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Abstract. In July 2014, Kaiser Permanente, a major integrated healthcare delivery consor-
tium, opened a new hospital, replacing an existing hospital, adjacent to its headquarters
in Oakland, California. Hospital staff needed to devise a new operating room schedule.
In developing the schedule, the key decisions the staff would have to make were the type
of block (i.e., a combination of surgery types that can be performed in the same operating
room on the same day) to assign to each operating room on each day of the planning
horizon. We report on the development and implementation of an integer programming
model to generate a near-optimal block schedule. The approach differs from many in the
literature because it considers both direct nursing costs and patient-related costs, and can
accommodate a variety of practical constraints.

Kaiser Permanente Oakland implemented the proposed schedule and continues to use
it with minor modifications in response to subsequent growth and changes in patient
demand patterns. Three major benefits of the schedule are that it: (1) satisfies almost
all of the monthly block requirements in only four weeks, thereby releasing capacity to
reduce the surgical backlog; (2) eliminates days with excess admissions, which would
have required additional nursing staff; and (3) reduces the number of surgeries canceled
due to an insufficient number of available beds.

History: This paper was refereed.
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Kaiser Permanente (KP) is an integrated, managed-care
consortium that comprises 38 medical centers, 618 out-
patient facilities, over 17,000 physicians, 47,000 nurses,
and 175,000 other employees, and provides services to
9.5 million healthcare members nationwide. One of its
major medical centers is located in Oakland, Califor-
nia, where the firm is based. In July 2014, KP closed
its existing hospital in Oakland and opened a new
hospital with 15 operating rooms (ORs) for in-patient
(nonambulatory) surgical procedures; of these ORs, 12
are fully equipped and three are available for future
expansion.

In anticipation of the changeover, Dr. Thomas Barber,
the Associate Physician-in-Chief, asked a team from
University of California, Berkeley to develop a block
schedule for the 12 ORs planned for the new hos-
pital and a schedule that KP could use for the last
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six months at the existing hospital. As is common in
the medical community and in the research literature,
KP’s management defines a block as a set of proce-
dure types to be performed on the same day in a sin-
gle OR. As examples, in the orthopedic specialty, one
block type might consist of four simple bone-related or
joint-related procedures (e.g., knee replacements), and
another block type might consist of one so-called revi-
sion (i.e., repair or replacement of a prior joint replace-
ment), which tends to be time consuming, plus one
short joint-related procedure.

A block schedule specifies which block type is
assigned to each OR on each day over a time hori-
zon, such as a month, after which the schedule repeats.
As a result of medical advancements, most surgeries
are performed on an outpatient basis. These surg-
eries consume OR capacity that is shared with the
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inpatient surgical blocks; however, the outpatients are
not expected to stay overnight in the hospital. In gen-
eral, because bed capacity in hospital wards is often
a constraining factor, from the standpoint of devel-
oping the block schedule, inpatient surgical blocks
are planned first and outpatient blocks are scheduled
around them.

After completing surgery, inpatients stay in the
postanesthesia care unit (PACU) until the anesthesia
has worn off and they are ready to move to a regu-
lar hospital ward. The vast majority of surgeries are
scheduled in advance with durations that are relatively
predictable (due to available historical data or the sur-
geon’s own estimate of the duration). KP staffs the
PACU accordingly; therefore, we did not have to con-
sider PACU nurses when constructing the block sched-
ule. The postsurgical patients, each of whom has an
uncertain length of stay (LOS), utilize scarce bed capac-
ity and require nursing resources, whose levels need
to be aligned with the bed occupancy (i.e., number of
occupied beds) in each ward.

Surgical and nonsurgical patients are intermixed in
the hospital wards. Surgical patients use a substantial
portion of the bed capacity in the orthopedic ward;
conversely, patients who are in the hospital for reasons
other than an elective surgery use more than half of
the bed capacity in the nonorthopedic wards. The bed
occupancy of nonsurgical patients is stable, fluctuating
only about five percent over the course of the week,
whereas the bed occupancy of surgical patients rou-
tinely fluctuates about plus or minus 20 percent from
the (weekday) mean during the week. The bed occu-
pancy on weekends is only a fraction of the weekday
occupancy.

At the commencement of our project, Dr. Barber’s
immediate concern was that, as a result of the then-
existing OR schedule, orthopedic-ward bed occu-
pancy for postsurgical patients sometimes exceeded
the ward’s capacity. Although the excess patients could
usually be accommodated in other wards, the nurses in
the medically preferred ward have a better understand-
ing of the needs of those patients and can therefore
provide better care. Dr. Barber also anticipated diffi-
culty in constructing a good, feasible schedule because
20 percent fewer beds would be allocated to orthopedic
patients in the new hospital. In addition, the existing
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OR schedule caused a clustering of postsurgical hospi-
tal admissions, often more than the usual nursing team
could handle, on specific days of the week.

Studies indicate that greater variability in patient
loads leads to higher patient mortality (Aiken et al.
2002), that higher patient loads lead to greater risk of
infection (Cimiotti et al. 2012), and that spikes in the
number of patients admitted on the same day lead to
a greater likelihood of readmission (Baker et al. 2009).
Thus, achieving more stable bed occupancy levels that
do not overload the nursing staff, and reducing the
peak number of postsurgery admissions on any given
day, can contribute to better medical outcomes for the
patients and improve operational efficiency.

A team of doctors and nurses, known as the
smoothing team because of its goal of smoothing bed
occupancy in hospital wards, had been working on
developing an improved schedule for several months
using a trial-and-error approach; however, when we
began the project, team members had not yet found
a schedule that was satisfactory for the orthopedic
ward in the existing hospital and had not made much
progress on developing a schedule for the new hospi-
tal. To explore different scheduling options, they used
a spreadsheet, seeking to minimize the mean absolute
deviation (MAD) of the actual bed occupancy from the
average occupancy. If A, is the actual bed occupancy
in period t and A is the average bed occupancy over a
horizon of T periods, then MAD is defined as
2 |At —Al
T M

Although MAD is a useful metric if smoothing bed
occupancy is inherently valuable, our team realized
that minimizing MAD would not necessarily minimize
the peak bed occupancy, which was clearly a consid-
eration; therefore, we decided to delve further into the
problem to better understand it.

We developed a block schedule that considers both
nursing and patient-related costs, and a plethora of
other practical constraints. The final schedule enables
the orthopedics ward to stay within its reduced bed
capacity and also allows KP to fit almost all of the
monthly block requirements into a four-week time
window, thereby freeing about six percent of the OR
capacity for future growth or reducing the surgical
backlog. We provide details in the Implementation and
Benefits section.

MAD =
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Table 1. The Minimum Number of Blocks Required in a Month Differs Across the 15 Block
Types. High = 13-30; Medium = 6-12; Low =1-5

Block type Min. no. of blocks Block type Min. no. of blocks
Orthopedics (revision®) Medium Adult surgery (cancer) Medium
Orthopedics (nonrevision) High Adult surgery (noncancer) Medium
Spine (short surgeries) Medium Plastic surgery Low

Spine (incl. one long surgery) High Pediatric spinal surgery Low
Gynecology (cancer) Low Pediatric general surgery Low
Gynecology (noncancer) Low Pediatric neurosurgery Medium
Podiatry (inpatient) Low Pediatric surgery (other) Medium
Urology High

Note. *Subsequent surgery for repair or replacement following a joint replacement or similar procedure.

Kaiser Permanente’s Block-Scheduling
Problem

After several meetings with the smoothing team, we
had a clearer understanding of KP’s goals, both tan-
gible and intangible, and information on the block-
scheduling constraints, as we describe next.

KP utilizes 15 inpatient block types, which it dif-
ferentiates based on surgical specialty or subspecialty,
surgical procedure types, and sometimes the number
of each type of surgical procedure, within a block.
Table 1 lists the block types and the range correspond-
ing to the minimum required number of blocks per
month for each type. (For confidentiality reasons, we
cannot disclose more detailed data.)

The three adult wards associated with the block
schedule are orthopedics (ward A) with 24 beds and
adult ward B (a combination of two 24-bed wards).
The pediatric wards are smaller. The hospital also has
intensive care units and wards that provide an inter-
mediate level of care (i.e.,, more care than in general
wards but less than in the intensive care unit); however,
the utilization in these wards is purposely kept at a
level that allows for unanticipated emergencies. There-
fore, we did not need to consider them. The hospital
also has other specialty wards for which the vast major-
ity of the bed occupancy is not the result of elective
surgery; therefore, we did not need to include them in
our study.

Elements of the Objective Function

Because the orthopedics ward typically had high bed
utilization, minimizing MAD would have eliminated
most of the unwanted peaks. However, as we inquired
further, we discovered out-of-pocket costs that should
legitimately be included in the objective function. As
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our study proceeded, we found that incorporating the
peak expected bed occupancy in each ward with a suf-
ficiently high weight in the objective function reliably
reduced the peaks. We could achieve this while avoid-
ing distortions that would have resulted from incorpo-
rating deviations below the mean (as were implicit in
MAD), which had no adverse effects on costs or med-
ical outcomes. For this reason, we only utilized MAD
as a tiebreaker. Next, we list the considerations in our
objective function and the rationale for each.

(1) Costs of nurses above a core (baseline) level in
each ward on each day: KP prefers to maintain a core
(constant minimum) staff of nurses in each ward; it
maintains one level for weekdays and another level
for weekends. It also schedules additional nurses as
the bed occupancy necessitates; however, these nurses
must be notified in advance (i.e., three days in advance
when we started the project, but only one day as of this
writing), and KP must pay them even if it ultimately
does not use their services.

(2) Costs of nurses to handle excess admissions
above a threshold in each ward on each day: Surgical
patients who must stay overnight or longer are admit-
ted to the hospital. The core nursing staff in each ward
can handle the processing of a specified maximum
number of new admissions each day. If admissions to
the ward are expected to exceed that number, an addi-
tional nurse must be scheduled.

(3) Expected patient days in excess of the effective
bed capacity set aside for surgical patients, assuming
that each patient is assigned to the medically preferred
ward: Excess patients can be assigned either to beds set
aside for emergency patients in the same ward but not
utilized, or to beds in other wards, an option that KP
prefers to avoid.
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(4) Reduction of backlogged blocks for each surgi-
cal specialty by an amount within a specified range:
Because of small-to-modest fluctuations in the need for
surgery among its members (health plan customers),
KP’s Oakland hospital has surgical backlogs that vary
by specialty. Management wishes to reduce these back-
logs by scheduling additional surgical blocks (within
a specified range) above the steady state surgical
demands reflected in the minimum number of blocks
per month of each type. For some types of procedures
(e.g., cancer surgery), it is desirable to keep the backlog
close to zero. For other types of procedures, a small-
to-modest backlog is desirable because the patient’s
condition may improve without surgical intervention
while he or she is in the queue, or patients may need
time to plan their personal and work affairs prior to
undergoing major surgery (e.g., spinal surgery). We
note that KP has three other hospitals within 15 miles
of its Oakland hospital; therefore, it can manage surgi-
cal queues across a fairly large pool of ORs, if necessary.

(5) Peak expected bed occupancy in each hospital
ward: When the wards approach 100 percent utiliza-
tion of the beds, it is sometimes necessary to delay or
cancel surgeries because of concerns about not having
a suitable place for patients to recover after surgery.
Thus, holding all else equal, minimizing the peak bed
occupancy in each ward could contribute to reducing
surgery cancelations and also leave slack for unantici-
pated events.

(6) MAD of bed occupancy in each hospital ward:
As mentioned earlier, we use this smoothness metric
as a tiebreaker.

In the remainder of the paper, we refer to the fol-
lowing combination of factors as patient-related costs:
(a) medical consequences that patients incur when bed
occupancy in the preferred ward exceeds the effective
bed capacity (an aggregate measure that is reflected in
Item 3); (b) inconvenience and potential medical costs
borne by patients when the peak bed occupancy is
high (an aggregate measure that is reflected in Item 5);
and (c) the cost of waiting and a resulting worsening
of the patient’s medical condition because of a longer
backlog, which we represent as the negative cost of a
backlog reduction (reflected in Item 4).

We note that the trade-offs among the various costs
are complex because of the highly interactive effects of
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the decisions on the various terms in the objective func-
tion. For example, switching the assignment of merely
two blocks from different specialty areas may cause
each of the terms in the objective function to increase,
decrease, or remain the same, and the effects of an
assignment change on the components of the objective
function are not necessarily correlated as one might
expect. The constraints further complicate this chal-
lenging problem. Next, we present specific examples.

KP staff articulated many requirements (i.e., hard
constraints) and other considerations, which could be
expressed either as hard constraints or as factors to
be included in the objective function. These include
resource constraints, demand satisfaction and backlog
reduction, and smoothing and spacing considerations,
as we describe next.

Resource Constraints

* Constraints to ensure that at most one block is
assigned to each eligible OR in eligible periods: ORs are
rarely utilized on weekends except for emergency pro-
cedures, and some are set aside for specific purposes.
For example, one OR is reserved for the entire day and
another from early afternoon onward for emergency
procedures. In addition, some ORs are dedicated to
urology and podiatry outpatient procedures. (We do
not need to consider the scheduling of rooms for out-
patient procedures in our solution methodology.)

¢ Constraints due to surgeon availability: The sur-
geons based at KP’s Oakland hospital also have regu-
larly scheduled blocks at a smaller KP hospital located
about 15 miles away in Richmond, California. These
commitments must be considered in developing the
Oakland hospital’s schedule.

* Bounds on the maximum number of blocks of
each type (or sum over a set of types) on a given day,
or, in some cases, over a longer horizon such as a
week: These constraints stem from the availability of
surgeons qualified to perform the procedures within
the specified block, or from the availability of ORs that
are suitably equipped for the relevant procedures (e.g.,
spinal surgery).

¢ Constraints to ensure adequate nurse staffing ac-
cording to specific ratios: California law allows a max-
imum patient-to-nurse ratio of 5:1 for regular adult
wards; smaller ratios apply to adult intensive care and
pediatric regular and intensive care wards. (We note
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that KP was one of the first healthcare organizations to
implement nursing ratio rules prior to the adoption of
the related state legislation.)

¢ Constraints to ensure appropriate scheduling of
teaching days for surgeons in each specialty: KP’s
Oakland hospital is a teaching hospital, which trains
medical interns and residents. This involves periods of
up to a full day of classes once a week, during which
specific surgeons, or possibly all surgeons within a
specialty, participate. For each specialty, there may be
constraints specifying the allowable days, and the spe-
cific day can be selected when optimizing the block
schedule.

Demand Satisfaction and Backlog Reduction

* Minimum and maximum number of blocks of
each type to be assigned during the scheduling hori-
zon, where the minimum is the steady state require-
ment and the maximum is the steady state requirement
plus the maximum allowable backlog reduction. There
may be similar constraints on the minimum and maxi-
mum number of blocks for shorter time intervals, such
as one week or two consecutive weeks.

Smoothing and Spacing Considerations

¢ Limits on the number or proportion of a (sub)-
specialty’s total block assignments over the horizon
that is scheduled in any week, or the proportion of a
(sub)specialty’s total block assignments over a week
thatis scheduled on any day (and similar constraints for
other time intervals).

¢ Limits on the change in the total number of assign-
ments for a block type from one week to the next.

We have not recounted every constraint above; how-
ever, we provide more details in the appendix. In the
next section, we briefly summarize related literature
and explain how KP’s problem differs.

Literature Review

Planning and scheduling decisions for hospital ORs
are usually made in a hierarchical fashion. Various
researchers have partitioned the decision space in dif-
terent ways; however, conceptually, the highest level of
the hierarchy involves making aggregate capacity deci-
sions, taking into account long-term considerations,
such as profit or cost. The middle level involves allo-
cating capacity at a finer level of detail, such as medi-
cal specialties or classes of patients; at this level, most
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models in the literature consider constraints pertaining
to ORs, surgeons, and the resources required for pre-
operative and postoperative care, usually with a hori-
zon that ranges from one week up to a few months.
The resulting schedules are assumed to be cyclic (i.e.,
to repeat after the cycle has elapsed). The lowest level
involves decisions regarding individual patients and
(or) surgical procedures over a horizon of one day
to one week. Santibanez et al. (2007) and Testi et al.
(2007), among others, provide overviews of three-level
hierarchical planning for ORs. Each of these papers
also reports on a three-level methodology developed
for implementation in a large public hospital. The lit-
erature on various aspects of planning and schedul-
ing hospital ORs is vast. We refer the reader to Car-
doen et al. (2010), May et al. (2011), Vanberkel et al.
(2009), Blake (2010), and Guerriero and Guido (2011)
for surveys.

In this literature review, we focus on articles in which
the primary decisions are the assignment of surgical
specialties to OR time blocks (versus the assignment of
a specific patient or patient type to a day or time slot in
the schedule), and the primary objective is smoothing
downstream resource utilization or matching a target
utilization of the beds. Within this class of problems,
virtually all models that represent the patient’s LOS in
a probabilistic fashion utilize expectations of the num-
ber of patients occupying beds; that is, if a patient will
remain in the hospital until a given day with probabil-
ity p, this generates a deterministic demand for a frac-
tion p of a bed, making it possible to formulate most
versions of the block-scheduling problem as a deter-
ministic mixed-integer program.

Several articles are closely related to our work.
Belien and Demeulemeester (2007) develop an opti-
mization model whose aim is to make block assign-
ments to smooth the bed occupancy level throughout
the planning horizon. They consider different ways
in which to achieve smoothness, including minimiz-
ing variance and minimizing a metric corresponding
to a specified percentile of the staffing or resource
requirements. Belien et al. (2009) generalize the pre-
vious model to consider multiple wards, utilizing an
objective that includes weighted values of the peaks
and variances of the mean bed occupancy levels over
the scheduling cycle. Santibafiez et al. (2007) present
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a block-scheduling model designed for a multihospi-
tal environment (although bed capacity at each hospi-
tal is analogous to bed capacity within a ward). They
suggest several objectives; five pertain to weighted or
unweighted throughput and one relates to minimiz-
ing peak usage of various hospital resources. Price
et al. (2011) address this problem using the objective
of reducing the sum (over days in the horizon) of
the excess of admissions over discharges in the inten-
sive care unit to reduce congestion in the (upstream)
postanesthesia care unit.

Some researchers examine generalizations of the
basic block-scheduling problem. For example, Belien
et al. (2009) allow an OR to be divided between
two surgical specialties on a given day, and Belien
and Demeulemeester (2008) include nurse-scheduling
decisions in their formulation. Researchers have
specifically considered the broader consequences of
block-scheduling decisions. For example, van Oostrum
et al. (2008) consider a model in which blocks are con-
structed, taking into account the impact of uncertainty
of procedure durations on overtime, and both maxi-
mization of OR utilization and leveling of bed occu-
pancy are considered in the block-scheduling problem.

A few papers describe models for cyclic block
scheduling with objectives that differ from ours. Mini-
mizing deviations or shortfalls from target allocations
of OR hours for various surgical groups or patient cat-
egories (e.g., Blake and Donald 2002 and Santibafiez
et al. 2007) is among the more common objectives, and
is often considered in highly constrained settings. This
objective helps to limit waiting times for surgical proce-
dures to be scheduled, and to achieve greater fairness
in these waiting times among patient categories.

An emerging research stream considers uncertainty
(e.g., in demand or LOS) in the context of block
scheduling in which bed occupancy is a major consid-
eration. Vanberkel et al. (2011) develop a method to
calculate the distribution of bed occupancy for each
day in the planning horizon for a given master surgery
schedule. For examples of papers that address block
scheduling under uncertainty, see Holte and Mannino
(2013) and van Essen and Bosch (2013).

KP’s problem is similar to others in the literature;
however, it has many special features, including:

(1) Direct costs and patient-related costs as a result
of either assigning a patient to a ward that is not ideal,
or delaying a surgery due to bed unavailability;
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(2) A threshold number of admissions in a ward
above which an additional nurse is required;

(3) The concept of a core nursing staff;

(4) Discretionary scheduling of blocks above the
steady state demand (to reduce the backlog);

(5) Scheduling of teaching (and, thus, nonsurgery)
days for surgeons; and

(6) Numerous realistic constraints that are more
complex than those described in the vast majority of
the literature.

Data Collection, Preparation, and Analysis
The staff and management at KP provided informa-
tion on essential inputs for our model, including (1) the
preferred hospital ward to which patients from each
block type should be admitted; (2) the target num-
ber of blocks of each type to be scheduled during the
horizon, the minimum and maximum for each week
and (or) day, and analogous values for aggregations of
block types associated with a subspecialty, if applica-
ble; (3) the number of beds available in each hospital
ward for patients undergoing elective surgery; (4) fea-
sible OR assignments for each block type; (5) surgeon
availability; (6) maximum patient-to-nurse ratios for
the various wards; (7) current backlog of each block
type; and (8) nursing costs.

KP also provided LOS data for the many thousands
of procedures (on specific patients) that had been per-
formed over an 18-month period, with each classified
into one of a few thousand different types, as defined
by KP’s own classification of surgical procedures. For
example, a total knee replacement and a laparoscopic
appendectomy are different procedure types. As with
most exercises involving raw data, our first challenge
was to clean the data set to remove records with insuf-
ficient information and those with spurious entries.
Our next challenge was to divide the procedure types
into groups to determine a LOS distribution for each
group. Groupings were tied to the definitions of the
blocks. For example, one orthopedic block type con-
sists of one long surgery (e.g., a hip replacement) and
a short surgery (e.g., a knee replacement). Therefore,
we needed to create a group of procedures that corre-
sponds to the possible long surgeries and another that
corresponds to possible short surgeries for that type
of block. Dr. Barber provided guidelines for the initial
grouping. For each group, we calculated the empirical
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probability mass functions representing the number of
days (including the day of admission) that a patient
stays in the hospital for a procedure within that group.
We then checked that the LOS distributions (e.g., mean,
25th, 50th, 75th, and 90th percentiles) for procedure
types within the same group were roughly similar to
each other. This ensured that a weighted average LOS
distribution (considering all procedure types in the
group), which we use in our solution procedure, would
be a reasonable representation of any procedure type
within the group. To convey the diversity of LOS dis-
tributions, we present histograms for two groups of
procedures with low and moderate lengths of stay in
Figure 1.

Given the (group) LOS distributions, we calculated
the expected bed occupancy that each block type
would generate for the day of surgery and for each day
until the maximum pertinent LOS, assuming that the
LOS associated with the various procedures in a block
are statistically independent; no evidence suggested
that we should assume otherwise. As an example, if a
block consists of two procedures from Group 1 and one
procedure from Group 2 with the LOS distributions
shown in Figure 1, then the expected bed occupancy
vector would be as shown in Figure 2. In this example,
all three surgery patients are occupying beds on Day 1;
however, in expectation, 0.8 of a patient (40 percent
of each of the two patients who received a procedure
from Group 1) would have departed by Day 2, and by

Figure 1. The LOS Distribution for Simple Procedures
(Group 1) Differs from the Distribution for Moderately
Complex Procedures (Group 2). (Probabilities Are Shown
to the Nearest Five Percent)
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Figure 2. A Block Consisting of Two Procedures from
Group 1 and One Procedure From Group 2 Generates the
Pattern of Expected Bed Occupancy Levels Shown in the
Graph, Where the LOS Distributions for the Procedures
from Groups 1 and 2 Are Shown in Figure 1
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Day 3, only the patient who received a procedure from
Group 2 would remain and only if his (her) LOS is three
days or more, which occurs with a 75 percent proba-
bility. Due to the extensive statistical pooling resulting
from having adult wards with 24 beds, we deemed that
using expected bed occupancy vectors would be ade-
quate. Our approach does, however, account for the
right tails, some of which can be long for complicated
procedures that require lengthy in-hospital recuper-
ation. More generally, however, advances in medical
technology have enabled less invasive surgical proce-
dures for which LOS distributions have low variances
(e.g., a range of plus or minus one day).

Solving the Scheduling Problems

As with most practical scheduling problems, the solu-
tion process was evolutionary. KP was using a monthly
schedule and specified the number of blocks of each
type that were required each month. It had no system-
atic procedure for making adjustments to account for
the facts that months have different numbers of days
and can start on different days of the week. We began
with a formulation that would accommodate between
28 and 31 days in a month, but found it burdensome
to address constraints that applied at the boundaries
between adjacent months. We eventually discovered
that scheduling virtually all of the required blocks for a
month within a 28-day window was possible. With Dr.
Barber’s support, we convinced the smoothing team
that we could move to a repeating four-week schedule.
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Only the orthopedic bed capacity prevented the
schedule from accommodating all of the baseline
monthly block requirements. Orthopedic surgeons
preferred to schedule patients who were expected
to have a several-day LOS for surgery early in the
week, creating peak bed requirements on Tuesday
and Wednesday, which sometimes exceeded the ward
capacity. These patients would often depart on Friday
or Saturday, leaving the ward underutilized on week-
ends. Recognizing that the orthopedic ward would be
smaller in the new hospital, we needed to assess the
effects of various types of changes to identify a viable
schedule. We used our methodology to create many
schedules by adjusting the various constraints, and
finally determined that it was essentially impossible to
limit orthopedic surgeries to the weekdays without cre-
ating a serious overcapacity problem in the orthopedic
ward in the new hospital. As a result of this analysis,
Dr. Barber was able to convince two orthopedic sur-
geons to each work one Saturday per month, in lieu
of a weekday, on a trial basis. This change would be
enough to eliminate the overcapacity problem in the
orthopedic ward in the new hospital.

Our final formulation is for a single 28-day hori-
zon. We needed to adjust this basic 28-day formu-
lation to consider that patients undergoing surgery
near the end of the 28-day scheduling horizon might
still be in the hospital at the beginning of the next
scheduling horizon. We considered the option of a
formulation with constraints to force the beginning
and ending conditions—expressed as the expected bed
occupancy in each of the five wards in our model from
Day 1 through the day corresponding to the maximum
LOS for any surgery type (10 days in our data)—for
each scheduling horizon to be within some tolerance.
Because all the primary decision variables in our prob-
lem are binary or integral, we found it difficult to adjust
the tolerance so that the solution to the optimization
problem would identify a schedule that minimized the
objective function and resulted in nearly equivalent ini-
tial and terminal conditions. This was primarily due
to including MAD in the objective function, which sig-
nificantly increased computation times; these increases
occurred because each new feasible schedule gener-
ated in the course of solving the optimization problem
resulted in a different value of MAD, but not neces-
sarily a change in the total nursing cost or peak bed
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occupancy levels. For this reason, we decided instead
to repeatedly solve the problem, initially assuming no
carryover patients at the beginning of the horizon, then
utilizing resulting bed occupancy levels due to carry-
over patients as input to the next iteration. We repeated
this process until the initial and terminal conditions
were sufficiently close; three or four iterations were
adequate for this purpose. This was computationally
more efficient and allowed us to retain MAD in the
objective function.

We also learned about new constraints whenever
we generated a proposed schedule that violated an
unmentioned constraint. One example is the disal-
lowance of pediatric surgery on Mondays. If a patient
became sick over the weekend (a situation that is more
likely to occur with children than with adults because
children who need surgery are generally in poorer
health), that patient’s surgery would have to be can-
celed; however, KP would have insufficient time to
schedule another surgery in that time slot. We also
learned about the importance of scheduling pediatric
general-surgery blocks every few days so that relatively
critical cases would not have to wait for more than
that period of time. Numerous such issues arose and
we gradually modified our formulation to account for
them. Often, we had to decide whether to impose hard
constraints or to modify penalties in the objective func-
tion to achieve the desired properties of the schedule,
and we generally made these decisions pragmatically
based on what was likely to be more effective.

We formulated the problem using AMPL and solved
several variants of the problem (see the Impact of Core
Nurse Staffing Levels and Weights in the Objective Func-
tion section) using CPLEX 12.6.0.1 on a Dell PowerEdge
R410 with 16 processors (running at 2.72 GHz each)
and 12 GB RAM. CPU times for our problem vari-
ants range from substantially less than one minute
up to over one hour to achieve optimality gaps of
1.5 percent or less. The key differences in CPU time
were due to the degree of flexibility in the range of
values for the decision variables. In particular, when
the core (minimum) nurse staffing levels are relatively
high (e.g., one less than the maximum that could
be required in that ward), near-optimal solutions are
identified quickly because the practical range of deci-
sions regarding staffing levels is small or zero. In
addition to using a relatively efficient formulation of
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the problem, we adjusted CPLEX default parameter
settings to reduce CPU times. We provide details in
the appendix. Typically, block-scheduling decisions are
made, at most, every few years; therefore, CPU times
of a few hours or less for each problem variant are
acceptable and would make it possible to solve several
problem variants overnight. To utilize the optimiza-
tion software in what-if mode, one could set optimality
gaps of two to three percent to solve problem instances
quickly (i.e., in a few minutes) in the exploratory phase,
and then set smaller optimality gaps for a few problem
instances when generating a final set of options from
which to choose.

Recall that KP’s initial objective was minimizing
the mean absolute deviation of the expected number
of patients. As we attempted to find good solutions,
we discovered that the inclusion of MAD tended to
lengthen solution times; however, it could also serve
as a tiebreaker if the weight on MAD in the objective
function is set to a very small value. As we explained
earlier, reducing the peak value of the expected num-
ber of patients in each ward is useful because the
resulting bed occupancy levels are more stable. This, in
turn, reduces the need to cancel surgeries and makes
the solution more robust to unanticipated fluctuations.
MAD, however, accounts for shortfalls of the bed occu-
pancy from the mean as well as deviations above the
mean, but only the latter have the potential to incur
costs or create practical challenges. The inclusion of
MAD penalizes some outcomes that should not be
penalized and may thereby distort the solution. As
such, its inclusion may not be sensible in view of the
increased solution times, unless a more fundamental
reason for smoothness in the bed occupancy exists.

Impact of Core Nurse Staffing Levels and
Weights in the Objective Function

Our formulation provides flexibility in choosing cer-
tain parameters such as the core (baseline) nurse
staffing levels in the various wards, which had been
chosen based on tradition but were changeable. In solv-
ing a variety of problems with different objective func-
tion weights and different core nurse staffing combi-
nations, we gained insights that would be useful to
another hospital that is updating its block schedule. We
found that objective function coefficients, if set within
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realistic ranges, have predictable impacts; therefore, we
instead focus on the more interesting results.

Because our model pertains to inpatient surgical
blocks, we report only corresponding bed occupan-
cies; actual bed occupancies would include nonsur-
gical patients. We consider core nurse staffing levels
that range from slightly below the levels necessary to
support the average bed occupancy due to surgical
patients to levels that are similar to those that would
be needed to handle both surgical and nonsurgical
patients. We focus here on results pertaining to the
adult orthopedic ward, which we call Ward A, and the
adult medical ward, which we call Ward B. (Ward B is
a combination of two physical wards.) Occupancy in
the other wards is also affected by the block schedule;
however, KP experiences fewer capacity-related prob-
lems in those wards. We discuss several observations
and insights later.

We found that the core nurse staffing levels have
an unexpected effect on the smoothness of the bed
occupancy levels in the resulting solutions. When the
core nurse staffing levels are set at generous values,
the total nursing cost becomes a sunk cost; therefore,
the other factors, the bulk of which pertain to smooth-
ness of the bed occupancy in the wards, carry more
importance. Hence, even if two different combinations
of core nursing levels lead to essentially the same total
nurse staffing levels in the wards, the bed occupancy
is often smoother when we start with larger core nurse
staffing levels. This phenomenon is evident in Figure 3,
which shows bed occupancy levels in Ward A for core
nurse staffing combinations of (4,3) and (2,2), where
the first (second) value in parentheses denotes the core
nurse staffing level in Ward A (B). (Recall that the nurse
staffing level in Ward B also affects the outcomes in
Ward A because surgery blocks associated with the
two wards share many of the same ORs.) Notice that
the weekly patterns of expected bed occupancy for the
(4,3) case—the case with the higher core nurse staffing
levels—are similar, and midweek bed occupancy lev-
els do not fluctuate much from day to day. To be more
specific, the expected bed occupancy levels on Mon-
days (Days 1, 8, 15, and 22) are between 12.7 and 13.8;
midweek levels are between 15.4 and 17 4; Friday levels
are between 13.3 and 15.5; Saturday levels are between
8.1 and 10.0; and Sunday levels are between 5.6 and
6.0. By contrast, much greater variations can be seen
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Figure 3. (Color online) Applying Our Optimization
Procedure to Different Combinations of Core Nurse Staffing
Levels Leads to Different Patterns of Expected Bed
Occupancy Levels (Shown for Ward A). The Pair (4, 3)
Denotes Four Nurses in Ward A and Three Nurses in Ward B
in the Core Nurse Staffing Configuration, and (2, 2) Denotes
Two Nurses in Each Ward in the Core Staffing Configuration
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for the (2, 2) core nurse staffing combination. Although
the Monday expected bed occupancy levels are stable
(ranging from 9.4 to 9.8), the midweek range is 13.8
to 18.9; the range on Friday is 14.1 to 20; the range
on Saturday is 9.9 to 14.7; and the range on Sunday is
5.9 to 7.4. As such, with the exception of Monday, the
ranges under the (2,2) core nurse staffing combination
are approximately 2.5 times that of the (4, 3) core nurse
staffing configuration. However, the former combina-
tion has lower nursing costs in Ward A because the
expected bed occupancy is 15 or less (requiring only
three nurses) on all but three days during the 28-day
horizon, and the expected bed occupancy is roughly 19
(requiring four nurses) on the other days. On the other
hand, the schedule with the (4,3) core nurse staffing
combination requires four nurses each day.

To further illustrate this point, for a representative
problem instance, Figure 4 shows the values of nurse
days (on the horizontal axis) and the sum of the max-
imum excess bed occupancy levels across the wards
(on the vertical axis) for six combinations of core nurse
staffing levels in the two adult wards. The maximum
excess bed occupancy in each ward is the maximum,
across the days in the scheduling horizon, of the num-
ber of patients in excess of the nominal number of beds
allocated to surgical patients. In the figure, the mark-
ers are labeled with the corresponding pair of core
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Figure 4. (Color online) Increasing Core Nurse Staffing
Levels in the Two Adult Wards (and Thus Also Increasing
the Total Number of Nurse-Days) Does Not Always
Decrease the Sum of Maximum Excess Bed Occupancy
Levels Across the Wards. (Marker Labels Show the Core
Nurse Staffing Levels in the Two Adult Wards.) For
Example, When Moving from (3, 2) to (4,2), the Number of
Nurse-Days Increases; However, the Sum of the Maximum
Excess Bed Occupancy Levels Also Increases
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nurse levels in the adult wards. Not surprisingly, using
smaller values of the core nurse staffing levels generally
leads to solutions with a smaller number of nurse days.
As noted earlier, we found it surprising that the solu-
tion with the largest number of nurse days (which cor-
responds to core nurse staffing levels of four in Ward
A and three in Ward B on the weekdays) leads to a
solution with a smaller value of the maximum excess
bed occupancy level, summed across the wards, which
is an indicator of the smoothness of the bed occupancy
levels. The relationship between the sum of the maxi-
mum excess bed occupancy levels and nursing cost is
clearly not monotonic, partly because we are solving
an integer program. Although we might expect that
high values of the core nurse staffing levels lead to less
stable bed occupancy levels, the opposite can occur for
the reasons we previously explained.

We also found that the core nurse staffing levels
have an unexpected effect on the number of additional
blocks from the backlog that are accommodated in the
schedule. Figure 5 shows that the solution with the
largest number of nurse days (i.e., core nurse staffing
levels of four and three in Wards A and B, respec-
tively) on the weekdays leads to no reduction in the
backlog, whereas four of the other five solutions do.
High core nurse staffing levels lead to greater impor-
tance of smoothness of the bed occupancy and the
resulting solutions may not leave sufficient slack to
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Figure 5. (Color online) Increasing Core Nurse Staffing
Levels in the Two Adult Wards (and Thus Also Increasing
the Total Number of Nurse Days) Does Not Always Lead to
a Larger Reduction in Backlogged Blocks. (Marker Labels
Show the Core Nurse Staffing Levels in the Two Adult
Wards.) For Example, Moving from (3, 2) to (4,2), the
Number of Nurse Days Increases; However, the Backlog
Reduction Changes From Five to Zero
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accommodate another block. However, when the core
nurse staffing levels are low, if identifying a feasible
OR schedule with only the core nursing staff is not
possible, nurses must be added on a subset of the
days. There may then be enough slack to allow addi-
tional blocks to be scheduled. That is, fluctuations in
the nurse staffing level from day to day can facilitate
accommodating additional blocks.

Although we considered all factors in the objective
function in constructing the schedule that KP ulti-
mately implemented, our formulation allows consider-
able flexibility in this regard, and other hospitals might
choose different weights. For example, a public hospi-
tal with limited resources might consider only nursing
costs. Conversely, a private hospital whose patients are
wealthy or have generous insurance coverage might
consider almost exclusively patient-related costs and
pass on the additional nursing costs to patients. We
found that calibrating weights on the various terms
in the objective function requires some care. Although
it is relatively easy to determine the direct cost of
additional nurses, it can be difficult to specify the
weight that should be associated with a patient who
is assigned to a nonpreferred hospital ward because
of insufficient space in the preferred ward, or to a
surgery that—with some probability—will need to be
delayed if the number of surgical patients in a ward
exceeds the usual allocation and the number of non-
surgical patients pushes the total number of patients
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over the ward’s capacity. In addition to these funda-
mental issues, we found that putting the entire weight
on nursing costs did not necessarily lead to sched-
ules that are bad for the patients, and that putting the
entire weight on patient-related costs did not neces-
sarily lead to solutions with high nursing costs. Over-
all, we found that—for our formulation—the impact of
the core nurse staffing levels was much stronger than
almost all other effects, because these levels indirectly
change the effective weights on the terms in the objective
function. Thus, we recommend that researchers and
practitioners who wish to implement an approach sim-
ilar to ours take advantage of the flexibility that such
models afford and try a wide range of weights and val-
ues of controllable parameters to understand how they
affect the characteristics of the solutions.

Implementation and Benefits
As previously mentioned, our team implemented opti-
mization code using AMPL and CPLEX. After several
iterations to account for constraints and considerations
that surfaced as we generated potential solutions, we
were able to generate near-optimal schedules that sat-
isfied KP’s needs. KP first implemented our proposed
new schedule designed for the existing hospital for its
final six months of operation, and the proposed sched-
ule for the new hospital when that hospital opened on
July 1, 2014. The smoothing team had not developed
a feasible schedule for the old hospital or a complete
schedule for the new hospital; therefore, although we
had no schedules for comparison, as we note previ-
ously, our solutions are within 1.5 percent of optimum.

KP staff does not include any members who are
familiar with AMPL and CPLEX. As a result, the cur-
rent organization does not have the technical skills to
update the schedule. However, because the block plan
needs to be revised only infrequently (no more fre-
quently than every few years), KP could call upon tech-
nical assistance from outside consultants whenever it
requires a new block schedule.

Here, we summarize several benefits KP obtained
from this project.

¢ Virtually all (greater than 98 percent) of the pre-
vious monthly block requirements were compressed
into four weeks, thereby releasing capacity for approx-
imately six percent more surgeries (assuming the same
mix of procedure types) and using fewer beds in the
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various wards. This allowed KP to reduce its backlog
in the short run and to potentially handle a greater
number of patients in the longer term. Because KP is a
not-for-profit organization, it is difficult to put a dollar
figure on this benefit; however, the flexibility to grow
without additional infrastructure costs is valuable to
any organization of this type.

* We were able to identify the infeasibility of week-
day-only surgery schedules for the orthopedics depart-
ment and also develop a schedule with minimal week-
end blocks that would satisfy the ward bed capacity
constraint in the old hospital; this would not have been
possible without our optimization model. KP imple-
mented a schedule with limited Saturday surgeries
in the old hospital, and Dr. Barber reported that it
worked well. However, it proved to be difficult to con-
tinue Saturday surgeries for a prolonged period due
to the inconvenience to the surgeons and other auxil-
iary medical staff (e.g., physical therapists); therefore,
it was necessary to revert to a weekday-only sched-
ule. More beds were allocated to orthopedic patients
to accommodate this change. Interestingly, the smooth-
ing team applied this strategy with weekend surg-
eries in the maternity ward, which was not included in
the optimization model because a great majority of its
bed occupancy is not a consequence of surgical proce-
dures. The strategy entailed scheduling induced births
on weekends, which then also made it possible for all
maternity-ward patients to have single (i.e., not shared)
rooms because of the lower peak bed occupancy levels.

¢ Scheduling of teaching days for the surgeons
(within the available options) was implemented as part
of the block schedule optimization problem, rather
than taking them as given.

* Days with excess admissions, which would have
required additional nurses, were eliminated, as indi-
cated by Dr. Barber.

¢ Surgery cancelations due to insufficient bed avail-
ability were eliminated. Dr. Barber emphasized the
importance of reducing cancelations, especially for
patients who would need to go to the intensive care
unit, because these patients generally need more care.

* Nurse workloads were more balanced as a result
of more stable bed occupancy levels. Our model pre-
dicted this improvement, and Dr. Barber confirmed it.
Studies in our literature review show that more stable
nurse workloads result in better patient care.
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A schedule based on low core nurse staffing levels—
and thus also more widely varying total nurse staffing
levels across the days of the week—would have
allowed a reduction in the number of nursing shifts,
which could have produced an estimated savings of
up to $1 million annually for each of the larger wards.
Devising an acceptable assignment of nurses to days
of the week proved to be difficult for the nurse super-
visors, however. This difficulty, along with resistance
from the nursing union, ultimately led KP to imple-
ment a schedule based on higher core nurse staffing
levels, thus limiting the cost savings. In other settings,
however, a greater reduction in nursing costs may
be possible, even if—as in our implementation—both
nursing costs and patient-related costs are included in
the objective function.

Since KP implemented the initial schedule, it has
made a few minor changes to the schedule. These
include the addition of an OR, which had been held
in reserve for future growth. This room is dedicated to
emergent cases in the afternoon and to various subspe-
cialties in the morning.

Appendix. Problem Formulation
Sets and Their Corresponding Elements

* 5 € ¥ set of subspecialties (i.e., orthopedics, spinal
surgery, gynecology, urology, podiatry, plastic surgery, gen-
eral surgery, pediatric neurology, pediatric spinal surgery,
pediatric general surgery, other pediatric surgery);

* b € %: set of block types;

* b e 3,: set of block types corresponding to subspecialty
type s;

* r € %R:set of rooms;

* d € 9: set of days;

* w € Y set of weeks;

® c € ¢: set of combinations of block types that may span
multiple subspecialties and utilize common resources (e.g.,
specific operating rooms or surgeons);

* d e J,: set of days in week w;

e d € 9, set of days on which block type b can be
scheduled;

* b€ 3B, setof blocks from a combination of block types ¢
that can be scheduled on day d;

* f € F: set of floors, where each floor corresponds to a
hospital ward;

* be F%f: set of blocks for which the surgical patients
should be assigned to floor f following surgery.

Parameters
* a;:patient admissions threshold on floor f above which
another nurse is required;
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* k,: baseline (steady state) scheduling requirement for
block type b over the scheduling horizon;

* g,: number of procedures (surgeries) in block type b;

* g,/ minimum number of blocks of type b that must be
assigned per week;

* g, maximum number of blocks of type b that can be
assigned per week;

* g,;: minimum number of blocks in subspecialty s that
must be scheduled on day d;

* j,;: maximum number of blocks in subspecialty s that
can be scheduled on day d;

* gY: minimum number of blocks in subspecialty s that
must be assigned per week;

* §¥: maximum number of blocks in subspecialty s that
can be assigned per week;

* 7! maximum number of backlogged blocks of type b
that can be assigned over the horizon;

* ¢, maximum number of block types from a combina-
tion of block types c that can be scheduled on a given day;

* a,: upper bound on the fraction of the total number
of blocks of type b scheduled over the horizon that can be
assigned within the same week;

® @,: upper bound on the fraction of the total number of
blocks for subspecialty s scheduled over the horizon that can
be assigned within the same week;

* iz, expected number of surgery patients from the prior
scheduling horizon who will remain on floor f on day 4;

* pyaa: expected number of patients from block type b re-
maining in the hospital on day d’ who had surgery on day d;

* 1, baseline (core) number of nurses preassigned to
floor f on day d;

* ps: maximum number of patients each nurse working
on floor f can handle (i.e., patient-to-nurse ratio);

* ¢4 effective bed capacity on floor f for postsurgical
patients;

® V,7, ..., Ve coefficients for objective function terms.

Decision Variables
® Primary decision variables
+ X0 1if block type b is assigned to (operating) room r
on day 4;
*+ Ny, number of nurses working on floor f on day d.
¢ Auxiliary variables
*+ Yy,: lif an additional nurse is needed to handle excess
admissions (above the threshold of a, for floor f) on day d;
0 otherwise;
* Mg, expected number of patients occupying beds on
floor f on day d;
* M £+ peak value of the expected number of patients on
floor f during the scheduling horizon;
+ MT: positive part of the maximum difference (across
the days) between the expected number of patients and the
effective bed capacity on floor f over the horizon.
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We minimize the following objective function:
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where Mf = Ygey Myy/card(2) (i.e., the average number of
patients on floor f during the horizon) and card(-) denotes
the cardinality of the set.

The objective is to minimize a weighted sum of six fac-
tors, where the weights may correspond to true costs, or may
be selected in a way that helps to smooth the schedule and
(or) break ties among solutions that are effectively identical.
The first term represents the costs for nurses required to han-
dle above-threshold admissions, summed across all floors
and days. The second term represents the cost for nurses to
satisfy the patient-to-nurse ratios, summed across all floors
and days. The third term corresponds to the penalty for
patient days in excess of the effective bed capacity, summed
across all floors and days. This term is intended to cap-
ture the degradation in care and consequent medical out-
comes when a patient cannot be assigned to the most suit-
able floor. The fourth term reflects the total bonus (negative
cost) for all backlog blocks scheduled. The fifth term repre-
sents a penalty for the peak bed occupancy for each floor,
assuming that all patients are assigned to the most suitable
floor, summed across floors. This term helps to smooth the
bed occupancy over time and to break ties among solutions
whose objectives would otherwise be equal. Finally, the last
term is a penalty for the mean absolute deviations (MAD) of
the expected number of patients, summed across the various
floors.

The constraints fall into several categories: (1) nurse
staffing requirements; (2) feasible assignments of blocks to
ORs; (3) backlog balance equations and bounds; (4) smooth-
ing and spacing constraints; (5) bounds on certain aggregates
of assignments over applicable periods; and (6) patient inven-
tory balance equations. Next, we present the constraints and
provide associated explanations.

Nurse Requirements

Nygzngy VfeF dewd. (A3)
DD B Xp—aySM-Yey VfEeF, deD, (Ad)
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where ./ is a sufficiently large number, which may vary with
f and d, if appropriate.

Constraints (A.2) state that the number of patients on a
floor on a given day is restricted by the nurse staffing level,
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while constraints (A.3) require that the number of nurses for
each day and floor meet or exceed the minimum (i.e., core)
staffing level. Constraints (A.4) ensure that an extra nurse
is assigned to floor f on any day d for which the number
of admissions exceeds the threshold a;. We note that the
number of excess admissions is bounded by the difference
between the effective bed capacity and a,; therefore, 4 can
be set accordingly.

Operating Room and Associated Capacities

DX <1 Vred, ded. (A.5)
be®
Constraints (A.5) allow at most one block type to be sched-
uled in a room on each day.

Backlog
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Each constraint in (A.6) ensures that the number of blocks
scheduled over the horizon for each subspeciality and cor-
responding block types within the subspecialty lies between
the baseline number and the baseline plus the maximum
number of backlogged blocks that can be scheduled. This
ensures that the baseline demand is satisfied and the backlog
is not drawn down too quickly.

Smoothing and Spacing Constraints

(DY

be%,, reR, deD, Ny,

Xy <GY VseFweW. (A7)

Constraints (A.7) restrict the number of blocks scheduled for
each subspecialty to lie between certain minimum and max-
imum numbers each week. Constraints of this form also can
be used to limit the assignments of specific subspecialties or
block types to acceptable combinations of days.

DU Xpu<ay D) Xpw YbEB,weW.  (AB)
re%, dey, reR,des
Z Xbrdsds' Z Xbrd Vse& we.
beBg, re, dey, bedbs, reh, des

(A.9)

Constraints (A.8) and (A.9) help to smooth the number of
blocks of a given block type or subspecialty over the planning
horizon by permitting no more than a certain proportion
of these blocks to be scheduled during each week. A more
restrictive version of constraints (A.8) ensures that the num-
ber of block type b scheduled on a given day does not exceed
some fraction of the number of blocks of type b scheduled
during that week.

> X1 D) X< D) Xpu+1
reR, d€ Dy i1 reR, dey,, reR, d€eTy 4

Vbe%B, weWforw < card (W). (A.10)
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Constraints (A.10) ensure that the total number of blocks of a
given type differs by no more than one from one week to the
next.

Z Kpra1 —1= Z Kprg < Z Kpr a1 +1

reR reR reR

Vbe®B, de Pford<card (Z). (A.1l)

Constraints (A.11) prevent the total number of blocks of a
given type on a given day from differing by more than one
between that day and the next.

My <M; YfeF, ded. (A.12)

Constraints (A.12) define the peak value of the expected
number of patients on a floor during the scheduling horizon
by ensuring that it is greater than or equal to the expected
number of patients on that floor on all days in the horizon.

MP™*2M;~e; Vfed. (A13)

Constraints (A.13) define the maximum value (across the
days in the horizon) of the expected number of patients ex-
ceeding the effective bed capacity on each floor, assuming
that each patient is assigned to the medically preferred floor.

Additional Bounds on Certain Aggregates of
Assighments

Ga < D Xpu<Gu Vse€F, de. (A.14)

be%B,, reR

Constraints (A.14) ensure that the number of scheduled
blocks for each subspecialty is within a specified range for
each day within the time horizon; these constraints often
arise due to surgeon availability.

> Xpu<g Vce€ ded. (A15)

beB.q, reR

Constraints (A.15) prevent the total number of scheduled
blocks within a given combination of block types from
exceeding an upper limit on each day. One example is a con-
straint on the total number of urology and spinal surgery
blocks because of the availability of rooms with the neces-
sary equipment. Another example is an upper limit on the
number of general surgery blocks because of teaching days
on which surgeons are not available. More general versions
of this constraint allow block types to be scheduled either on
one set of days or on another set of days, but not both.

DY

reR, deD,NTy,

Xpa<q, VYbeB, weW. (A.16)

Constraints (A.16) place bounds on the total number of
a given block type scheduled during a specified set of
days within a given week. Such constraints can account for
resource limitations or scheduling rules. As one example,
pediatric general surgery blocks must be scheduled on one
and only one of the following pairs of days within a given
week: Tuesday-Thursday, Tuesday—Friday, or Wednesday-
Friday.
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Patient Inventory

Mpg=ipg+ D) 23D Poaar Xpvw VfEF, d€D. (A7)

be@f ref d'e»

Constraints (A.17) define the expected value of the patient
inventory on floor f and day d as the sum of: (1) the expected
number of patients who had surgery during the previous
scheduling horizon, but will remain until (at least) day 4 in
the current horizon; and (2) those who were added based on
the date of their surgery within the current horizon and the
distributions of their lengths of stay in the hospital.

To account for patients who have surgery near the end of
one scheduling horizon and remain in the hospital past the
end of that horizon, we utilize a set of auxiliary variables i d
representing the expected number of patients who will still
be occupying a bed past the end of the scheduling horizon
(by day and floor). The values of these auxiliary variables are
computed at the end of each horizon as input to the problem
for the next horizon when we iteratively solve the problem
to achieve a schedule that reflects (near-) steady state condi-
tions. These auxiliary variables are defined as

Ifarog= Z Z Zpbdd’ Xpg V€T, d €D,

bg;'%f reR de%
Nonnegativity and Integrality

Xy binary; Yy, binary; Ny, integer; Mfd,Mf,M}“aX >0
VbeRB,reR, deD, feF. (A1)

In addition to these constraints, we impose restrictions that
arise as a result of scheduling decisions at a sister hospital,
such as unavailability of surgeons when they are working at
that hospital.

CPLEX Settings and Solution Details
We solve the problem using CPLEX 12.6.0.1, as formulated
in the appendix, without any special procedures to accel-
erate run times. We did, however, take care to formulate
the problem instances as efficiently as possible. For exam-
ple, we define variables only for the pertinent decisions and
we restrict variable ranges to sensible values. As an example,
for regular adult hospital wards with 24 beds, the maximum
required number of nurses is five; therefore, we set the upper
bound on the corresponding integer variable to five.
Problem instances with low core nurse staffing levels, not
surprisingly, are more difficult to solve because the number
of feasible nurse staffing profiles (i.e., the number of nurses
in each hospital ward on each day) is much larger than for
instances with high core nurse staffing levels. We observe
that problems with moderate core nurse staffing levels are
not necessarily easy to solve because the decisions ultimately
entail determining which (few) days of the scheduling hori-
zon should be allocated an extra nurse and (or) whether it
is advantageous to schedule two extra nurses on one or pos-
sibly two days of the horizon. Of course, for each of these

RIGHTS L1 N Hig

possible nurse staffing profiles for each ward, the (still diffi-
cult) problem of identifying the best assignment of blocks to
operating room days exists.

Default settings in CPLEX produce solutions within one
percent of optimality in a matter of seconds for the more
tractable instances; however, the less tractable instances re-
quire much more time. Ultimately, we decided to solve each
instance to a 1.5 percent optimality gap using settings con-
ducive to the more difficult instances. Although we set an
optimality gap of 1.5 percent, in many cases, CPLEX achieves
a smaller gap than this; in a few instances, the gap amounts
to tenths or hundredths of a percent. We used the fol-
lowing settings: (1) nodefile 3 and (2) memoryemphasis 1,
both of which encourage CPLEX to conserve memory;
(3) dgradient 5, which employs “Devex” pricing for the node
LPs; (4) mipemphasis 4, which induces a search for “hidden”
integer-feasible solutions; (5) probe 2, which fixes variable val-
ues a priori based on a presolve procedure; (6) rinsheur 200,
which activates CPLEX'’s proprietary “relaxation induced
neighborhood search heuristic” every 200 nodes within the
branch-and-bound tree; and (7) mipcuts 2, which aggres-
sively implements cuts. In summary, the most difficult
instances require conservation of computer memory, and
methods to improve both the best lower bound and the best
integer solution.

With these settings, CPLEX requires between a few sec-
onds and two hours to solve the series of two to four opti-
mization problems (i.e., iterations) required to reach steady
state, except for the case with (2,2) as the core nurse staffing
level. Because three nurses (and sometimes four) are typically
needed in Ward A, starting with a core staffing level of two
nurses gives rise to an extremely difficult combinatorial prob-
lem, and the four iterations took over 30 hours to solve. This
points to the need to judiciously set the core nurse staffing
level when there is flexibility to do so. Setting the level below,
but not too far below, the average requirement leaves room
for the solver to optimize, while keeping computing times
low to moderate.
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Verification Letter
Thomas C Barber, MD, The Permanente Medical Group,
1 Kaiser Plaza, Oakland, CA 94612, writes:

“I am the Associate Physician in Chief for the Kaiser East
Bay. My responsibilities include overseeing perioperative ser-
vices, tertiary care, and graduate medical education.

“I had the pleasure of working with Candace Yano
and Brittney Benchoff on a project around operating room
scheduling. The model developed for surgical block schedul-
ing was insightful, and useful. When we moved to our new
hospital in July of 2014 our surgical block scheduling was
based on the model developed. Implementation was success-
ful and decreased variability in hospital census on each sur-
gical floor.

“The article “Kaiser Permanente Oakland Medical Center
Improves Operating Room Schedule Planning” is accurate, and
reflects the work done in this project.”
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