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Inversion of azimuthally dependent NMO velocity in transversely
isotropic media with a tilted axis of symmetry

Vladimir Grechka∗ and Ilya Tsvankin∗

ABSTRACT

Just as the transversely isotropic model with a verti-
cal symmetry axis (VTI media) is typical for describing
horizontally layered sediments, transverse isotropy with
a tilted symmetry axis (TTI) describes dipping TI lay-
ers (such as tilted shale beds near salt domes) or crack
systems. P-wave kinematic signatures in TTI media are
controlled by the velocity VP0 in the symmetry direction,
Thomsen’s anisotropic coefficients ε and δ, and theorien-
tation (tilt ν and azimuth β) of the symmetry axis. Here,
we show that all fiveparameters canbeobtained fromaz-
imuthally varying P-wave NMO velocities measured for
two reflectors with different dips and/or azimuths (one
of the reflectors can be horizontal). The shear-wave ve-
locity VS0 in the symmetry direction, which has negligible
influence on P-wave kinematic signatures, can be found
only from the moveout of shear waves.
Using the exact NMO equation, we examine the

propagation of errors in observed moveout velocities
into estimated values of the anisotropic parameters and
establish the necessary conditions for a stable inversion
procedure. Since the azimuthal variation of theNMOve-
locity is elliptical, each reflection event provides us with
up to three constraints on the model parameters. Gener-
ally, the five parameters responsible for P-wave velocity

can be obtained from two P-wave NMO ellipses, but the
feasibility of the moveout inversion strongly depends on
the tilt ν. If the symmetry axis is close to vertical (small
ν), the P-wave NMO ellipse is largely governed by the
NMO velocity from a horizontal reflector Vnmo(0) and
the anellipticity coefficient η. Although for mild tilts the
medium parameters cannot be determined separately,
the NMO-velocity inversion provides enough informa-
tion for building TTImodels suitable for time processing
(NMO, DMO, time migration). If the tilt of the symme-
try axis exceeds 30◦–40◦ (e.g., the symmetry axis can be
horizontal), it is possible to find all P-wave kinematic pa-
rameters and construct the anisotropic model in depth.
Another condition required for a stable parameter es-
timate is that the medium be sufficiently different from
elliptical (i.e., ε cannot be close to δ). This limitation,
however, can be overcome by including the SV -wave
NMO ellipse from a horizontal reflector in the inversion
procedure.

While most of the analysis is carried out for a single
layer,wealso extend the inversion algorithm tovertically
heterogeneous TTI media above a dipping reflector us-
ing the generalized Dix equation. A synthetic example
for a strongly anisotropic, stratifiedTTImediumdemon-
strates a high accuracy of the inversion (subject to the
above limitations).

INTRODUCTION

Transverse isotropy (TI) is a common anisotropic model of
the subsurface typical for massive shale formations or thin-bed
sedimentary sequences (e.g., Thomsen, 1986). If sediments are
horizontally layered, the symmetry axis of the corresponding
TI medium is vertical (the so-called VTI model, or vertical
transverse isotropy). For dippingTI layers, often found in over-
thrust areas or near flanksof salt domes andvolcanic intrusions,

Presented at the 68th Annual Meeting, Society of Exploration Geophysicists. Manuscript received by the Editor June 3, 1998; revised manuscript
received February 1, 1999.
∗Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden, CO 80401. E-mail: vgrechka@dix.mines.edu;
ilya@dix.mines.edu.
c© 2000 Society of Exploration Geophysicists. All rights reserved.

the symmetry axis becomes tilted (TTI media). TI media with
a horizontal (HTI) or near-horizontal symmetry axis are of-
ten associated with vertical or steeply dipping fracture systems
(e.g., Thomsen, 1988).

Reflection traveltime (in general) and NMO velocity (in
particular) provide the most reliable information about the
anisotropic parameters of TI media. For VTI media, as shown
by Alkhalifah and Tsvankin (1995), P-wave NMO velocity in
the dip plane of the reflector (and time-domain processing as a
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whole) are controlled by only twoparameter combinations: the
zero-dipNMOvelocity (i.e., theNMOvelocity for a horizontal
reflector)

Vnmo(0) = VP0

√
1 + 2δ (1)

and the anisotropic parameter

η ≡ ε − δ

1 + 2δ
. (2)

Here VP0 is the P-wave velocity in the symmetry (vertical)
direction, and ε and δ are Thomsen’s (1986) anisotropic co-
efficients.ThevaluesVP0, ε, and δ are responsible for all P-wave
kinematic signatures in VTI media (Tsvankin, 1996). The pa-
rameter η goes to zero in elliptically anisotropic media (ε = δ)
and therefore describes the anellipticity of the P-wave slow-
ness surface. (For elliptical anisotropy, NMO velocity is the
same functionof the rayparameter p andVnmo(0) as in isotropic
media.) Provided Vnmo(0) has been obtained using semblance
analysis of horizontal events, η canbe estimated from theNMO
velocity for a dipping reflector.
The result of Alkhalifah and Tsvankin (1995) is based on the

2-D NMO equation of Tsvankin (1995) restricted to the dip
plane of the reflector. Grechka and Tsvankin (1998) develop a
more general 3-D NMO equation valid for common-midpoint
(CMP) reflections recorded over arbitrary anisotropic hetero-
geneous media. They show that the azimuthal variation of
NMO velocity is controlled by the spatial derivatives of the
ray parameter at the CMP location and usually is described by
an ellipse in the horizontal plane. Applying this equation to
VTImedia, they prove that P-wave NMO velocity is fully gov-
erned by Vnmo(0) and η for arbitrary orientations of the CMP
line and reflector strike. Hence, for VTI media the parame-
ters VP0, ε, and δ cannot be resolved individually from P-wave
NMO data.
For TI media with a horizontal symmetry axis (HTI), the

P-wave kinematic parameters also include the azimuth β of
the symmetry axis. (VP0 remains the velocity in the symme-
try direction, which is horizontal in HTI media, while ε and
δ are defined with respect to the symmetry axis.) Despite the
increase in the number of unknowns, all four moveout param-
eters can be estimated from azimuthally dependent P-wave
NMO velocities measured for a horizontal and dipping reflec-
tor (Tsvankin, 1997a; Contreras et al., 1999). Note that P-wave
moveout inversion inHTImedia provides enough information
to perform depth processing, in contrast to time processing in
VTI media.
The TI model with a tilted symmetry axis can be consid-

ered as intermediate between VTI and HTI. This does not
mean, however, that the moveout inversion in TTI media can
be understood just by examining the results for the two ex-
treme orientations of the symmetry axis. Indeed, the tilt of the
symmetry axis represents an extra parameter to be recovered
from moveout data. Tsvankin (1997b) analyzes P-wave NMO
velocity in the vertical symmetry plane of TTI media that con-
tain the symmetry axis. Tomake the problem two dimensional,
he also assumes that the symmetry axis is confined to the dip
plane of the reflector. He concludes that the NMO velocity is
rather sensitive to the tilt ν and depends on ε and δ individually
(i.e., it is not fully controlled by η for fixed ν). Also, Tsvankin’s
(1997b) results show that the dip dependence of NMOvelocity

in the vertical symmetry plane (single azimuth) is not sufficient
to resolve the medium parameters.

Here, we carry out a 3-D (azimuthal) analysis of NMO ve-
locity in TI media with arbitrary tilt and azimuth of the sym-
metry axis. By using the 3-D NMO equation of Grechka and
Tsvankin (1998), we develop an inversion procedure to ob-
tain all five relevant parameters (VP0, ε, δ, β, and ν) from P-
wave NMO ellipses for two reflection events corresponding
to different dips. We show that for nonelliptical TI media and
the practically important case of a horizontal and a dipping
reflector, the inversion procedure becomes stable if reflector
dip reaches at least 30◦ and the tilt of the symmetry axis ex-
ceeds 30◦–40◦. For mild tilts of the symmetry axis, the param-
eters cannot be resolved individually, but the inversion results
are still sufficient to perform time processing. The generalized
Dix differentiation (Grechka et al., 1999) allows us to extend
the parameter-estimation methodology to vertically heteroge-
neousTTImedia.Toestimate the shear-wavevelocityVS0 in the
symmetry direction and increase the overall stability of the in-
version procedure, the P-wave moveout can be supplemented
with the SV -wave NMO ellipse from a horizontal reflector.

BASIC THEORY OF AZIMUTHALLY VARYING NMO
VELOCITY

We start with a brief overview of the analytic representation
of NMO velocity in anisotropic media. For moderate offsets
x limited by the distance between the CMP and the reflector,
reflection moveout t is usually close to a hyperbola (e.g., Taner
and Koehler, 1969; Tsvankin and Thomsen, 1994):

t2(x, α) ≈ t20 + x2

V 2
nmo(α)

, (3)

where t0 is the two-way zero-offset traveltime and Vnmo(α) is
the NMO velocity, which generally depends on the azimuth α

of the CMP line. As shown by Grechka and Tsvankin (1998),
NMO velocity of any pure mode can be expressed as

V −2
nmo(α) = W11 cos2 α + 2 W12 sinα cosα + W22 sin

2 α,

(4)
where Wi j = τ0 ∂pi/∂x j (i, j = 1, 2), τ0 = t0/2 are the one-way
zero-offset traveltime, pi are the horizontal components of the
slowness vector for one-way rays emanating from the zero-
offset reflection point, and xi are the horizontal spatial coordi-
nates. The derivatives are evaluated at the CMP. (For brevity,
we will not show the azimuth α explicitly as an argument of
the NMO-velocity function; the value of α in each case will be
clear from the context.)

Equation (4) is valid for pure modes in arbitrary anisotropic
heterogeneousmedia as long as the reflection traveltime canbe
expanded in a Taylor series in xi near theCMP location.Unless
reflection traveltime decreases with offset in a certain direction
leading to so-called reverse moveout [i.e., there is at least one
azimuth α for which V 2

nmo(α) < 0], the symmetric matrix W is
positive definite and equation (4) describes an ellipse. Clearly,
the NMO ellipse is fully determined by the three elements of
the matrix W.

For a homogeneous anisotropic layer above a dipping re-
flector, the matrix W becomes the following function of the



234 Grechka and Tsvankin

slowness components pi (Grechka et al., 1999):

W = p1q,1 + p2q,2 − q

q,11q,22 − q2
,12

(
q,22 −q,12

−q,12 q,11

)
, (5)

where q ≡ q(p1, p2)≡ p3 denotes the vertical component of the
slowness vector, q,i ≡ ∂q/∂pi , and q,i j ≡ ∂2q/∂pi∂p j . The hori-
zontal slowness components p1 and p2 and all derivatives are
evaluated for the zero-offset ray.
Note that p1 and p2 control the reflection slope on the

zero-offset (stacked) section and therefore can be obtained di-
rectly from reflection data. The vertical slowness q = q(p1, p2)
in a known anisotropic model can be found by solving the
Christoffel equation for given values of p1 and p2. Then, im-
plicit differentiation of Christoffel equation yields the deriva-
tives q,i and q,i j (Grechka et al., 1999). Therefore, equation (5)
provides a simple and numerically efficient recipe for obtaining
NMO velocity of pure modes in a layer with any anisotropic
symmetry.

SPECIAL CASES OF TTI MEDIA

Appendix A discusses NMO velocity for three different
types of tilted TI models that require special treatment: (1)
TTI medium above a steep reflector, (2) tilted elliptically
anisotropic medium, and (3) TI medium with the symmetry
axis perpendicular to the reflector (model typical for overthrust
areas).
In all three cases, NMO velocity has certain distinct features

that need to be taken into account in the inversion procedure.
For instance, the P-wave NMO ellipse in a single TI layer with
the symmetry axis orthogonal to the reflector is governed by
the symmetry-direction velocity VP0 and the parameter δ and
is independent of another anisotropic parameter, ε.
Below, we provide a detailed analysis of the P-wave NMO

velocity in TTI media with weak anisotropy (i.e., with small
values of |ε| and |δ|).

Weakly anisotropic horizontal layer

Although equations (4) and (5) give a concise representa-
tion of azimuthally varying NMO velocity, the dependence of
Vnmo on the model parameters is hidden in the components of
the slowness vector. To understand the influence of the axis
orientation and anisotropic parameters on the P-wave NMO
velocity, we linearize equation (5) with respect to ε and δ as-
suming that |ε| 
 1 and |δ| 
 1 (Appendix B). The final
expressions (B-7) and (B-8) are given for the coordinate sys-
tem in which the azimuth of the symmetry axis β = 0 (i.e., the
symmetry axis is in the [x1, x3]-plane; see Figure B-1). Note
that the shear-wave velocity in the symmetry direction (VS0)
does not appear in the linearized NMO equations because all
P-wave kinematic signatures in the weak-anisotropy approxi-
mation are independent of VS0 (Tsvankin, 1996).
For a horizontal reflector (p1 = p2 = 0) equations (B-7)

and (B-8) can be simplified to

W11 = 1
V 2

P0

[1 − 2δ + 2ε sin2 ν − 14 (ε − δ) sin2 ν cos2 ν],

(6)

W12 = 0, (7)

W22 = 1
V 2

P0

[1 − 2δ − 2 (ε − δ) sin2 ν (1 + cos2 ν)]. (8)

Since W12 = 0, the semiaxes of the P-wave NMO ellipse for
a horizontal reflector are parallel to the coordinate axes x1 and
x2. This result could be expected because the [x1, x3]-plane con-
tains the symmetry axis and therefore represents a symmetry
plane of the horizontal TTI layer. In the case of vanishing W12,
the quantities W11 and W22 are reciprocal to the squared NMO
velocities along the axes of the ellipse (Grechka and Tsvankin,
1998):

Wii = 1[
V (i)
nmo(0)

]2 , (i = 1, 2). (9)

The velocity V (1)
nmo(0) corresponds to the CMP line in the

vertical plane that contains the symmetry axis. Equations (6)
and (9) for V (1)

nmo(0) are equivalent to the result of Tsvankin
(1997b) [his equation (23)], who studies NMO only in this
vertical symmetry plane. Equations (6)–(8) provide us with
three constraints on the layer parameters: the orientation of
the NMO ellipse depends on the azimuth β of the symmetry
axis, while the values of the semiaxes give two more equations
for all five parameters. Note that the azimuth of the symmetry
axis cannot be unambiguously found from the NMO ellipse
from a horizontal reflector because β can be equal to the az-
imuth of either semimajor or semiminor axis, depending on the
medium parameters. For HTI media (ν = 90◦) resulting from
parallel penny-shaped cracks, the symmetry axis coincideswith
the semimajor axis of the ellipse (Tsvankin, 1997a).

The number of equations, however, reduces to two if the
NMO ellipse degenerates into a circle, i.e.,

V (1)
nmo(0) = V (2)

nmo(0). (10)

Obviously, for VTI media (ν = 0) NMO velocity is always
independent of azimuth and V (1)

nmo(0)= V (2)
nmo(0)= Vnmo(0) =

VP0
√
1 + 2δ [equation (1)]. Interestingly, condition (10) can

also be satisfied for azimuthally anisotropic media with a tilted
symmetry axis. Substituting equations (6), (8), and (9) into
equation (10) and assuming ν �= 0, we find

2ε − δ − 6 (ε − δ) cos2 ν = 0. (11)

For instance, if the symmetry axis is horizontal (cos ν = 0), re-
lation (11) gives

2ε − δ = 0, (12)

which represents a known condition for the P-wave NMO el-
lipse in weakly anisotropic HTI media to degenerate into a
circle. The ellipticity of P-wave NMO velocity in HTI media is
governed by the coefficient δ(V) ≈ 2ε − δ (Tsvankin, 1997a),
which goes to zero if equation (12) is satisfied.

An example of azimuthally independent NMO velocity for
TI media with a tilt angle of 45◦ is shown in Figure 1. Equa-
tion (11) with ν = 45◦ yields ε − 2δ = 0; so for the model from
Figure 1, the semiaxes of the NMO ellipse should be equal to
each other. Although equation (11) is an approximation valid
only for weakly anisotropic media, the exact NMO ellipse cal-
culated using equation (5) is indeed almost circular.

Another important point illustrated by Figure 1 is that
the theoretical NMO ellipse (solid) is close to the ellipse
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reconstructed from ray-traced traveltimes for spread length
equal to the reflector depth (dotted). The difference between
the two ellipses, caused by the deviation of the moveout curve
from the analytic hyperbola, is limited by 1.1%. This example
and other numerical tests we performed show that for mod-
erately anisotropic TTI media the influence of nonhyperbolic
moveout on P-wave moveout velocity can be ignored as long
as the maximum offset does not exceed reflector depth. The
same conclusion is drawn by Tsvankin (1997b) in his study of
the 2-D moveout problem in TTI media.

Weakly anisotropic dipping layer

The P-wave NMO ellipse from a horizontal reflector pro-
vides either two or three constraints on the parameters of the
TTI layer, depending onwhether the ellipse degenerates into a
circle. To resolve all five relevant layer parameters (VP0, ε, δ, β,
and ν), we suggest including the NMO ellipse from a dipping
reflector (i.e., three more equations) in the inversion proce-
dure.
Although there seem to be enough equations to recover all

unknowns, in certain situations the parameters cannot be re-
solved individually. Theweak-anisotropy approximation of the
P-wave NMO ellipse [equations (B-7) and (B-8)] helps us to
identify the trade-offs between model parameters and study
the stability of the inversion procedure. For instance, equa-
tion (B-7) shows that the anisotropic coefficients in all dip-
dependent terms appear only as the difference ε − δ; indeed,
for elliptical anisotropy (ε = δ) the dip dependence of NMO
velocity is purely isotropic (Appendix A). Still, ε and δ can

FIG. 1. Quasi-circular P-wave NMO ellipses in a horizontal
TTI layer. Solid inner curve—the ellipse computed using equa-
tion (5). Dotted curve—the best-fit ellipse reconstructed using
the hyperbolic equation (3) from ray-traced traveltimes com-
puted along four CMP lines at azimuths 0◦, 45◦, 90◦, and 135◦
(the azimuth is shown around the plot). Spreadlength is equal
to the thickness of the layer. The relevant medium parameters
are VP0 = 2.0 km/s, ε = 0.2, δ = 0.1, β = 30◦, and ν = 45◦.
The value 2.5 at the top of the plot indicates the range of NMO
velocity in km/s.

be resolved individually using the NMO ellipse for horizon-
tal events [equations (6) and (8)], unless the tilt ν is relatively
small (estimates are given in the next section). For small values
of ν, the medium approaches VTI and the NMO velocity from
a horizontal reflector yields a single quantity (VP0

√
1 + 2δ),

while the dip dependence of NMO velocity is controlled by
η ≈ ε − δ (Alkhalifah and Tsvankin, 1995). Thus, ε and δ can
be estimated separately, but only for a sufficiently large tilt of
the symmetry axis.

A similar constraint applies to the reflector dip, which should
not be too mild for the dip dependence of NMO velocity
to be sensitive enough to the anisotropic parameters. [The
anisotropic dip terms Ŵi j in the weak-anisotropy approxima-
tion (B-8) can be used to make appropriate estimates.] On the
whole, determination of the five relevant parameters of TTI
media from the P-wave NMO ellipses for a horizontal and a
dipping reflector should be feasible if both the reflector dip
and the tilt of the symmetry axis are not too small. In the next
section, we quantify this statement by performing the actual
inversion based on the exact NMO equation.

PARAMETER ESTIMATION IN A TTI LAYER USING
P-WAVES

Inversion algorithm

The P-waveNMOellipses for a horizontal [W̃hor or Ṽ hor
nmo(α)]

and a dipping [W̃dip or Ṽ dip
nmo(α)] event in a homogeneous TTI

layer (input data) can be inverted for five medium parameters:
VP0, ε, δ, ν, and β. We obtain the parameters by minimizing the
least-squares objective function

FP =
∫ 2π

0

[
1 − V hor

nmo(α)
Ṽ hor
nmo(α)

]2

dα

+
∫ 2π

0

[
1 − V dip

nmo(α)

Ṽ dip
nmo(α)

]2

dα, (13)

where the NMO velocities V hor
nmo(α) and V dip

nmo(α) are calcu-
lated using the exact equation (5) for a particular model. The
objective function was minimized using the simplex method.
Although in principle the nonlinear system (13) might have
multiple solutions, extensive numerical testing shows that for
error-free input data and a realistic startingmodel (i.e., |ε| < 1,
|δ| < 1) the inversion algorithm always converges toward the
correct set of parameters.

Influence of tilt on inversion results

For numerical testing, we computed the matrices W̃hor and
W̃dip from equation (5) and built the corresponding NMO el-
lipses. To simulate inaccuracies in velocity picking, we intro-
duced errors into the NMO velocities in four azimuthal direc-
tions (0◦, 45◦, 90◦, and 135◦) by adding Gaussian noise with
a variance of 2%. Then we obtained the ellipses that provide
the best approximation for the new (distorted)NMOvelocities
and carried out the inversion using equation (13).

Figure 2 shows the results of parameter estimation for TTI
layers with different tilts ν of the symmetry axis. Each dot on
the plots corresponds to the inversion result for a particular re-
alizationof errors in theNMOellipses; the inversionprocedure
for each model was repeated 200 times. The mean values of all
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parameters were recovered accurately despite the fact that we
intentionally used an incorrect shear-wave velocity VS0 = VP0/2
to perform the inversion. Hence, in agreement with the results
of Tsvankin (1996, 1997b) and the weak-anisotropy approx-
imations (B-7) and (B-8), VS0 has a negligible influence on
P-wave moveout in TI media.
Figure 2 also confirms that the inversion becomes more sta-

ble with increasing tilt of the symmetry axis.While the inverted
parameters ε and δ are tightly clustered near the actual values
for the tilts ν = 60◦ and ν = 80◦, the deviations visibly increase
for ν = 40◦ (Figure 2c) and especially for ν = 20◦ (Figure 2a).
The inversion results for ν < 30◦–40◦ are so sensitive to errors
in the input parameters that P-wave NMO velocity cannot be

FIG. 2. Inverted values of the parameters ε, δ, β, and ν in a
homogeneous TTI layer. As the input data we use the P-wave
NMO ellipses from a horizontal and a dipping reflector (dip
φ = 60◦; azimuth = 50◦). Both ellipses were distorted by
random noise with a variance of 2%. The actual values are
VP0 = 2.0 km/s, VS0 = 1.2 km/s, ε = 0.3, δ = 0.1, β = 40◦.
The tilt ν is equal to 20◦ in (a) and (b), 40◦ in (c) and (d), 60◦
in (e) and (f), and 80◦ in (g) and (h). The solid line on plot (a)
indicates values of ε and δ corresponding to the correct value
of η = 0.167.

used to resolve ε and δ individually. Nonetheless, the inverted
values of ε and δ show a linear trend described by the line
corresponding to the correct value of η [see equation (2)]. For
VTImedia (ν = 0), η is the only combination of the anisotropic
parameters constrained by the P-waveNMOvelocity (Alkhal-
ifah and Tsvankin, 1995).

The accuracy in the P-wave symmetry-direction velocity VP0

(not shown in Figure 2) exhibits a similar dependence on the
tilt, with the scatter in the inversion results monotonically
increasing with decreasing ν. The standard deviation in VP0

changes from a small value of 0.01 km/s (0.5% of the correct
VP0) for a near-horizontal symmetry axis (ν = 80◦) to 0.26 km/s
(13%) for a tilt of 20◦. For a near-vertical symmetry axis,
P-wave NMO can be used to obtain the zero-dip NMO veloc-
ity (VP0

√
1 + 2δ) but not VP0 or δ separately (see the analysis

for VTI media in Alkhalifah and Tsvankin, 1995).
Another interesting observation, this time from the right-

column plots in Figure 2, is that the azimuth β of the symmetry
axis iswell constrained for all four tilts ν, while the scatter in the
tilt itself is more significant. Overall, the accuracy in both β and
ν is quite satisfactory for a wide range of tilts; an exception is
quasi-VTImodelswith small ν < 10◦ (not shown) forwhich the
orientation of the symmetry axis does not havemuch influence
on NMO velocity. Also, the scatter in the azimuth and tilt of
the symmetry axis increase as themediumapproaches isotropic
(|ε| < 0.05, |δ| < 0.05) because all kinematic signatures in this
case lose their sensitivity to the symmetry-axis direction.

Time processing for mild tilts

The stability analysis indicates that the parameters responsi-
ble for P-wave kinematics cannot be resolved unambiguously
for a relativelywide rangeofmild tilts of the symmetryaxis (ν <

30◦–40◦). Hence, an important practical question is whether
moveout inversion for mild ν provides any useful information
for seismic processing.

As mentioned above, if the medium has the VTI symmetry
(ν = 0), P-wave moveout data constrain two parameter com-
binations [Vnmo(0) and η], which are fully responsible for all
time-processing steps (NMO, DMO, and time migration). For
TTI models with a mild tilt ν, our algorithm produces a family
of equivalent models, all of which have close NMO ellipses
for the two reflectors used in the inversion. To verify whether
these equivalent models can replace the actual model in time
processing, we computed nonhyperbolic moveout from a hori-
zontal reflector and NMO ellipses from dipping reflectors for
a representative subset of models obtained in Figures 2a,b. A
typical result, displayed inFigure 3, demonstrates that the long-
spread (nonhyperbolic) moveout curves for the actual model
and a substantially different set of the inverted parameters are
indeed close to each other in all azimuthal directions. We con-
clude that these twomodels have similar impulse responses for
poststack time migration.

NMO ellipses for equivalent models (not shown here) al-
most coincide for reflectors with the azimuth used in the in-
version but somewhat diverge from each other with increasing
dip if the reflector has a different orientation. Still, for prac-
tical purposes of DMO processing, it should be acceptable to
use a model found from NMO velocity inversion, especially if
the subsurface structure does not contain a wide range of re-
flector azimuths. Therefore, although the moveout-inversion
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algorithm cannot resolve the medium parameters for mild tilts
of the symmetry axis, it allows us to build an approximate TTI
model for time-domain processing.

Influence of reflector dip

The inversion results in Figure 2 were obtained for a rather
favorable (large) reflector dip φ = 60◦. As expected, the inver-
sion becomes less stable as the dipping reflector tilts toward
horizontal (Figure 4). Each row of plots in Figure 4 should be
comparedwith Figures 2e,f, whichwere generated for the same
ν = 60◦. While the scatter in the inverted parameters for the
dips φ = 40◦ (Figures 4e,f) and φ = 60◦ (Figures 2e,f) is compa-
rable, the results deteriorate for a smallerφ = 30◦ (Figures 4c,d)
and become quite unstable for φ = 20◦ (Figures 4a,b). The in-
verted values of ε and δ in Figure 4a still cluster around a
straight line, but this line is no longer described by the actual
parameter η. Note that the scatter in the parameters respon-
sible for the symmetry-axis orientation is much more sensi-
tive to the reflector dip (the right column of plots in Figure 4)
than to the tilt of the axis (Figure 2). The standard deviation in
the symmetry-direction velocity VP0 (not shown) also increases
from 1.2% for φ = 40◦ to 3.1% for φ = 30◦ to 6.8% for φ = 20◦.
Therefore, the dip should reach at least 30◦ for the inver-

sion to be reasonably stable. Similar values of the minimum
dip were given by Alkhalifah and Tsvankin (1995), who used
the dip dependence of NMO velocity in the inversion for the
anisotropic parameter η in VTI media. On the other hand, the
reflector should not be too steep either because, for dips ap-
proaching 90◦, specular reflections and the NMO ellipse may
not exist at all (see Appendix A).
We conclude that the moveout inversion based on the P-

wave NMO ellipses for a horizontal and a dipping reflector
yields sufficiently stable results if both the reflector dip φ and
tilt of the axis ν exceed 30◦–40◦.

FIG. 3. Comparison of long-spread reflection moveout from a
horizontal interface for the actual TTI model and an equiva-
lent model obtained by NMO-velocity inversion. The curves,
computed for several azimuthal directions marked on the plot,
show the difference between the reflection traveltimes for the
two models as a function of the offset X normalized by the
reflector depth D. The parameters of the actual model (taken
fromFigures 2a,b) areVP0 = 2.0km/s, ε = 0.3, δ = 0.1, ν = 20◦,
β = 40◦; for the equivalent model, VP0 = 2.2 km/s, ε = 0.14,
δ = 0.03, ν = 21.5◦, β = 40.8◦.

Inversion for elliptical anisotropy

In addition to the constraints on ν and φ, stable moveout
inversion requires that the parameters ε and δ be sufficiently
different from one another. If ε = δ (the medium is elliptical),
the dip dependence of the P-wave NMO velocity is purely
isotropic [equation (A-4)] and the only information contained
in the NMO ellipse for the dipping event is that ε = δ. This im-
plies that a single P-wave NMO ellipse for a horizontal event
(three equations) has to be used to recover the four remain-
ing parameters (VP0, ε, ν, and β). Obviously, this inversion is
ambiguous, and it is possible to find a family of elliptical mod-
els with identical NMO ellipses from horizontal and dipping
reflectors (Figure 5). To overcome the ambiguity, we need to
know one of the parameters beforehand. For instance, if the
symmetry axis is assumed to be horizontal (ν = 90◦; HTI me-
dia), the remaining three parameters can be obtained from the
NMO ellipse for horizontal events.

InAppendix Cwe show that the parameters of elliptical me-
dia can be resolved for arbitrary orientation of the symmetry
axis if P-wave moveout data are supplemented with the SV -
wave NMO velocity from a horizontal reflector. The addition
of shear data also helps to increase the stability of the inver-
sion procedure and evaluate the S-wave symmetry-direction
velocity VS0.

FIG. 4. Same as Figure 2, but for variable reflector dip. The
parameters VP0, ε, δ, β, and the reflector azimuth are the same
as those in Figure 2; the tilt of the symmetry axis ν = 60◦. The
reflector dip φ = 20◦ in (a) and (b), 30◦ in (c) and (d), and 40◦ in
(e) and (f). The solid line on plot (a) corresponds to the correct
value of η = 0.167.
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P-WAVE MOVEOUT INVERSION IN VERTICALLY
HETEROGENEOUS TTI MEDIA

The above discussion was limited to moveout inversion for
a single homogeneous TTI layer. Here, we extend the param-
eter estimation methodology to vertically heterogeneous TTI
media composed of a stack of horizontal TTI layers (the orien-
tation of the symmetry axis may be arbitrary) above a dipping
reflector.
Azimuthally varying NMO velocity for this model can be

expressed through the interval NMO ellipses using the gener-
alizedDix equationofGrechka et al. (1999). The intervalNMO
ellipse W� in layer � can be found by means of the Dix-type
differentiation

W−1
� = τ (�)W−1(�) − τ (� − 1)W−1(� − 1)

τ (�) − τ (� − 1)
, (14)

whereW(�−1) andW(�) describe theNMOellipses for the re-
flections from the top and bottom of the layer and τ (�−1) and
τ (�) are the corresponding zero-offset traveltimes. Although
this equation looks similar to the well-known Dix (1955) for-
mula (one may think about formally replacing the matrices
W−1 by the squared NMO velocities), it is much more gen-
eral because it fully accounts for the simultaneous influence of
arbitrary anisotropy and reflector dip on the azimuthally de-
pendent NMO velocity. Equation (14) is not restricted to any
particular anisotropic symmetry and can be used for all pure
reflected modes (P- or S-waves). For example, Grechka and
Tsvankin (1999) apply this equation to moveout inversion of
P-wave data in vertically heterogeneous orthorhombic media.
The effective and interval NMO ellipses in equation (14) are

evaluated for the slowness components of the zero-offset ray.
In the case of horizontal events, the zero-offset slowness vec-

FIG. 5. P-wave NMO ellipses for horizontal and dipping re-
flectors calculated from the exact equation (5) in an elliptical
TTI layer for two different sets of medium parameters. The
solid ellipses are computed for VP0 = 3.0 km/s, ε = δ = 0.15,
and ν = 50◦; for the dipping reflector, φ = 50◦. For the dotted
ellipses, VP0 = 2.44 km/s, ε = δ = 0.48, ν = 25◦, φ = 40◦. The
azimuth of the symmetry axis and that of the dipping reflector
equal zero for both models.

tor is vertical for all reflections (i.e., its horizontal components
vanish), and the interval ellipse can be found directly from the
effective ellipses for the reflections from the top and bottom of
the layer. For dipping reflectors, however, the ray parameters
of the zero-offset ray change from one reflection event to an-
other, depending on the reflector dip and elastic parameters in
a particular layer. Therefore, after carrying out the inversion
in the subsurface layer using the technique described in the
previous sections, we need to calculate the matrix W in this
layer for the slowness components of the zero-offset reflection
from the dipping interface in the second layer. Then we obtain
the interval NMO ellipse for the dipping event in the second
layer from equation (14), combine it with the corresponding
ellipse from the horizontal reflector, carry out the inversion in
the second layer, and continue the layer-stripping procedure
downward.

We applied our inversion algorithm to synthetic data gener-
ated for a three-layer TTI model with a dipping reflector (e.g.,
a fault plane) shown in Figure 6. Note that the azimuth β of the
symmetry axis varies from layer to layer (Table 1), so themodel
does not have a throughgoing vertical symmetry plane.We per-
formed 3-D anisotropic ray tracing and computed P-wave re-
flection traveltimes from the horizontal and dipping reflectors
along four CMP lines at azimuths 0◦, 45◦, 90◦, and 135◦ with
respect to the orientation of the dipping reflector. Then we
fit hyperbolas [equation (3)] to the computed traveltimes on
conventional-length spreads and obtained azimuthally varying
effective moveout velocities. After approximating these veloc-
ities by the best-fit NMO ellipses [equation (4)], we used the
generalized Dix formula [equation (14)] to calculate the in-
terval ellipses (as described above) and carried out parameter
estimation in each layer.

The inversion results are shown in Table 2. Since SV -wave
reflections were not used in this test, we could not obtain the

Table 1. Actual values of the interval parameters for the
model in Figure 6.

VP0 VS0 ν β
Layer (km/s) (km/s) ε δ (◦) (◦)

1 2.00 1.20 0.15 0.10 50.0 20.0
2 2.50 1.60 0.20 0.10 60.0 40.0
3 3.00 1.80 0.30 0.15 40.0 60.0

FIG. 6. A 2-D sketch of the layered TTI model used to test the
inversion algorithm. The azimuth of the reflector is 0◦; layer
thicknesses and reflector dips φ in each interval are shown on
the plot. Layer parameters are given in Table 1.
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shear-wave symmetry-direction velocity VS0. The errors in the
medium parameters for all layers are rather small and mostly
result from the influence of nonhyperbolic moveout on the
finite-spread moveout velocity. Although we used an incor-
rect (best-guess) value of VS0 by assuming VS0 = VP0/2, VS0

has a practically negligible influence on P-wave moveout. To
verify this conclusion again, we carried out the inversion for
the third layer using the exact NMO ellipses [given by equa-
tion (5)], rather than the ones obtained from the ray-traced
traveltimes, and an incorrect VS0 = 1.5 km/s. The inversion re-
sult in this case was almost perfect: VP0 = 2.98 km/s, ε = 0.31,
δ = 0.16, ν = 39.8◦, and β = 60.3◦ (compare to the last lines in
Tables 1 and 2).
Nonhyperbolic moveout, caused by both vertical hetero-

geneity and anisotropy, introduces distortions into the move-
out velocity, which propagate into the interval NMO ellipses
after being amplified by theDix differentiation [equation (14)].
[Note that the azimuthal variation of the fourth-order (quar-
tic) moveout term is not an ellipse; in a horizontal layer, it is
described by a quartic oval curve (Sayers and Ebrom, 1997).]
The maximum deviations of the interval NMO velocities from
the exact ellipses, however, are quite moderate [0.5%, 3.0%,
and 1.9% for the first (subsurface), second, and third layers,
respectively] and correspond to the horizontal events. Hence,
it is justified to use the hyperbolic moveout approximation for
P-waves on conventional spread lengths close to the distance
between CMP and reflector.
Although the largest error in the NMO velocity (3.0%) was

observed in the second layer, the inversion results are least
accurate for the bottom (third) layer (see Table 2). This is ex-
plained by the larger tilt ν of the symmetry axis in the second
layer (60◦ compared to 40◦ in the third layer), which makes the
inverted parameters less sensitive to errors in the input data.
Indeed, the scatter of the inversion results in Figures 2c–f is
noticeably smaller for the tilt ν = 60◦ than that for ν = 40◦.

Overall, the accuracy of the inversion in vertically heteroge-
neous TTI media can be predicted on the basis of the single-
layer error analysis with a correction that accounts for the am-
plification of errors inherent in the Dix-type layer stripping.

DISCUSSION AND CONCLUSIONS

We showed that the NMO ellipses of reflection events ob-
tained from 3-D (azimuthal) moveout analysis can be used to
determine the parameters of layered TTI media. For P-waves,
reflection moveout and all other kinematic signatures in TTI
media depend on five parameters: the symmetry-direction P-
wave velocity VP0, anisotropic coefficients ε and δ, and the
orientation (tilt ν and azimuth β) of the symmetry axis. Since
each NMO ellipse provides us with up to three equations for

Table 2. Inverted interval parameters for the model from Fig-
ure 6. The maximum source-receiver offset used in estimating
moveout velocities is equal to the distance between the CMP
and the corresponding reflector. Compare with the actual val-
ues from Table 1.

VP0 ν β
Layer (km/s) ε δ (◦) (◦)

1 2.02 0.14 0.09 53.6 19.6
2 2.52 0.19 0.10 60.1 38.9
3 2.91 0.38 0.14 43.7 64.5

the medium parameters, the inversion procedure requires at
least two ellipses for different reflection events. By developing
theweak-anisotropy approximation and performing numerical
inversion based on the exact NMO equation, we showed the
feasibility of parameter estimation for the most common case
of a horizontal and a dipping reflector. The parameters VP0, ε,
δ, ν, and β are sufficient to perform P-wave depth processing
in TTI media.

Stable inversion for all parameters, however, is impossible
unless the model satisfies several constraints listed below.

The tilt ν of the symmetry axis should be greater than 30
❡❡

–
40

❡❡

.—For VTI media (ν = 0), P-wave reflection moveout de-
pends on just two combinations of medium parameters: the
zero-dip NMO velocity and the anisotropic coefficient η close
to the difference between ε and δ (Alkhalifah and Tsvankin,
1995; Grechka and Tsvankin, 1998). Therefore, it is not sur-
prising that the P-wave NMO ellipses become insensitive to
the individual values of VP0, ε, and δ for relatively mild tilts of
the symmetry axis. Our numerical results show that if ν is less
than 30◦–40◦, the dip dependence of NMO velocity allows us
to estimate only a combination of ε and δ that becomes close
to η with decreasing tilt. Nevertheless, although the individ-
ual parameters for mild tilts cannot be resolved, all models
obtained from the NMO-velocity inversion provide an accept-
able approximation for time-domain processing (NMO,DMO,
and time migration).

Reflector dip φ should be >30
❡❡

but <80
❡❡

.—If the dip is be-
low 30◦, the dip-dependent terms are not large enough for
the anisotropic inversion. A similar minimum dip requirement
in the P-wave moveout inversion was obtained for VTI me-
dia by Alkhalifah and Tsvankin (1995) and for HTI media by
Contreras et al. (1999). Although the inversion becomes more
stable with increasing dip, specular reflections in a homoge-
neous medium may not exist at all for dips approaching 80◦

(see Appendix A).

The medium cannot be close to elliptical.—If the difference
between ε and δ is small, the medium approaches elliptical
anisotropy (ε = δ), and the moveout data can provide only the
NMO ellipse for horizontal events and an estimate of ε − δ.

The inversion procedure assumes that the tilt of the sym-
metry axis does not vary with reflector dip.—This assumption,
however,maybe violated inmodels typical for overthrust areas
(such as theCanadianFoothills)where the symmetry axis often
remains perpendicular to the reflector. In this important special
case, as shown inAppendixA, P-waveNMOvelocity ina single
TTI layer can be inverted for the symmetry-direction velocity
VP0 and the parameter δ. To determine the second anisotropic
parameter, ε, it is necessary to use reflections fromdeeper (e.g.,
horizontal) interfaces beneath the dipping TTI layer.

If multicomponent data are recorded, the stability of the
parameter estimation can be enhanced by including NMO
velocities of shear waves into the inversion procedure. The
addition of the SV -wave NMO ellipse from a horizontal re-
flector helps to increase the accuracy of the inversion since the
SV -wave moveout depends on only one exrtra parameter (the
symmetry-direction shear velocity VS0). Also, combining SV
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reflections fromahorizontal interfacewith the P-waveNMO
ellipses for a horizontal and a dipping reflector makes it pos-
sible to determine the parameters of elliptically anisotropic
media. Still, including horizontal SV events is not sufficient
to overcome the above constraints on the tilt of the symmetry
axis and reflector dip (conditions 1 and 2 above).
Extension of our inversion scheme to vertically heteroge-

neous TTI media is based on the generalized Dix equation
(Grechka et al., 1999), which expresses the NMO velocity
through the matrices responsible for the interval NMO el-
lipses. As a result of the Dix-type layer stripping, we obtain
the interval NMO velocity, which can be inverted for the
mediumparameters using the single-layer algorithm. This in-
version methodology was tested successfully on a synthetic
data set generated by 3-D anisotropic ray tracing in a mul-
tilayered TTI model with depth-varying azimuth and tilt of
the symmetry axis. General results for a single layer hold
in stratified media as well, with additional restrictions im-
posed by layer stripping (e.g., the layer of interest must be
sufficiently thick).
The TTI model discussed here should be rather common

in overthrust regions and near salt domes. Our inversion
methodology provides an efficient way of estimating the
anisotropic parameters thatmay be needed for seismic imag-
ing in these important exploration areas (Leslie and Lawton,
1996; Vestrum et al., 1999).
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APPENDIX A

NMO VELOCITY IN TTI MEDIA: SPECIAL CASES

NMO for steep reflectors

Generation of a specular zero-offset reflection requires that
some portion of the incident wavefront be parallel to the re-
flecting interface [i.e., the phase-velocity (or slowness) vector
for this segment must be orthogonal to the reflector]. If the
medium above the reflector is homogeneous and has a hori-
zontal plane of mirror symmetry, the wavefront of the down-
going wave contains the full range of phase angles. In other
words, as the ray tilts away from the surface, the wavefront
normal rotates from horizontal (for horizontal rays) to vertical
and back to horizontal. As a result, specular reflections in a
homogeneous layer with a horizontal symmetry plane (such as
VTI or HTI) exist for the whole range of dips from 0◦ to 90◦

(Tsvankin, 1997b).
A tilt of the symmetry axis, however, makes the wavefront

asymmetric with respect to horizontal, and its cross-sections in

some azimuthal directions may contain only a limited range
of phase angles. Tsvankin (1997b) studied the existence of
specular reflections for the 2-D TTI model with the symme-
try axis confined to the dip plane of the reflector. As illustrated
in Figure A-1, if the symmetry axis is tilted toward the reflec-
tor, the maximum phase angle in the segment of the wavefront
approaching the reflector (θmax) typically is <90◦. Steep inter-
faces with the dip φ > θmax reflect all incident rays downward
and therefore become invisible on surface seismic data. If the
medium is heterogeneous and velocity increases with depth,
the missing dips may produce reflected arrivals at the surface,
but these reflections represent turning rays. In contrast, for the
symmetry axis tilted away from the reflector, it is possible to
record reflections in homogeneous media even from overhang
structures with dips exceeding 90◦ (Tsvankin, 1997b).
Here, we treat a more general situation of the symmetry axis

making an arbitrary azimuthwith the dip plane of the reflector.
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FigureA-2 shows themaximumdip that generates a zero-offset
reflected ray as a function of the azimuth of the symmetry axis
for a particular TTI model. For the maximum dip, the zero-
offset ray is horizontal and the NMO velocity in the ray direc-
tion is infinite, which means that the NMO ellipse degenerates
into two parallel straight lines (Grechka and Tsvankin, 1998).
If the symmetry axis is confined to the dip plane and points

toward the reflector (β = 0), the maximum dip for the model
with ν = 25◦, ε = 0.25, and δ = 0.05 is just 76◦ (Figure A-2b),
which agrees with the result of Tsvankin (1997b, Figure 3).
As the symmetry axis deviates from the dip plane, the range of
missing dips becomesmore narrow and vanishes altogether for
β = 90◦, when the horizontal projection of the symmetry axis
coincides with the reflector strike. For azimuth β larger than
90◦, the maximum dip exceeds 90◦, so it is possible to record
surface reflections from overhang structures. If the symmetry
axis is back in the dip plane but tilted away from the reflector
(β = 180◦), the maximum dip may be >100◦ (Figures A-2b,c).
As discussed by Tsvankin (1997b), it does not take a large

tilt of the symmetry axis for the maximum dip to deviate con-
siderably from 90◦. Because of the asymmetric shape of the
P-wavefront with respect to 45◦, the smallest maximum dip
usually corresponds to tilt angles of 20◦ to 35◦ (Figure A-2).
The results displayed in Figure A-2 also show that for typical
TImodels, themaximumdip ismore sensitive to the parameter
ε than it is to δ.

Elliptical anisotropy

A TI model with any orientation of the symmetry axis be-
comes elliptically anisotropic if ε = δ. For elliptical anisotropy,
the P-wave slowness surface and wavefront (group-velocity
surface) have an ellipsoidal shape, while the SV -wave velocity
is equal to VS0 in all directions (i.e., is independent of angle).

FIG. A-1. The P-wavefront for a TI medium with a symme-
try axis tilted toward the reflector. The increase in phase and
group velocity away from the symmetry axis in this model re-
duces the angular range of the wavefront normals in the seg-
ment of the wavefront propagating toward the reflector. The
maximum phase (wavefront) angle in the lower-right quad-
rant is θmax < 90◦. Note that the maximum phase angle in the
lower-left quadrant (not marked) exceeds 90◦ (after Tsvankin,
1997b).

Although the condition ε = δ is seldom satisfied for subsurface
formations (Thomsen, 1986), elliptical models require a spe-
cial treatment in the inversion procedure and therefore must
be considered separately.

Tsvankin (1997b) showed that for elliptical anisotropy the
dip dependence of NMO velocity, expressed through the ray
parameter p of the zero-offset ray, is exactly the same as in
isotropic media:

Vnmo(p) = Vnmo(0)√
1 − p2 V 2

nmo(0)
, (A-1)

whereVnmo(0) corresponds to ahorizontal reflector.This result,
however, is limited to the dip plane of the reflector, under the
assumption that this plane contains the symmetry axis of the
medium.

FIG. A-2. The dip of the steepest reflector that generates a
zero-offset P-wave reflection in a homogeneous TTI layer. β
is the azimuthof the symmetry axiswith respect to thedipplane
of the reflector. For β = 0◦, the symmetry axis points toward
the reflector; for β = 180◦, it is tilted away from the reflector.
Each plot corresponds to a different tilt of the symmetry axis:
(a) ν = 10◦; (b) ν = 25◦; (c) ν = 40◦. The solid curves are
computed for ε = 0.25 and δ = 0.05; dotted for ε = 0.25 and
δ = 0.15; dashed are for ε = 0.10 and δ = 0.05.
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Analysis of equation (5) shows that in elliptical media the
dependence of the P-waveNMOvelocity on p1 and p2 remains
isotropic for arbitrary orientations of the symmetry axis and
reflector normal and any azimuth of the CMP line. The P-
wave phase-velocity function for elliptical anisotropy is given
by

VP(θ) = VP0

√
1 + 2δ sin2 θ, (A-2)

where θ is the angle between the phase-velocity (slowness) vec-
tor and the symmetry axis. Representing θ through the slow-
ness vector p = {p1, p2, q} and the symmetry axis orientation
(defined by the unit vector a or the angles ν and β) yields

cos θ = VP (p · a) = VP(p1 sin ν cosβ

+ p2 sin ν sinβ + q cos ν). (A-3)

Combining equations (A-2) and (A-3) and taking into account
that V 2

P = (p2
1 + p2

2 +q2)−1 leads to a quadratic equation for q as
a function of p1 and p2. Substituting q(p1, p2) into equation (5),
we find the following equation for the matrix W in elliptically
anisotropic media:

Wi j (p1, p2) = Wi j (0, 0) − pi p j . (A-4)

It is easy to verify that equation (A-4) is identical to the
dependence of Wi j on p1 and p2 for isotropic media. Hence,
the influence of elliptical anisotropy onNMOvelocity in equa-
tion (A-4) is hidden in the NMO ellipse for horizontal events
[Wi j (0, 0)]. This result has serious implications for the inver-
sion procedure discussed in the main text. Equation (A-4), as
any other isotropic kinematic relationship, can be also used for
SV -waves in elliptical media.
The isotropic form of the function Wi j (p1, p2) also means

that conventional dip-moveout (DMO) algorithms developed
for isotropic media are valid for elliptical anisotropy with any
symmetry axis orientation. Since reflection moveout in ellipti-
cal media is purely hyperbolic (Uren et al., 1990), the diffrac-
tion curve on the zero-offset section (i.e., in the poststack do-
main) also has the same shape as in isotropic media. Hence,
the poststack time-migration impulse response for elliptical
anisotropy canbe computedwith isotropic algorithmsusing the
correct (anisotropic) NMO velocity in any given azimuth. Still,
if the symmetry axis is tilted, both the NMO velocity and mi-
gration impulse response in elliptical media vary with azimuth,
which should be taken into account in the moveout correction
and time migration. Dellinger and Muir (1988) describe a se-
quence of stretching operations that can be applied to velocity
surfaces to correct for elliptical anisotropy in seismic imaging.
The above conclusions, as well as equation (A-4), always apply
to SH -waves because their propagation in any TI medium is
governed by the elliptical dependencies.

TI layer with the symmetry axis perpendicular to the reflector

If TI layers (e.g., shales) were tilted because of tectonic pro-
cesses after sedimentation, the symmetry axis remains perpen-
dicular to the layering. The relative simplicity of this model
makes it possible to obtain concise exact representation of the
NMO ellipse for the reflection from the bottom of the tilted TI
formation.

Since the dip plane of the reflector contains the symme-
try axis, it becomes a vertical symmetry plane for the whole
model and determines the orientation of the NMOellipse. The
semiaxis of the NMO ellipse that lies in the dip plane (the dip
component of the NMO velocity denoted as V (1)

nmo) is given by
(Tsvankin, 1995)

V (1)
nmo(φ) = Vnmo(0)

cosφ
. (A-5)

Here, φ is the reflector dip and Vnmo(0) is the NMO velocity
fromahorizontal interface obtained under the assumption that
the symmetry axis is perpendicular to the reflector (i.e., it is ver-
tical for a horizontal reflector). Equation (A-5) is identical to
the cosine-of-dip dependence ofNMOvelocity in isotropicme-
dia (Levin, 1971), with Vnmo(0) replacing the medium velocity.

Introducing the ray parameter p =
√

p2
1 + p2

2 into equa-
tion (A-5), we obtain

V (1)
nmo(p) = Vnmo(0)√

1 − p2V 2
0

, (A-6)

where V0 = sinφ/p is the symmetry-direction velocity of the
mode under consideration (it can be either a P- or an S-wave).
Since in anisotropic media Vnmo(0) and V0 generally are differ-
ent, equation (A-6) does not coincide with the corresponding
isotropic expression.

Next, it is interesting to examine whether the strike compo-
nent of the NMO velocity V (2)

nmo provides any additional infor-
mation about the medium. Straightforward but tedious alge-
braic transformations of equation (5) give

V (2)
nmo = Vnmo(0). (A-7)

For P-waves this result can be obtained more easily in
the weak-anisotropy approximation (discussed in detail in
Appendix B) by substituting the relation tan ν = tanφ = p1/p3

into equation (B-7) for W22. Therefore, V (2)
nmo is equal to the

zero-dip NMO velocity and is completely independent of
dip, comparable to the result of Levin (1971) for isotropic
media.

Combining the two semiaxes of the NMO ellipse [equa-
tions (A-6) and (A-7)] and obtaining p from the zero-offset
section, we can find Vnmo(0) and the symmetry-direction ve-
locity V0. Since for the P-wave Vnmo(0)= VP0

√
1 + 2δ [equa-

tion (1)], the P-waveNMOellipse for adipping event yields the
anisotropic parameter δ in addition to the symmetry-direction
velocity VP0. [Likewise, the NMO ellipse of the SV -wave pro-
vides the symmetry-direction velocity VS0 and the anisotropic
parameter σ = (V 2

P0/V 2
S0)(ε − δ).] Then equation (A-5) can be

used to find the tilt ν equal to the reflector dip φ.
Both Vnmo(0) and δ can be determined even from 2-D P-

wave data acquired in the dip plane if the zero-dip velocity
Vnmo(0) was found from a horizontal event. Note that Vnmo(0)
corresponds to a horizontal reflector and a vertical symme-
try axis; we can imagine, for instance, that the reflecting inter-
face may have a gradually changing slope, with the symmetry
axis remaining orthogonal to the reflector. According to Leslie
and Lawton (1996), such a model is typical for the Canadian
Foothills.
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APPENDIX B

P-WAVE NMO ELLIPSE IN A WEAKLY ANISOTROPIC TTI LAYER

The matrix W [equation (5)] that determines the NMO el-
lipse can be linearized with respect to the anisotropic coeffi-
cients ε and δ under theassumptionofweakanisotropy (|ε| 
 1
and |δ| 
 1). Without losing generality, we assume that the
symmetry axis (unit vector a) lies within the coordinate plane
[x1, x3] (Figure B-1). Then

a ≡ [a1, 0, a3] = [sin ν, 0, cos ν], (B-1)

where ν is the tilt of the axis.
To obtain the elements of thematrixW, we need to solve the

Christoffel equation for the vertical component of the slowness
vector q ≡ p3 as a function of the horizontal slowness compo-
nents p1 and p2. The Christoffel equation for TI media can be
written as

F ≡ (
c11s

2 + c44c
2 − 1

)(
c44s

2 + c33c
2 − 1

)
− (c13 + c44)2s2c2 = 0, (B-2)

where s = |p| sin θ and c = |p| cos θ ; and where θ is the angle
between the slowness vector p and the symmetry axis a. Ex-
pressing s and c through the components of the vectors p and
a, we find

s2 ≡ [a × p] · [a × p] = p2
2 + (a3 p1 − a1q)2

and

c2 ≡ (a · p)2 = (a1 p1 + a3q)2.

Next, we replace the stiffness coefficients ci j with Thomsen
(1986) parameters defined with respect to the symmetry axis:

FIG. B-1. In the derivation of the weak anisotropy approxi-
mation, the symmetry axis (described by the unit vector a) is
assumed to be confined to the [x1, x3]-plane. The value p is the
slowness vector.

c33 = ρV 2
P0, c44 = ρV 2

S0, c11 = ρV 2
P0(1 + 2ε),

(B-3)

c13 = ρ

√(
V 2

P0 − V 2
S0

) (
V 2

P0(1 + 2δ) − V 2
S0

) − ρV 2
S0,

where ρ is the density.
The linearized solution of the Christoffel equation (B-2) for

the vertical slowness q can be represented as the sum of the
isotropic value q̃ and the correction term�q resulting from the
influence of anisotropy:

q ≡ p3 = q̃ + �q. (B-4)

For P-waves, the vertical slowness in isotropic media is given
by

q̃ =
√

1
V 2

P0

− p2
1 − p2

2. (B-5)

The value �q can be considered as the linear term in a Taylor
series expansion of q in ε and δ for fixed horizontal slownesses
p1 and p2:

�q = − 1
∂ F/∂p3

(
∂ F

∂ε
ε + ∂ F

∂δ
δ

)
, (B-6)

with the partial derivatives obtained by differentiating the
Christoffel equation F = 0 (B-2). Combining equations (B-4),
(B-5), and (B-6) yields q as a function of p1 and p2 in weakly
anisotropic TTI media.

Now we can obtain the derivatives q,i = ∂q/∂pi and
q,i j = ∂2q/∂pi∂p j , (i, j = 1, 2) from equation (B-4) and substi-
tute them into the exact equation (5) for thematrixW. Further
linearization ofW in the anisotropic parameters using symbolic
software Mathematica leads to the following result:

W11 = 1
V 2

P0

(
1 − 2δ + 2εa2

1 − 14(ε − δ)a2
1a2

3

)
− p2

1 + Ŵ 11(ε − δ), (B-7)

W12 = −p1 p2 + Ŵ12(ε − δ),

and

W22 = 1
V 2

P0

(
1 − 2δ − 2 (ε − δ) a2

1

(
1 + a2

3

))
− p2

2 + Ŵ22(ε − δ).

In equations (B-7), y1 = p2
1V 2

P0, y2 = p2
2V 2

P0,

Ŵ11 = 2p2
1

(−6 + 9y1 − 4y21
)(
1 − 8a2

1a2
3

)
+ 8a1a3 p1q̃

(
1 − 2a2

1

)(
3 − 7y1 + 4y21

)
+ 2p4

2a4
3V 2

P0(1 − 4y1)

+ 4p2
2

[
a2
3

(
1 − 4a2

1

)(−1 + 5y1 + 4y21
)

+ 2a1a
3
3 p1q̃V 2

P0(−3 + 4y1)
]
,
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Ŵ 12 = 8p1 p2
[−y22a4

3 + y2a
2
3

(
2− 5a2

1 − 2y1
(
1 − 4a2

1

))
− a2

3

(
1 − 4a2

1

) + y1
(
2 − a2

1 − 12a2
1a2

3

)
− y21

(
1 − 8a2

1a2
3

)]
+ 8a1a3 p2q̃

[
a2
3

(
1 − y2

(
1 − 4y1

))
− y1

(
5 − 8a2

1

) + 4y21
(
1 − 2a2

1

)]
,

and

Ŵ22 = −4p2
1a2

3

(
1 − 4a2

1

) + 2p2
1 y1 − 16p2

1 y1a
2
1a2

3

+ 8a1a3 p1q̃
[
a2
3 − y1

(
1 − 2a2

1

)
− y2

(
5a2

1 − 4y1
(
1 − 2a2

1

))]
+ 4p2

2

[−3a4
3 + 5y1a

2
3

(
1− 4a2

1

) − 2y21
(
1 − 8a2

1a2
3

)]
+ 2p2

2 y2a
2
3

[
9a2

3 − 8y1
(
1 − 4a2

1

)
+ 16a1a3 p1q̃V 2

P0

] − 8p2
2 y22a4

3 . (B-8)

APPENDIX C

JOINT INVERSION OF P- AND SV-WAVE MOVEOUT IN A TTI LAYER

P- and SV -wave propagation inTImedia is controlled by the
same set of the stiffness coefficients ci j . If the stiffnesses are re-
placedwith Thomsen parameters, P-wave kinematics becomes
practically independent of the shear-wave symmetry-direction
velocity VS0, but both P- and SV -wave velocities are still influ-
enced by VP0, ε, δ, and the orientation of the symmetry axis.
Hence, we can expect to increase the stability of the inversion
procedure discussed in the main text by combining P-wave
data with SV -wave NMO ellipses.
In this appendix, we modify our parameter-estimation algo-

rithmbyadding theNMOvelocityof SV -waves fromahorizon-
tal reflector to the input data. The SV -wave NMO ellipse for
horizontal events in the weak-anisotropy approximation can
be obtained from the corresponding P-wave equations (6)–(8)
by making the following parameter substitutions (Tsvankin,
1995, 1997b): the velocity VP0 should be replaced with VS0, ε

set to zero, and δ replaced with the parameter σ defined as

σ ≡
(

VP0

VS0

)2

(ε − δ). (C-1)

This yields the following expressions for the semiaxes of the
SV -wave ellipse from a horizontal reflector (the axis x1 is par-
allel to the horizontal projection of the symmetry axis):

V (1)
nmo,SV (0) = VS0

√
1 + 2σ (1 − 7 sin2 ν cos2 ν) (C-2)

and

V (2)
nmo,SV (0) = VS0

√
1 + 2σ cos4 ν. (C-3)

For VTI media (ν = 0), equations (C-2) and (C-3) reduce to
the azimuthally independent SV -wave NMO velocity given by
Thomsen (1986),

Vnmo,SV (0) = VS0

√
1 + 2σ . (C-4)

The SV -wave NMO ellipse degenerates into a circle not only
for VTI media but also if the above trigonometric functions
multiplied with 2σ are identical, i.e., cos2 ν = 1/6 (ν = 65.9◦).
For a tilt of 65.9◦, the P-wave NMO ellipse can also become a
circle, but only if ε = 0 [see equation (11)].

The NMO velocities of P- and SV -waves in a horizontal
VTI layer are insufficient to determine the vertical velocities
andanisotropic coefficients (TsvankinandThomsen, 1995).Al-
though the vertical-velocity ratio VP0/VS0 can be found from
the zero-offset traveltimes, the two NMO velocities still con-
tain three unknown parameters (VP0, δ, and σ or ε). The
only exception is elliptical anisotropy, for which the SV -wave

velocity is independent of angle and the NMOvelocity is equal
to VS0. Then VP0 can be found from the zero-offset traveltimes,
and the P-waveNMOvelocity yields theanisotropicparameter
ε = δ. This inversion procedure, however, is based on the as-
sumption that themedium is elliptical, which cannot be verified
from the data unless dipping events or long-spread moveout
are available.

If the symmetry axis is tilted, we can take advantage of the
azimuthal dependence of NMO velocity. The NMO ellipses of
P- and SV -waves in a horizontal TTI layer provide six equa-
tions for the medium parameters, five of which are indepen-
dent (the two ellipses have the same orientation determined
by the azimuth of the symmetry axis). In principle, the number
of equations can go down to four if both ellipses degenerate
into circles, but the above analysis shows that this situation is
highly unlikely. (For weak anisotropy, both ellipses become cir-
cles only if the conditions cos2 ν = 1/6 and ε = 0 are satisfied
simultaneously.) Including SV -waves also allows us to obtain
the ratio of the zero-offset traveltimes r = tP0/tSV 0 and add a
sixth equation into the inversion procedure.

Thus, combining P- and SV -data in a horizontal TTI layer
results in a system of six nonlinear equations for six unknowns
(VP0, VS0, ε, δ, ν, and β). Unfortunately, numerical analysis
of this system shows that it does not have a unique solution.
As illustrated by Figure C-1, it is possible to find at least two
different realistic TTI models that yield practically identical
NMO ellipses of P- and SV -waves. Also, the ratio of the zero-
offset traveltimes for both models from Figure C-1 is the same
(r = 0.546).

Since the P- and SV -wave NMO ellipses from a horizontal
reflector do not provide enough information for unambiguous
parameter estimation, we add the P-wave NMO velocity for
a dipping event to the input data and construct the following
objective function:

FP,SV =
(r

r̃
− 1

)2
+

∫ 2π

0

[
1 − V hor

nmo,P(α)

Ṽ hor
nmo,P(α)

]2

dα

+
∫ 2π

0

[
1 − V dip

nmo,P(α)

Ṽ dip
nmo,P(α)

]2

dα

+
∫ 2π

0

[
1 − V hor

nmo,SV (α)

Ṽ hor
nmo,SV (α)

]2

dα. (C-5)
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As in equation (13), Ṽ nmo denotes the NMO velocities mea-
sured from the data, while Vnmo is calculated from the exact
equation (5).
Compared to the pure P-wave inversion in the previous sec-

tion, the objective function contains three more equations and
only one additional unknown parameter (VS0), which helps to
stabilize the inversion procedure. Overall, the joint inversion
of P- and SV -data involves solving nine nonlinear equations
(provided that none of the ellipses degenerates into a circle)
for six unknowns: VP0, VS0, ε, δ, ν, and β.

Typical results of parameter estimation for a TTI layer ob-
tained by minimizing the objective function (C-5) are pre-

FIG. C-1. NMO ellipses of P- and SV -waves calculated from
equation (5) in a horizontal TTI layer for two different sets
of medium parameters. The parameters used to compute the
solid ellipses are VP0 = 2.0 km/s, VS0 = 1.2 km/s, ε = 0.2,
δ = 0.1, and ν = 60◦. For the dotted ellipses, VP0 = 1.902 km/s,
VS0 = 1.204 km/s, ε = 0.273, δ = 0.253, and ν = 49.7◦. The
azimuth of the symmetry axis β = 40◦ is the same for both
models.

sented in Figure C-2. As in the P-wave inversion, we added
Gaussian noise with a variance of 2% to all NMO ellipses
and performed the inversion 200 times for different realiza-
tions of the input data. Figure C-2 exhibits the same general
trend as that for the P-wave results in Figure 2: the inversion
procedure becomes more stable with increasing tilt ν of the
symmetry axis. Comparison of the corresponding plots in Fig-
ures 2 and C-2 shows, however, that the scatter in the inverted
values is higher for the pure P-wave inversion (Figure 2), es-
pecially for tilts of 20◦ and 40◦. Therefore, as expected, the
addition of the SV -wave NMO ellipse from a horizontal re-
flector to P-wave data increases the stability of parameter
estimation.

Nonetheless, even the combination of P- and SV -data is not
sufficient to resolve all medium parameters in a stable fash-
ion if the tilt of the symmetry axis is small (Figure C-2a–c).
In principle, in the limit of ν = 0 (VTI media) we can find ε,
δ, and the symmetry direction (vertical) velocities separately
because, after obtaining η ≈ ε − δ from the dip dependence
of P-wave NMO velocity and the VP0/VS0 ratio from the ver-
tical traveltimes, we can determine VS0 (and then all other pa-
rameters) using the SV -wave velocity for a horizontal event
[equation (C-4)]. However, while this inversion works well on
noise-free data, small errors in η propagatewith significant am-
plification into the value of σ [equation (C-1)] and the vertical
velocities. Hence, despite the parameter η being well resolved
(Figure C-2a), we observe an increased scatter in VP0, VS0, ε,
and δ for mild tilt angles.
The addition of the SV -wave NMO ellipse for a horizon-

tal reflector does help, however, to overcome the ambiguity
of P-wave inversion for elliptical anisotropy. In this case, the
dip dependence of the P-wave NMO ellipse is sufficient only
to establish the fact that ε = δ, and the parameters VP0, ε, ν,
and β cannot be found from a single P-wave NMO ellipse for
a horizontal event. The SV -wave phase velocity in elliptical
media is independent of angle, so the NMO velocity from a
horizontal reflector is equal to VS0 in any direction. After ob-
taining VS0 from the SV -wave moveout, we can use the ratio of
the zero-offset P and SV traveltimes as an additional equation,
which allows us to resolve all medium parameters. Our numer-
ical analysis shows that this inversion procedure is reasonably
stable.
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FIG. C-2. Inverted values of the parameters ε, δ, β, ν, VP0, and VS0 in a homogeneous TTI layer. For input data, we use the P-wave
NMO ellipses from a horizontal and a dipping reflector (dip φ = 60◦, azimuth = 50◦, the same as in Figure 2), the SV -wave NMO
ellipse from a horizontal reflector, and the ratio of the zero-offset traveltimes of P- and SV -waves. All NMO ellipses were distorted
by random noise with a variance of 2%. The medium parameters are the same as in Figure 2: VP0 = 2.0 km/s, VS0 = 1.2 km/s,
ε = 0.3, δ = 0.1, β = 40◦. The tilt ν is equal to 20◦ in (a), (b), and (c); 40◦ in (d), (e), and (f); 60◦ in (g), (h), and (i); and 80◦ in (j),
(k), and (l). The solid line on plot (a) corresponds to the correct value of η = 0.167.


