
SafeSky: A Secure Cloud Storage Middleware for End-user Applications

Rui Zhao1, Chuan Yue1, Byungchul Tak2, and Chunqiang Tang3

1Colorado School of Mines
2IBM Research Division Thomas J. Watson Research Center

3Facebook Inc.

Abstract—As the popularity of cloud storage services grows
rapidly, it is desirable and even essential for both legacy and
new end-user applications to have the cloud storage capability to
improve their functionality, usability, and accessibility. However,
incorporating the cloud storage capability into applications must
be done in a secure manner to ensure the confidentiality, integrity,
and availability of users’ data in the cloud. Unfortunately, it is
non-trivial for ordinary application developers to either enhance
legacy applications or build new applications to properly have
the secure cloud storage capability, due to the development
efforts involved as well as the security knowledge and skills
required. In this paper, we propose SafeSky, a middleware that
can immediately enable an application to use the cloud storage
services securely and efficiently, without any code modification
or recompilation. A SafeSky-enabled application does not need
to save a user’s data to the local disk, but instead securely
saves them to different cloud storage services to significantly
enhance the data security. We have implemented SafeSky as a
shared library on Linux. SafeSky supports applications written
in different languages, supports various popular cloud storage
services, and supports common user authentication methods used
by those services. Our evaluation and analysis of SafeSky with
real-world applications demonstrate that SafeSky is a feasible
and practical approach for equipping end-user applications with
the secure cloud storage capability.

Keywords—Applications; Cloud storage; Middleware; Security;

I. INTRODUCTION

Cloud computing is a significant trend and it can offer
many benefits such as cost efficiency, elasticity, scalability, and
convenience to millions of organizations and end users. For
many applications, especially end-user applications, it is often
desirable and even essential to have the cloud storage capabil-
ity to enhance their functionality, usability, and accessibility.
For example, document processing applications may want to
save users’ sensitive documents to the cloud, accounting or
healthcare applications may want to save users’ financial or
health information to the cloud, and Web browsers may want
to save users’ browsing data such as bookmarks and histories
to the cloud [23]; in all these cases, one considerable benefit
to users is that their data stored in the cloud can be available
and readily usable anytime, anyplace, and on any computer.

However, one of the major concerns that inhibits the
cloud adoption is security [2], [3], [18]. Not only many new
security problems such as unexpected side channels and covert
channels as well as insider attacks can occur in the cloud,
but also organizations and end users do not have sufficient
confidence in hosting sensitive data in the cloud. Therefore,
the cloud storage capability must be securely equipped to
end-user applications (referred to as having the secure cloud

storage capability) to ensure the confidentiality, integrity, and
availability of the data saved to the cloud.

Unfortunately, it is nontrivial for ordinary application de-
velopers to either enhance legacy applications or build new
applications to properly have the secure cloud storage capa-
bility. The complexity of both applications and cloud storage
services often requires deep domain expertise from developers,
thus mandating a substantial development effort for the cloud
storage capability integration. Moreover, a lack of sufficient se-
curity knowledge and skills in application developers can often
incur design, implementation, and deployment vulnerabilities
as shown in many studies [9], [12], [24].

Researchers have proposed many systems to continuously
improve the security, reliability, and availability of cloud stor-
age services [1], [7], [8], [13], [14], [16], [21]; however, merely
focusing on the sever-end enhancement is insufficient because
a particular cloud storage service may still be compromised
by outsider or insider attackers. Therefore, to provide a strong
security guarantee, applications must properly protect users’
data at the user-end in the first place. Like us, some researchers
have realized the importance of facilitating end-user applica-
tions to have the secure cloud storage capability [5], [20];
however, those solutions suffer from the deployment and usage
limitations as discussed in Section II.

In this paper, we take a middleware approach and design
SafeSky, a secure cloud storage middleware that can immedi-
ately enable either legacy or new end-user applications to have
the secure cloud storage capability without requiring any code
modification or recompilation to them. SafeSky is designed
as a middleware library that can be dynamically loaded with
different applications; it sits between the applications and the
operating system to intercept the applications’ file operations
and transform them into secure cloud storage operations. To
integrate this middleware into an application, developers or
even advanced users can simply copy the SafeSky library and
create a corresponding command for starting the application
with the library. A SafeSky-enabled application does not need
to save any data to the local disk, but instead securely saves the
data to multiple free cloud storage services to simultaneously
enhance the data confidentiality, integrity, and availability. To
use a SafeSky-enabled application, end users simply need
to provide their cloud storage accounts to SafeSky at the
beginning of each application session, while SafeSky will
transparently take care of everything else behind the scenes.

We have implemented SafeSky in C and built it into a
shared library on Linux. It supports applications written in
languages such as C, Java, and Python as long as they interact
with the underlying operating system through the dynamically

2015 IEEE 34th Symposium on Reliable Distributed Systems

1060-9857/15 $31.00 © 2015 IEEE

DOI 10.1109/SRDS.2015.23

21

linked GNU libc library. It supports popular cloud storage
services such as Amazon Cloud Drive, Box, Dropbox, Google
Drive, Microsoft OneDrive, and Rackspace; it also supports
common user authentication methods used by the popular
cloud storage services. We have evaluated the correctness and
performance of SafeSky by using three real-world applications:
HomeBank, SciTE Text Editor, and Firefox Web browser; we
have also analyzed the security of SafeSky. Our evaluation
and analysis results demonstrate that SafeSky is a feasible and
practical approach for equipping end-user applications with the
secure cloud storage capability.

The main contributions of this work include: (1) a novel
middleware approach for immediately enabling either legacy
or new end-user applications to have the secure cloud storage
capability without requiring any code modification or recompi-
lation (Section III); (2) a concrete SafeSky middleware system
for flexibly supporting diverse end-user applications, cloud
storage services, and authentication methods (Sections III
and IV); (3) an evaluation of SafeSky using real-world ap-
plications (Section V); (4) a security analysis of SafeSky
(Section VI).

II. BACKGROUND AND RELATED WORK

A large number of cloud storage services have been de-
ployed and widely used [25], [26], [27], [28], [30], [31],
[33]. Most cloud storage services offer free accounts and
storage spaces to regular users, and many of them follow
the predominant REST (Representational State Transfer) Web
service design model [11], [15] and allow different client
applications to easily access them through their REST APIs.
Organizations and advanced users can also deploy their own
cloud storage services. For example, one popular cloud storage
software is OpenStack Swift [37], which is free and also
provides REST APIs to client applications. Note that we do
not intend to build any new cloud storage service, but focus
on enabling SafeSky to directly use these widely deployed and
easily accessible cloud storage services.

As highlighted in Section I, having the cloud storage
capability is desirable and even essential for many end-user
applications to provide better functionality, usability, and ac-
cessibility to users. Existing end-user applications (e.g., for
document processing, accounting, healthcare, task scheduling,
contact management, and browsing) as well as the potential
future applications can all use the cloud storage capability to
benefit users by enabling them to conveniently access their
data anytime, anyplace, and on any computer. However, this
considerable benefit does not come without the risks of losing
data confidentiality, integrity, and availability. The recent leak
of celebrity photos in iCloud [32] is just one of the numerous
reported or even unreported data breaches.

Vendors and researchers have proposed a number of sys-
tems to continuously improve the reliability, availability, and
security of cloud storage services. Popa et al. proposed Cloud-
Proof, a secure storage system that enables customers to detect
violations of data integrity, write-serializability, and freshness
in the cloud [16]. Wang et al. proposed a distributed storage
verification scheme to ensure the correctness and availability of
cloud data [21]. Kamara and Lauter proposed a virtual private
storage service to combine the security benefits of using private

clouds with the availability and reliability benefits of using
public clouds [13]. Mahajan et al. proposed Depot, a cloud
storage system that provides safety and liveness guarantees to
clients without even requiring them to trust the correctness
of Depot servers [14]. The Windows Azure team developed a
highly available cloud storage architecture as described in [8].

Researchers have also emphasized the importance of incor-
porating redundancy into the cloud storage services to further
improve their reliability, availability, and security. Bowers et
al. proposed HAIL, a distributed cryptographic system that
applies RAID (Redundant Arrays of Inexpensive Disks)-like
techniques to achieve high-availability and integrity across
cloud storage providers, and allows servers to prove to a
client that a stored file is intact and retrievable [7]. Abu-
Libdeh et al. proposed RACS, a proxy that also applies RAID-
like techniques, but focuses on transparently using multiple
providers to achieve cloud storage diversity, avoid vendor lock-
in, and better tolerate provider outages or failures [1].

However, merely focusing on the sever-end enhancements
is insufficient because a particular cloud storage service may
still be compromised by outsider or insider attackers [32]. In
addition, end users should also consider the risks of cloud
service vendor lock-in [1], [3]. Therefore, to provide a strong
security guarantee, applications must properly protect users’
data at the user-end in the first place. Like us, some researchers
have realized the importance of facilitating end-user applica-
tions to have the secure cloud storage capability. They have
explored the API library approach [5] and the file system proxy
approach [20] reviewed as below.

Bessani et al. proposed DepSky, a system that sits on top of
multiple cloud storage services to form a cloud-of-clouds [5]
and applies the Shamir’s (k, n) secret sharing scheme [17] to
improve the overall data availability and confidentiality. We
also emphasize the importance of incorporating redundancy,
and DepSky is more similar to our SafeSky in terms of
applying the Shamir’s (k, n) secret sharing scheme to achieve
a high-level security and availability. However, DepSky took
an API library approach and requires developers to use its APIs
to modify their code; therefore, it still suffers from the problem
that developers may misuse APIs and may fail to follow secure
design, implementation, and deployment practices [9], [12],
[24]. In contrast, our SafeSky can enable either legacy or new
end-user applications to immediately have the secure cloud
storage capability without requiring any code modification or
recompilation to them, thus bringing important deployment and
security benefits.

Another work, BlueSky [20], is similar to our SafeSky in
terms of not requiring any application modification. However,
BlueSky is a file system proxy that aims to lower the cost and
improve the performance of using cloud storage services by
adopting a log-structured data layout for the file system stored
in the cloud [20]. Thus, its design requirements and decisions
are different from those of SafeSky that put security as the first
priority. Furthermore, its file system proxy approach is heavier
than our middleware approach because clients need to mount
the BlueSky file systems, which need to be properly set up
and maintained by system administrators; therefore, it is more
appropriate for using BlueSky to provide services to clients
in enterprise environments [20]. Our SafeSky is informed by
traditional cryptographic file systems such as [6], [22], but it

22

is a lightweight cloud-oriented middleware that can be simply
incorporated by developers and individual end users into their
applications.

III. DESIGN

Our objective is to design a secure cloud storage middle-
ware, SafeSky, that can immediately enable either legacy or
new end-user applications to have the secure cloud storage
capability without requiring any code modification or recom-
pilation to them. A SafeSky-enabled application does not need
to save any data to the local disk, but instead securely saves the
data to multiple free cloud storage services to simultaneously
enhance the data confidentiality, integrity, and availability.

A. Threat Model and Assumptions

The basic threat model that we consider in the design
of SafeSky is that attackers can obtain users’ data saved
in a particular cloud storage service and may then further
compromise the data confidentiality, integrity, and availability.
Attackers could be outsider unauthorized or illegitimate entities
who initiate attacks from outside of the security perimeter of
a cloud storage service; examples of outsider attackers could
be from amateur pranksters to organized criminals and even
hostile governments. Attackers could also be insider entities
who are authorized to access certain resources of a cloud
storage service, but use them in a non-approved way; examples
of insider attackers could be insincere or former employees
who can still access the resources of a cloud storage service.
We do not aim to prevent the stealing of users’ data saved
in a cloud storage service, a goal that is difficult to achieve
given the many data breaches reported everyday. Instead, we
focus on ensuring that it is computationally or even absolutely
infeasible for attackers to decrypt and use the data stolen from
a particular cloud storage service.

We assume that on a user’s computer, the operating system
is secure and no malware is installed to steal the user’s
data, for example, from memory or input devices; meanwhile,
SafeSky itself is not compromised because it is part of the
trusted computing base of the system. We assume that in the
cloud, multiple storage service providers do not collude to
compromise the security of a user’s data; meanwhile, a user’s
multiple cloud accounts are not compromised at the same time
(e.g., due to shared or weak passwords) by attackers for them
to further steal the user’s data. In addition, if an application
directly transmits a user’s data to a server through network
connections, SafeSky does not protect the security of such data
because manipulating network transmissions can easily break
the functionality and semantics of the application.

B. Requirements and Challenges

To achieve our objective, we identify five key design
requirements for SafeSky: (1) confidentiality and integrity:
Users’ data often contain highly sensitive information, and
may determine the execution logic of applications. Therefore,
SafeSky must securely protect the data at the user-end before
saving them to cloud storage services, so that it is computation-
ally or even absolutely infeasible for either outsider or insider
attackers to compromise the data confidentiality and integrity.
(2) availability: Saving the data to the cloud can benefit users

for accessing the data from different places and computers,
but it may suffer from the problem that some cloud storage
services could be unavailable occasionally. Therefore, SafeSky
needs to ensure high data availability, so that applications
can access their data anytime even if certain cloud storage
services are unavailable. (3) deployability: Incorporating the
secure cloud storage capability into applications could be a
challenging task for many developers and could be error-
prone. Therefore, SafeSky must be easily deployable, so that
different applications can immediately have the secure cloud
storage capability without requiring any code modification
or recompilation to them. (4) consistency: SafeSky should
satisfy the single-reader single-writer consistency semantics for
supporting single-user applications that are most widely used.
(5) performance: SafeSky should not incur any perceivable
performance overhead to end users.

These requirements bring a few challenges to the design
and implementation of SafeSky. Simultaneously achieving the
three security requirements confidentiality, integrity, and avail-
ability in user data protection is the foremost challenge because
we need to properly choose and synthesize different cryp-
tographic primitives, and consider both insider and outsider
attackers. Making SafeSky easily deployable and transparent
to applications is the second major challenge because we need
to consider a variety of file operations that could be issued by
different applications. Ensuring the consistency and efficient
access of users’ data in the cloud is the third major challenge
because we need to consider the heterogeneous nature of cloud
storage services in terms of their different user authentication
methods and application programming interfaces, and the
diverse workload characteristics of different applications.

C. Overview and Rationale

Figure 1 illustrates the high-level architecture of SafeSky.
It consists of three components: interception, data protection,
and cloud driver. Originally without SafeSky (as shown in
the left dashed box in Figure 1), to perform local disk
file operations, applications invoke function or system calls
through C libraries such as the GNU libc library. Note that
any Unix-like or Linux-like operating system needs a C library.
With SafeSky, applications perform local disk file operations
as usual, while SafeSky intercepts the original file operations
in its interception component, protects the intercepted data in
its data protection component, and saves the protected data to
multiple cloud storage services in its cloud driver component.
The applications can be implemented in languages such as C,
Java, and Python as long as they interact with the underlying
operating system through the dynamically linked C libraries.

We design SafeSky as a middleware library that can be
dynamically loaded with different applications. To integrate
this middleware into an application, developers or advanced
users simply need to copy the SafeSky library and create a
corresponding command for starting the application with the
SafeSky library dynamically loaded before other libraries. To
use the SafeSky-enabled application, end users simply need
to provide their cloud storage accounts to SafeSky at the
beginning of each application session, while SafeSky will
transparently take care of everything else behind the scenes.

The interception component intercepts applications’ text
and binary file operations either at the standard C function

23

Fig. 1: High-level architecture of SafeSky

level (e.g. the buffered fread() and fwrite() functions) or at
the system call wrapper function level (e.g. the unbuffered
read() and write() functions), and manages the intercepted
data with block-level granularity for each file in a memory
structure. Interception at either of those two levels has its
own advantages and disadvantages. Interception at the standard
C function level has the platform independence benefit and
can immediately support the applications to run on different
operating systems, but it does not support the applications
that do not use the standard C functions. Interception at the
system call wrapper function level can immediately support
different applications (on a given operating system) regardless
of whether they use standard C functions or not, but it does not
support the applications that run on other operating systems.
If an application calls standard C functions, SafeSky performs
the interception at the standard C function level; otherwise, it
performs the interception at the system call wrapper function
level. Therefore, different applications on different platforms
can be flexibly supported by SafeSky, no matter they use one
or both types of functions.

The data protection component securely protects each new
or updated data block in the memory structures before letting
the cloud driver component send the data block to the cloud. It
first applies the authenticated encryption to a new or updated
data block in a memory structure (for a file) to ensure that it is
computationally infeasible for attackers to break the data con-
fidentiality and integrity. Furthermore, it applies the Shamir’s
(k, n) secret sharing scheme [17] to split the protected data
block as well as the corresponding authenticated encryption
key and parameters into n pieces for saving to n different
cloud storage services, so that it is absolutely infeasible [17]
for attackers to break the data confidentiality, given that they do
not compromise k or more cloud storage services at the same
time. Using this secret sharing scheme also ensures high data
availability because the protected data blocks and the keys can
be reconstructed from any k available cloud storage services.

The cloud driver component saves/retrieves the split data
block pieces to/from different cloud storage services. At the
beginning of each application session, this component au-
thenticates a user to the cloud storage services using the
user’s protected cloud accounts. Within the session, when a
data block is read for the first time by the application, this
component retrieves k data block pieces from any k of the
n cloud storage services to reconstruct the protected data
block, which will be authenticated and decrypted by the data
protection component to recover that data block; this retrieval
operation will only occur once in a session for each data block
of each file. Whenever a data block of a file is created or

updated by the application and its n data block pieces are
generated by the data protection component, the cloud driver
component saves those data block pieces to n different cloud
storage services. We refer to this “one retrieval and multiple
saves” mechanism as saves-after-retrieval.

This high-level architecture is a rational design for SafeSky
to meet those five key requirements and address those ma-
jor design and implementation challenges (Section III-B). It
applies authenticated encryption and secret sharing schemes
to ensure the data security in the cloud. It uses dynamic
loading techniques and supports the file operation interception
at two levels, so that the secure cloud storage capability can
be easily deployed to different applications without modifying
or recompiling them. Saving data to the cloud and using the
secret sharing scheme collectively ensure high data availability.
SafeSky saves the data with their versions to the cloud and uses
a simple saves-after-retrieval mechanism to correctly satisfy
the single-reader single-writer consistency semantics. The
interception component updates the memory structures as soon
as the application performs write operations, while multiple
dedicated threads and reusable TCP connections are used by
the data protection component and the cloud driver component
to perform their tasks in a parallel and asynchronous manner,
thus minimizing the perceivable performance overhead to end
users. A SafeSky-enabled application does not need to save
any data to the local disk, and the latest copy of the data can
always be conveniently accessed from the cloud.

D. Interception Component

The interception component intercepts applications’ file op-
erations either at the standard C function level or at the system
call wrapper function level using dynamic loading techniques.
One widely used dynamic loading technique on the Linux
platform is based on the LD PRELOAD environment variable,
which specifies other shared libraries that can be preloaded into
an application’s running process to take precedence over the
original dynamically linked libraries used by the application.
The functions implemented in the preloaded libraries will
override the corresponding functions in the original libraries;
therefore, the behavior of the application can be changed as
desired without requiring any code modification or recompila-
tion to the application.

1) Interception Strategy: The interception component inter-
cepts both text and binary file operations at both the standard
C function level and the system call wrapper function level.
Table I lists the key intercepted file operations. If an application
calls standard C functions, this component performs the inter-
ception at the standard C function level, and the operation will
not be further passed down to the system call wrapper function
level; otherwise, it performs the interception at the system
call wrapper function level. This strategy allows SafeSky to
flexibly support different applications on different platforms
as discussed in Section III-C.

SafeSky allows developers or advanced users to specify the
files, for which the data will be securely saved to the cloud,
in the Rules for Interception configuration file as shown in
Figure 1. One reason for using such a configurable mechanism
is that in addition to users’ data files, applications often write
many temporary files which are not necessary to be saved to

24

TABLE I: Intercepted file operation functions

File operations

Standard C
function level

fopen(), fclose(), fread(), fwrite(), ...

System call
wrapper func-
tion level

open(), open64(), creat(), creat64(), close(),
read(), write(), lseek(), lseek64(), stat(),
stat64(), lstat(), lstat64(), fstat(), fstat64(), ...

the cloud; the other reason is that users can have the flexibility
to specify the files they want to save to the cloud.

2) Memory Structure and Interceptions: For each specified
data file, SafeSky will maintain a block-level granularity
memory structure that includes the folder name, file name,
file open mode, read/write offset, file length, block size, and
a table of data blocks as shown in Figure 2. The read/write
offset is the file offset (very similar to the current active
pointer in the FILE structure in C), and it is the start position
for reading/writing data from/to a data block in the memory
structure. Each data block contains the index, length, memory
version, cloud version, and content information; the contents
of all the data blocks in a memory structure constitute the
content of the corresponding file accessed so far; the memory
version records the current version number of a data block in
the memory structure; the cloud version records the version
number of a data block saved to the cloud.

In the file opening functions (e.g. open() and fopen())
implemented in SafeSky, once a specified file is opened, a
memory structure is created. To present the same semantics
to an application between using the file system and using the
cloud storage, SafeSky supports frequently used file operation
flags such as O CREAT and O APPEND as well as rarely
used flags such as O SYNC. In the file closing functions (e.g.
close() and fclose()) implemented in SafeSky, once a specified
file is closed, the newly created or updated data blocks are
protected and uploaded to the cloud by the data protection
component and the cloud driver component, respectively.

ssize t write(int fildes , const void ∗buf , size t nbyte)
1 file name = getNameFromFileDescriptor(fildes);
2 int ret ;
3 if isSpecifiedInTheRuleFile(file name) then
4 ret = writeMemoryStructure(file name , buf , nbyte);
5 if isSynchronizedWrite(file name) then
6 ret = sendDataSaveMessage();
7 else
8 ret = orig write(fildes , buf , nbyte);
9 return ret ;

Fig. 3: Pseudo code for the write() function

In the file writing functions (e.g. write() and fwrite())
implemented in SafeSky, the written data will be updated to the
corresponding data blocks in the memory structure. Figure 3
illustrates the pseudo code for the write() system call wrapper
function implemented in SafeSky. If the file is specified in the
Rules for Interception configuration file, this function updates
the memory structure and its data blocks at line 4, and sends
a message to the data protection and cloud driver components
to immediately protect and save the newly written data blocks
to the cloud at line 6 if the file is opened with synchronized
file operation flags such as O SYNC; otherwise at line 8, it

calls the original write() system call wrapper function, whose
pointer orig write was obtained through the system call
dlsym(RTLD NEXT, “write”) when SafeSky was initialized.

The logic of the implemented file reading functions (e.g.
read() and fread()) in SafeSky is similar to that of the file
writing functions; however, the corresponding data blocks
existing in the memory structure will be directly returned to
the application, while nonexistent data blocks will be retrieved
and recovered from the cloud.

Since SafeSky maintains each memory structure at the
block-level, read and write operations performed on-demand
by applications can be efficiently supported. Note that if the
size of the memory structures becomes too large, the least-
recently used (LRU) cache replacement algorithm can be used
to evict some data blocks and free certain memory space.

E. Data Protection Component

When a data block needs to be saved to the cloud, its
memory version, block index, block length, and block content
together with the metadata such as file length and block size
in the memory structure are extracted to form a plaintext. The
small-size metadata is always bound to the data block in a
plaintext so that its transmission and maintenance overhead
could be minimized. This plaintext is first protected using an
authenticated encryption algorithm (e.g. the NIST-approved
CCM algorithm [10]) with a randomly generated key; the
generated ciphertext along with the cipher type (AE-type),
the parameters (AE-params), and the key (AE-key) used in
the authenticated encryption are then supplied to the Shamir’s
(k, n) secret sharing scheme [17] with parameters N and K
to produce N secret-shared data block pieces, each of which
together with the parameters N , K , and the version (copied
from the memory version) form a cloud data object. Each
cloud data object will be finally saved by the cloud driver
component to a storage service, and indexed by an id generated
from the hash of the folder name, file name, block index, and
the identifier (e.g. domain name) of that cloud storage service.

In the decryption and verification process, any K cloud
data objects of a data block can be used by the secret sharing
scheme [17] to recover the ciphertext, which will be decrypted
and verified using the authenticated decryption algorithm to
reconstruct that data block.

The authenticated encryption algorithm is used to ensure
both the confidentiality and integrity of the data blocks, so
that it is computationally infeasible for attackers to decrypt the
ciphertext, and any unauthorized modification to the cloud data
objects can be detected. The secret sharing scheme is used to
further strengthen the confidentiality and ensure the availability
of the cloud data objects. In terms of the confidentiality, even
if attackers can compromise any K − 1 cloud storage services
and steal any K − 1 cloud data objects of a data block, it is
absolutely infeasible [17] to recover the entire ciphertext of
that data block, and further recover the corresponding plaintext
due to the incomplete ciphertext. In terms of the availability,
the entire ciphertext of the data block can be recovered from
any K or more cloud data objects [17] retrieved from any
K or more available cloud storage services. This availability
guarantee can also help mitigate the cloud service vendor lock-
in risks [1], [3].

25

Fig. 2: Memory structure and data protection in SafeSky

It is worth mentioning that the cipher type, parameters,
and key used in the authenticated encryption algorithm is also
secret shared (Figure 2) so that they need not be locally saved
or deterministically derived based on certain secret information
provided by a user. Similarly, the parameters N and K used
in the secret sharing scheme [17] are saved to the cloud along
with each secret-shared data block piece so that they need not
be locally saved or provided by a user.

F. Cloud Driver Component

The cloud driver component saves/retrieves the cloud data
objects to/from different cloud storage services. As highlighted
in Section II, popular cloud storage services offer free accounts
and storage spaces to regular users, and they follow the pre-
dominant REST (Representational State Transfer) Web service
design model to allow different client applications to easily
access them. The cloud driver component needs to use the
REST APIs of those cloud storage services to perform LIST,
PUT, GET, and DELETE interactions with them. SafeSky
simply uses the storage capability of cloud storage services,
and it does not need any special computational support from
them and does not require any modification to them. This
design decision is important for SafeSky to easily support the
use of different cloud storage services.

1) User Authentication: At the beginning of each applica-
tion session, this component authenticates a user to the cloud
storage services using the protected cloud accounts provided
by the user. It supports common user authentication methods
used by popular cloud storage services. One method is the
traditional password based authentication, which is used by
services such as Rackspace and Swift. Another method is
the single sign-on authentication that uses access tokens for
accessing services, and it becomes increasingly popular in
recent years with the wide adoption of the OpenID [35] and
OAuth [34] standards; for example, Dropbox, Box, Google
Drive, Microsoft OneDrive, etc., all require client applications
to use the OAuth 2.0 protocol to obtain access to their services.

Correspondingly, a user’s cloud accounts can include both
username/password pairs and single sign-on access or refresh
tokens. Based on the user’s preference, the cloud accounts
can be protected either by the operating system (e.g. using
the keyring mechanism on the Linux platform) or by using
an additional master password supplied by the user. Based
on the number of the provided cloud accounts, SafeSky can

suggest the default values for the parameters N and K used
in the secret sharing scheme [17], and advanced users can also
modify the default values if they want.

2) Cloud Data Retrieval, Save, and Consistency: Within
an application session, when a data block is read for the first
time by the application, the cloud driver component retrieves
K cloud data objects from any K of the N cloud storage
services; this retrieval operation will only occur once in a
session for each data block of each file. SafeSky creates a
separate master thread to periodically inspects the memory
structures for all the files. In a memory structure (Figure 2),
if the memory version of a data block is newer than its cloud
version, this master thread wakes up an idle worker thread in
a thread pool to instruct the data protection component for
protecting the corresponding plaintext, and instruct the cloud
driver component with a pool of reusable TCP connections for
saving the N cloud data objects to N different cloud storage
services. When the application closes files or its session ends,
the master thread also examines the memory structures to see
if some final protection and save operations are needed.

Such a saves-after-retrieval consistency mechanism is sim-
ple and appropriate for single-user applications, which are
most widely used and they only need to satisfy the single-
reader single-writer consistency semantics. Once a memory
structure is constructed from the cloud data objects retrieved
from the cloud for a file, no more data will be retrieved from
the cloud to replace the data blocks in the memory structure; it
can only be further updated by the interception component of
SafeSky based on the application’s write operations. By using
a separate master thread, a pool of worker threads, and a pool
of reusable TCP connections, and by using the saves-after-
retrieval consistency mechanism, the data protection compo-
nent and the cloud driver component perform their tasks in a
parallel and asynchronous manner for reducing the perceivable
performance overhead to end users. In addition, the cloud
driver component contains a cache, which can hold the data
prefetched from the cloud and potentially further reduce the
perceivable performance overhead to end users.

Such a simple design also allows us to correctly meet
the consistency requirement of SafeSky. SafeSky requires that
the value of K must be greater than a half of that of N . A
successful save operation requires that the freshest version of
at least K cloud data objects of a data block are successfully
uploaded to K available cloud storage services; the freshest
version number is copied from the memory version as shown

26

in Figure 2. SafeSky uses the majority consensus solution [4],
[19] to identify the freshest version number of the retrieved
cloud data objects; a successful retrieval operation requires that
the freshest version of at least K cloud data objects of a data
block are successfully retrieved from K available cloud storage
services. SafeSky will perform retries for failed operations
with the assumption that at least K cloud storage services
are available at any time in an application session.

IV. IMPLEMENTATION

We implemented SafeSky as a C shared library on a Ubuntu
Linux system. It supports applications written in languages
such as C, Java, and Python as long as they interact with the
underlying operating system through the dynamically linked
GNU libc library, which is used as the C library in the GNU
systems and most systems with the Linux kernel [38]. It
supports popular cloud storage services such as Amazon Cloud
Drive, Box, Dropbox, Google Drive, Microsoft OneDrive,
Rackspace, and Swift; it supports both password and single
sign-on user authentication methods used by those services.

In the implementation of the data protection component,
we used the libcrypto library for authenticated encryption
and decryption, and used the libgfshare library for Shamir’s
(k, n) secret sharing scheme [17]. In the implementation of the
cloud driver component, we used the libcurl library for user
authentication and REST API interactions with cloud storage
services, and used the libjson library for parsing the received
responses from cloud storage services. All these four libraries
are provided by default on Linux systems such as Ubuntu. The
total number of lines of code in SafeSky is about 6,300.

V. EVALUATION

We used three free and full-blown applications, HomeBank,
SciTE Text Editor, and Firefox Web browser, from the Ubuntu
Software Center to evaluate SafeSky. HomeBank [29] can
assist users in managing their personal accounting. It has
many analysis and graphical representation features, and can
use different types of files to save users’ personal accounting
information. SciTE Text Editor [36] is similar to most text
editors. It has additional features such as automatic syntax
styling and can partially understand the error messages pro-
duced by many programing languages. Firefox is a popular
Web browser that saves many types of users’ browsing data
such as bookmarks, history records, cookies, form values, and
website passwords. These three applications cover both text
and binary file operations at both the standard C function level
and the system call wrapper function level.

We used four cloud storage services, Dropbox [27],
Box [26], and two Swift [37] services deployed on two
Amazon EC2 instances. Dropbox and Box use OAuth based
user authentication, while Swift uses password based user
authentication. The two Swift services are located at the east
coast and the west coast, respectively, to purposefully consider
geolocation diversity in our performance evaluation. We used
four as the value for both parameters N and K in the Shamir’s
(k, n) secret sharing scheme [17]; the value of K is maximum
so that we can measure and report the worst case performance
in our evaluation, while in the real use of SafeSky the value
of K can often be less than that of N as we also tested.

We evaluated the correctness and performance of SafeSky
on a computer with 3.4GHz CPU and 8 GiB memory. We ran
the experiments 10 times and present the average results. We
have not done a usability study for SafeSky yet because we
focus on its feasibility in this paper.

A. Correctness

We intensively and manually experimented with the file
operation related features of the three applications to exam-
ine if SafeSky has been seamlessly loaded into them. We
verified that the three applications worked properly as usual,
while users’ data are saved to the cloud rather than to the
local disk. In the interception component, SafeSky correctly
intercepted all the file operations, created and maintained
memory structures, and returned data to applications. In the
data protection component, SafeSky correctly performed the
authenticated encryption, authenticated decryption, and secret
sharing operations. In the cloud driver component, SafeSky
correctly performed user authentication, data save, and data
retrieval operations with the four cloud storage services.

B. Performance

We automatically evaluated the memory structure mainte-
nance and cryptographic operation performance, evaluated the
cloud data save and retrieval latencies, and measured the data
block read and write frequency of the applications.

1) Memory Structure Maintenance: We compared the time
for reading/writing data from/to a memory structure (i.e., with
the using of SafeSky by the applications) with the time for
reading/writing the same data from/to a local disk file (i.e.,
without the using of SafeSky by the applications). Overall, the
memory structure maintenance performed by SafeSky in a read
or write interception does add small additional performance
overhead due to the memory allocation and memory copy
operations. However, the overhead is negligible and only at
the microsecond level.

2) Cryptographic Operations: Figure 4 illustrates the per-
formance of the authenticated encryption, authenticated de-
cryption, secret sharing encryption, and secret sharing decryp-
tion operations. As the data size increases from 2KB to 64KB,
both the AES-CCM [10] encryption time and decryption
time remain small within one millisecond. The secret sharing
encryption time and decryption time increase linearly with the
increase in data size, and the encryption always takes more
time than the decryption. Because decryption operations are
performed by SafeSky only once in an application session for
each data block and encryption operations are periodically per-
formed in separate worker threads, their performance overhead
is not a big concern for the overall application session.

3) Data Save and Retrieval Latencies: We evaluated the
data save and retrieval latencies on those four cloud storage
services. The save latency for a certain number of data blocks
is the time used by SafeSky to successfully PUT all the
corresponding cloud data objects to those four cloud storage
services. The retrieval latency for a certain number of data
blocks is the time used by SafeSky to successfully GET all
the corresponding cloud data objects from those four cloud
storage services.

27

Fig. 4: Cryptographic operation performance

Figure 5 illustrates the experimentally measured worst-case
save and retrieval latencies for files with different sizes. The
worst-case save latency is incurred when all the data blocks of
a file are updated by an application in a short period of time
and thus need to be saved to the cloud. The worst-case retrieval
latency is incurred when all the data blocks of a file are read
together for the first time by an application and thus need to be
retrieved from the cloud. We measured the worst-case save and
retrieval latencies of five files with sizes increased from 3.2768
MB to 16.384 MB. We experimented with two data block
sizes 32,768 bytes and 65,536 bytes; correspondingly, the total
number of data blocks in those five files increases from 100
to 500 for the 32,768-byte data block size, and from 50 to
250 for the 65,536-byte data block size. The 32,768-byte data
block size is suggested in BlueSky because a smaller block size
such as 4,096-byte will incur higher performance overhead for
a system that relies upon wide-area transfers [20]. We used the
65,536-byte data block size to measure if a larger block size
could further reduce the worst-case save and retrieval latencies.

Fig. 5: Measured worst-case file save and retrieval latencies

Basically, with the increase of the file size, both the worst-
case save latency and retrieval latency increase; meanwhile,
the save latency is always larger than the retrieval latency.
With the same file size, the worst-case retrieval latency for the
65,536-byte data block size is slightly smaller than that for the
32,768-byte data block size, while the worst-case save latency
for the 65,536-byte data block size is about one third smaller
than that for the 32,768-byte data block size.

A larger data block size can help reduce the worst-case save
and retrieval latencies. However, applications usually read and
write a portion of a file on-demand each time, corresponding to
a single or a handful of data blocks; therefore, considering the
save and retrieval latencies for a single block is often more
important than considering the worst-case save and retrieval
latencies. Figure 6 illustrates the single data block save and
retrieval latencies; it shows that the 32,768-byte data block size

Fig. 6: Single data block save and retrieval latencies

outperforms the 65,536-byte data block size on both save and
retrieval for all the four cloud storage services. Collectively,
we suggest that the 32,768-byte data block size should be used
in SafeSky to efficiently support most applications. However,
it a user frequently opens an application, the repeated initial
retrieval operations may still cause perceivable delays to the
user.

4) Data Block Read and Write Frequency: Different appli-
cations have their unique data block read and write frequency
patterns, depending on how a user and an application use the
files. In HomeBank and SciTE Text Editor, one or more data
block read operations will be performed when a user opens
a file, and one or more data block write operations will be
performed when a user saves the records or the edited text to
a file. In Firefox, a user’s browsing data are saved to multiple
SQLite database files; when a user performs browsing tasks,
data block read and write operations will be triggered by
Firefox to the corresponding database files. Because the file
operations performed by Firefox are more intensive and diverse
than those of the other two applications, we measured the data
block read and write frequency of Firefox with the 32,768-
byte data block size to demonstrate that SafeSky is capable of
handling the intensive file operations performed by complex
end-user applications.

We designed a browsing session scenario consisting of
seven main steps. Step 1, we visit the Google homepage, add it
to bookmarks, perform a search using the keyword “security”,
and click one link on the response page. Step 2, we visit the
CNN homepage and add it to bookmarks. Step 3, we visit the
Facebook login page, add it to bookmarks, log into it, allow
Firefox to remember the login password, and log out. Step 4,
we visit the Fox News homepage and add it to bookmarks. Step
5, we visit the Gmail login page, add it to bookmarks, log into
it, allow Firefox to remember the login password, and log out.
Step 6, we visit the YouTube homepage, add it to bookmarks,
and click the link to one video. Step 7, we revisit all those six
webpages from their bookmarks, and let Firefox autofill the
login forms on the Facebook and Gmail login pages.

We performed this browsing session scenario quickly in
approximately two minutes to intensively trigger the file
operations of Firefox. During the browsing session, Firefox
reads/writes bookmark records and history records from/to
the places.sqlite database file, reads/writes name and value
pairs of form fields from/to the formhistory.sqlite database
file, reads/writes website cookies from/to the cookies.sqlite
database file, and reads/writes login passwords from/to the
signons.sqlite database file.

28

(a) (b)

Fig. 7: Data block (a) read and (b) write frequency in a browsing session

Figures 7(a) and 7(b) illustrate the data block read fre-
quency and write frequency of those four database files in
our browsing session, respectively. These are the results for
just one browsing session; averaging the results from multiple
runs does not make sense because file operation characteristics
is unique for every browsing session. Read operations on the
places.sqlite and signons.sqlite database files occurred most
frequently because bookmark, history, and form field records
are frequently examined by Firefox on each webpage. Read
operations on the formhistory.sqlite database file occurred only
for webpages that contain forms. Read operations on the
cookies.sqlite database file occurred only at the beginning of
the browsing session; we conjecture that this phenomenon is
due to the possible reason that Firefox caches all the cookies
in memory at the beginning of a browsing session, so that
the intensive use of cookies in almost every webpage will
not incur too much performance overhead. Correspondingly,
we observed that write operations on the places.sqlite and
cookies.sqlite database files occurred most frequently, while
write operations on the formhistory.sqlite and signons.sqlite
database files only occurred for those two login webpages.

Both data block read and write operations are intensively
performed in this browsing session experiment. However,
because all the read operations are served by SafeSky using
the data blocks managed in the memory structures for the
corresponding files, and all the write operations are performed
to the memory structures while separate worker threads are
used to save data to the cloud, such intensive and complex read
and write file operations from Firefox can still be smoothly
processed by SafeSky. We did not perceive any performance
overhead in this browsing session. These performance evalu-
ation results demonstrate that SafeSky can efficiently perform
its functionality and can meet its performance requirement.

VI. SECURITY ANALYSIS

As analyzed in Section III-E, SafeSky first applies the
authenticated encryption to ensure that it is computationally
infeasible for attackers to break the data confidentiality and
integrity. Furthermore, it applies the Shamir’s (k, n) secret
sharing scheme [17] to ensure: (1) it is absolutely infeasible for
attackers to break the data confidentiality, given that they do
not compromise k or more cloud storage services at the same
time; (2) a high level of data availability can be achieved,
given that any k cloud storage services are available to a
user. A user’s cloud data objects could still be obtained by
unauthorized parties from k or more cloud storage services in
highly rare situations, for example, due to simultaneous data
breaches in k cloud storage services, the collusion of k cloud

storage service providers, or the government surveillance; fur-
thermore, by identifying the k corresponding cloud data objects
of a data block, the unauthorized parties can compromise the
confidentiality of that data block. However, SafeSky makes
such an identification difficult by uniquely generating the ids of
cloud data objects from a hash function salted with the storage
service identifiers (Figure 2), albeit the timing information of
block interactions may still be used by attackers.

At the user-end, if malware exists on a user’s computer,
the plaintext data, the cryptographic keys, and cloud accounts
could be directly stolen from the memory to compromise
the data confidentiality. Such potential attacks are out of the
scope of this paper because they pose common risks to all the
applications and data on a computer. However, users should
still pay serious attention to the risks of malware and should
immediately address the malware problem by either cleaning
up or reinstalling the system.

As described in Section III-F, a user’s cloud accounts can
be protected either by the operating system or by using an
additional master password supplied by the user. It is possible
that the protected cloud accounts may be damaged or lost, for
example, due to the crashing of the file system or the careless
deletion by the user. However, in such cases, SafeSky ensures
that the user’s data can still be available; the user can simply
use password reset mechanisms provided by the cloud storage
services to regain cloud accounts, and then retrieve the cloud
data objects to completely recover their data.

VII. DISCUSSION

SafeSky supports user authentication and data save/retrieval
operations on multiple cloud storage services such as Amazon
Cloud Drive [25], Box [26], Dropbox [27], Google Drive [28],
Microsoft OneDrive [33], and Swift [37]. Note that some of
these services are not free for using their REST APIs and
storage by client applications. For example, the costs of using
Amazon Cloud Drive [25] and Google APIs Console in Google
Drive [28] are both based on the storage size and network
traffic. Users can have their own choices to select cloud
storage services based on their preference and budget. For
example, regular users can select free cloud storage services
such as Box [26] and Dropbox [27], enterprise users may select
paid cloud storage services with larger storage capability, and
advanced users may set up their own storage services using
software such as Swift [37]. Further reducing the cost of using
cloud storage services that are not free is out of the scope of
this paper, and we refer readers to the BlueSky paper [20] for
more information.

29

Currently, SafeSky focuses on satisfying a simple single-
reader single-writer consistency semantics for single-user ap-
plications that are most widely used, thus a saves-after-retrieval
mechanism is sufficient. Satisfying a more general single-
writer multi-readers consistency semantics is feasible by letting
readers periodically check cloud storage services to retrieve
fresher cloud data objects. Some collaborative applications
allow multiple users to work on a common task simultaneously,
and they require a more complex multi-reader multi-writer
consistency semantics; however, supporting this consistency
semantics by a solution such as our SafeSky is very difficult
if not impossible because SafeSky simply uses the storage
capability of cloud storage services without requiring any
special computational support from them or any modification
to them. In addition, currently SafeSky does not support the
memory mapping operations such as mmap() and network
operations such as send() because it cannot ascertain and may
compromise the semantics of those operations.

VIII. CONCLUSION

In this paper, we took a middleware approach and designed
SafeSky, a secure cloud storage middleware that can immedi-
ately enable either legacy or new end-user applications to have
the secure cloud storage capability without requiring any code
modification or recompilation to them. A SafeSky-enabled
application does not need to save any data to the local disk, but
instead securely saves the data to multiple free cloud storage
services to simultaneously enhance the data confidentiality,
integrity, and availability. We implemented SafeSky as a C
shared library on Linux. SafeSky supports applications written
in different languages, various popular cloud storage services,
and common user authentication methods used by cloud stor-
age services. We evaluated the correctness and performance
of SafeSky by using real-world applications and analyzed its
security. Our evaluation and analysis results demonstrate that
SafeSky is a feasible and practical approach for equipping end-
user applications with the secure cloud storage capability.

ACKNOWLEDGMENT

We sincerely thank anonymous reviewers for their valuable
suggestions and comments. The first two authors were previ-
ously at UCCS, and they were supported in part by NSF grants
CNS-1359542 and DGE-1438935.

REFERENCES

[1] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. RACS: a case
for cloud storage diversity. In Proc. of the ACM symposium on Cloud

Computing (SoCC), pages 229–240, 2010.

[2] G. Anthes. Security in the cloud. Commun. ACM, 53(11):16–18, 2010.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Commun. ACM, 53(4):50–58, 2010.

[4] P. A. Bernstein. Getting consensus for data replication: Technical
perspective. Commun. ACM, 57(8):92–92, 2014.

[5] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa. DepSky:
dependable and secure storage in a cloud-of-clouds. In Proc. of the
EuroSys, pages 31–46, 2011.

[6] M. Blaze. A cryptographic file system for unix. In Proc. of the ACM
Conference on Computer and Communications Security (CCS), 1993.

[7] K. D. Bowers, A. Juels, and A. Oprea. HAIL: a high-availability and
integrity layer for cloud storage. In Proc. of the ACM Conference on
Computer and Communications Security (CCS), pages 187–198, 2009.

[8] B. Calder, J. Wang, A. Ogus, N. Nilakantan, et al. Windows Azure Stor-
age: a highly available cloud storage service with strong consistency. In
Proc. of the ACM Symposium on Operating Systems Principles (SOSP),
pages 143–157, 2011.

[9] W. Du, K. Jayaraman, X. Tan, T. Luo, and S. Chapin. Position Paper:
Why Are There So Many Vulnerabilities in Web Applications? In Proc.
of the New Security Paradigms Workshop (NSPW), 2011.

[10] M. Dworkin. Recommendation for Block Cipher Modes of Operation:
The CCM Mode for Authentication and Confidentiality. In NIST Special
Publication 800-38C.

[11] R. T. Fielding and R. N. Taylor. Principled design of the modern
Web architecture. ACM Transactions on Internet Technology (TOIT),
2(2):115–150, 2002.

[12] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining
Your Ps and Qs: Detection of Widespread Weak Keys in Network
Devices. In Proc. of the USENIX Security Symposium, 2012.

[13] S. Kamara and K. Lauter. Cryptographic cloud storage. In Proc. of the
Financial Cryptography (FC), pages 136–149, 2010.

[14] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and
M. Walfish. Depot: Cloud Storage with Minimal Trust. ACM Trans.
Comput. Syst., 29(4):1–38, 2011.

[15] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services
vs. “big” web services: making the right architectural decision. In Proc.

of the International Conference on World Wide Web (WWW), 2008.

[16] R. A. Popa, J. Lorch, D. Molnar, H. J. Wang, and L. Zhuang. Enabling
security in cloud storage SLAs with CloudProof. In Proc. of the

USENIX Annual Technical Conference, 2011.

[17] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
1979.

[18] H. Takabi, J. B. D. Joshi, and G.-J. Ahn. Security and Privacy
Challenges in Cloud Computing Environments. IEEE Security and

Privacy, 8(6):24–31, 2010.

[19] R. H. Thomas. A majority consensus approach to concurrency control
for multiple copy databases. ACM Transactions on Database Systems

(TODS), 4(2):180–209, 1979.

[20] M. Vrable, S. Savage, and G. M. Voelker. BlueSky: A Cloud-backed
File System for the Enterprise. In Proc. of the USENIX Conference on

File and Storage Technologies (FAST), 2012.

[21] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou. Toward Secure and
Dependable Storage Services in Cloud Computing. IEEE Trans. Serv.

Comput., 5(2):220–232, 2012.

[22] C. P. Wright, M. C. Martino, and E. Zadok. Ncryptfs: A secure and
convenient cryptographic file system. In Proc. of the Annual USENIX

Technical Conference, pages 197–210, 2003.

[23] C. Yue. Toward Secure and Convenient Browsing Data Management in
the Cloud. In Proc. of the USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud), 2013.

[24] R. Zhao, C. Yue, and Q. Yi. Automatic detection of information leakage
vulnerabilities in browser extensions. In Proc. of the International

Conference on World Wide Web (WWW), pages 1384–1394, 2015.

[25] Amazon Cloud Drive. http://www.amazon.com/gp/feature.html?ie=
UTF8&docId=1000828861.

[26] Box Cloud Storage. https://www.box.com/.

[27] Dropbox Cloud Storage. https://www.dropbox.com/.

[28] Google Drive. https://drive.google.com/.

[29] HomeBank. http://homebank.free.fr.

[30] HP Cloud Object Storage. https://www.hpcloud.com/products/
object-storage.

[31] iCloud. http://www.apple.com/icloud/.

[32] iCloud Data Breach. http://www.forbes.com/sites/davelewis/2014/09/
02/icloud-data-breach-hacking-and-nude-celebrity-photos/.

[33] Microsoft OneDrive. http://windows.microsoft.com/en-us/onedrive/
skydrive-to-onedrive.

[34] OAuth 2.0 Authorization Framework. http://tools.ietf.org/html/rfc6749.

[35] OpenID 2.0. http://openid.net/specs/openid-authentication-2 0.html.

[36] SciTE: a SCIntilla based Text Editor. http://scintilla.org/SciTE.html.

[37] Swift - OpenStack. https://wiki.openstack.org/wiki/Swift.

[38] The GNU C Library. http://www.gnu.org/software/libc/libc.html.

30

