (5) enforces mining prece-

ence constraints by ensuring that for each block, all predeces-

ors are completely mined before any amount of the successor

lock is mined. Constraint (6) might represent geometrical and op-

rational restrictions (e.g., block-level or bench-phase scheduling,

ining and processing bounds, blending constraints, and/or the

aximum number of phases opened), and could involve bound

nd integrality constraints on x and y . 

. Nonlinear models that consider stockpiling 

In this section, we provide nonlinear formulations that consider

 stockpile. Because we propose models with just one stockpile,

e define “buckets” that represent different parts of a stockpile,

here each bucket incorporates material within a specific grade

ange. The grade of material when removing it from the stockpile

s the minimum grade of the associated bucket. First, we define

dditional notation: 

.1. Notation 

Indices and sets : 

 ∈ K : buckets ; 1 , . . . , K 

arameters : 

 

h : rehandling cost per ton of material ( dollars per ton ) 

L : average grade in the stockpile (grams per ton) 

L k : average grade in bucket k ( grams per ton ) 
ecision variables: 

y s bt : fraction of block b mined in time period t and sent 

to the stockpile 

ȳ s bkt : fraction of block b mined in time period t and sent 

to bucket k of the stockpile 

z p 
bt 

: fraction of block b sent from the stockpile to the mill 

in time period t 

z s bt : fraction of block b remaining in the stockpile at the 

end of time period t 

f t : relative proportion of blocks from the stockpile 

processed in time period t 

 

p 
t , m 

p 
t : tonnage of ore and metal sent from the stockpile to 

the mill in time period t, respectively 

i s t , m 

s 
t : tonnage of ore and metal remaining in the stockpile 

at the end of time period t, respectively 

ı̄ p 
kt 

: tonnage of ore sent from bucket k in the stockpile 

to the mill in time period t 

ı̄ s kt : tonnage of ore remaining in bucket k in the stockpile 

at the end of time period t 

.2. Basic model that considers stockpiling ( P 

b ) 

The OPMPS + S with a single stockpile is similar to the formu-

ation in Section 2.2 except that the objective function and con-

traint (2) are modified and five more constraints are added. Close

ariants of the following two formulations are given in Bley et al.

2012a) . The objective function becomes: 

(P 

b ) : max 
∑ 

t∈T 
δt 

[ 

P 

( ∑ 

b∈B 
M b y 

p 

bt 
+ m 

p 
t 

) 

− C p 

( ∑ 

b∈B 
W b y 

p 

bt 
+ i p t 

) 

−C m 

( ∑ 

b∈B 
W b y 

m 

bt 

) 

− C h i p t 

] 

(7) 

he profit of the blocks sent from the stockpile to the mill is added

o ( P 

ns )’s objective function, and processing and rehandling costs

re subtracted. Constraint (2) becomes: 

 

p 

bt 
+ y w 

bt + y s bt = y m 

bt ∀ b ∈ B, ∀ t ∈ T (8) 

The original constraints from ( P 

ns ) are: 

 

t∈T 
y m 

bt ≤ 1 ∀ b ∈ B (3 revisited) 

 bt ≤
∑ 

t ′ ≤t 

y m 

bt ′ ∀ b ∈ B, ∀ t ∈ T (4 revisited) 

 

t ′ ≤t 

y m 

bt ′ ≤ x ˆ b t ∀ b ∈ B, ̂  b ∈ 

ˆ B b , t ∈ T (5 revisited) 

(x, y ) ∈ � (other constraints) (6 revisited) 

The five new constraints are: 

 

p 
t ≤ i s t−1 ∀ t ∈ T (9) 

 

p 
t ≤ m 

s 
t−1 ∀ t ∈ T (10) 

 

s 
t = 

⎧ ⎨ 

⎩ 

∑ 

b∈B 
W b y 

s 
bt 

t = 1 

i s t−1 − i p t + 

∑ 

b∈B 
W b y 

s 
bt 

t ∈ T : t ≥ 2 

(11) 
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P  

b  

p  

t  

a  

n  
m 

s 
t = 

⎧ ⎨ 

⎩ 

∑ 

b∈B 
M b y 

s 
bt 

t = 1 

m 

s 
t−1 − m 

p 
t + 

∑ 

b∈B 
M b y 

s 
bt 

t ∈ T : t ≥ 2 

(12)

m 

p 
t 

i p t 

≤ m 

s 
t−1 

i s 
t−1 

∀ t ∈ T (13)

Constraints (9) and (10) ensure that what we send from the

stockpile to the mill in time period t is less than or equal to the

material and the metal, respectively, in the stockpile in time pe-

riod t − 1 . Constraints (11) and (12) enforce inventory balance for

an initial time period and a general time period t , ensuring that the

amount of material and metal, respectively, in the stockpile during

time period t is equal to that of the last period plus anything that

was added and minus anything sent to the mill from the stockpile.

Constraint (13) forces the ratio of the metal contained in the ma-

terial (i.e., grade) sent to the processing plant to be less than or

equal to that ratio in the stockpile at the end of the previous time

period. 

3.3. Warehouse model ( P 

w ) 

The formulation with one stockpile and homogeneous mixing

requires different variable definitions but follows the same logic as

the formulation of the Basic Model ( P 

b ). The new variables (de-

fined in Section 3.1 ) express stockpile amounts in terms of frac-

tions of the block instead of in terms of tons, which is necessary

to track the grade of each block going to the stockpile. The new

objective function is: 

(P 

w ) : max 
∑ 

t∈T 
δt 

[ 

P 

( ∑ 

b∈B 
M b (y p 

bt 
+ z p 

bt 
) 

) 

− C p 

( ∑ 

b∈B 
W b (y p 

bt 
+ z p 

bt 
) 

) 

−C m 

( ∑ 

b∈B 
W b y 

m 

bt 

) 

− C h 

( ∑ 

b∈B 
W b z 

p 

bt 

) ] 

(14)

subject to: 

y p 
bt 

+ y w 

bt + y s bt = y m 

bt ∀ b ∈ B, ∀ t ∈ T (8 revisited)

∑ 

t∈T 
y m 

bt ≤ 1 ∀ b ∈ B (3 revisited)

x bt ≤
∑ 

t ′ ≤t 

y m 

bt ′ ∀ b ∈ B, ∀ t ∈ T (4 revisited)

∑ 

t ′ ≤t 

y m 

bt ′ ≤ x ˆ b t ∀ b ∈ B, ̂  b ∈ 

ˆ B b , t ∈ T (5 revisited)

z s bt = 

{
y s 

bt 
t = 1 

z s 
b,t−1 

+ y s 
bt 

− z p 
bt 

t ∈ T : t ≥ 2 

∀ b ∈ B, t ∈ T (15)

z p 
bt 

z p 
bt 

+ z s 
bt 

= f t ∀ b ∈ B, t ∈ T (16)

(x, y ) ∈ � (other constraints) (6 revisited)

As before, constraint (8) forces the material sent directly to

the mill, to the stockpile, or to waste to be equal to the quan-

tity of extracted material. The following constraints duplicate those

in ( P 

ns ): Constraint (3) ensures that extracted fractions of each

block summed across all time periods must be less than or equal

to one. Constraint (4) forces the sum of the fractional variables

to 1 by time t if the block has been mined by that time. Con-

straint (5) enforces mining precedence constraints by ensuring that
or each block, all predecessors are completely mined before any

mount of the successor block is mined. Constraints specific to

 P 

w ) include: constraint (15) indicates that the fraction of block

 remaining in the stockpile at period t will be the remaining frac-

ion from the previous period, plus the fraction of b extracted at

eriod t and sent to the stockpile, minus the fraction of b sent

rom the stockpile to mill at period t . Constraint (16) , which in-

roduces a new variable, f t , requires that the relative proportion of

ach block in the stockpile that is processed is the same for all

locks in each time period. As in ( P 

ns ), constraint (6) might rep-

esent geometrical and operational restrictions (e.g., block-level or

ench-phase scheduling, mining and processing bounds, blending

onstraints, and/or the maximum number of phases opened), and

ould involve bound and integrality constraints on x and y . Bley

t al. (2012a) prove that ( P 

b ) and ( P 

w ) are equivalent. 

. Approximate linear models 

In Sections 4.1 –4.3 , we formalize results from models in the lit-

rature, i.e., Akaike and Dagdelen (1999) , Hoerger, Seymour, and

offman (1999) and Tabesh et al. (2015) , respectively. In the latter

ase, the authors present a model that is similar to K -bucket (see

ection 4.3 ), in which the authors categorize the possible grades in

he buckets; there are, however, three differences: (i) they define

 lower and an upper bound for the average grade sent to each

ucket in each period, and (ii) they assess an “output grade” from

ach bucket, which does not necessarily correspond to the upper

r to the lower bound, and (iii) there is no linking constraint be-

ween the buckets. The model we present in Section 4.4 is new. We

onclude Section 4 with a summary of our models and an example

f where they appear seminally in the literature, if at all. 

.1. Upper bound model ( P 

ub ) 

A model that provides an upper bound on ( P 

w ) can be ob-

ained by removing the nonlinear constraint (16) such that each

lock can be sent (individually, maintaining its original character-

stics) from the stockpile to the processing plant. The solution of

his upper bound model, ( P 

ub ), is generally infeasible for the basic

nd warehouse models. A different upper bound can be obtained

y removing non-linear constraints (13) from ( P 

b ); however, Bley

t al. (2012a) show that the corresponding upper bound is never

etter than that provided by ( P 

ub ). 

.2. L-bound model ( P 

lb ) 

We can assume that the stockpile has a pre-defined output

rade, denoted by L . In order to obtain a feasible solution for ( P 

b )

r ( P 

w ), only blocks with grade greater than or equal to L may be

ent to the stockpile. Hence, we replace constraint (13) in ( P 

b ) by

he following constraints: 

 

p 
t = L · i p t ∀ t ∈ T (17)

 

s 
bt = 0 ∀ b ∈ B such that 

M b 

W b 

< L, ∀ t ∈ T (18)

emma 1. Let v b be the optimal objective function value of the non-

inear model ( P 

b ), and v lb be that of model ( P 

lb ); then v lb ≤ v b . 

roof. We will show that the optimal solution of ( P 

lb ) is feasi-

le for ( P 

b ) to demonstrate that an optimal solution for the latter

roblem must be at least as good as that for the former. The objec-

ive functions of the two models are the same, and all constraints

re the same with the exception of (13) (see Table 1 ). So, we only

eed to prove that a solution satisfying (17) and (18) satisfies (13) :
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Table 1 

Summary of principal open-pit mine scheduling models that include inventory; we provide: (i) our naming 

convention for each model, (ii) the section of this paper in which we introduce it, (iii) the associated variables, 

objective function and constraints, and (iv) an example of related, seminal work that uses such a model or a 

close approximation thereof. 

Model Section Variables Objective Constraints Related seminal reference 

( P ns ) 2.2 x bt , y 
m 
bt 

, y p 
bt 

, y w 
bt 

(1) (2) –(6) Johnson (1969) 

( P b ) 3.2 x bt , y 
p 

bt 
, y w 

bt 
, y s 

bt 
, y m 

bt 
(7) (3) –(6), (8) –(13) Bley et al. (2012a) 

i s t , i 
p 
t , m 

s 
t , m 

p 
t 

( P w ) 3.3 x bt , y 
m 
bt 

, y p 
bt 

, y w 
bt 

(14) (3) –(6), (8), (15) , Bley et al. (2012a) 

y s 
bt 

, z p 
bt 

, z s 
bt 

, f t (16) 

( P ub ) 4.1 x bt , y 
m 
bt 

, y p 
bt 

, y w 
bt 

(14) (3) –(6), (8), (15) Akaike and Dagdelen (1999) 

y s 
bt 

, z p 
bt 

, z s 
bt 

( P lb ) 4.2 x bt , y 
m 
bt 

, y p 
bt 

, y w 
bt 

, y s 
bt 

(7) (3) –(6), (8) –(12) , Hoerger et al. (1999) 

i p t , m 

p 
t , i 

s 
t , m 

s 
t (17), (18) 

( P kb ) 4.3 x bt , y 
m 
bt 

, y p 
bt 

, y w 
bt 

(7) (3) –(6), (10), (12) , Hoerger et al. (1999) 

ȳ s 
bkt 

, ̄ı p 
kt 

, m 

p 
t , ̄ı 

s 
kt 

, m 

s 
t (21) –(27) Tabesh et al. (2015) 

( P la ) 4.4 x bt , y 
m 
bt 

, y p 
bt 

, y w 
bt 

, y s 
bt 

(7) (3) –(6), (8) –(12) , New model 

i p t , m 

p 
t , i 

s 
t , m 

s 
t (28), (29) 
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Constraints (11) and (12) , which are contained in ( P 

lb ), can be

ewritten as: 

 

s 
t = 

∑ 

t ′ ≤t 

∑ 

b∈B 
W b y 

s 
bt ′ −

∑ 

t ′ <t 

i p 
t ′ t ∈ T (19) 

 

s 
t = 

∑ 

t ′ ≤t 

∑ 

b∈B 
M b y 

s 
bt ′ −

∑ 

t ′ <t 

m 

p 
t ′ t ∈ T (20) 

y cumulating on t . (Note that the case in which t = 1 is addressed

y the loose inequality for the summation on time in the first term

nd the corresponding strict inequality in the second for both ex-

ressions: i s t and m 

s 
t .) 

By the contrapositive, constraint (18) implies that if y s 
bt 

> 0 then

 b ≥ L · W b . If we multiply Eq. (19) by L and compare it to Eq. (20) ,

e see from (17) that the second term on the right hand side of

oth equations is the same, while the first term is larger in (20) ,

ecause the condition stated in (18) does not hold. This implies

hat the left hand side of (20) is larger than that of (19) (with

he left hand side multiplied by L ). This yields that m 

s 
t ≥ L · i s t ⇒

m 

s 
t 

i s t 
≥ L ∀ t ∈ T . Since L = 

m 

p 
t 

i 
p 
t 

from (17) , this proves that constraint

13) holds. �

.3. K-bucket model ( P 

kb ) 

The L -bound model can be too conservative, because blocks

ent from the stockpile with a grade greater than L are under-

alued, and blocks with a grade lower than L cannot be sent to

he stockpile to make up for this undervaluation. A better lower

ound can be obtained assuming that we have several buckets of

ifferent grades. That is, we define K buckets, each of them with

n associated minimum required grade ˆ L k , such that ˆ L k ≤ ˆ L k +1 for

ll k = 1 . . . K − 1 . Hence, a block that is sent to the stockpile can

o to any bucket if it has the minimum required grade. We re-

lace variables y s 
bt 

by variables ȳ s 
bkt 

, representing the fraction of

ach block sent to the k th-bucket of the stockpile. Then, constraint

8) is replaced by: 

 

p 

bt 
+ 

∑ 

k ∈K 
ȳ s bkt + y w 

bt = y m 

bt ∀ b ∈ B, ∀ t ∈ T (21)

lso, we track the material in each bucket by using variables ı̄ s 
kt 

nd ı̄ 
p 

kt 
for each bucket k , replacing constraints (9) and (11) by 

 ̄

p 

kt 
≤ ı̄ s k,t−1 ∀ t ∈ T : t ≥ 2 , ∀ k ∈ K (22) 

 ̄

s 
kt = 

⎧ ⎨ 

⎩ 

∑ 

b∈B 
W b ̄y 

s 
bkt 

t = 1 

ı̄ s 
k,t−1 

− ı̄ p 
kt 

+ 

∑ 

b∈B 
W b ̄y 

s 
bkt 

∀ t ∈ T : t ≥ 2 

, ∀ k ∈ K (23) 
nd, as in the L -bound model ( P 

lb ), we replace constraint (13) by: 

 

p 
t = 

∑ 

k ∈K 
ˆ L k · ı̄ p 

kt 
∀ t ∈ T (24) 

¯
 

s 
bkt = 0 ∀ b ∈ B such that 

M b 

W b 

< 

ˆ L k , ∀ k ∈ K, ∀ t ∈ T (25) 

here ˆ L k is the pre-defined output grade of bucket k . 

Note that with constraints (21) –(25) (see Table 1 ), the model is

ot a lower bound nor an upper bound of the nonlinear models

 P 

b ) and ( P 

w ). In fact, for K = 1 , we recover the L -bound model

ith L = 

ˆ L 1 because we have just one bucket in the stockpile; for

 = B and 

ˆ L k = 

M k 
W k 

for all k = 1 . . . K, we recover the upper bound

odel because we have as many buckets as we have blocks. In or-

er to obtain a lower bound on the objective function of the non-

inear model ( P 

b ), we must add these constraints: 

 ̄

p 

kt 
= ̄ı p 

k ′ t ∀ k, k ′ ∈ K, ∀ t ∈ T (26) 

 

b∈B 
W b ̄y 

s 
bkt = 

∑ 

b∈B 
W b ̄y 

s 
bk ′ t ∀ k, k ′ ∈ K, ∀ t ∈ T (27) 

emma 2. Let v b be the optimal objective function value of the non-

inear model ( P 

b ) , and v kb be that of model ( P 

kb ) , then v kb ≤ v b . 

roof. We show that from the optimal solution of ( P 

kb ) we can

onstruct a feasible solution for ( P 

b ). Define i 
p 
t = 

∑ K 
k =1 ̄ı 

p 

kt 
, i s t =

 K 
k =1 ̄ı 

s 
kt 

and y s 
bt 

= 

∑ K 
k =1 ȳ 

s 
bkt 

. Constraint (2) is satisfied owing to

he revision expressed in (21) ; constraints (9) and (11) are satis-

ed based on our variable definitions in which we cumulate over

 . From constraint (24) , we have ∀ t ∈ T : 

 

p 
t = 

K ∑ 

k =1 

ˆ L k · ı̄ p 
kt 

= 

( 

K ∑ 

k =1 

ˆ L k 

) 

· ı̄ p 
1 t 

( by (26)) 

= 

( 

1 

K 

K ∑ 

k =1 

ˆ L k 

) 

·
(
K · ı̄ p 

1 t 

)

= 

( 

1 

K 

K ∑ 

k =1 

ˆ L k 

) 

· i p t 

here the last implication follows from the definition of i 
p 
t at the

eginning of the proof and (26) . 



218 E. Moreno et al. / European Journal of Operational Research 260 (2017) 212–221 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

v

P  

(  

s  

b  

v
 

w  

d  

s  

t

∑

I  

f  

r

4

 

a  

m

5

 

s  

t  

g  

u  

t  

G  

t  

f

 

t  

t  

s  

l

 

t  

a  

o  

c  

p  

i  

G  

i  

H  

i  

F  

W  

c

Hence, as in the proof of Lemma 1 , this equality implies that 

m 

s 
t = 

∑ 

b∈B 

∑ 

t ′ ≤t 

M b y 
s 
bt ′ −

∑ 

t ′ <t 

m 

p 
t ′ 

= 

∑ 

b∈B 

K ∑ 

k =1 

∑ 

t ′ ≤t 

M b ̄y 
s 
bkt ′ −

( 

1 

K 

K ∑ 

k =1 

ˆ L k 

) ∑ 

t ′ <t 

i p 
t ′ 

≥
∑ 

b∈B 

K ∑ 

k =1 

∑ 

t ′ ≤t 

ˆ L k W b ̄y 
s 
bkt ′ −

( 

1 

K 

K ∑ 

k =1 

ˆ L k 

) ∑ 

t ′ <t 

i p 
t ′ ( by (25)) 

= 

K ∑ 

k =1 

ˆ L k 
∑ 

b∈B 

∑ 

t ′ ≤t 

W b ̄y 
s 
bkt ′ −

( 

1 

K 

K ∑ 

k =1 

ˆ L k 

) ∑ 

t ′ <t 

i p 
t ′ 

= 

( 

K ∑ 

k =1 

ˆ L k 

) 

·
( ∑ 

b∈B 

∑ 

t ′ ≤t 

W b ̄y 
s 
b1 t ′ 

) 

−
( 

1 

K 

K ∑ 

k =1 

ˆ L k 

) ∑ 

t ′ <t 

i p 
t ′ ( by (27))

= 

( 

1 

K 

K ∑ 

k =1 

ˆ L k 

) 

·
( 

K ·
∑ 

b∈B 

∑ 

t ′ ≤t 

W b ̄y 
s 
b1 t ′ 

) 

−
( 

1 

K 

K ∑ 

k =1 

ˆ L k 

) ∑ 

t ′ <t 

i p 
t ′ 

= 

( 

1 

K 

K ∑ 

k =1 

ˆ L k 

) 

·
∑ 

b∈B 

∑ 

t ′ ≤t 

W b y 
s 
bt ′ −

( 

1 

K 

K ∑ 

k =1 

ˆ L k 

) ∑ 

t ′ <t 

i p 
t ′ 

= 

( 

1 

K 

K ∑ 

k =1 

ˆ L k 

) 

·
( ∑ 

b∈B 

∑ 

t ′ ≤t 

W b y 
s 
bt ′ −

∑ 

t ′ <t 

i p 
t ′ 

) 

= 

( 

1 

K 

K ∑ 

k =1 

ˆ L k 

) 

i s t ( by (19)) 

proving the result. �

4.4. L-average bound model ( P 

la ) 

A novel way to approximate the nonlinear models similar to the

L -bound is to fix the grade of the material leaving the stockpile to

a fixed value L , but instead of requiring each block to have a grade

greater than or equal to L , this model requires all the blocks that

are going into the stockpile to have a grade greater than or equal

to L “on average.” Formally, we replace constraint (13) with the

following constraints: 

m 

p 
t = L · i p t ∀ t ∈ T (28)

L ·
∑ 

b∈B 

∑ 

t ′ <t 

W b y 
s 
bt ′ ≤

∑ 

b∈B 

∑ 

t ′ <t 

M b y 
s 
bt ′ ∀ t ∈ T . (29)

Lemma 3. Let v b be the optimal objective function value of nonlinear

model ( P 

b ), and v la be that value of model ( P 

la ), then v la ≤ v b . 

Proof. Let us reconsider the definitions of the variables i s t and

m 

s 
t as given in constraints (19) and (20) . We can multiply con-

straint (19) by L and use the following version of constraint (28) :∑ 

t ′ <t m 

p 

t ′ = L · ∑ 

t ′ <t i 
p 

t ′ to cancel the last term in (20) and the last

term in (19) multiplied by L . Constraint (29) implies that the first

term on the right hand side of (20) is greater than that same term

in (19) multiplied by L . We can then compare left-hand sides of

these same two equations to conclude that m 

s 
t ≥ L · i s t for all t ∈ T ,

proving that constraint (13) holds (because L = 

m 

p 
t 

i 
p 
t 

by constraint

(28) ). �

Moreover, we can prove that this model provides a better ap-

proximation to the nonlinear model ( P 

w ). 

Lemma 4. Let v lb , v kb and v la be the optimal objective function val-

ues of models ( P 

lb ), ( P 

kb ) and ( P 

la ), respectively. For the best pos-

sible value of parameters L lb , ˆ L kb 
k 

and L la , respectively, the following
nequalities hold: 

 

lb ≤ v kb ≤ v la 

roof. The first inequality holds because for any value of L lb for

 P 

lb ), we can define two buckets, one with grade ˆ L 1 = L lb and a

econd with grade ˆ L 2 ≥ L lb . The optimal solution of model ( P 

lb ) can

e reassigned to this 2-bucket model with a profit at least equal to

 

lb . 

For the second inequality, given an optimal solution of ( P 

kb )

ith variables ȳ s 
bkt 

representing the material in each bucket, if we

efine y s 
bt 

= 

∑ K 
k =1 ȳ 

s 
bkt 

and L̄ = 

1 
K 

∑ K 
k =1 

ˆ L k , then y s 
bt 

satisfies con-

traint (29) for grade L = L̄ . In fact, by (25) , we have that if ȳ s 
bkt 

> 0

hen M b ≥ ˆ L k · W b . Hence, 

 

b∈B 
M b y 

s 
bt = 

∑ 

b∈B 

K ∑ 

k =1 

M b ̄y 
s 
bkt ≥

∑ 

b∈B 

K ∑ 

k =1 

ˆ L k W b ̄y 
s 
bkt 

= 

( 

K ∑ 

k =1 

ˆ L k 

) 

·
( ∑ 

b∈B 
W b ̄y 

s 
b1 t 

) 

( by (27)) 

= 

( 

1 

K 

K ∑ 

k =1 

ˆ L k 

) 

·
( 

K ·
∑ 

b∈B 
W b ̄y 

s 
b1 t 

) 

= L̄ ·
∑ 

b∈B 
W b y 

s 
bt 

n other words, we can construct an equivalent feasible solution

or model ( P 

la ) using L = L̄ with the same objective, proving the

esult. �

.5. Summary of all models 

This section provides a summary of all models, listing the vari-

bles, the objective function and constraints associated with each

odel (see Table 1 ). 

. Graphical representations 

We can assume that in a mine, some material is sent to the

tockpile in the first time period and is processed at the mill in

he second period. Since profit per ton is a linear function of the

rade, we assume that the “grade” g of the material is defined by

nits of profit per ton. We can represent the total tonnage sent to

he stockpile with grade greater than or equal to g using a function

 ( g ). An illustrative example of this function appears in Fig. 2 . Note

hat if all of this material is sent to mill, the total profit recovered

rom the stockpile is equivalent to the area below G ( g ). 

In the case of the L -bound model, the total profit obtained from

he stockpile is L · G ( L ), equivalent to the area of a rectangle below

he curve (see Fig. 2 a). Material with grade less than L cannot be

ent to the stockpile in this model, and the material with grade at

east L is extracted with a grade equal to L . 

Fig. 2 b represents, for the K -bucket model, the specific case of

wo buckets with grade L 1 and L 2 , where G ( L 2 ) tons are extracted

t profit L 2 , and G (L 1 ) − G (L 2 ) tons are extracted at grade L 1 ; we

btain a higher profit in this case than for the L -bound model, be-

ause the grade attributed to the material in the stockpile is more

recisely matched with the true grade, and more material overall

s allowed to be stockpiled. Note that constraint (26) requires that

 (L 1 ) − G (L 2 ) = G (L 2 ) . Fig. 2 c shows a selection for grade L 2 that

mproves the value of the material processed from the stockpile.

ence, the best selection of grades L k for this example must sat-

sfy the condition that G (L k ) − G (L k +1 ) = G (L K ) for k = 1 , . . . , K − 1 .

ig. 2 d shows an example with five buckets of equal tonnage.

hen K increases, a higher fraction of the total profit can be re-

overed from the stockpile. 



E. Moreno et al. / European Journal of Operational Research 260 (2017) 212–221 219 

Fig. 2. Graphical examples of L -bound, K -bucket and L -average models. The green area shows the obtained profit by processing the material in the stockpile. The light green 

color shows the profit above G ( L ) which compensates for the profit that was not obtained below G ( L ). (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Table 2 

Problem instance characteristics. 

Instance # blocks # blocks in ultimate pit Discount factor (%) Mining cap (MT/year) Mill cap (MT/year) 

newman1 1 ,060 1 ,059 8 2 1.1 

marvin 53 ,271 8 ,516 10 60 20.0 

zuck-small 9 ,400 9 ,399 10 60 20.0 

sm2 99 ,014 18 ,388 10 12 1.4, 1.8, 2.1, 2.2,...,2.2 

zuck-medium 29 ,277 27 ,387 10 18 8.0 

zuck-large 96 ,821 96 ,821 10 3 1.2 
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Fig. 2 e shows an example of the L -average model in which we

an extract more than G ( L ) tons with grade L . This is possible be-

ause the green area above the curve is compensated for by the

rofit of material with a grade greater than L (light green region).

he figure shows that we can increase the value of L , allowing us

o obtain a higher profit by extracting the same material. In fact,

here exists a value L ∗ such that we gain the maximal profit, equiv-

lent to the area below G ( L ) (see Fig. 2 f). 

. Computational experiments 

In this section, we examine the solution quality associated

ith different linear-integer and nonlinear-integer models. In

ection 6.1 , we compare the proposed models to the nonlinear

odel. This requires a reduction in problem size, accomplished

y fixing the block extraction time in all models. In Section 6.2 ,

e compare two linear-integer models using a customized solver

alled OMP ( Rivera, Brickey, Espinoza, Goycoolea, & Moreno, 2016 )

ithout fixing the block extraction time. Unless otherwise stated,

e perform all computation on a Dell R620 with eight Xeon E5-

670 2.0 gigahertz cores and 128 gigabytes RAM. 

.1. Comparing different linear models to the nonlinear model 

Our first computational experiment compares the quality of our

inear-integer models against that of the nonlinear models pre-

ented by Bley et al. (2012a) . We coded the models in AMPL

2014) and solved models ( P 

ns ), ( P 

ub ), ( P 

la ), ( P 

kb ), and ( P 

lb ) using

PLEX (2009) . Nonlinear models ( P 

b ) and ( P 

w ) were solved using

CIP 3.1.0 ( Vigerske & Gleixner, 2016 ) with CPLEX 12.6 as the linear

olver. 

We use six instances: newman1, marvin, sm2, zuck-small, zuck-

edium , and zuck-large , available on the Minelib website ( Espinoza,
oycoolea, Moreno, & Newman, 2013 ). Table 2 presents the unique

haracteristics of these instances, which include two capacity con-

traints for each time period: one for the total mined material,

nd a second for the total processed material; the latter restriction

akes inventory relevant. We add one stockpile using a rehan-

ling cost equal to 10% of the original mining cost. Standard solvers

re not able to produce optimal solutions for such large instances,

ven without stockpiles. Hence, in order to compare solver perfor-

ance more precisely, i.e., through an optimal objective function

alue, we simplify our instances by fixing the extraction time pe-

iod (i.e., the x -variables) in all models to that of the best-known

olution for each instance presented on the Minelib website. Note

hat resulting problems have only continuous variables. We later

elax this assumption. 

Bley, Gleixner, Koch, and Vigerske (2012b) explain that the non-

inear model ( P 

w ) performs considerably better than ( P 

b ), but re-

uires a substantial amount of memory, e.g., we are only able to

btain solutions to ( P 

w ) for instances newman1 , zuck-small , sm2

nd marvin due to memory requirements; the latter instance re-

uires more than 100 gigabytes of RAM to obtain a solution within

 0.13% optimality gap after two weeks of run time. 

On the contrary, we found the optimal solution using each of

he linear models ( P 

lb ), ( P 

kb ) and ( P 

la ) in a few seconds of run

ime for all instances. For models ( P 

la ) and ( P 

lb ), we tested sev-

ral values of L with a view to improving the objective function

or which our numerical experiments indicate unimodality in L ,

nabling us to perform a simple line search for its optimal value

orresponding to each model and instance. In the case of ( P 

kb ), for

ase of comparison, we consider four buckets for all instances and

xplore several bucket k grade values L k under the assumption that

y increasing the number of buckets in the stockpile, the objective

unction value of ( P 

kb ) approaches the upper bound of the prob-

em given by ( P 

ub ). 
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Table 3 

NPV normalized to ( P ns ) model. 

Instance Original mill capacity 50% of original mill capacity 

( P ub ) ( P w ) ( P la ) ( P kb ) ( P lb ) ( P ub ) ( P w ) ( P la ) ( P kb ) ( P lb ) 

newman1 1 1 1 1 1 1.1957 1.1858 1.1857 1.1145 1.0959 

marvin 1.0212 1.0170 1.0169 1.0114 1.0081 1.2823 1.2246 1.2226 1.1647 1.1420 

zuck-small 1.0199 1.0157 1.0157 1.0104 1.0073 1.2735 1.2165 1.2132 1.1548 1.1342 

sm2 1.0025 1.0019 1.0016 1.0011 1.0 0 05 1.2589 – 1.1406 1.0749 1.0693 

zuck-medium 1.0159 – 1.0126 1.0086 1.0062 1.3237 – 1.2429 1.1608 1.1451 

zuck-large 1.0061 – 1.0047 1.0031 1.0029 1.1883 – 1.1262 1.1013 1.0935 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

NPV normalized to ( P ns ) for the original mill capacity 

case without fixing the extraction time, and solved with 

OMP. 

Instance ( P ub ) ( P la ) 

newman1 1 1 

marvin 1.0500 1.0365 

zuck-small 1.0516 1.0377 

sm2 1.0087 1.0047 

zuck-medium 1.0489 1.0373 

zuck-large 1.0108 1.0091 
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Table 3 displays the resulting NPV, normalized to that of the

( P 

ns ) model. The objective function values corresponding to all

models for the newman1 instance are the same because we have

extra mill capacity and therefore there is no incentive to stockpile.

The differences in objective function values between the most ex-

treme models, models ( P 

ns ) and ( P 

ub ), for the marvin and zuck-

small instances (i.e., those that benefit most from stockpiling) are

2.07% and 1.95%, respectively. For the newman1 , marvin , sm2 and

zuck-small instances, that difference between ( P 

w ) and ( P 

la ), the

theoretical nonlinear “mixing model” and our closest approxima-

tion to it, is less than 0.17%, and the difference between ( P 

w ) and

( P 

kb ) is less than 0.7%. In other words, the ( P 

la ) model provides a

very close approximation to the objective function given by ( P 

w ). 

A comparison of the objective function values from the models

whose instances can all be solved in our numerical experiments in-

dicate a difference between ( P 

ub ) and ( P 

kb ) of less than 0.97%, and

a difference between ( P 

ub ) and ( P 

la ) of less than 0.42%. In other

words, these linear models approximate the nonlinear model very

well, provide solutions with corresponding objective function val-

ues that are close to the theoretical optimum, and are much more

tractable. 

Changing the maximum mill production capacity illustrates that

there is some trade-off between stockpiling and this parameter. In

order to better demonstrate the difference between our proposed

models, we decrease the milling capacity relative to the mining ca-

pacity, which increases the value of the stockpile, especially with

a fixed extraction sequence, and a corresponding relative increase

in the amount of material left on the stockpile relative to what is

extracted. Table 3 illustrates the trade-off between stockpiling and

mill capacity for all instances. Decreasing mill capacity results in as

much as 20% value added at half of the original for the newman1

instance. Relative to each other, the models perform similarly; the

difference in objective function value between ( P 

w ) and ( P 

la ) is

less than 0.03% for the three instances that we were able to solve. 

6.2. Comparing linear-integer models considering the extraction 

sequence 

Our set of computational experiments in Section 6.1 shows that

( P 

la ) provides a very close objective function value to that of ( P 

w )

for a model with a predefined extraction sequence. In this sec-

tion, we first compare the quality of the LP relaxation provided by

( P 

ns ), ( P 

ub ), and ( P 

la ) without fixing the extraction time. Note that

state-of-the art solvers based on the Bienstock–Zuckerberg algo-

rithm only solve the corresponding linear program of our linear-

integer production scheduling problems in an exact way, and then

apply other techniques that use this relaxed solution to generate

a near-optimal integer solution, e.g., the academic solver OMP. The

nonlinear model cannot be solved with the current state-of-the-

art algorithms, e.g., SCIP and BARON, even with the size of ma-

chine we use. Therefore, we focus on the difference between the

LP-relaxation of our L -average and the upper bound models, be-

cause they can be computed in an exact way. 
Table 4 displays the resulting NPV, normalized to that of the

o-stockpile model. The time required by OMP to solve these

roblems varies from a few seconds ( newman1 ) to 19 minutes

 zuck_large ). Because of the limitations of the OMP solver, and for

he sake of consistency between models, for these instances, we

o not consider rehandling costs. The upper bound model and the

olution provided by the L -average model differ in objective func-

ion value by less than 0.9%, on average, with a difference for the

uck-small instance of 1.4%. These ranges show that the L -average

odel provides upper bounds that are a good approximation to

hose provided by the nonlinear model for the more general case

n which we include extraction decisions. 

Finally, we show that standard rounding techniques, e.g.,

opoSort ( Chicoisne et al., 2012 ), still provide good integrality gaps

or the mixed-integer version of the ( P 

la ) model. Table 5 shows the

bjective value of the LP relaxation compared with that from the

nteger solution obtained by running TopoSort considering a stock-

ile, i.e., using model ( P 

la ) and without considering a stockpile,

.e., using model ( P 

ns ). Standard rounding heuristics yield near-

ptimal solutions for both models, demonstrating that the addi-

ional variables and constraints required to model a stockpile do

ot loosen the LP relaxation, a crucial property for solving large-

cale instances of the problem. In fact, this is not true for the ( P 

ub )

odel. 

All the models we present can be easily adapted to the case of

cheduling clusters of blocks (e.g., predefined bench-phases, bins

r panels) by redefining extraction binary variables x bt . Specifically,

e can replace these variables by x ct for clusters c ∈ C of blocks,

nd modify (4) and (5) such that these constraints apply to each

lock in its corresponding cluster. In this way, the number of bi-

ary variables can be reduced considerably, making it possible to

btain optimal integer solutions using a Bienstock–Zuckerberg al-

orithm embedded in a branch-and-bound scheme, e.g., within the

patial branching proposed by Bley et al. (2012a) , enabling us to

olve these instances exactly; however, doing so is outside of the

cope of this paper. 

. Conclusion 

Considering stockpiling as part of open pit mine planning

resents numerous challenges: (i) the most precise model in the

iterature at the time of this writing is nonlinear and integer,
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Table 5 

Objective function values of the LP relaxation (LP), the integer program obtained via TopoSort (IP), 

and the corresponding integrality gaps (Int. Gap) obtained with OMP for our best stockpiling model, 

( P la ), and the corresponding model with no stockpiling, ( P ns ) 

Instance LP ( P la ) IP ( P la ) Int. Gap (%) LP ( P ns ) IP ( P ns ) Int. Gap (%) 

newman1 24.486 24.486 0.0 0 0 24.486 24.486 0.0 0 0 

marvin 944.767 935.024 1.031 911.480 889.729 2.386 

zuck-small 939.728 927.599 1.291 905.544 879.886 2.833 

sm2 1660.120 1658.475 0.099 1652.393 1650.818 0.095 

zuck-medium 776.037 718.464 7.419 748.150 710.379 5.049 

zuck-large 58.468 57.891 0.986 57.938 57.391 0.945 
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ielding a non-convexity and therefore no guarantee of a global

ptimum; (ii) nonlinear-integer models are often intractable, espe-

ially for realistically sized instances; (iii) even if we obtain a so-

ution for these models, the way in which some assumptions are

andled, in particular, that of homogeneous mixing of the mate-

ial in a single stockpile in each time period, is unrealistic. This

aper proposes several variants of linear-integer models that ex-

edite solutions. Computational experiments show that the linear-

nteger model, ( P 

la ), the best for the realistic instances we test, is

ractable and possesses an objective function value very close to

hat of ( P 

w ) and ( P 

b ), the nonlinear models. 

Blending ore with contaminants can be modeled with ( P 

la ); in

his case, the economical impact of stockpiles could be consider-

bly higher than in our cases. The proposed L -average model can

asily be extended to consider more than one grade, and to ac-

ount for degradation in the stockpile. In practice, since model in-

tances solve sufficiently quickly, it is possible to iteratively deter-

ine an optimal value of L using a binary search. However, an in-

eresting avenue for future research would integrate the branching

cheme proposed by Bley et al. (2012a) to this end, which would

rove to be of particular importance for the trivial extension of the

 -average model to the case in which a different value of L exists

or each time period. 
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