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Multicomponent stacking-velocity tomography for transversely

Isotropic media

Vladimir Grechka*, Andres Pech?, and Ilya Tsvankin*

ABSTRACT

Accurate estimation of the velocity field is the most
difficult step in imaging of seismic data for anisotropic
media. Here, the velocity-analysis problem is examined
for the most common anisotropic model of sedimen-
tary formations—transverse isotropy (TT) with arbitrary
orientation of the symmetry axis. We show that sup-
plementing wide-azimuth reflected PP data with mode-
converted (PS) waves yields more stable estimates of
the anisotropic coefficients and, in many cases, helps to
constrain the model in depth.

An important processing step preceding the inversion
is computation of the traveltimes of the pure SS-waves
from those of the PP- and PS-waves based on a technique
recently developed by Grechka and Tsvankin. This pro-

cedure allows us to replace PS-wave moveout, which is
generally asymmetric with respect to zero offset, with
the symmetric (hyperbolic on short spreads) moveout of
the pure SS reflections. Then, generalizing the algorithm
previously suggested for PP data, we develop a joint to-
mographic inversion of the normal-moveout (NMO) el-
lipses and zero-offset traveltimes of PP- and SS-waves.

Application of the method to wide-azimuth PP and PS
reflections from a dipping interface beneath a homoge-
neous TTlayer shows that for a range of reflector dips and
tilt angles of the symmetry axis, it is possible to build the
anisotropic velocity field in the depth domain. We also
extend our inversion procedure to layered TI media with
curved interfaces and study its stability in the presence
of noise and heterogeneity.

INTRODUCTION

A number of case studies involving multicomponent land
and offshore data demonstrated that mode (P-to-S) conver-
sions can supplement or even replace pure-mode reflections in
such applications as imaging beneath gas clouds (e.g., Granli
et al., 1999; Thomsen, 1999) and characterization of frac-
tured reservoirs (e.g., Pérez et al., 1999). Processing of PS-
waves, however, is complicated by the strong influence of seis-
mic anisotropy on their signatures. For example, the velocity
anisotropy of SV- and PSV-waves in transversely isotropic (TT)
media is mostly controlled by the coefficient

o= (\\’,—80)2< ~5), (M)

which is typically much larger than the Thomsen (1986) param-
eters € and § governing P-wave data (Vpy and Vg are the verti-
cal P- and S-wave velocities, respectively). Mis-ties between PP
and PS sections routinely produced by conventional isotropic

imaging methods (e.g., Nolte et al., 1999) indicate the need
for joint anisotropic velocity analysis of PP and PS reflection
events.

As shown by Tsvankin and Grechka (2000a,b) for trans-
versely isotropic media with a vertical symmetry axis (VTI),
wide-azimuth reflection traveltimes of PP- and PSV-waves
from a single mildly dipping reflector are sufficient for estimat-
ing all relevant parameters (Vpy, Vo, €, and §). However, if the
reflector is horizontal, the joint inversion of PP and PSV move-
out data is nonunique, even if uncommonly long offsets are
available (Grechka and Tsvankin, 2003a). It should be empha-
sized that the vertical velocity and reflector depth are difficult
to determine using PP moveout alone. Le Stunff et al. (2001)
and Grechka et al. (2000a,b) showed that depth-domain veloc-
ity analysis of PP reflections in VT1 media is feasible for only a
limited subset of models with dipping or curved intermediate
boundaries.

Here we extend our previous results on the inversion of PP
and PS data (Grechka et al., 2000a,b; Tsvankin and Grechka,
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2000a,b) by introducing the methodology of anisotropic mul-
ticomponent stacking-velocity tomography and applying it to
TI media with an arbitrary tilt of the symmetry axis. Rather
than working with PS data directly, we combine them with
PP data to obtain the traveltimes of the pure SS (SV or SH for
TI media) reflections from the same interface using the algo-
rithm of Grechka and Tsvankin (2002b). The computation of
SS traveltimes is entirely data-driven and does not require ex-
act knowledge of the velocity model. This procedure makes it
possible to avoid inherent problems of PS-wave velocity anal-
ysis caused by the asymmetry of PS moveout with respect to
zero offset on CMP (common-midpoint) and CCP (common-
conversion-point) gathers, conversion-point dispersal, and po-
larity reversals.

In contrast to the more complicated moveout of mode
conversions, reflection traveltime of pure SS-waves on CMP
gathers is symmetric with respect to zero offset and, for moder-
ate offset-to-depth ratios, can be described by the NMO ellipse
(Grechka and Tsvankin, 1998). Hence, the theory of the NMO
ellipses and NMO-velocity surfaces (Grechka et al., 1999;
Grechka and Tsvankin, 2002a) is directly applicable to SS-
wave moveout. In particular, Grechka and Tsvankin (2002a)
showed that pure-mode NMO ellipses in heterogeneous ar-
bitrary anisotropic media can be built in a computationally
efficient way by tracing just one (zero-offset) ray for each re-
flection event. This modeling technique was used by Grechka
et al. (2000a,b) to develop tomographic-style inversion of PP-
wave NMO ellipses in VTI media composed of homogeneous
layers separated by planar or curved interfaces.

The methodology of Grechka et al. (2000a,b) is gener-
alized here for the combination of conventional-spread PP
and SS data. The tomographic algorithm operates with the
NMO ellipses, zero-offset traveltimes, and reflection slopes of
PP-waves and SS-waves (the SS traveltimes are supposed to be
obtained from the PP and PS data). We examine a wide range of
homogeneous TI models with a tilted symmetry axis (including
horizontal transverse isotropy, or HTI) and establish the con-
ditions needed for stable parameter estimation. The proposed
method is then applied to layered TI models to estimate the
interval medium parameters and the shapes of interfaces from
multicomponent reflection data.

METHODOLOGY OF STACKING-VELOCITY TOMOGRAPHY

The goal of the tomographic algorithm introduced here is to
estimate the anisotropic subsurface model using wide-azimuth
measurements of stacking (moveout) velocities of PP- and
SS-waves on moderate-length CMP spreads (i.e., spreads
close to the reflector depth). Therefore, this approach can
be classified as anisotropic multicomponent stacking-velocity
tomography.

Although limiting the input data to stacking velocities ex-
cludes the far-offset information from analysis, our algorithm
is much more computationally efficient than conventional re-
flection tomography (e.g., Le Stunff and Grenié, 1998). In-
deed, azimuthally varying moveout velocity, described by the
NMO ellipse, can be computed by tracing only one zero-
offset ray per CMP and per reflector (Grechka and Tsvankin,
2002a; Grechka et al.,2000a,b). A more detailed comparison of
stacking-velocity tomography with the conventional method is
given in the Discussion and Conclusions section.

We implemented the multicomponent tomographic proce-
dure for TI media composed of homogeneous layers separated
by plane or smooth curved interfaces. The algorithm includes
the following main steps:

1) Picking PP and PS traveltimes from prestack 3-D data
volumes and identifying the PP and PS events reflected
from the same interfaces. In general, both split converted
waves (PS; and PS,) can be used.

2) Computing the traveltimes of the pure SS (S;S; and S,S,)
reflections from PP and PS data using the method of
Grechka and Tsvankin (2002b).

3) Performing azimuthal velocity analysis to obtain the
NMO ellipses of the PP- and SS-waves (Grechka and
Tsvankin, 1999a).

4) Inverting the NMO ellipses, zero-offset traveltimes, and
reflection slopes for the interval anisotropic parameters
by extending the approach of Grechka et al. (2000a,b) to
multicomponent data.

The data vector used in the inversion for an N-layered TI
medium is given by

d(Q. Y. n) = {zq(Y.n), pa(Y.n). Wo(Y. M}, (2)

where Q=PP or SS is the mode type (only SV SV-waves are
included in the algorithm discussed here), Y =[Y, Y] is the
CMP location, n=1, 2, ..., N is the reflector number, t is the
zero-offset traveltime, p is the reflection slope on zero-offset
time sections, and Wis the 2 x 2 matrix (Grechka and Tsvankin,
1998) describing the NMO ellipse.

Our goal is to find the model vector m which contains the
interval medium parameters and the coefficients of the polyno-
mials used to describe the model interfaces. For TI media with
an unknown tilt of the symmetry axis, the inversion of PP- and
SV SV-waves can be used to estimate six interval parameters:
the symmetry-direction P- and S-wave velocities Vp( and Vg,
anisotropic coefficients € and §, and two angles responsible for
the symmetry-axis orientation.

In general, the parameter-estimation algorithm is organized
in the same way as that introduced for PP-waves by Grechka
et al. (2000a,b). For a given set of trial interval anisotropic
parameters, the zero-offset traveltimes 7g and the reflection
slopes pqg are used to compute the one-way zero-offset rays
for all reflection events. Then the interfaces for the trial model
are reconstructed by fitting 2-D polynomials to the termination
points of the zero-offset rays, which allows us to compute the
NMO ellipses. Finally, the interval parameters are obtained by
minimizing the following objective function:

Fm)= " [WE(Y,n,m) - WE*(Y,n)|. (3)
Q.Y.n

The norms in the function (3) contain the differences between
the computed and measured NMO ellipses W for all modes
and all reflectors at each CMP location.

INVERSION OF PP AND SS DATA
FOR A HOMOGENEOUS TI MEDIUM

Consider the model of a single homogeneous TI layer with
a planar lower boundary (horizontal or dipping) and arbi-
trary orientation of the symmetry axis. The problem addressed
here is whether wide-azimuth reflection traveltimes of PP- and
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SS(SV SV)-waves (SS traveltimes are computed from PP and
PS data) can be inverted for the symmetry-direction velocities
Vpo and Vg, the parameters € and §, and the axis orientation.

It is convenient to study the feasibility of parameter esti-
mation by applying the weak-anisotropy approximation to the
NMO ellipses and zero-offset traveltimes. The analysis has to
be performed for P-waves only, because any kinematic signa-
ture of SV-waves for weak transverse isotropy can be obtained
from the corresponding P-wave signature by making the fol-
lowing substitutions: Vpy — Vg, § = o, and € — 0 (Tsvankin,
2001; see Table 1 below). A similar substitution rule for
SH-wavesis Vpyg — Vg),8 — y,and € — y.SH-wave anisotropy,
however, is elliptical, and most kinematic signatures can be
obtained in closed form without applying the weak-anisotropy
approximation.

VTI layer

The substitution rules for different modes hold (in the
weak-anisotropy limit) for the processing parameters as well.
Alkhalifah and Tsvankin (1995) showed that P-wave time pro-
cessingin VTI media with a laterally homogeneous overburden
above the target reflector is governed by the zero-dip P-wave
NMO velocity

Vr12mo,P = VgO(l + 28) (4)
and the anellipticity coefficient
€—39§
= . 5
TS 1y ®)

Note that this result is valid for any strength of velocity
anisotropy. Time processing of SV-waves for weakly aniso-
tropic VTI media is then controlled by the zero-dip SV-wave
NMO velocity

Vnzmo,SV = VSZ()(1 + 20) (6)

and the parameter [—o/(1+20)] that plays the role of n [o
was introduced in equation (1)]. Time processing of elliptically
anisotropic SH-waves requires just the NMO velocity

V112m0,SH = Vé)(l + 2)/) (7)

because the quantity corresponding to n goes to zero. This well-
known result implies that isotropic time-processing algorithms
are entirely valid for elliptical anisotropy (Dellinger and Muir,
1988; Alkhalifah and Tsvankin, 1995).

Suppose the data include multiazimuth (3-D) traveltimes of
PP- and PSV-reflections from a planar dipping interface below
a homogeneous VTI layer. Without losing generality, the dip
plane of the reflector is assumed to coincide with the coordi-
nate plane [X, X3] (i.e., the X;-axis points in the dip direction).

Table 1. Correspondence between the parameters responsi-
ble for the kinematic signatures of P-, SV-, and SH-waves in
weakly anisotropic TI media.

Parameter P SV SH
Kinematic Vpo Vg Vg

€ 0 y

) o y
Time Processing (VTI) Vimo, P Vimo,sv Vimo.SH

n —0 0

Applying the methodology of Grechka and Tsvankin (2002b),
we compute the traveltimes of the pure SS (SV SV) reflections
and use azimuthal moveout analysis (Grechka and Tsvankin,
1999a) to obtain the NMO ellipses of both PP- and SS-waves.

Since the model is symmetric with respect to the dip plane,
the axes of the NMO ellipses have to be aligned with the dip and
strike directions (Grechka and Tsvankin, 1998). The linearized
approximations for the semiaxes of the PP-wave NMO ellipse
are given by (Alkhalifah and Tsvankin, 1995; Grechka and
Tsvankin, 1998)

2nyp
I—yp

(6—9yp + 4y%)}

®)

Vz _ Vnzmo,P 1
nmo,P,dip(pP.l) =1 _ye +

and

Vnzmo,P.slrike( pP,l) = Vnzmo,P[1 + 277yP(2 - yP)], (9)

where

_ 2 2
Yp = pP,lvnmo, P>

pp1 is the horizontal slowness component of the PP-wave
zero-offset ray (or the dip component of the reflection slope),
and the strike component pp, =0. Equations (8) and (9) can
be inverted for the zero-dip NMO velocity Vomo p and the
anisotropic coefficient 5 if the reflector dip (expressed through
the slope pp,1) is not too small. The inversion of the PP-wave
NMO ellipse using the exact equations is discussed by Grechka
and Tsvankin (1998), who find that the dip should exceed 25°
to ensure stable estimation of 7.

The weak-anisotropy approximations for the dip and strike
components of the SV-wave NMO velocity can be obtained
directly from equations (8) and (9) using the conversion rule
from Table 1:

Vimo.sv 20Ysy
Vnzmo,SV,dip(pSV,l)z e [ -

1—ysv 1-ysv
<(6-ysv+ad) | o)

Vr?mo,SV,strike(pSV,l) = Vnzmo,SV[1 - 2UySV(Z - ySV)]'
11)

Here

— n2 2
Ysv = pSV,lvnmo,SV’

Psv1 is the horizontal slowness component of the SS-wave
zero-offset ray, and the strike component psy, =0.

Similarly to the parameter estimation for PP-waves de-
scribed above, equations (10) and (11) can be inverted for
Vamo.sv and o. Furthermore, substituting Vymo sv and o into
equation (6) yields the shear-wave vertical velocity Vg. Then
the zero-offset traveltime and the reflection slope of the SS
reflection can be used to reconstruct the depth and dip of the
reflector.

Next, we demonstrate that adding this information to the
traveltimes of PP-waves is sufficient for estimating the verti-
cal velocity Vpy and the anisotropic coefficients € and §. The
equation of the planar reflecting interface defined by the coor-
dinate vector x can be written in the form
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n-(x—rp) =0, 12)

where n is a unit vector normal to the reflector and rp defines
the PP-wave zero-offset reflection point. Similarly, for the zero-
offset SS ray reflected from the point rsy, we have

n-(x—rsy)=0. (13)
Combining equations (12) and (13) yields
n-rp=n-rgy. (14)

The vector n can be replaced in equation (14) by the normal-
ized (so that the magnitude is equal to unity) slowness vectors
of the zero-offset PP and SS rays because the slowness (or
phase-velocity) vectors of pure-mode reflections at zero off-
set are orthogonal to the reflector. Also, the vectors rp and
rsy can be expressed through the group-velocity vectors of the
PP- and SS-waves by putting the origin of the coordinate sys-
tem at the CMP location. Then linearization of equation (14)
in the anisotropic parameters leads to

TPVnmo,P [1 - 8(1 - pl%,lvnzmo,P) + np‘lg.lvrfmo.P]
= TSVVnmo,SV[l —0 (1 - pév,lvlfmo,sv—i_ pév,lvrfmo,SV)]’

(15)

where tp and tsy are the zero-offset traveltimes of the
PP- and SS-arrivals. Note that the quantities on the left- and
right-hand sides of equation (15) comply with the conversion
rule in Table 1. The result equivalent to equation (15) can be
obtained by using Snell’s law for the zero-offset P- and SV-rays
instead of equations (12) and (13).

Although the parameters Vimo p, Vamo.sv, 17, and o, which
can be obtained from the PP- and SS-wave NMO ellipses
[equations (8)—(11)], are sufficient to find the vertical velocities
Vpo and Vg and the coefficients € and §, the inversion of the
PP-wave NMO ellipse for n requires reflector dips of at least 25°
(Alkhalifah and Tsvankin, 1995; Grechka and Tsvankin, 1998).
The NMO ellipse of the SS-wave is more sensitive to dip than
that of the PP-wave because of relatively large values of o. Sup-
plementing equations (8)—(11) with equation (15) adds another
constraint on the anisotropic parameters and helps to obtain
an accurate result for dips below 25°. Indeed, the numerical
tests below confirm that dips as small as 15° are sufficient for
stable estimation of the VTI parameters for this simple model.

Figure 1 illustrates application of our methodology to noise-
contaminated wide-azimuth PP and SS (SV SV) traveltimes
(the SS traveltimes are supposed to be computed from the
PP and PS data) generated for a homogeneous VTI layer with
the lower boundary dipping at 15°. We applied nonlinear inver-
sion (the Gauss-Newton method) based on the exact equations
for the NMO ellipses, zero-offset traveltimes, and reflection
slopes; the objective function is given in equation (3). The dots
in Figure 1 mark the estimated VTI parameters for different
realizations of the noise added to the input data. The standard
deviations in the inverted parameters (2% for Vp( and Vg, 0.03
for €, and 0.02 for §) indicate that the noise does not get ampli-
fied by the parameter-estimation procedure, so the inversion
is reasonably stable. Note that the estimated values of ¢ and
8 cluster near the line of the correct parameter n~e —§ be-
cause the difference € — § is well constrained by both PP and
SS traveltimes (Tsvankin and Grechka, 2000a).

The only parameter of VTI media that cannot be obtained
from P and SV data is y—the anisotropic coefficient respon-
sible for the elliptical anisotropy of SH-waves. Tsvankin and
Grechka (2000b) showed that y can be determined from con-
verted PSH-waves, which are generated for all azimuthal direc-
tions outside the dip plane. The methodology introduced here
can be applied to the estimation of y from the NMO ellipses
of the pure SH-wave reflections computed from PP and PSH
data. Thus, with the combination of PP-, PSV-, and PSH-wave
reflection traveltimes, one can estimate all five VTI parameters
and build the anisotropic depth model.

HTTI layer

Contreras et al. (1999) studied the inversion of wide-azimuth
PP data for HTI media and showed that the symmetry-
direction velocity Vpy, the coefficients € and § (or €¥) and 6);
see Tsvankin, 1997), and the azimuth 8 of the horizontal sym-
metry axis can be found from the PP-wave NMO ellipses from
a horizontal and a dipping reflector. However, the need to use
two different dips for each depth interval makes this algorithm
difficult to implement in practice. In contrast, our approach is
designed to estimate the HTI parameters using the NMO el-
lipses of PP- and SS(SV SV)-waves from a single reflector that
can be either horizontal or dipping. Note that by SV-wave we
always mean the mode polarized in the plane formed by the
slowness vector and the symmetry axis. If the symmetry axis is
horizontal or tilted, this plane is no longer necessarily vertical,
but we still prefer to keep the notation commonly used for VTI
media.

The inversion for a horizontal HTT layer confirms the results
of Tsvankin (1997), who pointed out that the combination of
wide-azimuth PP- and SS-wave moveout data is sufficient for
estimating the symmetry-direction velocities Vpy and Vg and
the parameters € and §. For this model, the velocities Vpy and
Vg can be found directly from surface data because they are
equal to the corresponding NMO velocities measured in the
direction orthogonal to the symmetry axis (i.e., in the isotropy
plane). Typical results of inverting noise-contaminated PP and
SS traveltimes for the parameters of a horizontal HTI layer are
shown in Figure 2. In this example, the standard deviationsin all
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FIG. 1. Results (dots) of the joint inversion of PP and SS (SV
SV) data for a single VTTI layer above a planar dipping reflec-
tor. The correct layer parameters are marked by the crosses;
the reflector dip is 15°. The dashed line on plot (a) corre-
sponds to the correct value of 5. The data were contaminated by
Gaussian noise with the standard deviations equal to 2% for
the NMO velocities and 1% for the zero-offset traveltimes and
reflection slopes.
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estimated parameters, including the azimuth 8 of the symmetry
axis (not shown on the plot), are quite small; the deviation in
B isjust 0.6°.

To examine the inversion for dipping interfaces, we adapted
for SS-waves (see the substitution rule in Table 1) the weak-
anisotropy approximations for PP-wave NMO ellipses given
by Contreras et al. (1999). These results are similar to the ones
discussed in the previous section for VTT media and, therefore,
are not given here. Both the theoretical analysis and the inver-
sion based on the exact equations (see Figure 3) prove that
the parameter estimation remains stable for the whole range
of dips from 0° to 90°.

The dots of the estimated parameter values in Figure 3 form
smaller clouds than those in Figure 1, which indicates that the
inversion of dipping events for HTI media is more stable com-
pared to that for VTI media. (As discussed above, for a hor-
izontal VTI layer the inversion for Vpy, Vpg, €, and § cannot
be performed at all.) We also noticed that the inversion algo-
rithm for HTT media converges much more rapidly toward the
correct model than it does for VTT media.

TTI layer

The parameter-estimation problem for transverse isotropy
with a tilted symmetry axis (TTI media) includes only one ad-
ditional unknown compared to the HTI case—the tilt v. This,
however, makes the inversion substantially more ill posed than
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FIG. 2. Results of the inversion (dots) of PP and SS data for a
horizontal HTT layer using the exact equations for the NMO
ellipses. The data were contaminated by noise with the same
standard deviations as those in Figure 1. The correct layer pa-
rameters are marked by the crosses. Vpy and Vg are the veloc-
ities in the symmetry-axis direction.
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FiG. 3. Same as Figure 2 but for an HTI layer with the lower
boundary dipping at 25°. The azimuth of the symmetry axis
with respect to the dip plane is 8 = 40°; the standard deviation
in B is 0.8°.

that for HTT media because the pure-mode NMO ellipses are
nonlinear functions of v, even for weak anisotropy. Grechka
and Tsvankin (2000) found a nonlinear dependence on the tilt
in the weak-anisotropy approximation for the PP-wave NMO
ellipse in TTI media, and adaptation of their equations for
shear modes using Table 1 leads to the same result for both SV-
and SH-waves. Therefore, the misfit (objective) function for the
NMO ellipses that has to be minimized in the nonlinear inver-
sion typically has local minima, even for weak anisotropy. The
multimodal nature of the misfit function may require several
inversions starting from different points in the model space.

The schematic summary of our numerical results in Figure 4
illustrates the influence of the tilt of the symmetry axis and re-
flector dip on the uniqueness of parameter estimation in TTI
media. This plot should not be interpreted in a strict quantita-
tive sense because the criteria we used to identify the areas of
unique and nonunique inversion are somewhat loose. In gen-
eral, the line dividing those areas corresponds to the standard
deviations in € and § of about 0.03 (for the errors in the input
data given in the caption of Figure 1). However, the quality of
the inversion results also depends on parameters not shown in
Figure 4 such as the magnitude of ¢ and § and the azimuth of
the symmetry axis. In particular, the inversion becomes more
stable with increasing absolute values of € and 4.

It should be emphasized that in generating Figure 4 we as-
sumed the orientation of the symmetry axis is unknown, even
if the model is HTI or VTI. Therefore, the stability of the inver-
sion results for both VIT and HTT is lower than that in the two
previous sections on VTI and HTI media where we fixed the
tilt of the symmetry axis at the correct value (see Figures 1-3).
Still, Figure 4 shows that even if the HTI model is not assumed
in advance, it can be accurately reconstructed from reflection
data despite some problems caused by the more complicated
topology (e.g., multiple local minima) of the objective function.

In contrast, when the tilt of the symmetry axis is small (i.e.,
the model is close to VTI) and unknown, the inversion remains
ambiguous for all reflector dips. As the symmetry axis deviates
further from the vertical, the inversion becomes more stable
(for a fixed dip) and can be performed for an increasingly wide

tilt (deg)
HTI 90
TTI
Inversion
nonunique
VTII O >
0 90 dip (deg)

FIG. 4. Uniqueness of depth-domain parameter estimation in
TI media for the full range of reflector dips and tilt angles of
the symmetry axis. The tilt and azimuth of the symmetry axis
were unknown (i.e., they were estimated from the inversion)
for all models, including VTT and HTI media.
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range of dips (Figure 4). For HTI media (see above) the inver-
sion is feasible even for a horizontal reflector and without a
priori knowledge of the tilt.

Figure 5 displays inversion results typical for models located
within the area of nonuniqueness in Figure 4 near the area’s
boundary. As in the previous examples, we inverted the NMO
ellipses, zero-offset traveltimes, and reflection slopes of the PP-
and SS-waves after contaminating the input data with Gaussian
noise. Although the obtained parameters scatter around the
correct values, the standard deviations (4% in Vpy and Vg,
0.05in€,0.041in §,1.5° in B, and 0.8° in v) indicate a substantial
error amplification in the estimation of Vp, Vg, €, and §.

The stability of the inversion for TTI models may be en-
hanced by including SH-wave NMO ellipses and zero-offset
traveltimes in the input data. The traveltimes of pure SH reflec-
tions can be obtained using PSH converted waves generated
for source-receiver azimuths outside of the vertical symmetry
plane(s) of the model (see the discussion above).

Thus, multicomponent (PP and PS), multiazimuth reflection
data can be inverted for the parameters of homogeneous TI
media for arange of reflector dips and tilts of the symmetry axis.
The highest stability is observed for near-horizontal orienta-
tions of the symmetry axis, while for a vertical or tilted symme-
try axis the inversion becomes more stable with increasing dip.

PARAMETER ESTIMATION FOR LAYERED TI MEDIA

Here we describe application of the multicomponent tomo-
graphic procedure to TI models containing homogeneous lay-
ers with arbitrary orientation of the symmetry axis separated by
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FIG. 5. Results of the inversion (dots) of PP and SS traveltime
data for a dipping TTTI layer (the dip is 30°; tilt is 20°). The
data were contaminated by noise with the same standard de-
viations as those in Figure 1. The correct layer parameters are
marked by the crosses. Vpy and Vg, are the velocities in the
symmetry-axis direction; v and g are the tilt and azimuth of
the symmetry axis, respectively (B is measured with respect to
the dip plane).

smooth curved interfaces. Suppose the input data include wide-
azimuth traveltimes of PP- and PSV-waves reflected from the
two interfaces of the VTT model in Figure 6. After computing
the traveltimes of the pure SS reflections using the method of
Grechka and Tsvankin (2002b), we collect the PP and SS data
into CMP gathers for azimuthal velocity analysis. Estimating
the PP- and SS-wave NMO ellipses and zero-offset traveltimes
at four CMP locations (Figure 6) yields the data vector from
equation (2). Then, for each trial model we build the interfaces
and compute the objective function (2), which is then mini-
mized using the nonlinear inversion algorithm.

Numerical examples

The input data from Figure 6 were distorted by Gaussian
noise with the standard deviation of 2% for the NMO velocities
and 1% for the zero-offset traveltimes and reflection slopes.
The inversion results for 100 realizations of the input data in
Figure 7 indicate that the noise does not get amplified by the
parameter-estimation procedure. The standard deviations in
the inverted parameters are about 0.01 for € and §, and less
than 1% for Vpy and Vg (not shown).

Note that neither of the interfaces in the model from Figure 6
has steeply dipping segments. In agreement with the results for
a single layer, the high sensitivity of the SS-wave NMO ellipse
to reflector dip and the addition of the ratio of the zero-offset
PP and SS traveltimes [equation (15)] ensures the stability of
the joint inversion of wide-azimuth PP and SS data for dips of
15-20°.

Figures 8 and 9 show the tomographic inversion of multicom-
ponent data for a more complicated model that includes VTI,
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FIG. 6. Zero-offset rays of the PP- and SS(SV SV)-waves recor-
ded at four CMP locations over a model composed of two
homogeneous VTI layers. The parameters of the top layer are
Vpo1=2.0 km/s, Vgy1 =0.8 km/s, ¢, =0.15, and &; =0.05. For
the bottom layer, Vpg, =2.5 km/s, Vg, =0.9 km/s, €, =0.20,
and 8, =0.10.
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HTI, and TTI layers. Despite the larger error bars for deeper
horizons, the overall stability of the algorithm is satisfactory. A
general increase in errors with depth, caused by the relatively
small contribution of the deeper layers to the reflection travel-
times from their lower boundaries, is typical for all kinematic
inversion algorithms. Also, although we do not differentiate
Dix-type formulae explicitly to obtain the interval anisotropic
coefficients, errors in the parameters of the upper layers still
propagate into the inversion results for the deeper part of the
section.

Influence of errors in the symmetry type

In the examples discussed in the previous section, it was as-
sumed that the type of anisotropy (i.e., anisotropic symmetry)
in each layer was known in advance. Since this is not necessar-
ily the case in practice, it is instructive to examine the inversion
of error-free data using an intentionally incorrect anisotropic
symmetry in one of the layers.

We specified a TI model composed of two VTI layers on
top of an HTTI layer (Figure 10) with the interval parameters
listed in the top row of Table 2. Then the tomographic parame-
ter estimation was performed under the erroneous assumption
that the bottom (HTT) layer has VTI symmetry (the second
row in Table 2). As expected, the inversion produced seriously
distorted values of the symmetry-direction velocities Vp 3 and
Vg3 and the anisotropic coefficients €3 and 8. It is interesting

0.2_....5 ........................... S ; SRR .
3 :
01 : : : 3
0 i
3 81 g, 62

Fic. 7. Results of stacking-velocity tomography for the model
in Figure 6. The dots mark the exact values of the anisotropic
parameters; the bars correspond to the + standard deviation
in each parameter.
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¥
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FIG. 8. Zero-offset rays of the PP- and SS(SV SV)-waves for a
model composed of TTI, VTI, and HTTI layers.

that the parameters of the two upper layers are also inaccurate
because the error in the bottom layer gets distributed through-
out the whole model to minimize the objective function (3).
Hence, errors can propagate not only downward (accumulate
with depth) but also upward, albeit with a substantially smaller
amplification.

Another implication of this observation is that it might
be preferable to perform tomographic inversion in a layer-
stripping mode, starting with estimation of the parameters of
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FIG. 9. Results of stacking-velocity tomography for the model
in Figure 8. The parameters v; and B, are the tilt and azimuth
of the symmetry axis in the top (TTI) layer; B; is the symme-
try-axis azimuth in the bottom (HTT) layer.
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FIG. 10. Zero-offset rays of the PP- and SS(SV SV)-waves for
a model composed of two VTI layers on top of an HTT layer.
The interval parameters are listed in the top row of Table 2.
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the subsurface layer using the most shallow PP and PS reflec-
tions. Then, fixing the obtained values, we can determine the
interval parameters of the second layer by inverting the travel-
times from its bottom, and the parameter-estimation procedure
continues downward. In addition to eliminating upward error
propagation from the deeper layers, the stripping approach is
computationally efficient because only a few unknowns need to
be found at each stage (i.e., for each layer). The main shortcom-
ing of layer stripping is its implicit reliance on the assumption
that the reflections from the bottom of the layer contain full in-
formation about the layer parameters. Since it is not always the
case for PP-waves in TI media (Le Stunff et al., 1999; Grechka
et al., 2000a,b), one can expect that for some models the layer-
stripping method may create ambiguity in the joint inversion
of PP and PS data.

In the second test, the top (VTI) layer was assumed to have
HTI symmetry. Then, in addition to the expected significant
errors for this layer, we also obtained distorted parameters
in both bottom layers (see the third row in Table 2). This
test underscores the importance of choosing the right type of
anisotropy in the overburden because any errors in the shallow
part of the section will propagate through the whole model.

An alternative to assuming a specific type of anisotropy is to
adopt the more general tilted TI (or even orthorhombic) model
from the outset of the inversion. The correct type of anisotropy
can then be identified from the determined orientation of the
symmetry axis (for TTI media) or relationships between the
estimated anisotropic coefficients (for orthorhombic media).
However, according to the above numerical results, the need to
estimate the tilt of the symmetry axis often reduces the stability
of the algorithm, especially for models close to VTI.

Influence of heterogeneity

Accurate reconstruction of vertical and lateral velocity varia-
tions is the main challenge in reflection tomography. For exam-
ple, even for isotropic media certain types of vertical velocity
variations can never be resolved from the reflection travel-
times, no matter how the inversion is performed (e.g., Goldin,
1986). Given the complexity of this problem for anisotropic
media, the discussion here is limited to a numerical example
illustrating the errors in the estimated anisotropic parameters
caused by heterogeneity unaccounted for in the inversion.

Suppose we attempt to estimate the parameters of the VTI
overburden for the model from Table 2 (Figure 10) using only
the reflections from the second interface. The effective param-
eters of the overburden then change both vertically (since it
actually consists of two layers) and laterally (because the first
interface is not horizontal). While the vertical variations of the
VTI parameters cannot be resolved without including reflec-
tions from the first interface, we can try to estimate the lateral
parameter variations by performing the inversion for a range
of CMP coordinates Y; (Figure 10).
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The data d(Q,Y,n) [equation (2)] were generated for
Q=PP, SV SV, and n=2; the CMP coordinates were varied as
Y =[-0.6,—04,...,0.8,1.0] km, Y, =[—0.2, 0.2] km. In each
inversion, we used four adjacent CMPs (that form the corners
of a rectangle) and assigned the estimated anisotropic coeffi-
cients to the center of the rectangle. Treating the overburden
as a single homogeneous VTI layer yields the parameters dis-
played in Figure 11. Clearly, all estimated quantities change
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Fic. 11. Effective parameters (dots) of the VTI overburden
estimated using the reflections from the second interface in
Figure 10. The correct parameters of the VTT layers that make
up the overburden are marked by the dashed lines. The coor-
dinate Y; (in kilometers) is defined in the text.

Table 2. Correct parameters of the model composed of two VTI layers on top of an HTI layer (top row) and the inversion results
based on erroneous assumptions about the symmetry in one of the layers.

Veo1 Ve €1 8 B Veoz Ve €2 ) Veos Va3 €3 83 Bs
Correct model parameters 200 08 015 005 - 250 090 020 0.10 350 1.10 0.20 0.05 30
Inversion, bottom layer VIT 198 0.79 0.16 006 - 253 090 0.8 0.09 3.00 128 0.35 0.34 -
Inversion, top layer HTI 223 094 001 003 101 261 092 015 0.02 355 092 024 —-0.09 34
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laterally because the variations in the dip and depth of the
interfaces make the overburden laterally heterogeneous. It is
interesting that while the effective vertical velocities Vpg and
Vg (Figure 11a,b) can be regarded as certain averages of the
interval velocities, the best-fit anisotropic coefficients € and §
often lie outside the range of the corresponding interval coef-
ficients (Figure 11c,d).

This result, which seems to be puzzling, can be explained by
the fact that we operate with a variety of different averages in
the stacking-velocity tomography. The “average” or effective
parameters produced by the tomographic inversion process are
not necessarily bounded by the minimum and maximum inter-
val values. As an example, in the Appendix we show that the
effective anisotropic coefficient § derived from the PP-wave
NMO velocity for a stack of plane homogeneous VTI layers
can often exceed the maximum interval coefficient §,. In the
special case of isotropy, when all §, =0, the effective § above
vertically heterogeneous media is always positive (Grechka
and Tsvankin, 2003b). The model in Figures 10 and 11 contains
curved interfaces, and the averaging procedure is more com-
plicated than that in the Appendix. The results, however, are
similar because in both cases the effective values lie outside of
the range of the corresponding interval quantities.

In fact, the results in Figure 11 can be considered as a conse-
quence of upscaling, performed implicitly to obtain the effec-
tive values of the anisotropic parameters. Replacing the actual
heterogeneous medium with the homogeneous model provid-
ing the best fit to the data may result in the effective properties
which cannot be obtained by the straightforward arithmetic
averaging of the corresponding interval (local) properties.

DISCUSSION AND CONCLUSIONS

We introduced a multicomponent tomographic algorithm
designed to invert wide-azimuth reflection traveltimes for the
interval parameters of TI media. The input data include re-
flection moveout of PP-waves and converted PS-waves, so
the method can be applied in multicomponent ocean-bottom
surveys. PS data, however, are not used directly in the velocity-
analysis procedure. Instead, they are combined with the
PP-wave moveout from the same interface to compute the re-
flection traveltimes of SS-waves using the model-independent
kinematic technique of Grechka and Tsvankin (2002b).

The SS traveltime, in contrast to the more complicated move-
out of converted waves, is symmetric with respect to zero offset
and (on conventional-length spreads) can be described by the
NMO velocity. Azimuthal semblance analysis of PP and SS
traveltimes on CMP gathers produces the NMO ellipses and
zero-offset traveltimes, which serve as the input to the tomo-
graphic inversion.

Although the stacking-velocity tomography of PP and SS
data does not use the far-offset information (i.e., nonhyper-
bolic moveout), it has significant advantages over conventional
reflection tomography. The first advantage, which is critically
important in anisotropic media, is related to computational
efficiency. Since the NMO ellipse (and, therefore, the multi-
azimuth, multioffset hyperbolic moveout as a whole) can be
computed by tracing only one zero-offset ray for each reflec-
tion event at a given CMP location, the number of rays to be
generated in forward modeling is reduced by orders of magni-
tude, which makes anisotropic traveltime tomography compu-

tationally feasible for complex subsurface models. Second, it
is possible to derive semianalytic expressions for the NMO el-
lipse even in arbitrarily anisotropic media, if the model is struc-
turally simple (Grechka et al., 1999; Grechka and Tsvankin,
1999b, 2002a). Such analytic solutions help to identify the pa-
rameters (or the parameter combinations) constrained in the
inversion of NMO velocities. Third, restricting the range
of source-receiver offsets reduces the influence of lateral
heterogeneity on reflection traveltimes, and the velocity field
can be estimated separately for blocks of relatively small lat-
eral extent. Within each block, the layers can be treated as
homogeneous, and the interfaces can be approximated by
simple smooth surfaces, such as low-order polynomials. Then
global smoothing can be applied to build the laterally varying
anisotropic velocity field and reflecting interfaces.

Here, the multicomponent tomography was implemented
for a stack of transversely isotropic layers separated by smooth
interfaces. The detailed analysis for a homogeneous TI medium
and numerical testing for layered models show that for a range
of reflector dips and tilt angles of the symmetry axis, the com-
bination of PP and PSV (or SV SV) data can be used to build
anisotropic models for depth processing. The most notable ex-
ception is horizontally layered VTI media, where even long-
spread (nonhyperbolic) moveout of PP- and PSV-waves does
not constrain the vertical velocities (Grechka and Tsvankin,
2003a). In contrast, for HTI media the inversion procedure
is quite stable for both horizontal and dipping reflectors. The
parameter-estimation results can be compromised by assum-
ing the wrong anisotropic symmetry in one of the layers (e.g.,
VTI instead of HTT). In principle, such errors can be avoided
by using the most general TTI model in the inversion, but the
need to estimate the tilt typically reduces the stability of the
algorithm.

For a restricted class of models composed of isotropic and
VTI layers separated by dipping or irregular interfaces, PP re-
flection data alone can be used to determine the depth scale of
the medium and parameters € and § (Grechka et al., 2000a,b).
This inversion, however, breaks down if the difference € — § is
small and the anisotropy is close to elliptical. As follows from
our results, combining PP- and PSV-waves resolves this ambi-
guity (in the presence of reflector dip). Extending the argument
of Dellinger and Muir (1988), we can state that since the veloc-
ity function of SV-waves in elliptical media is purely isotropic,
it does not allow the stretching of the model in the vertical
direction that causes the depth uncertainty for PP-waves.

Some common features of geologic formations, such as
small-scale velocity heterogeneity, cannot be incorporated into
our models because of the limited spatial and amplitude res-
olution of seismic data. Those features, however, do influ-
ence the reflection traveltimes and can significantly alter the
values of the estimated parameters. We demonstrated that if
heterogeneity is not properly accounted for, the inverted ef-
fective parameters providing the best fit to the input data may
lie outside the range determined by the corresponding min-
imum and maximum interval (local) values. Therefore, the
anisotropic parameters obtained from the tomographic inver-
sion may bear a significant imprint of the adopted subsurface
model.

Successful application of the tomographic algorithm intro-
duced here to a multicomponent data set from the North Sea
is discussed in the companion paper by Grechka et al. (2002).
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APPENDIX
EFFECTIVE PARAMETER 6 FOR LAYERED VTI MEDIA

As an example of the relationship between the effective and
interval anisotropic parameters, consider the effective P-wave
NMO velocity (Vimo,p) for a stack of horizontal homogeneous
VTl layers. (Here (a) denotes the effective value of the param-
eter a.) The effective value (Vymo p) can be found using the Dix
(1955) averaging of the interval NMO velocities

(T)(Vamo.P)” = Y T Vomo,p.n- (A-1)
n

where 7, are the interval one-way zero-offset traveltimes,
Vamo,p.n are the interval zero-dip NMO velocities, and

(1)=> (A-2)

is the total (effective) zero-offset traveltime. Vomopn are
expressed through the interval vertical velocities Vpgn and
anisotropic coefficients §, in equation (4):

V2 = Vaon(l+28n). (A-3)

nmo, P,n

The products of the interval vertical velocities Vpg , and zero-

offset traveltimes t, yield the layer thicknesses

h, = Vpo,nTh. (A'4)

The effective vertical velocity can be written as
2_hn
hy A
(T) Z o
n

Using equations (A-4) and (A-5), we find

T
(Vpo) (T)

(h) [1 hn ]1
—h = TZV | (A-6)
Z_ (h) & Vp,
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=
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Equation (A-6) shows that the effective vertical velocity (Vpg)
is the harmonic average of the interval vertical velocities Vpg n.
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Next, we introduce the effective anisotropic coefficient (3)
defined as in equation (A-3),

(Vamo.p)? = (Vpo)2(1 + 2(8)). (A-7)

Our goal is to find the relationship between the effective (3)
and the interval coefficients §,. Substituting equations (A-3),
(A-4), (A-5), and (A-7) into the Dix formula (A-1) leads to

1
(Vpo)(1 +2(8)) = H Z hnVeon(14+285),  (A-8)
or

1 1
™ Z hnVpo,n ™ Z hnVpo,n én
142(8) = f +2 0 .

(Vpo) (Vpo)

(A-9)
Note that equation (A-9) is exact. The first term on the right-
hand side is the ratio of the arithmetic and harmonic averages
of the vertical velocities, which is always greater than or equal
to unity. Therefore, (§) satisfies the following inequality:

1
W Z thPO,n (Sn
- n

V=TT Ve (A1D)
In particular, if 8, is constant throughout the section,
Si=8= =68 ==, (A-11)
then inequality (A-10) yields
(8) = 8. (A-12)

The equality (8) =3 is reached only if the interval velocities
Vpo,n are equal, which means that the stack of the layers de-
generates into a homogeneous medium. Hence, the effective
(8) overestimates the interval values of this parameter.
In the special case of isotropy (8 =0),
(6) = 0. (A-13)
According to inequality (A-10), isotropic layering creates an
effective VTI medium with a positive parameter §. For a more
detailed discussion of this model, see Grechka and Tsvankin
(2003Db).

The results of this appendix may help to explain the well-
known discrepancy between the laboratory measurements on
shale cores, which give both positive and negative values of
§ (Thomsen, 1986; Vernik and Liu, 1997), and predominantly
positive § values obtained from surface seismic measurements
(e.g., Alkhalifah et al., 1996).

Two VTI layers

Here, we present estimates of the effective parameter (§)
for a simple model composed of two horizontal VTI layers
with equal thicknesses h; =h,. In this case, equation (A-9)
reduces to

Vpo.1 + Vpo,2
1+2(6) = ———F[V V
+2(8) WNpo1Vros [Vro.1 + Vo2
+2(Vro.181 + Vro.282)]. (A-14)
Introducing the ratio of the vertical velocities
Vro.2
v = =, A-15
Veo.1 ( )
we rewrite equation (A-14) as
1+
1+m&=_zﬁn+u+m&+u@n (A-16)

Equation (A-16) allows us to express the effective (§) through
the velocity ratio v:
1—-v)> 14w
(6) = ( ) + (81 + vé2).
8v 4vu
For positive v, the function (§)(v) from equation (A-17) has
the only minimum at

(A-17)

1426
= . A-18
YTV T¥2s (A-18)
The asymptotic values of (§)(v) are given by
lin})(é)(v) =oo0 and lim (8)(v) =o0c0. (A-19)
v—> v—=>00

Therefore, for large velocity contrast between the two layers,
the effective parameter (8) significantly exceeds both interval
values [(§) > max(81, 8,)].

This analysis is confirmed by the numerical example in
Figure A-1, which shows that the values of (§) are bounded
by the interval parameters §; and 8, only for moderate velocity
variations when v does not deviate from unity by more than
+0.4. For the velocity ratio v =0.5, (§) ~0.14, which is much
larger than the maximum interval § =0.1.
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FIG. A-1. The function (§(v)) for two horizontal VTTI layers
(solid). The dashed lines mark the interval anisotropic coeffi-
cients §; =0.05 and §, =0.1.



