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ABSTRACT

For transverse isotropy with a vertical symmetry axis (VTI media), P -wave reflec-

tion data alone are insufficient for building velocity models in depth. Here, we show

that all parameters of VTI media responsible for propagation of P - and SV -waves

(the P -wave and S-wave vertical velocities VP0 and VS0 and the anisotropic parame-

ters ε and δ) can be obtained by combining P -wave traveltimes with the moveout of

PS-waves converted at a horizontal and dipping interface. Using converted modes,

rather than pure S-waves, avoids the need for expensive shear-wave excitation on

land and makes the method suitable for offshore exploration.

The inversion algorithm is based on a new analytic description of the dip move-

out of PS-waves developed for symmetry planes of anisotropic media (and for any

vertical plane in models with weak azimuthal anisotropy). The common-midpoint

(CMP) traveltime-offset relationship, derived in a parametric form and represented

through the components of the slowness vector of the P and S-waves, makes it pos-

sible to compute the moveout curve of the PS-wave without two-point ray tracing.

This formalism also leads to closed-form solutions for moveout attributes, such as

the coordinates (xmin, tmin) of the traveltime minimum, the normal-moveout (NMO)

velocity defined at x = xmin and the slope of the moveout curve (apparent slowness)

at zero offset.

The parameter-estimation algorithm operates with reflection moveout of P - and

PS-waves from a horizontal and dipping reflector. The NMO velocities of P and

PS-waves from horizontal events and the ratio of the corresponding zero-offset trav-

eltimes yield three equations for the four unknown medium parameters. The remain-

ing parameter is found from an overdetermined system of equations that includes the

P -wave NMO velocity and moveout attributes of the PS-wave for a dipping event.

Numerical analysis shows that the PS-wave dip-moveout signature plays a crucial

role in obtaining accurate estimates of the anisotropic parameters. The joint inver-
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sion of P and PS data provides the necessary information not only for P -wave depth

imaging in VTI media, but also for the processing of PS-waves, including re-sorting

of PS traces into common-reflection-point gathers and transformation to zero offset

(TZO).

Keywords.—converted wave, seismic anisotropy, seismic inversion, reflection

moveout.
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INTRODUCTION

Recent advances in the development and application of anisotropic processing al-

gorithms (e.g., Alkhalifah et al. 1996) were made possible by new approaches to

the inversion of surface seismic data for the anisotropic parameters. Alkhalifah and

Tsvankin (1995) showed that P -wave1 reflection moveout and all time-processing steps

[NMO and dip-moveout (DMO) corrections, prestack and poststack time migration]

in horizontally layered VTI media above a dipping reflector depend on just two pa-

rameters – the normal-moveout velocity from a horizontal reflector Vnmo,P (0) and the

“anellipticity” coefficient η. In terms of Thomsen’s (1986) parameters, Vnmo,P (0) and

η are given by

Vnmo,P (0) = VP0

√
1 + 2δ , (1)

η =
ε− δ

1 + 2δ
, (2)

where VP0 is the P -wave vertical velocity, and ε and δ are the anisotropic parameters

responsible for the velocities of P - and SV -waves. [VP0, ε and δ are sufficient to deter-

mine all kinematic signatures of P -waves, while SV -wave kinematics also depends on

the shear-wave vertical velocity VS0 (Tsvankin 1996).] Both Vnmo,P (0) and η can be

found from surface P -wave data using either the dip dependence of NMO velocity or

nonhyperbolic (long-spread) moveout of horizontal events (Alkhalifah and Tsvankin

1995; Grechka and Tsvankin 1998).

P -wave depth processing (such as prestack depth migration), however, requires

knowledge of the vertical velocity VP0. Only if the symmetry axis of TI media is tilted

by at least 30-40◦ from vertical, can azimuthally dependent P -wave NMO velocity

from two or more reflectors with different dips and/or azimuths be inverted for all

1For brevity, the qualifiers in “quasi-P -wave” and “quasi-S-wave” will be omitted.
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parameters which control P -wave kinematics (Grechka and Tsvankin 1999). Thus,

to resolve the vertical velocity and the anisotropic parameters of VTI media, it is

necessary to supplement P -wave traveltimes with additional data. Since the SV -

wave velocity also depends on the anisotropic parameters ε and δ, a natural option

is to include reflection moveout of SV -waves into the inversion procedure. Tsvankin

and Thomsen (1995) suggested combining long-spread (nonhyperbolic) moveout of

P - and SV -waves from horizontal reflectors to obtain all four parameters, but their

approach encounters practical problems stemming from difficulties in acquiring and

processing of long-spread shear data.

Alternatively, input data may include dip-dependent P -wave moveout (e.g., NMO

velocities for two different dips), yielding the parameters Vnmo,P (0) and η, and the

NMO velocity of the SV -wave from a horizontal reflector:

Vnmo,SV = VS0

√
1 + 2σ , (3)

σ ≡
(
VP0

VS0

)2

(ε− δ) . (4)

If pure shear waves are not excited, the SV -wave NMO velocity can be determined

from the NMO velocities of the P - and converted PSV -waves (here denoted simply

as PS) in the following way (Seriff and Sriram 1991):

tPS0 V
2

nmo,PS = tP0 V
2

nmo,P + tS0 V
2

nmo,SV , (5)

where tP0 and tS0 are the vertical traveltimes of the P and S-waves, and tPS0 =

tP0 + tS0. Also, if either S- or PS-waves are available, the ratio of the vertical

velocities can be found from the vertical traveltimes:

VP0

VS0

=
tS0

tP0

. (6)

In principle, equations (1), (2), (3), and (6) are sufficient to recover all four unknown

parameters (VP0, VS0, ε and δ). In vertically inhomogeneous media, the interval NMO
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velocities [equations (1) and (3)] can be found from the conventional Dix equation

and combined with the interval η [equation (2)] to perform parameter estimation.

Unfortunately, this inversion procedure turns out to be unstable, with realistic

small errors in the input data propagating with considerable amplification into the

inverted vertical velocities, ε, and δ (Grechka and Tsvankin 1999). This instability is

caused by the form of the dependence of SV -wave NMO velocity on the anisotropic

parameters [equations (3) and (4)]. After obtaining η ≈ ε− δ from P -wave data and

VP0/VS0 from the vertical traveltimes, equation (3) can be used to find the S-wave

vertical velocity. However, the multiplier (VP0/VS0)2 translates small errors in ε − δ

into substantially larger errors in σ and VS0. For a typical VP0/VS0 = 2, a relatively

insignificant error of 0.03 in ε− δ will cause a distortion of 0.12 in σ and an error of

up to 12% in VS0 and, consequently, in VP0.

Here, we suggest a more stable parameter-estimation algorithm based on includ-

ing dip-dependent reflection traveltimes of mode-converted PS-waves in the inversion

procedure. Previous work on reflection moveout of converted waves was mostly re-

stricted to isotropic media (e.g., Tessmer and Behle 1988; Alfaraj 1993). Equation (5)

for NMO velocity of PS-waves in horizontally layered VTI media was first given by

Seriff and Sriram (1991). Tsvankin and Thomsen (1994) presented an analytic expres-

sion for the quartic moveout term of PS conversions for vertical transverse isotropy

and used it to describe nonhyperbolic (long-spread) reflection moveout. Anderson

(1996) developed a TZO (transformation to zero offset) algorithm for vertical trans-

verse isotropy that produces a zero-offset P -wave section from PS data. Grechka,

Theophanis and Tsvankin (1999) showed that the azimuthal variation of NMO ve-

locity of converted waves in horizontally layered anisotropic media with a horizontal

symmetry plane always has an elliptical form [the result previously proved by Grechka

and Tsvankin (1998) for pure modes]. They also generalized relationship (5) between

the NMO velocities of pure and converted waves to azimuthally anisotropic media and

combined NMO and vertical velocities of P and PS-waves to obtain the parameters
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of a horizontal orthorhombic layer.

We begin by giving a general analytic description of dip-dependent reflection move-

out for converted waves in a symmetry plane of a homogeneous anisotropic layer. This

formalism leads to closed-form expressions for the moveout curve and its attributes

(such as NMO velocity near the traveltime minimum and the shift of the traveltime

minimum from zero offset) in terms of the horizontal and vertical slowness components

of the P and S-waves. For vertical transverse isotropy, we employ the weak-anisotropy

approximation to simplify the exact equations and explain the relationship between

the moveout attributes and medium parameters. Then we use the exact equations

(for arbitrary strength of the anisotropy) to perform joint inversion of the P - and

PS-wave moveout from a horizontal and dipping reflector and show that the new

method yields stable estimates of the vertical velocities and anisotropic parameters

of VTI media. Although the inversion algorithm is developed for vertical transverse

isotropy, it remains fully valid in the vertical symmetry planes of orthorhombic media.

DIP MOVEOUT OF CONVERTED WAVES IN SYMMETRY PLANES OF

ANISOTROPIC MEDIA

A key difference between reflection moveout of converted and pure modes in CMP

geometry is that mode conversion makes the moveout curve asymmetric with respect

to zero offset (i.e., traveltime is not an even function of offset). Only in the special case

of horizontal reflectors and a medium with a horizontal symmetry plane, converted-

wave (e.g., PS-wave) reflection traveltime remains the same if we interchange the

source and receiver (Grechka, Theophanis and Tsvankin 1997). The asymmetry of

the converted-wave moveout can be further enhanced by angular velocity variations in

anisotropic media. Hence, in general the moveout of PS-waves cannot be described

by the conventional traveltime series t2(x2) that contains only even powers of the

offset x.
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It is convenient to distinguish between the two branches of the CMP moveout

curve by introducing the notion of “positive” and “negative” offsets. Assuming that

the source excites P -waves which get converted into S(SV )-waves at the reflector,

we will call an offset positive if the source is located downdip with respect to the

common midpoint and the receiver. Correspondingly, at negative offsets the P -wave

source is moved updip with respect to the CMP.

Fig. 1 shows typical traveltime curves of the PS-wave computed for a common-

midpoint (CMP) gather in the dip plane of a reflector beneath a VTI layer. The

moveout becomes increasingly asymmetric with dip, and the traveltime minimum is

recorded at positive offsets. For dips beyond 40◦, the minimum moves to large offsets

exceeding twice the CMP-reflector distance and then disappears altogether.

The general character of the converted-wave moveout in Fig. 1 is similar to that

in isotropic media. The influence of anisotropy, however, may cause a shift of the

minimum traveltime towards negative offsets (Fig. 2, φ = 10◦). For the model in

Fig. 2, the traveltime for the P -wave source located updip from the common midpoint

may be smaller than the zero-offset value (provided the dip is mild). This unusual

phenomenon, caused by an increase in the SV -wave velocity with angle for positive

values of σ, is explained in detail below [see equation (22)].

For even larger σ reaching 0.8-1 (uncommon, but feasible, values for shales), the

wavefront of the SV -wave develops a cusp centered near an angle of 45◦ with ver-

tical. Depending on the range of reflection angles recorded on a CMP gather, the

PS-traveltime in this case may also contain a cusp and become multivalued (e.g.,

Tsvankin and Thomsen, 1994). Although the cusp is diagnostic of anisotropy, analy-

sis of multivalued moveout curves requires a special treatment not discussed here.

The pronounced changes in the PS moveout curve with reflector dip suggest using

different sets of moveout attributes for mild and steep dips. Below we give concise

expressions for these moveout attributes and PS reflection traveltime as a whole.
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Parametric representation of PS traveltime

Our goal here is to develop an analytic treatment of reflection moveout for con-

verted waves in a homogeneous anisotropic layer above a dipping reflector. To make

the problem two-dimensional, the incidence plane is assumed to coincide with both

the dip plane of the reflector and a symmetry plane of the medium (Figure 3). [The

same assumption was made by Tsvankin (1995) in his derivation of the 2-D NMO

equation for pure modes.]

In the adopted “2-D” reflection model, the phase-velocity vectors and rays of

reflected waves on the dip line do not deviate from the incidence plane. Also, the

polarization vector of one of the split shear modes is perpendicular to the dip (inci-

dence) plane, and that SH-wave is completely decoupled from the P - and SV -arrivals.

Therefore, a P - or SV -wave incident upon the interface generates a single in-plane

polarized converted mode (PS or SP ).

As shown in Appendix A, the results of Grechka, Tsvankin and Cohen (1999) can

be used to obtain the traveltime and source-receiver offset of a converted wave in a

CMP gather (Fig. 3) as

t = zCMP
qP − pP q′P + qS − pSq′S
1 + 1

2
tanφ (q′P + q′S)

(7)

and

x = zCMP
q′P − q′S

1 + 1
2

tanφ (q′P + q′S)
, (8)

where zCMP is the reflector depth beneath the common midpoint, pP and pS are the

horizontal components of the slowness vector for the P - and S-waves (respectively),

qP and qS are the vertical slownesses, and q′P ≡ dqP/dpP , q′S ≡ dqS/dpS. The slowness

vectors of the P - and S-waves are related to each other by Snell’s law at the reflector

[see equation (9) below]. Note that the x1-axis is directed updip, and the group-

velocity vectors of both waves are assumed to point towards the surface (Fig. 3).
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With these conventions, positive CMP offsets correspond to the P -wave source located

downdip from the CMP. If the medium is isotropic, equations (7) and (8) become

equivalent to expressions developed by Alfaraj (1993), and both t and x can be

obtained explicitly as functions of the slowness projection pint on the reflector (see

Appendix A).

To determine the slowness vectors for a given value of projection pint, it is necessary

to solve the Christoffel equation in the Cartesian coordinate system associated with

the reflector. It is also possible to parameterize the traveltime curve by the horizontal

slowness (ray parameter) of the P - or S-wave and find the ray parameter of the other

wave from Snell’s law [equation (C-5)]:

pint = −(pP cos φ+ qP sinφ) = pS cosφ+ qS sin φ . (9)

As discussed below, in the computation of moveout attributes it is more efficient to

operate directly with pP and pS without involving pint.

The derivative dq/dp for both waves can be found in a straightforward way by

implicit differentiation of the Christoffel equation (Grechka, Tsvankin and Cohen

1999). Since the incidence plane is assumed to be a plane of symmetry, the Christoffel

equation q(p) = 0 generally is quartic with respect to q. For models with a horizontal

symmetry plane (e.g., VTI), however, the polynomial q(p) becomes quadratic for q2.

Although the generation of a CMP gather using equations (7) and (8) involves

solving the Christoffel equation at least once for each reflection raypath, it does not

require time-consuming two-point ray tracing. The analytic representation of dip

moveout given here is used below to obtain the NMO velocity and other attributes

of the moveout curve.

Attributes of the PS moveout function

The moveout attributes conventionally used in the traveltime inversion of pure-

mode reflections include the normal-moveout (NMO) velocity and, sometimes, the
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higher-order moveout terms responsible for nonhyperbolic moveout. Due to the asym-

metric shape of the common-midpoint PS moveout curve with respect to zero offset,

the attribute largely responsible for small-offset reflection traveltime is the slope of

the moveout curve at x = 0. If reflector dip is mild and the PS moveout has a min-

imum at moderate offsets, suitable attributes are the minimum traveltime tmin, the

corresponding source-receiver offset xmin = x(tmin), and the normal-moveout velocity

Vnmo responsible for traveltime near xmin.

Slope of the moveout curve and position of the traveltime minimum.—In

Appendix B, we show that the apparent slowness, or slope, of any moveout curve

recorded in CMP geometry (dt/dx) is determined by the difference between the hor-

izontal slownesses (ray parameters) of the incident and reflected ray measured at the

source and receiver locations. This representation of moveout slope is valid in any

inhomogeneous anisotropic medium if the rays in the CMP gather do not deviate

from the incidence plane (i.e., the incidence plane is supposed to be a plane of mirror

symmetry). The derivation of dt/dx in Appendix B can be easily modified to obtain

the known expressions for data acquired in common-shot or common-receiver gathers.

The slope of reflection moveout in a shot gather, for instance, is simply equal to the

ray parameter of the reflected ray at the receiver location. The result for shot gath-

ers (but not for CMP geometry) also follows from ray theory because for wavefronts

excited by a fixed point source, the gradient of the traveltime at any point is equal

to the slowness vector.

For PS-waves in CMP geometry, the slope of the t(x) curve is given by (using

sign conventions from Fig. 3)

dt

dx
=

1

2
(pS − pP ) , (10)

with the horizontal slownesses pP and pS measured at the source and receiver lo-

cations. Equation (10) not only provides a simple expression for the slope itself, it

also helps to obtain concise solutions for NMO velocity and other attributes of the
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moveout minimum.

If the medium above the reflector is horizontally homogeneous (as is the case with

the single-layer model considered here), both pP and pS remain constant between

the reflector and the surface. To find the moveout slope at zero offset, we determine

pP and pS from Snell’s law [equation (9)] and the condition q′P = q′S, which ensures

that the group-velocity vectors of the P - and S-wave are parallel to each other [see

equation (8)].

Equation (10) can also be used to find the slownesses pmin
P and pmin

S corresponding

to the minimum of the moveout curve. Since the derivative dt/dx vanishes at the

traveltime minimum,

pmin
P = pmin

S . (11)

Note that in the special case of a horizontal reflector (φ = 0), equation (11) is

satisfied if the slowness vectors of the incident and reflected waves are vertical

(pP = pS = pint = 0). Therefore, the minimum of the converted-wave traveltime

from a horizontal reflector always corresponds to the vertical slowness vector, but

the incident and reflected rays are not necessarily vertical, unless the medium has a

horizontal symmetry plane. This means that in general the traveltime minimum of

the converted wave from a horizontal reflector is located at a non-zero offset xmin 6= 0,

although the slowness vectors of the corresponding P and S-waves are vertical.

Equation (11) also confirms the well-known fact that for a pure-mode reflection

and arbitrary reflector dip, pint of the traveltime minimum is equal to zero. Indeed,

if pint = 0, the slowness vectors of the incident and reflected waves are orthogonal

to the interface (i.e, parallel to each other), so in the absence of mode conversion,

pP = pS. As a result, for pure modes equation (11) is always satisfied at vanishing

pint, and the minimum traveltime is recorded at zero offset.

Using Snell’s law [equation (9)] and equation (11), we obtain the following rela-

tionship between the slowness components corresponding to the traveltime minimum:
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2pmin
P = −(qP + qS) tanφ . (12)

The vertical slownesses qP and qS can be found as functions of pP = pS from the

Christoffel equation. Therefore, equation (12) can be solved in a straightforward way

for the horizontal slowness pmin
P = pmin

S needed to evaluate the NMO velocity and

other attributes associated with the traveltime minimum. It should be emphasized

that pP and pS corresponding to both zero offset and the traveltime minimum are

obtained without using the slowness projection on the interface (pint).

In Appendix C we give an explicit solution of equation (12) for isotropic media

and demonstrate that the traveltime minimum exists only if

tanφ ≤ 2γ

γ2 − 1
, (13)

where γ ≡ VP/VS, and VP and VS are the velocities of the P and S-waves, respectively.

For a typical γ = 2, the moveout curve of the PS-wave has a minimum for reflector

dips up to 53◦. The limit in equation (13) is not exact if the medium is anisotropic, but

it still provides a good approximation for small and moderate values of the anisotropic

coefficients.

NMO velocity.—Although the CMP traveltime of converted waves from a dipping

reflector is not an even function of source-receiver offset, the moveout curve near

the traveltime minimum (if it does exist) can still be described by normal-moveout

velocity defined in the same way as that for pure modes:

V 2
nmo =





1

2

d2(t2)

dx2

∣∣∣∣∣
xmin





−1

. (14)

Expressing both the traveltime and source-receiver offset through the slowness com-

ponents and using equation (10) for the moveout slope, we obtain NMO velocity in

the following form (Appendix C):

V 2
nmo,PS =

4 (q′′P A
2
S + q′′S A

2
P )

(AP + AS)2 [ pP (q′P + q′S)− (qP + qS)]

∣∣∣∣∣
pmin
P

, (15)

where
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AP = 1 + q′P tanφ , AS = 1 + q′S tanφ ; (16)

the parameter pmin
P corresponding to the traveltime minimum is determined from

equation (12).

For pure (nonconverted) modes, at the moveout minimum qP = qS, q′P = q′S,

q′′P = q′′S, AP = AS, and equation (15) reduces to the 2-D NMO equation of Tsvankin

(1995) rewritten through the ray parameter (horizontal slowness) by Cohen (1998):

V 2
nmo,pure =

q′′

pq′ − q

∣∣∣∣∣
pmin=p(φ)

=
V (φ)

cosφ

√
1 + 1

V (φ)
d2V
dθ2 |θ=φ

1− tan φ
V (φ)

dV
dθ
|θ=φ

, (17)

where q′ ≡ dq/dp, q′′ ≡ d2q/dp2, V (θ) is phase velocity as a function of phase angle

with vertical, and p(φ) is the horizontal projection of the slowness vector orthogonal

to the reflector. It should be mentioned that reflection-point dispersal in a CMP

gather, properly treated in our approach, was not accounted for by Tsvankin (1995).

In agreement with Hubral and Krey (1980), the identical result of the two derivations

indicates that reflection-point dispersal has no influence on NMO velocity for pure-

mode reflections.

For a horizontal reflector (φ = 0), the slowness pmin
P vanishes, and the parameters

AP = AS = 1 [equation (16)]. Hence, equation (15) becomes simply

V 2
nmo,PS(φ = 0) = − q′′P + q′′S

qP + qS

∣∣∣∣∣
pmin
P

=0

. (18)

The squared pure-mode NMO velocity [equation (17)] from a horizontal reflector is

equal to (−q′′/q)|p=0, while the traveltime along each of the legs of the PS-wave

minimum-traveltime ray (which in general are not vertical) can be written as tmin,P =

zCMP qP and tmin,S = zCMP qS [equation (A-16)]. Therefore, equation (18) can be

expressed through the NMO velocities of the P - and S-waves as

(tmin,P + tmin,S)V 2
nmo,PS = tmin,P V

2
nmo,P + tmin,S V

2
nmo,S . (19)

Since 2tmin,P and 2tmin,S are the zero-offset reflection traveltimes of the pure P - and

S-waves, respectively, equation (19) is the generalization of the VTI relationship (5)
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for media without up-down symmetry (i.e., without a horizontal symmetry plane). If

the horizontal plane is a plane of symmetry, then the P - and S rays corresponding to

the vertical slowness vector are vertical, and equations (19) and (5) become identical.

Other attributes of the traveltime minimum.—Another potentially useful at-

tribute of PS moveout is the offset xmin of the traveltime minimum (for pure

modes, xmin always equals zero). Since xmin contains the generally unknown re-

flector depth zCMP, it is convenient to normalize it by the minimum traveltime tmin.

Using equations (7) and (8) and taking into account that at the traveltime minimum

pP = pS = pmin
P [equation (11)], we find

xmin

tmin
=

q′P − q′S
qP + qS − pP (q′P + q′S)

∣∣∣∣∣
pmin
P

. (20)

By recording reflection moveout of a converted mode for a range of CMP locations

in the dip plane of the reflector, we can also obtain the derivative of tmin with respect

to the CMP coordinate yCMP = zCMP/ tanφ. In the pure-mode case, the spatial

derivative of the minimum (zero-offset) traveltime determines the slope of reflections

on the zero-offset (stacked) section and is equal to the ray parameter (horizontal

slowness) of the zero-offset ray. For converted waves, dtmin/dyCMP does not have such

a simple interpretation, but it can still provide useful information about the medium

parameters. From equations (7) and (8) it follows that

dtmin

dyCMP

= tanφ
qP + qS − pP (q′P + q′S)

1 + 1
2

tanφ (q′P + q′S)

∣∣∣∣∣
pmin
P

. (21)

The spatial derivative dxmin/dyCMP can be expressed as a combination of xmin/tmin

[equation (20)] and dtmin/dyCMP [equation (21)] and, therefore, does not yield an

independent equation for the medium parameters.

Since the attributes described above already provide an overdetermined system of

equations, we did not use some other potential attributes, such as the ratio of tmin

and the P -wave zero-offset traveltime tP0(φ) at a fixed CMP location.
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APPLICATION TO VERTICAL TRANSVERSE ISOTROPY

Analytic developments in the previous section are completely general and can

be used in a symmetry plane of any anisotropic medium with arbitrary strength

of velocity anisotropy. Here, we apply these results to parameter estimation in a

transversely isotropic layer with a vertical symmetry axis (VTI media). Note that in

VTI models each vertical plane is a plane of mirror symmetry, and our 2-D formalism

is valid for any azimuthal orientation of the reflector (that is no longer the case if the

symmetry axis is tilted ).

To gain analytic insight into the influence of anisotropy on reflection traveltimes

of the PS-wave, we employ the weak-anisotropy approximation. Then, we devise an

algorithm for joint inversion of P and PS data in VTI media based on the exact equa-

tions for the moveout attributes. The results below can be directly adapted for the

vertical symmetry planes of orthorhombic media by replacing Thomsen parameters

with the notation introduced in Tsvankin (1997).

Weak-anisotropy approximation for PS moveout

The weak-anisotropy approximation is a convenient tool for obtaining simple rela-

tionships between the reflection moveout of converted waves and parameters of VTI

media. For weakly anisotropic models with small (compared to unity) Thomsen’s

(1986) parameters ε and δ, CMP traveltime and source-receiver offset of the PS-wave

can be derived as explicit functions of the projection of the slowness vector on the re-

flector pint [Appendix D, equations (D-11), (D-13)–(D-15)]. The results of Appendix

D make it possible to generate the reflection moveout of converted waves for weakly

anisotropic VTI media without doing ray tracing or even solving the Christoffel equa-

tion.

Despite the explicit form of the weak-anisotropy approximations in Appendix
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D, they are rather lengthy and do not provide an easy insight into the influence

of anisotropy on the PS reflection moveout. Below we give concise expressions for

the moveout attributes discussed above by linearizing the exact equations in the

anisotropic parameters.

Slope of the moveout curve.—The weak-anisotropy approximation for the slope

of the traveltime curve at zero offset is obtained in Appendix D as [equation (D-23)]

dt

dx

∣∣∣∣∣
x=0

=
sinφ

2VP0 (1 + γ)

[
(1− γ2) + 4γ (σ − δ)

]

+
sin3 φ

2VP0 γ (1 + γ)

[
δγ (1 + γ)− σ (γ3 + 9γ2 + 8)

]

+
sin5 φ

2VP0 γ2 (1 + γ)
σ (γ4 + 5γ3 + 5γ + 1) , (22)

where γ ≡ VP0/VS0. It is interesting that the higher-order terms in sinφ (sin3 φ and

sin5 φ) appear only due to the influence of anisotropy. For isotropic media, the exact

value of the moveout slope is simply

dt

dx

∣∣∣∣∣
x=0

(δ = σ = 0) =
sinφ (1− γ)

2VP0
. (23)

Equation (23) shows that in isotropic models the PS traveltime from a dipping re-

flector always decreases with offset at x = 0 (γ > 1), and the moveout minimum

should be recorded at positive x corresponding to the P -wave leg located downdip

from the reflection point. In the presence of anisotropy, however, it may happen that

(dt/dx)|x=0 > 0, and the traveltime minimum moves into the negative offset range

(where the P -leg is located updip from the reflection point). Indeed, if σ > 0 and

relatively large so that σ − δ is on the order of 0.5, which is quite feasible for such

VTI formations as shales, and γ < 2.4, the leading (sinφ) term in equation (22) has

a positive sign. If the dip is mild, and the influence of the higher-order terms in sinφ

is small, the zero-offset moveout slope as a whole is greater than zero. For steeper

dips, the sin3 φ-term becomes increasingly dominant and eventually reverses the sign

of (dt/dx)|x=0. This conclusion is confirmed by the numerical results in Fig. 2 (for
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φ = 10◦) and Fig. 4b, showing that in VTI media (dt/dx)|x=0 may be positive at mild

dips, and the PS traveltime reaches a minimum at small negative x.

To explain this unusual phenomenon, recall that for positive σ the SV -wave ve-

locity increases away from vertical up to about 45◦ [see equation (D-2)]. In this

case, although the shear-wave leg for x < 0 is longer than at zero offset, the S-wave

traveltime does not increase with |x| nearly as fast as in isotropic media because the

corresponding group velocity becomes higher. As a result, the overall traveltime of

the PS-wave may decrease over a certain range of negative offsets away from x = 0.

The deviation of equation (22) from the exact solution is insignificant for moder-

ately anisotropic media (Fig. 4a) and becomes noticeable only when ε reaches 0.25-0.3

(Fig. 4b). Note that the model from Fig. 4b has a large σ ≈ 0.7, and the zero-offset

moveout slope is positive for dips ranging from 0◦ to about 17◦. The weak-anisotropy

approximation correctly reproduces this trend of the exact function in Fig. 4b, but

overstates the initial increase in (dt/dx)|x=0 with dip.

In the inversion procedure described below, we express reflector dip φ through

the absolute value of the ray parameter (horizontal slowness) of the pure P -wave

reflection recorded at zero offset (p
P0

= |p
P,pure

(x = 0)|). Unlike reflector dip, p
P0

can be found from surface data by measuring reflection slopes on zero-offset (stacked)

P -wave sections (e.g., Alkhalifah and Tsvankin 1995). Neglecting the cubic and

higher-order terms in sinφ, the P -wave ray parameter can be written as

p
P0

=
sinφ

VP (φ)
≈ sin φ

VP0

. (24)

If we retain only the leading term in sinφ in equation (22), the P -wave ray pa-

rameter can be substituted in its approximate form [equation (24)] yielding

dt

dx

∣∣∣∣∣
x=0

=
p
P0

2 (1 + γ)

[
(1− γ2) + 4γ (σ − δ)

]
+ . . . . (25)

For a typical value of γ = 2, the coefficient multiplied with the anisotropic term σ− δ

is almost three times greater than the isotropic term 1−γ2. Therefore, we can expect
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that (dt/dx)|x=0, obtained as a function of p
P0

, can provide reliable information about

the anisotropic parameters δ and σ (or δ and ε). Note that in the inversion algorithm

discussed below we use the exact representations for both the parameter p
P0

and the

moveout slope at zero offset.

Attributes of the traveltime minimum.—As discussed above, traveltime curves

of the PS-wave have a minimum only for small and moderate reflector dips. Hence,

it is convenient to use simplified “mild-dip” approximations for the attributes of the

traveltime minimum, in which all terms containing the cubic and higher powers of

sinφ have been dropped.

The weak-anisotropy, mild-dip approximation for converted-wave NMO velocity

is derived in Appendix D as

V −2
nmo,PS (p

P0
) = V −2

nmo,PS(0)− p2
P0

8γ
(3γ4 − 2γ3 + 6γ2 − 2γ + 3)

− p2
P0

(γ − 1)

2γ (γ + 1)

[
6 σ (γ + 1)2 − (σ − δ) γ (3γ2 − 2γ + 3)

]
. (26)

The parameter σ was introduced in equation (4), and Vnmo,PS(0) is the weak-

anisotropy approximation for the NMO velocity from a horizontal reflector:

V −2
nmo,PS(0) =

1

VP0VS0

[
1− 2(σ + δγ)

1 + γ

]
. (27)

To estimate the contribution of the anisotropic parameters to the dip dependence

of NMO velocity, we rewrite equations (26) and (27) for a typical velocity ratio γ = 2:

V −2
nmo,PS (p

P0
, γ = 2) =

1

VP0VS0
[1− 1.3 (δ + 0.5σ)]− 3.4p2

P0
− p2

P0
(2.7σ + 1.8δ) . (28)

Equation (28) shows that for positive values of σ, commonly observed in VTI for-

mations, anisotropy amplifies the increase in the NMO velocity with dip (usually

σ > δ). The anisotropic dip-dependent term [p2
P0

(2.7σ + 1.8δ)] provides an equation

for σ and δ with comparable weights for both parameters. However, for a typical

σ = 0.4− 0.5 the magnitude of this term can reach only 35-40% of the isotropic one

(3.4p2
P0

), and the dip-dependence of NMO velocity as a whole is not highly sensitive
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to the anisotropic parameters. Our numerical tests show that the contribution of the

anisotropic parameters to the exact NMO velocity is even somewhat smaller than

predicted by equation (26).

The accuracy of the weak-anisotropy approximation (26) is illustrated by Fig. 5.

Since we retained just the leading term in φ and p
P0

, the approximation deviates

from the exact solution with increasing dip. Despite this deterioration in accuracy,

our approximations correctly reproduce the trend of the dip dependence of moveout

attributes in the most important regime of moderate dips (φ < 35−40◦). For steeper

dips, the traveltime minimum either does not exist at all or corresponds to unusually

large source-receiver offsets seldom acquired in practice. Comparison of Figs. 5a and

5b also shows that the error is higher for more “anelliptical” models with larger

values of σ. It should be emphasized that the main value of equation (26) and other

approximations in this section is in providing analytic insight into the behavior of

various moveout attributes.

The leading dip term in the weak-anisotropy approximation for the normalized

offset xmin/tmin [equation (D-33)] has the following form:

xmin

tmin

=
p
P0
V 2
P0

2γ
[(γ − 1) + 2(δγ − σ)] . (29)

For γ = 2, the multiplier of the anisotropic term in equation (29) is twice as large as

the isotropic term, and we can expect xmin/tmin to be quite sensitive to the parameters

δ and σ.

The approximate spatial derivative of the minimum traveltime (dtmin/dyCMP) is

found in Appendix D as

dtmin

dyCMP
= p

P0
(1 + γ) . (30)

Clearly, equation (30) is purely isotropic and gives only redundant information about

the ratio of the vertical velocities, which can be determined in a conventional way

using the vertical traveltimes [equation (6)].
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On the whole, the analytic approximations presented above indicate that dip

moveout of the converted PS-wave can be efficiently used in anisotropic parameter

estimation. This conclusion is supported below by numerical inversion based on the

exact equations for the moveout attributes.

Parameter estimation in VTI media using dip moveout of PS-waves

As suggested by the form of the weak-anisotropy approximations, the addition of

the dip moveout of PS-waves to P -wave data can help to stabilize parameter esti-

mation in VTI media. Thus, the data used in the inversion for VP0, VS0, ε, δ include

the moveout of P and PS-waves from a horizontal reflector and on the dip line of a

dipping reflector. (The horizontal and dipping interface are embedded in the same

homogeneous VTI layer.) Also, we assume that the P -wave ray parameter for the

dipping event (p
P0

) was determined from the slope of the P -wave reflection on the

zero-offset (stacked) section. The vertical traveltimes and NMO velocities of the P -

and PS-waves from a horizontal reflector allow us to obtain the VP0/VS0 ratio and the

NMO velocity of the SV -wave [see equation (5)]. By using the P -wave NMO velocity

for a dipping event [equation (17)], we include an equation for the anisotropic param-

eter η since Vnmo,P (p
P0

) = f [Vnmo,P (0), η]. Although this information [equations (1),

(2), (3), and (6)] is sufficient for determination of all four unknowns, the solution of

this inverse problem, as discussed in the introduction, suffers from instability; this

is further confirmed by a numerical test below. The dip-moveout attributes of the

PS-wave allow us to build an overdetermined system of equations needed to obtain

more accurate estimates of the vertical velocities and anisotropic parameters.

Recovery of the moveout attributes of the PS-wave.—An important practical

issue is how to determine the attributes associated with the PS-wave traveltime

minimum (tmin, xmin, and Vnmo,PS) from moveout data. Since the first derivative of

the PS-wave traveltime curve (dt/dx) goes to zero at xmin, we suggest approximating
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the PS moveout with a hyperbola centered at the traveltime minimum:

t2(x) = t2min +
(x− xmin)2

V 2
nmo,PS

. (31)

A typical example illustrating the application of a shifted hyperbola to the recovery

of the moveout attributes is shown in Fig. 6. Note that the exact PS-wave traveltimes

t(x) (solid) are generally asymmetric with respect to xmin due to the presence of a

term cubic in (x − xmin), which is not included in equation (31). This, however,

does not prevent the hyperbola (31) (dashed) from giving the correct position of

the moveout apex (xmin, tmin) and an accurate value of the NMO velocity. The

errors in the estimates of Vnmo and xmin/tmin [compared to the exact values given by

equations (15) and (20)] are only 1.1% and 0.05%, respectively. The high accuracy

achieved for the model from Fig. 6 was ensured by having an approximately equal

range of offsets on each side of the apex of the moveout curve, which mitigates the

influence of the cubic moveout term. If the traveltime minimum is substantially

shifted with respect to zero offset, it may be necessary either to mute out a certain

range of offsets (making the fitting interval more symmetric with respect to xmin)

or add the cubic term in x − xmin to the moveout equation. To obtain the slope of

the moveout curve at x = 0, we approximate the traveltimes at small source-receiver

offsets with a straight line or a quadratic, depending on the moveout curvature.

In most field-data applications, the moveout curve of the PS-wave has to be

found by means of semblance velocity analysis based on equation (31). Since the

results of semblance scan may be influenced by the offset-dependent amplitude and

waveform of the reflection event, as well as the offset coverage, we generated synthetic

seismograms of the PS-wave using dynamic ray tracing (Fig. 7). For dips up to 40-45◦,

the amplitude of the converted wave goes to zero at relatively small offsets close to the

traveltime minimum (e.g., at zero offset for a horizontal reflector), which may cause

complications in the semblance analysis and reconstruction of the moveout curve.

Although the low amplitudes are observed over a narrow range of offsets, the polarity
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change in the wavelet may cause errors in calculating the semblance along shifted

hyperbolas (31). To make an appropriate correction, we suggest computing the RMS

amplitude for each seismogram within the time window used in the semblance search

and identify the minimum-amplitude trace. Then, prior to calculating the semblance,

one has to reverse the polarity of all traces at offsets larger than that of the moveout

minimum. Note that if the dip exceeds 30◦, the amplitude minimum moves towards

longer offsets and does not interfere with determination of the zero-offset moveout

slope.

Inversion procedure.—Our inversion algorithm is organized in the following way.

Using the relationship between the NMO velocities for horizontal events [equation (5)],

we determine the SV -wave NMO velocity [equation (3)] from P and PS data. The

vertical-velocity ratio γ ≡ VP0/VS0 is obtained from the vertical traveltimes of P -

and PS-waves. Then, for a given value of δ, we find the other three parameters [see

equations (1), (3), (4), (6)]:

VP0 =
Vnmo,P√
1 + 2δ

, (32)

VS0 =
VP0

γ
, (33)

ε =
σ

γ2
+ δ [σ =

1

2

(
V 2

nmo,SV

V 2
S0

− 1

)
] . (34)

The last step is to use the P -wave NMO velocity Vnmo,P (p
P0

) and PS-wave move-

out attributes for the same dipping reflector to invert for the remaining unknown

parameter δ. If the PS traveltime does have a minimum on the CMP gather, δ is

found by minimizing the following objective function:

F (1)
P,SV =

[
Vnmo,P (p

P0
)− V meas

nmo,P (p
P0

)

V meas
nmo,P (p

P0
)

]2

+

[
(dt/dx|x=0)− (dt/dx|x=0)

meas

(dt/dx|x=0)meas

]2

+

[
(xmin/tmin)− (xmin/tmin)meas

(xmin/tmin)meas

]2

+

[
Vnmo,PS(p

P0
)− V meas

nmo,PS(p
P0

)

V meas
nmo,PS(p

P0
)

]2

. (35)
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Here the superscript “meas” denotes the values measured from the data, while the

quantities without the subscript are computed from the exact equations (17), (15),

(20) and (10). Essentially, the objective function (35) represents an overdetermined

system of four nonlinear equations for the single unknown parameter δ.

For PS traveltime curves without a minimum, the objective function contains only

one PS moveout attribute – the slope of the moveout curve at x = 0 [equation (10)]:

F (2)
P,SV =

[
Vnmo,P (p

P0
)− V meas

nmo,P (p
P0

)

V meas
nmo,P (p

P0
)

]2

+

[
(dt/dx|x=0)− (dt/dx|x=0)

meas

(dt/dx|x=0)meas

]2

. (36)

Numerical test.—A numerical example of the joint inversion of P and PS data

based on equations (32)–(36) is displayed in Fig. 8. All input parameters were com-

puted from the exact equations and contaminated by Gaussian noise with standard

deviations simulating realistic errors in data measurements. The inversion results

(dots) were obtained for 200 realizations of the input data set distorted by noise.

To generate the top pair of plots (Figs. 8a,b), we excluded the terms involving the

moveout attributes of the PS-wave from the objective function (35). As expected,

the parameter η can be accurately estimated from the P -wave NMO velocity of the

dipping event, and the ε and δ points in Fig. 8a are close to the line corresponding

to the correct value of η. However, the inversion results for VP0, VS0, ε, and δ exhibit

significant scatter indicative of high sensitivity to errors in the input data. The

standard deviations in all four parameters are too significant for this algorithm to be

used in practice (8.6% for VP0 and VS0, 0.13 for ε and 0.09 for δ).

Minimization using the full objective function (35) (including the dip-moveout

attributes of the PS-wave) leads to a dramatic reduction in the scatter for all medium

parameters, with standard deviations of only 2.5% for VP0 and VS0, 0.03 for ε and

0.02 for δ (Figs. 8c,d). Clearly, the dip-moveout attributes of the PS-wave allowed us

to overcome the problem of error amplification in the transition from η to the vertical

velocities and anisotropic coefficients.

Figs. 8a-d correspond to a relatively mild reflector dip of 30◦. As the dip reaches
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50◦, the CMP traveltime of the PS-wave no longer has a minimum, and we need to

use the second form of the objective function [equation (36)] that includes only the

slope of the PS moveout curve at zero offset (Figs. 8e,f). Since the moveout attributes

of both P and PS-waves become more sensitive to the anisotropic parameters with

increasing dip, the inversion results for the φ = 50◦ are even better than those for

φ = 30◦ (the standard deviations are 1.2% for VP0 and VS0, and 0.01 for ε and δ).

DISCUSSION AND CONCLUSIONS

To determine the vertical velocity and the anisotropic parameters of VTI media

from surface data, reflection moveout of P -waves can be combined with S-wave trav-

eltimes. In many cases, a more practical option than to explicitly conduct shear-wave

surveys is to supplement P -wave moveout with converted-wave data. Analysis of the

kinematic inverse problem shows that it is necessary to include PS (PSV ) traveltimes

not just from a horizontal reflector, but also from at least one dipping interface.

Moveout of PS-waves in CMP geometry generally is asymmetric with respect

to zero offset, with the position of the traveltime minimum strongly dependent on

reflector dip and anisotropic parameters. As in isotropic media, the minimum usually

is recorded at “positive” offsets corresponding to the P -wave leg located downdip

from the reflection point. For VTI media with large positive values of the parameter

σ = 0.5 − 0.8 and mild reflector dips, however, the traveltime reaches its minimum

at negative offsets. Further increase in σ leads to the development of cusps on the

wavefront of the PS-wave and multivalued PS moveout function for a certain range

of offsets (e.g., Tsvankin and Thomsen, 1994); treatment of such models is outside of

the scope of this paper.

For relatively mild dips up to 30-40◦, the minimum is observed at moderate off-

sets and can be recorded in a conventional-length CMP gather. In this case, PS

traveltimes can be used to recover moveout attributes associated with the traveltime
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minimum tmin(xmin), such as the normal-moveout velocity (defined by analogy with

pure modes) and the ratio xmin/tmin. These attributes can be obtained from reflection

data by approximating PS-moveout with a shifted hyperbola centered at the offset

xmin. If reflector dip exceeds 40 − 50◦, the traveltime minimum either does not ex-

ist at all or cannot be captured on conventional spreads (limited by 1.5–2 distances

between the CMP and the reflector). For these traveltime functions, monotonically

decreasing with offset, a natural attribute is the slope of the moveout curve at the

CMP location.

To apply the PS-wave moveout attributes in anisotropic parameter estimation, we

developed an analytic treatment of dip moveout of converted waves valid in a vertical

symmetry plane of an anisotropic layer with arbitrary strength of anisotropy (e.g.,

the model can be orthorhombic). Parametric representation of the PS traveltime and

CMP offset in terms of the slowness vector yields a concise description of reflection

moveout involving the vertical and horizontal slowness components of the P - and

S-waves. Although the computation of the source-receiver offset and corresponding

traveltime involves solving the Christoffel equation, our expression can be used to

generate the CMP moveout curve without time-consuming two-point ray tracing.

We also proved that the slope of any moveout curve in CMP geometry is always

equal to one half of the difference between the ray parameters (horizontal slownesses)

evaluated for the incident and reflected ray at the source and receiver locations. This

simple result, which remains valid for symmetry planes in inhomogeneous anisotropic

media, was combined with the parametric traveltime-offset relationships to derive

closed-form expressions for all moveout attributes described above.

These analytic developments provide a basis for a joint inversion of P and PS

data in VTI media. The weak-anisotropy approximation allowed us to find explicit

expressions for the traveltime and offset of the PS-wave and study the dependence

of the moveout attributes on the anisotropic parameters. The attributes that proved

to be mostly sensitive to the anisotropy are the normalized offset xmin/tmin and the
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slope of the t(x) curve at zero offset, while the contribution of anisotropy to the

dip-dependence of the PS-wave NMO velocity is somewhat smaller.

Our inversion algorithm is designed to recover the medium parameters (the P -

and S-wave vertical velocities VP0 and VS0 and the anisotropic coefficients ε and δ)

using the NMO velocities and vertical traveltimes of the P and PS-waves from a

horizontal reflector, P -wave NMO velocity from a dipping reflector, and PS moveout

attributes associated with the same dipping event. Although the number of equa-

tions is sufficient to obtain all unknowns even without the dip-moveout attributes of

the PS-wave, such an inversion procedure is rather unstable. While the parameter

η ≈ ε − δ is well-constrained by the dip dependence of P -wave moveout, small er-

rors in η propagate with considerable amplification into the vertical velocities and

anisotropic parameters. The addition of the PS moveout attributes to the input

data leads to a significant improvement in the stability of the inversion procedure.

It is interesting that the disappearance of the PS traveltime minimum at steep dips

does not impair the stability of the parameter estimation. On the contrary, the ac-

curacy in all inverted parameters increases with dip due to the higher sensitivity of

the dip-moveout attributes to the anisotropy.

We showed that combining P and PS reflection traveltimes in moveout inversion

yields all parameters of VTI media needed for depth imaging of P , SV , or PS-waves.

Therefore, an important future application of our method is in building velocity

models for P -wave prestack or poststack depth migration. However, the algorithm

presented here will not be able to handle realistic subsurface models unless it accounts

for vertical (and maybe lateral) heterogeneity. Such an extension is discussed in a

sequel paper (to be presented at the 69th SEG Meeting in Houston) devoted to the

determination of the PS-moveout attributes in layered anisotropic media.

Processing of converted waves in VTI media is also impossible without knowledge

of both vertical velocities and the parameters ε and δ. Although our inversion has

to be performed on common-midpoint gathers, reflection-point dispersal makes it
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necessary to re-sort the data into common-reflection-point (CRP) gathers prior to

stacking. This operation proved to be sensitive to the anisotropic coefficients of VTI

media and vertical velocities (Rommel 1997) and, therefore, has to be preceded by

parameter estimation. In principle, it is possible to repeat the inversion procedure on

CRP gathers to refine the estimates of the medium parameters, but such an algorithm

was not implemented in this work. An alternative way to generate a zero-offset section

for converted waves is the transformation to zero offset (TZO), which also requires

an accurate VTI model (Anderson 1996). In addition, our analytic expressions for

the converted-wave reflection moveout can be used to extend dip-moveout processing

algorithms to PS-modes in anisotropic media.

Due to the kinematic equivalence between the symmetry planes of orthorhombic

and VTI media, our results remain valid for CMP reflections in both vertical symme-

try planes of models with orthorhombic symmetry (Tsvankin 1997). The only change

required in our equations is the replacement of ε, δ, and the shear-wave vertical

velocity VS0 with the appropriate set of parameters introduced by Tsvankin (1997).
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APPENDIX A–CONVERTED-WAVE MOVEOUT FROM DIPPING

REFLECTORS

The objective of this Appendix is to derive a parameteric representation of reflec-

tion moveout of a PS-wave recorded in CMP geometry in the dip direction of a plane

reflector. It is assumed that the incidence plane also represents a symmetry plane of

the (anisotropic) medium, so both rays and the corresponding phase-velocity vectors

of the reflected waves are confined to the incidence plane; also, the P -wave generates

only one converted mode polarized in the vertical plane. Without losing generality,

we assume that the P -leg is located downdip from the reflection point (Fig. 3). Then

the reflection traveltime can be written as

t = tP + tS =
zr

gP cos θgr
P

+
zr

gS cos θgr
S

, (A-1)

where θgr
P and θgr

S are the group angles with vertical for the P and S segments of the

reflected ray (Fig. 3), gP and gS are the corresponding group velocities, and zr is the

depth of the reflection point. The source-receiver offset in terms of the group angles

is given by

x = xP + xS = zr (tan θgr
P + tan θgr

S ) . (A-2)

The angle θgr
S in equation (A-1) and below is considered negative if the S-ray is tilted

downdip from vertical. Introducing the reflector depth beneath the common midpoint

(zCMP) instead of zr yields

zCMP = zr [1 +
1

2
tanφ (tan θgr

P − tan θgr
S )] , (A-3)

where φ is reflector dip. Substituting zCMP [equation (A-3)] into equations (A-1)

and (A-2), we find

t = zCMP
N

D
(A-4)

and
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x = zCMP
Nx

D
, (A-5)

where

N =
1

gP cos θgr
P

+
1

gS cos θgr
S

, (A-6)

D = 1 +
1

2
tanφ (tan θgr

P − tan θgr
S ) , (A-7)

Nx = tan θgr
P + tan θgr

S . (A-8)

To satisfy Snell’s law, the P and S-waves should have the same projection of the

slowness vector (ray parameter) on the interface at the reflection point. Hence, this

projection (pint; the subscript stands for the interface) can be conveniently used to

build a parametric representation of the CMP traveltime for the converted wave.

Hereafter, we assume that pint is the “updip” projection, which corresponds to the

upgoing S-wave and downgoing P -wave.

If the medium is isotropic, the group angles θgr
P and θgr

S are equal to the correspond-

ing phase angles and can be easily expressed through pint (taken to be non-negative),

reflector dip φ, and the velocities of the P - and S-waves (VP and VS):

sin θgr
P = pintVP cos φ+

√
1− p2

intV
2
P sinφ , (A-9)

cos θgr
P =

√
1− p2

intV
2
P cosφ− pintVP sinφ , (A-10)

sin θgr
S = pintVS cos φ−

√
1− p2

intV
2
S sinφ , (A-11)

cos θgr
S =

√
1− p2

intV
2
S cosφ+ pintVS sin φ . (A-12)

Substitution of equations (A-9)–(A-12) into equations (A-6)–(A-8) and then (A-4)

and (A-5) leads to explicit expressions for the reflection traveltime and source-receiver

offset in CMP geometry in terms of the slowness pint.
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For anisotropic media, the transition from the slowness (ray parameter) pint to the

group angles of the reflected waves involves solving the Christoffel equation for the

slowness component orthogonal to the reflector. For P − SV -waves in a symmetry

plane of an anisotropic medium, the Christoffel equation for an unknown slowness

component is quartic (it becomes sextic outside the symmetry planes).

Since we may have several reflectors with different dips in the same medium, it is

more convenient to express the traveltime curve through the slowness components in

the unrotated coordinate system associated with the earth surface. Also, note that

the group angles in equations (A-1)–(A-5) are defined with respect to the vertical

axis rather than the reflector normal (i.e., the vector normal to the reflector). Intro-

ducing the projections of the group-velocity vectors of P - and S-waves on the vertical

(x3, subscript “3”) and horizontal (x1, subscript “1”) axes, we obtain the following

equivalent form of equations (A-6)–(A-8):

N =
1

gP3
+

1

gS3
, (A-13)

D = 1− 1

2
tanφ (

gP1

gP3
+
gS1

gS3
) , (A-14)

Nx = −gP1

gP3
+
gS1

gS3
. (A-15)

Here the x3-axis is directed upward, the x1-axis is in the updip direction, and both

group-velocity vectors are assumed to point from the reflector towards the surface.

The group-velocity components can be related to the slowness vector in the same

(unrotated) coordinate system in the following way (Cohen 1998):

g3 =
1

q − pq′ (A-16)

and

g1 = −g3q
′ , (A-17)
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where q and p are the vertical and horizontal slowness components, respectively, and

q′ ≡ dq/dp. Equations (A-16) and (A-17) allow us to rewrite equations (A-13)–(A-15)

as

N = qP − pP q′P + qS − pSq′S , (A-18)

D = 1 +
1

2
tanφ (q′P + q′S) , (A-19)

Nx = q′P − q′S . (A-20)

Here pP and pS are the horizontal components of the slowness vector for the P - and

S-waves, and q′P ≡ dqP/dpP , q′S ≡ dqS/dpS. Note that if the P -wave leg is tilted updip

from the reflection point, under our convention the value of Nx and source-receiver

offset are negative.

To generate a CMP gather of the converted PS-wave, we first need to obtain pP

and pS as functions of the projection of the slowness vector on the reflector (pint) by

solving the Christoffel equation for the slowness vectors of the P - and S-waves in the

rotated coordinate system with one of the axes parallel to the reflecting interface.

Then we can find pP and pS and use them in equations (A-18)–(A-20), (A-4), and

(A-5) to obtain the moveout curve of the converted mode.
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APPENDIX B–GENERAL EXPRESSION FOR THE SLOPE OF

REFLECTION MOVEOUT

The goal of this appendix is to prove that the apparent slowness (slope) of the

CMP moveout curve for any converted or pure reflection is determined by the differ-

ence between the ray parameters (slownesses) corresponding to the two legs of the

reflected ray. As before, we assume a 2-D model of wave propagation, with the group

velocities of the reflected waves confined to the incidence plane. The medium above

the reflector, however, is no longer restricted to a single homogeneous layer and may

be inhomogeneous and anisotropic (with the incidence plane still being a plane of

symmetry).

Suppose the reflected wave represents a converted PS mode recorded in CMP

geometry (Fig. B-1). The slope of the moveout curve at any offset x0 is given by

dt

dx

∣∣∣∣∣
x0

=
d(tP + tS)

dx

∣∣∣∣∣
x0

, (B-1)

where tP is the traveltime along segment S1O1 and tS corresponds to O1R1 (Fig. B-

1). To relate the moveout slope to the ray parameters of the P - and S-waves, it is

convenient to add and subtract from dt/dx the slope of the reflection traveltime tns

along a non-specular raypath S1OR1. Expressing tns through the sum of the P and

S traveltimes tns
P and tns

S , we rewrite equation (B-1) in the form

dt

dx

∣∣∣∣∣
x0

=
d(tns

P + tns
S )

dx

∣∣∣∣∣
x0

+
d(tP + tS − tns

P − tns
S )

dx

∣∣∣∣∣
x0

. (B-2)

Since the P - and S-legs of the non-specular raypath originate from the fixed

reflection point O, the slope of the corresponding moveout curve can be expressed as

d(tns
P + tns

S )

dx

∣∣∣∣∣
x0

=
d(tns

P + tns
S )

d(2h)

∣∣∣∣∣
h0

=
1

2
[−pP (−h0) + pS(h0)] , (B-3)

where h ≡ x/2, h0 ≡ x0/2, pP and pS are the horizontal slownesses (ray parame-

ters) evaluated at the surface for the P - and S-rays OS and OR, and the horizontal

coordinate axis runs updip.
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To prove that the remaining (second) term in the right-hand side of equation (B-

2) is equal to zero, we consider all possible non-specular reflections with the source-

receiver offset x = S1R1 (Fig. B-1). The traveltimes of these arrivals can be expanded

into a Taylor series in the distance l = OO1 between the specular (O1) and non-

specular reflection point. According to Fermat’s principle, the minimum traveltime

corresponds to the specular reflection, so the term linear in l in this expansion should

vanish. Hence, dropping the cubic and higher-order terms in l, we obtain the following

relationship between the nonspecular (tns = tns
P + tns

S ) and specular (t = tP + tS)

traveltimes:

tns = t +
1

2

d2tns

dl2

∣∣∣∣∣
l=0

l2 + . . . . (B-4)

Therefore, the difference between the traveltimes along the raypaths S1O1R1 and

S1OR1 (Fig. B-1) becomes

t− tns = A(x) l2(x) , (B-5)

where

A(x) = −1

2

d2tns

dl2

∣∣∣∣∣
l=0

. (B-6)

Differentiating equation (B-5) with respect to x at x = x0 yields

d(t− tns)

dx

∣∣∣∣∣
x0

=
dA(x)

dx
l2(x)

∣∣∣∣∣
l=0

+ A(x) 2l
dl

dx

∣∣∣∣∣
l=0

= 0 . (B-7)

Therefore, the slope of the moveout curve can be determined from the non-specular

traveltime [equation (B-3)]:

dt

dx

∣∣∣∣∣
x0

=
1

2
[−pP (−h0) + pS(h0)] . (B-8)
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APPENDIX C–NMO VELOCITY FOR CONVERTED-WAVE MOVEOUT

If reflection moveout of a converted wave in a CMP gather does have a minimum

tmin = t(xmin), the traveltime near tmin can be described by normal-moveout velocity

Vnmo introduced by analogy with pure modes. To find an analytic expression for Vnmo,

we expand the squared CMP traveltime t2(x) into a Taylor series near the traveltime

minimum:

t2(x) = t2min +
d(t2)

dx

∣∣∣∣∣
xmin

(x− xmin) +
1

2

d2(t2)

dx2

∣∣∣∣∣
xmin

(x− xmin)2 + . . . (C-1)

The first derivative d(t2)/dx at x = xmin is equal to zero, while the second derivative

yields the NMO velocity that governs the traveltime for small (x− xmin):

V 2
nmo =





1

2

d2(t2)

dx2

∣∣∣∣∣
xmin





−1

=



t

d

dx

(
dt

dx

) ∣∣∣∣∣
xmin





−1

. (C-2)

Using the results of Appendix B, the moveout slope dt/dx can be expressed through

the difference between the horizontal slownesses of the P - and S-waves:

dt

dx
=

1

2
(pS − pP ) . (C-3)

Considering both dt/dx and x as functions of the projection of the slowness vector

on the interface (pint), we can rewrite equation (C-2) as

V 2
nmo,PS =




t

2

d(pS − pP )/dpint

dx/dpint

∣∣∣∣∣
pmin

int





−1

, (C-4)

where pmin
int corresponds to the traveltime minimum.

To evaluate the derivatives in equation (C-4), pint should be represented through

the slownesses of the P - and S-waves using Snell’s law:

pint = −(pP cosφ+ qP sinφ) = pS cosφ+ qS sinφ . (C-5)

The P -wave in equations (A-13)–(A-15) is assumed to travel upward from the reflec-

tor, which explains the minus sign in front of the P -wave term in equation (C-5).

Differentiating equation (C-5), we obtain
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dpP
dpint

= −(cos φ+ q′P sinφ)−1 , (C-6)

dpS
dpint

= (cosφ+ q′S sin φ)−1 , (C-7)

where, as in equations (A-18)–(A-20), q′P ≡ dqP/dpP and q′S ≡ dqS/dpS. Hence,

d(pS − pP )

dpint
=

1

cosφ

[
1

1 + q′P tanφ
+

1

1 + q′S tanφ

]
. (C-8)

The derivative dx/dpint in equation (C-4) can be represented through D and Nx

[equations (A-19) and (A-20)] as

dx

dpint
= zCMP

d(Nx/D)

dpint
= zCMP

(dNx/dpint)D − (dD/dpint)Nx

D2
. (C-9)

Using equations (C-6) and (C-7), the derivatives with respect to pint can be expressed

through those with respect to pP or pS; for instance,

dqP
dpint

= −q′P (cosφ+ q′P sinφ)−1 . (C-10)

Equation (C-10) and an analogous expression for qS allow us to obtain the numerator

in equation (C-9) in the following form:

dNx

dpint

D − dD

dpint

Nx = − q
′′
P (1 + q′S tanφ)

cosφ+ q′P sinφ
− q′′S (1 + q′P tanφ)

cosφ+ q′S sinφ
. (C-11)

Note the symmetry in equation (C-11) with respect to the subscripts “P” and “S”: the

second term can be obtained by interchanging these subscripts in the first term. The

expression for D, also needed in equation (C-9), was derived previously [equation (A-

19)]:

D = 1 +
1

2
tanφ (q′P + q′S) . (C-12)

Equations (C-11) and (C-12) are sufficient for obtaining the derivative dx/dpint from

equation (C-9).

NMO velocity, as given by equation (C-4), also depends on the minimum travel-

time, which can be found from equations (A-4), (A-18), and (A-19):
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tmin = t(pmin
int ) = zCMP

qP − pP q′P + qS − pSq′S
1 + 1

2
tanφ (q′P + q′S)

∣∣∣∣∣
pmin

int

. (C-13)

Substituting equations (C-8), (C-9) and (C-13) into equation (C-4) and taking

into account that at the traveltime minimum pP = pS = pmin
P [see equation (C-16)

below] yields the final expression for NMO velocity as a function of the horizontal

slownesses of the P - and S-waves:

V 2
nmo,PS =

4 (q′′P A
2
S + q′′S A

2
P )

(AP + AS)2 [ pP (q′P + q′S)− (qP + qS)]

∣∣∣∣∣
pmin
P

, (C-14)

where

AP = 1 + q′P tanφ , AS = 1 + q′S tanφ . (C-15)

To obtain the ray parameter pmin
P , we use equation (C-3) for the slope of the

moveout curve. Since at the traveltime minimum the slope goes to zero,

pmin
P = pmin

S . (C-16)

Substituting pP = pS into Snell’s law [equation (C-5)] and dividing both sides by

cosφ gives the following equation for the slownesses corresponding to the traveltime

minimum:

2pmin
P = −(qP + qS) tanφ , (C-17)

where the vertical slownesses qP and qS are related to pP = pS through the Christoffel

equation.

For isotropic media, the vertical slownesses are given simply by

qP =

√
1

V 2
P

− p2
P (C-18)

and

qS =

√
1

V 2
S

− p2
S . (C-19)
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In this case, it is possible to derive an explicit expression for pmin
P = pmin

S by solving

equation (C-17) with qP and qS from equations (C-18) and (C-19):

pmin
is = −sin φ

2VP

√
1 + γ2 + S , (C-20)

where γ ≡ VP/VS,

S ≡
√

4γ2 − tan2 φ (γ2 − 1)2 , (C-21)

and the subscript “is” denotes “isotropic.” This solution, however, exists only if the

expression under the radical in equation (C-21) is nonnegative, or

tanφ ≤ 2γ

γ2 − 1
. (C-22)

For larger dip φ, the moveout curve has no minimum.
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APPENDIX D–WEAK-ANISOTROPY APPROXIMATION FOR

MOVEOUT OF CONVERTED WAVES IN VTI MEDIA

Parametric expressions for the traveltime curve

Here we derive weak-anisotropy approximations for traveltime and offset for PS-

reflections in VTI media by carrying out linearization in Thomsen’s parameters ε and

δ. For small |ε| � 1 and |δ| � 1, phase velocities of P - and S(SV )-waves can be

well-approximated by the following linearized expressions (Thomsen 1986):

VP (θ̂) = VP0 [1 + δ sin2 θ̂ + (ε− δ) sin4 θ̂] (D-1)

and

VSV (θ̂) = VS0 (1 + σ sin2 θ̂ cos2 θ̂) , (D-2)

where θ̂ is the phase angle with the symmetry axis, and

σ ≡
(
VP0

VS0

)2

(ε− δ) . (D-3)

Our first goal is to express the group velocity and group angle for both P - and

S-waves (Fig. 3) through the slowness pint. Let us denote the angle between the

phase-velocity (slowness) vector of the downgoing P -wave and the reflector normal

(pointing upward) by θ̄P (Fig. D-1). Then the phase angle θ̂ with the symmetry axis

is equal to θ̄P − φ, and equation (D-1) can be written as

VP (θ̄P ) = VP0 [1 + δ sin2(θ̄P − φ) + (ε− δ) sin4(θ̄P − φ)] . (D-4)

In the linearized weak-anisotropy approximation, group velocity (at the group angle)

is equal to phase velocity. Also, we can use the isotropic relationship between the

phase angle θ̄P and pint because θ̄P is contained only in terms already linear in the

anisotropic parameters. Hence, the group velocity of the P -wave is given by

gP (pint) = VP0 [1 + δ sin2(θ̄is,P − φ) + (ε− δ) sin4(θ̄is,P − φ)] , (D-5)
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where

sin θ̄is,P = pint VP0 ; cos θ̄is,P = −
√

1− (pint VP0)2 . (D-6)

Next, we need to find the P -wave group angle θgr
P [equation (A-1)] as a function

of pint. For the phase angle θ̄P we have

sin θ̄P = pint VP = pint VP0 (1 + αanis,P ) (D-7)

and

cos θ̄P = −
√

1− (pint VP0)2

[
1− (pint VP0)2

1− (pint VP0)2
αanis,P

]
, (D-8)

where

αanis,P ≡ δ sin2(θ̄is,P − φ) + (ε− δ) sin4(θ̄is,P − φ) . (D-9)

Using the weak-anisotropy relationship between the group and phase angles in TI

media (Thomsen 1986) and taking into account that the P -wave propagates upward

from the reflection point yields

tan θgr
P = − tan(θ̄P − φ) [1 + 2δ + 4(ε− δ) sin2(θ̄is,P − φ)] . (D-10)

Thus, the weak-anisotropy approximation makes it possible to find explicit expres-

sions for group velocity and group angle in terms of the slowness projection pint.

Substituting sin θ̄P and cos θ̄P from equations (D-7) and (D-8) into equation (D-10)

and further linearizing in the anisotropic parameters, we obtain

tan θgr
P = − tan(θ̄is,P − φ)

[
1 + 2δ + 4(ε− δ) sin2(θ̄is,P − φ)

+αanis,P
tan θ̄is,P

sin(θ̄is,P − φ) cos(θ̄is,P − φ)

]
. (D-11)

From equation (D-10) it also follows that

1

cos θgr
P

= − 1

cos(θ̄P − φ)
{1 + sin2(θ̄is,P − φ) [2δ + 4(ε− δ) sin2(θ̄is,P − φ)]} . (D-12)
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Combining equations (D-5) and (D-12) gives the term (1/gP cos θgr
P ) needed to find

the traveltime along the P -wave leg:

1

gP cos θgr
P

= − 1

VP0 cos(θ̄is,P − φ)

[
1 + 2(ε− δ) sin4(θ̄is − φ)

+αanis,P
cosφ

cos θ̄is,P cos(θ̄is,P − φ)

]
. (D-13)

Similar algebraic transformations yield the corresponding expressions for the S-

wave leg:

tan θgr
S = tan(θ̄is,S − φ)

[
1 + 2σ − 4σ sin2(θ̄is,S − φ)

+αanis,S
tan θ̄is,S

sin(θ̄is,S − φ) cos(θ̄is,S − φ)

]
, (D-14)

1

gS cos θgr
S

=
1

VS0 cos(θ̄is,S − φ)

[
1− 2σ sin4(θ̄is,S − φ)

+αanis,S
cosφ

cos θ̄is,S cos(θ̄is,S − φ)

]
, (D-15)

where

αanis,S ≡ σ sin2(θ̄is,S − φ) cos2(θ̄is,S − φ) (D-16)

and

sin θ̄is,S = pint VS0 ; cos θ̄is,S =
√

1− (pint VS0)2 . (D-17)

Note that the terms involving anisotropic coefficients in equations (D-14) and (D-15)

can be found from the anisotropic terms in the corresponding P -wave equations (D-

11) and (D-13) by making the following substitutions: VP0 should be replaced with

VS0, δ – with σ, and ε set to zero. Equations (D-11), (D-13), (D-14), and (D-15) are

sufficient for obtaining the traveltime and offset for the PS-wave using the general

relationships (A-4)–(A-8).
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Moveout attributes

Next, with the help of symbolic software Mathematica, we derive the weak-

anisotropy approximations for the attributes of the PS traveltime function. The

approximate slope of the moveout curve at zero offset can be found by linearizing

the exact equation (C-3) in ε and δ. From equation (A-17) it follows that for the

zero-offset reflection

q′P = q′S , (D-18)

because at x = 0 the group-velocity vectors of P - and S-waves are parallel to each

other. The horizontal slownesses (p
P

and p
S
) also have to satisfy Snell’s law [equa-

tion (C-5)]. To find p
P

and p
S
, we linearize the vertical slownesses in the anisotropic

parameters:

q
P

= q
P0

{
1− p2

P

q2
P0

[δ + (ε− δ) p2
P
V 2
P0]

}
, (D-19)

q
S

= q
S0

(1− σ p2
S
V 2
S0) , (D-20)

where

q
P0

=

√
1

V 2
P0

− p2
P
, (D-21)

q
S0

=

√
1

V 2
S0

− p2
S
. (D-22)

Substitution of equations (D-19) and (D-20) into equations (C-5) and (D-18) leads

to a system of two equations for the horizontal slownesses p
P

and p
S
. Splitting p

P

and p
S

into the isotropic and anisotropic parts, solving this system, and using the

obtained horizontal slownesses in equation (C-3) yields

dt

dx

∣∣∣∣∣
x=0

=
sinφ

2VP0 (1 + γ)

[
(1− γ2) + 4γ (σ − δ)

]

+
sin3 φ

2VP0 γ (1 + γ)

[
δγ (1 + γ)− σ (γ3 + 9γ2 + 8)

]

+
sin5 φ

2VP0 γ2 (1 + γ)
σ (γ4 + 5γ3 + 5γ + 1) ; (D-23)
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γ ≡ VP0/VS0.

To find the attributes of the traveltime minimum, we need to determine the cor-

responding horizontal slowness pmin
P = pmin

S . The linearized form of pmin
P can be found

from Snell’s law [equation (C-17)] by substituting the approximations for the vertical

slownesses [equations (D-19) and (D-20)]:

pmin
P = pmin

is (1 + ∆pmin
P ) , (D-24)

where pmin
is is the isotropic solution [equation (C-20)] and

∆pmin
P = − tanφ

2pmin
is

(q
P0

∆qP + q
S0

∆qS) . (D-25)

Here q
P0

and q
S0

are given by equations (D-21) and (D-22) with pP = pS = pmin
is , and

∆qP =
(pmin

is )2

q2
P0

[δ + (ε− δ) (pmin
is )2 V 2

P0] , (D-26)

∆qS = σ (pmin
is )2 V 2

S0 . (D-27)

If necessary, the slowness projection on the interface corresponding to the traveltime

minimum can be found from equation (D-24) as

pmin
int =

sinφ

2

(
1

VS0
− 1

VP0

)
, (D-28)

where only the leading dip term was retained. Equation (D-28) is fully equivalent to

the isotropic result (C-20).

To obtain the weak-anisotropy approximation for normal-moveout velocity, we

linearize the exact equation (C-14) in the anisotropic parameters. Expanding the

linearized version of equation (C-14) in sinφ up to the quadratic term and substituting

pmin
P from equation (D-24) leads to the following form of Vnmo,PS:

V −2
nmo,PS =

1

VP0VS0
− sin2 φ

8V 3
P0V

3
S0

[
3V 4

P0 − 2V 3
P0VS0 + 6V 2

P0V
2
S0 − 2VP0V

3
S0 + 3V 4

S0

]

+
ε

2VP0V
4
S0(VP0 + VS0)

[
−4V 2

P0V
2
S0 + sin2 φ (3V 4

P0 − 11V 3
P0VS0
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−V 2
P0V

2
S0 + 3VP0V

3
S0 + 6V 4

S0)
]

+
δ (VS0 − VP0)

2V 2
P0V

4
S0(VP0 + VS0)

[
−4V 2

P0V
2
S0 + sin2 φ (3V 4

P0 − 8V 3
P0VS0

−6V 2
P0V

2
S0 − 8VP0V

3
S0 + 3V 4

S0)
]
. (D-29)

It is convenient to describe the moveout attributes in terms of the ray parame-

ter (horizontal slowness) of the pure P -wave reflection recorded at zero offset (p
P0

).

Neglecting the cubic and higher powers of sin φ, we can represent p
P0

as

p
P0

=
sin φ

VP (φ)
≈ sinφ

VP0
. (D-30)

Equation (D-30) has a purely “isotropic” form because the anisotropic terms in p
P0

are multiplied with high powers of sinφ not included in our approximation.

Substituting γ and p
P0

and expressing ε through σ yields the following expression

for NMO velocity:

V −2
nmo,PS (p

P0
) = V −2

nmo,PS(0)− p2
P0

8γ
(3γ4 − 2γ3 + 6γ2 − 2γ + 3)

− p2
P0

(γ − 1)

2γ (γ + 1)

[
6 σ (γ + 1)2 − (σ − δ) γ (3γ2 − 2γ + 3)

]
, (D-31)

where

V −2
nmo,PS(0) =

1

VP0VS0

[
1− 2(σ + δγ)

1 + γ

]
. (D-32)

The approximate normalized offset xmin/tmin is obtained in a similar way. Lin-

earizing the exact equation (20) for xmin/tmin, substituting pmin
P [equation (D-24)] and

retaining only the linear and cubic terms in sinφ, we find

xmin

tmin

=
sinφ VS0

2

[
γ − 1 + 2(δγ − σ)

]
+

sin3 φ VS0

16 γ2

[
(γ5 + 3γ3 − 3γ2 − 1)

+ 4δγ3(γ2 + 1) + 4σ(2γ3 + 5γ2 + 6γ + 1)
]
. (D-33)

Likewise, the leading dip term in the weak-anisotropy approximation for the spa-

tial derivative of the minimum traveltime (21) is given by

dtmin

dyCMP
= tanφ

dtmin

dzCMP
= p

P0
(1 + γ) . (D-34)
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FIGURES

FIG. 1. Dip-line reflection moveout of a PS-wave in a homogeneous VTI layer with

the parameters VP0 = 2.0 km/s, VS0 = 1.0 km/s, ε = 0.2, δ = 0.1 (σ = 0.4); the

distance between the CMP and the reflector is 1 km. Reflector dip is shown on top

of each plot. Positive offsets correspond to the P -wave source located downdip from

the CMP.

FIG. 2. Dip-line moveout of a PS-wave in a VTI layer with the parameters VP0 = 2.0

km/s, VS0 = 1.2 km/s, ε = 0.3, δ = 0.05 (σ = 0.69); the distance between the CMP

and the reflector is 1 km.

FIG. 3. Reflected PS-wave in a symmetry plane of an anisotropic medium. ~gP

and ~gS are the group-velocity vectors (rays) of the P - and S-waves, θgr
P and θgr

S are

the corresponding group angles with vertical, zCMP is the reflector depth beneath the

CMP, and zr is the depth of the reflection point. In the parametric moveout equa-

tions it is assumed that ~gP and ~gS point towards the surface. The horizontal ray

displacements are xP = SN and xS = NR.

FIG. 4. Exact slope of the PS-wave moveout curve at zero offset [equation (10),

solid line] and its weak-anisotropy approximation [equation (22), dotted line] in two

VTI models: (a) ε = 0.15, δ = 0.05 (σ = 0.28); (b) ε = 0.3, δ = 0.05 (σ = 0.69).

For both media, VP0 = 2.0 km/s and VS0 = 1.2 km/s. Reflector dip changes from 0◦

to 50◦ in accordance with the product p
P0
VP0, approximated here by sin φ. Moveout

curves for Model b are shown in Fig. 2.

FIG. 5. Exact NMO velocity of the PS-wave [equation (15), solid line] and its

weak-anisotropy approximation [equation (26), dotted line] in two VTI models: (a)

ε = δ = 0.15 (elliptical anisotropy); (b) ε = 0.15, δ = 0.05. For both media, VP0 = 2.0
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km/s and VS0 = 1.2 km/s. Reflector dip changes from 0◦ to 30◦.

FIG. 6. Exact reflection moveout of the PS-wave (solid) and its approximation with

the best-fit shifted hyperbola (31) (dashed) found by least-squares minimization. The

model parameters are VP0 = 2.0 km/s, VS0 = 1 km/s, ε = 0.2, δ = 0.1, φ = 30◦.

FIG. 7. Ray-traced synthetic seismograms of the PS-wave reflected from the bottom

of a VTI layer. The dip φ of the reflector is shown on top of each plot. The parameters

of the upper layer are VP0 = 2.0 km/s, VS0 = 1 km/s, ε = 0.2, δ = 0.1, the density

ρ = 2 g/cm3. The lower layer is isotropic with VP0 = 2.2 km/s, VS0 = 1.1 km/s and

ρ = 2.2 g/cm3. Only positive offsets (with the P -wave source located downdip from

the CMP) are displayed.

FIG. 8. Parameters ε, δ, VP0, and VS0 (dots) determined by inverting P and PS

moveout data from a horizontal and dipping reflector. The input data were distorted

by random noise with a standard deviation of 0.5% for γ, 1.5% for the zero-dip NMO

velocities and 2% for the moveout attributes of the dipping event. (a) and (b) In-

version without dip-moveout attributes of the PS-wave; the dip φ = 30◦. (c) and

(d) Inversion including the dip-moveout attributes of the traveltime minimum of the

PS-wave and the slope of the PS-moveout curve [equation (35)]; the dip φ = 30◦. (e)

and (f) Inversion including the slope of the PS-moveout curve [equation (36)]; the

dip φ = 50◦. The actual values are: VP0 = 2.0 km/s, VS0 = 1 km/s, ε = 0.2, δ = 0.1.

The solid line on plot (a) indicates ε’s and δ’s corresponding to the correct value of η

(η = 0.083).

FIG. B-1. To determine the slope of the moveout curve at the offset x0 = SR,

the specular reflection raypath S1O1R1 in a vicinity of x0 can be replaced by a non-

specular raypath S1OR1.
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FIG. D-1. Geometry for the derivation of the weak-anisotropy approximation for PS

moveout. OP and OS are the slowness (phase-velocity) directions of the downgoing

P - and upgoing S-legs of the converted wave, and θ̄P and θ̄S are the corresponding

phase (slowness) angles with the reflector normal ON. OM, the projection of the

slowness vectors on the reflector (denoted as pint), should be identical for the P - and

S-waves.
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FIG. 1. Dip-line reflection moveout of a PS-wave in a homogeneous VTI layer with the

parameters VP0 = 2.0 km/s, VS0 = 1.0 km/s, ε = 0.2, δ = 0.1 (σ = 0.4); the distance

between the CMP and the reflector is 1 km. Reflector dip is shown on top of each plot.

Positive offsets correspond to the P -wave source located downdip from the CMP.
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FIG. 2. Dip-line moveout of a PS-wave in a VTI layer with the parameters VP0 = 2.0

km/s, VS0 = 1.2 km/s, ε = 0.3, δ = 0.05 (σ = 0.69); the distance between the CMP and

the reflector is 1 km.
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FIG. 4. Exact slope of the PS-wave moveout curve at zero offset [equation (10), solid

line] and its weak-anisotropy approximation [equation (22), dotted line] in two VTI models:

(a) ε = 0.15, δ = 0.05 (σ = 0.28); (b) ε = 0.3, δ = 0.05 (σ = 0.69). For both media,

VP0 = 2.0 km/s and VS0 = 1.2 km/s. Reflector dip changes from 0◦ to 50◦ in accordance

with the product p
P0
VP0, approximated here by sinφ. Moveout curves for Model b are

shown in Fig. 2.
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FIG. 5. Exact NMO velocity of the PS-wave [equation (15), solid line] and its

weak-anisotropy approximation [equation (26), dotted line] in two VTI models: (a)

ε = δ = 0.15 (elliptical anisotropy); (b) ε = 0.15, δ = 0.05. For both media, VP0 = 2.0 km/s

and VS0 = 1.2 km/s. Reflector dip changes from 0◦ to 30◦.
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FIG. 7. Ray-traced synthetic seismograms of the PS-wave reflected from the bottom of

a VTI layer. The dip φ of the reflector is shown on top of each plot. The parameters of the

upper layer are VP0 = 2.0 km/s, VS0 = 1 km/s, ε = 0.2, δ = 0.1, the density ρ = 2 g/cm3.

The lower layer is isotropic with VP0 = 2.2 km/s, VS0 = 1.1 km/s and ρ = 2.2 g/cm3. Only

positive offsets (with the P -wave source located downdip from the CMP) are displayed.
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FIG. 8. Parameters ε, δ, VP0, and VS0 (dots) determined by inverting P and PS moveout

data from a horizontal and dipping reflector. The input data were distorted by random noise

with a standard deviation of 0.5% for γ, 1.5% for the zero-dip NMO velocities and 2% for

the moveout attributes of the dipping event. (a) and (b) Inversion without dip-moveout

attributes of the PS-wave; the dip φ = 30◦. (c) and (d) Inversion including the dip-moveout

attributes of the traveltime minimum of the PS-wave and the slope of the PS-moveout curve

[equation (35)]; the dip φ = 30◦. (e) and (f) Inversion including the slope of the PS-moveout

curve [equation (36)]; the dip φ = 50◦. The actual values are: VP0 = 2.0 km/s, VS0 = 1

km/s, ε = 0.2, δ = 0.1. The solid line on plot (a) indicates ε’s and δ’s corresponding to the

correct value of η (η = 0.083).
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FIG. B-1. To determine the slope of the moveout curve at the offset x0 = SR, the

specular reflection raypath S1O1R1 in a vicinity of x0 can be replaced by a non-specular

raypath S1OR1.
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FIG. D-1. Geometry for the derivation of the weak-anisotropy approximation for PS

moveout. OP and OS are the slowness (phase-velocity) directions of the downgoing P -

and upgoing S-legs of the converted wave, and θ̄P and θ̄S are the corresponding phase

(slowness) angles with the reflector normal ON. OM, the projection of the slowness vectors

on the reflector (denoted as pint), should be identical for the P - and S-waves.
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