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ABSTRACT

Multiple vertical fracture sets, possibly combined with horizontal fine layering,

produce an equivalent medium of monoclinic symmetry with a horizontal symmetry

plane. Although monoclinic models may be rather common for fractured formations,

they have been hardly used in seismic methods of fracture detection due to the large

number of independent elements in the stiffness tensor. Here, we show that multi-

component wide-azimuth reflection data (combined with known vertical velocity or

reflector depth) or multi-azimuth walkaway VSP surveys provide enough information

to invert for all but one anisotropic parameters of monoclinic media.

To facilitate the inversion procedure, we introduce a Thomsen-style parameteri-

zation for monoclinic media that includes the vertical velocities of the P -wave and

one of the split S-waves and a set of dimensionless anisotropic coefficients. Our no-

tation, defined for the coordinate frame associated with the polarization directions of

the vertically propagating shear waves, captures the combinations of the stiffnesses

responsible for the normal-moveout (NMO) ellipses of all three pure modes. The

first group of the anisotropic parameters contains seven coefficients (ε(1,2), δ(1,2,3), and

γ(1,2)) analogous to those defined by Tsvankin for the higher-symmetry orthorhom-

bic model. The parameters ε(1,2), δ(1,2), and γ(1,2) are primarily responsible for the

pure-mode NMO velocities along the coordinate axes x1 and x2 (i.e., in the shear-

wave polarization directions). The remaining coefficient, δ(3), is not constrained by

conventional-spread reflection traveltimes in a horizontal monoclinic layer. The sec-

ond parameter group consists of the newly introduced coefficients ζ (1,2,3) which control

the rotation of the P , S1, and S2 NMO ellipses with respect to the horizontal coor-

dinate axes. Misalignment of the P -wave NMO ellipse and shear-wave polarization

directions was recently observed on field data by Pérez et al.

Our parameter-estimation algorithm, based on NMO equations valid for any

strength of the anisotropy, is designed to obtain anisotropic parameters of mono-
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clinic media by inverting the vertical velocities and NMO ellipses of the waves P , S1

and S2. A Dix-type representation of the NMO velocity of mode-converted waves

makes it possible to replace the pure shear modes in reflection surveys with the waves

PS1 and PS2. Numerical tests show that our method yields stable estimates of all

relevant parameters for both a single layer and a horizontally stratified monoclinic

medium.

Keywords.—seismic anisotropy, seismic inversion, reflection moveout, multicom-

ponent seismic
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INTRODUCTION

Natural fractures usually occur in vertical or subvertical sets (networks), which

makes fractured reservoirs azimuthally anisotropic with respect to elastic wave prop-

agation. The simplest azimuthally anisotropic model, transverse isotropy with a

horizontal symmetry axis (HTI), describes a formation with a single set of parallel,

vertical, rotationally invariant fractures embedded in a purely isotropic background

matrix. Making this physical model more complicated inevitably leads to media of

lower symmetry, such as orthorhombic, monoclinic, or triclinic. For example, the

addition of another identical system of vertical cracks or the presence of transverse

isotropy with a vertical symmetry axis (VTI) in the matrix (e.g., due to fine layer-

ing) makes the effective medium orthorhombic. If a formation contains two different

non-orthogonal systems of vertical fractures in an isotropic or VTI background, the

medium becomes monoclinic with a horizontal symmetry plane. (In the special case

of two orthogonal vertical fracture sets the model has the orthorhombic symmetry.)

Three or more sets of vertical fractures generally make the effective medium mono-

clinic; only if the normal and shear compliances for all sets are identical, the medium

is orthorhombic (Sayers, 1998).

Potential importance of monoclinic models in seismic reservoir characterization is

corroborated by abundant geological (in-situ) evidence of multiple vertical fracture

sets (e.g., Schoenberg and Sayers 1995). Note that if the background medium does not

have a horizontal plane of symmetry, a vertical fracture set may produce a monoclinic

medium with a vertical or dipping symmetry plane. A model of this kind, for example,

was inferred by Winterstein and Meadows (1991) from multi-azimuth walkaway VSP

measurements of shear-wave polarization over a fractured formation. Here, however,

we restrict ourselves to the more simple (from the standpoint of reflection seismic)

monoclinic media with a horizontal symmetry plane.

Although the general theory of seismic wave propagation in monoclinic and even

4



triclinic media is well known (e.g., Fedorov 1968; Musgrave 1970), velocity analysis

and parameter estimation for monoclinic media is a highly challenging task. Due

to the large number of stiffness coefficients (13) describing monoclinic media with a

known orientation of the symmetry plane, “blind” inversion of seismic signatures is

expected to be non-unique and suffer from trade-offs between the stiffnesses. To avoid

this ambiguity and focus the inversion procedure on the “extractable” parameters, we

follow the idea originally proposed for VTI media by Thomsen (1986) and attempt

to identify the combinations of the stiffness coefficients responsible for seismic signa-

tures commonly measured from reflection data. Since moveout velocity analysis is

one of the most reliable tools for mapping the elastic properties of the subsurface, we

use normal-moveout (NMO) velocities of P - and S-waves from a horizontal reflector

to define the anisotropic parameters of monoclinic media. A subset of these parame-

ters coincides with the Thomsen-style anisotropic coefficients introduced by Tsvankin

(1997) for orthorhombic media. The remaining parameters can be related to the di-

mensionless anisotropic coefficients defined by Mensch and Rasolofosaon (1997) and

Pšenč́ik and Gajewski (1998) for arbitrary anisotropic media. Our notation, however,

is somewhat different because it is designed to simplify the moveout equations, while

the alternative parameterizations are derived from an approximate phase-velocity

function.

To recover the anisotropic parameters from reflection data, we use analytic expres-

sions for azimuthally varying NMO velocities of P - and S-waves. The moveout-based

approach to anisotropic parameter estimation was first developed for P -waves in VTI

media by Alkhalifah and Tsvankin (1995). They showed that the dip-direction P -

wave NMO velocity in vertically inhomogeneous VTI media is controlled by just two

combinations of medium parameters – the NMO velocity from a horizontal reflector

Vnmo(0) and the “anellipticity” coefficient η; both Vnmo(0) and η can be obtained from

P -wave reflection traveltimes alone.

Moveout inversion in azimuthally anisotropic media requires analysis of the az-
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imuthal dependence of reflection traveltimes and has to be performed in 3-D geometry.

Grechka and Tsvankin (1998a) proved that the azimuthal variation of NMO velocity

of pure modes generally represents an ellipse , even in arbitrary anisotropic, heteroge-

neous media. NMO ellipses of reflection events can be found by applying semblance

velocity analysis to 3-D data acquired either in wide-azimuth surveys or on at least

three 2-D lines with sufficiently different azimuths (Corrigan et al. 1996; Grechka,

Tsvankin and Cohen 1999).

For vertical transverse isotropy, the P -wave NMO ellipse (and, therefore, NMO

velocity measured in any direction with respect to the dip plane of the reflector) is

still governed by the two Alkhalifah-Tsvankin parameters (Vnmo(0) and η) and cannot

be inverted for the vertical velocity (Grechka and Tsvankin 1998a). However, if the

symmetry axis of a TI medium is tilted by a sufficiently large angle (at least 30◦) from

the vertical, P -wave NMO ellipses from horizontal and dipping reflectors provide

enough information to determine the P -wave velocity in the symmetry direction,

Thomsen’s (1986) coefficients ε and δ, and the tilt and azimuth of the symmetry axis

(Grechka and Tsvankin 1998b). Thus, in contrast to VTI media, for the TI model

with a tilted symmetry axis surface seismic data can be used to build anisotropic

velocity models in depth.

Unfortunately, for lower-symmetry orthorhombic and monoclinic models P -wave

reflection moveout does not constrain the vertical velocity and reflector depth. The

inversion of P -wave NMO ellipses in orthorhombic media with a horizontal symmetry

plane was discussed by Grechka and Tsvankin (1999a). The NMO velocity of hor-

izontal and dipping events in an orthorhombic layer is governed by six parameters:

the azimuth of one of the vertical symmetry planes, two zero-dip symmetry-plane

NMO velocities V (1,2)
nmo , and three “anellipticity” coefficients η(1,2,3) analogous to the

Alkhalifah-Tsvankin coefficient η. Additional information about the parameters of

orthorhombic media can be obtained from moveout of shear or converted waves.

Grechka, Theophanis and Tsvankin (1999) demonstrated that combining the NMO
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ellipses of P - and two split PS-waves (PS1 and PS2) makes it possible to find the

azimuths of the vertical symmetry planes and eight (out of nine) elastic constants,

provided the reflector depth is known.

Here, we devise a parameter-estimation procedure for horizontally layered mon-

oclinic media based on the NMO ellipses and vertical velocities of the P -wave and

two split shear waves. Despite the absence of vertical symmetry planes in our model,

the polarization directions of the vertically propagating shear waves establish a nat-

ural coordinate frame with the vanishing stiffness coefficient c45. We specify the

anisotropic parameters in this coordinate frame (where the stiffness tensor has 12 in-

dependent elements) by analogy with the Thomsen-style notation of Tsvankin (1997)

for orthorhombic media. In contrast to orthorhombic media, however, the NMO el-

lipses of the three pure reflection modes in general monoclinic media have different

orientations. Hence, moveout data yield three more equations than in orthorhombic

media, which can be inverted for three additional parameters responsible for the ro-

tation angles of the NMO ellipses. On the whole, the vertical velocities and NMO

ellipses of P - and two split S-waves can be used to estimate eleven (out of twelve)

parameters of monoclinic media. We present numerical tests for a single layer and

stratified monoclinic media with substantial anisotropy to confirm the accuracy of

our inversion procedure and its stability with respect to errors in the input data.

STIFFNESS TENSOR IN MONOCLINIC MEDIA

The density-normalized elastic stiffness tensor cijk` in a monoclinic medium with

a horizontal symmetry plane [x1, x2] can be represented in the two-index notation as

follows (e.g., Musgrave 1970):
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c(mnc) =




c11 c12 c13 0 0 c16

c12 c22 c23 0 0 c26

c13 c23 c33 0 0 c36

0 0 0 c44 c45 0

0 0 0 c45 c55 0

c16 c26 c36 0 0 c66




. (1)

c(mnc) has four additional non-zero components (c16, c26, c36, and c45) compared to

the stiffness tensors for VTI, HTI, and orthorhombic media. Note that the tensor

c(mnc) is supposed to be defined in a certain coordinate frame that is not completely

specified yet. While the vertical axis x3 is fixed in the direction orthogonal to the

symmetry plane, the axes x1 and x2 can be rotated in an arbitrary fashion. Rotating

the tensor c(mnc) around the x3-axis leads to another tensor c̃(mnc) with the same

vanishing components and different values of the non-zero components (Appendix

A).

For the purpose of parameter estimation, it is important to choose a coordi-

nate frame where the mathematical description of seismic wave propagation has the

simplest possible form. Kinematic and polarization properties of seismic waves in

anisotropic media can be derived from the Christoffel equation (e.g., Musgrave 1970):

F ≡ [Gi` − δi`]U` = 0 , (2)

where U is the unit polarization vector of a plane wave, δi` is the Kronecker’s symbolic

δ, and G is the symmetric Christoffel matrix; summation over repeated indexes (from

1 to 3) is implied. The elements of G are given by

Gi` = cijk` pjpk , (3)

where p is the slowness vector.

As discussed in Appendix A, for a certain rotation angle of the horizontal axes
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c45 = 0 . (4)

In this case, in addition to the reduction in the number of stiffnesses, the matrix

G becomes diagonal for vertical propagation (i.e., for waves with the slowness vector

p = {0, 0, p3}). As a result, for the coordinate system with c45 = 0 the horizontal axes

x1 and x2 coincide with the polarization directions of the vertically traveling shear

waves. Denoting the fast shear wave by S1 and the slow one by S2, we can write

the vertical slowness components q ≡ p3 for waves propagating in the x3-direction as

(Appendix A)

qP =
1√
c33

,

qS1 =
1√
c55

, (5)

qS2 =
1√
c44

.

Here it is assumed that the x1-axis points in the direction of the polarization of the

fast shear wave S1, which implies that

c55 > c44 . (6)

The polarization vectors of the vertically propagating waves in this coordinate

system can be written as

US1(qS1) = {1, 0, 0} ,

US2(qS2) = {0, 1, 0} , (7)

UP (qP ) = {0, 0, 1} .

Equations (7) formally define the coordinate frame that will be used throughout the

paper. The corresponding stiffness coefficients are specified by equations (1), (4), and

inequality (6).
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NMO ELLIPSES FOR HORIZONTAL REFLECTORS

Normal-moveout velocity, analytically defined in the zero-spread limit, describes

the hyperbolic portion of reflection moveout. Grechka and Tsvankin (1998a) showed

that azimuthally varying NMO velocity Vnmo(α) of pure (non-converted) modes is

represented by the following quadratic form that usually specifies an ellipse in the

horizontal plane:

V −2
nmo(α) = W11 cos2 α + 2W12 sinα cosα +W22 sin2 α , (8)

where W is a symmetric matrix,

Wij = τ0
∂2τ

∂xi∂xj

∣∣∣∣∣
x

CMP

= τ0
∂pi
∂xj

∣∣∣∣∣
x

CMP

, (i, j = 1, 2) . (9)

Here, τ(x1, x2) is the one-way traveltime from the zero-offset reflection point to the

location x {x1, x2} at the surface, τ0 is the one-way zero-offset traveltime, pi are the

components of the slowness vector corresponding to the ray recorded at the point x,

and x
CMP

is the common-midpoint (CMP) location. Equation (8) holds for arbitrary

anisotropic, heterogeneous media provided the traveltime can be expanded in a Taylor

series in the horizontal coordinates.

Equivalently, the NMO ellipse (8) can be written through the eigenvalues λ1,2 of

the matrix W as (Grechka and Tsvankin 1998a)

V −2
nmo(α) = λ1 cos2(α− β) + λ2 sin2(α− β) , (10)

where

λ1,2 =
1

2

[
W11 +W22 ±

√
(W11 −W22)2 + 4W 2

12

]
, (11)

and β is the rotation angle of the ellipse with respect to the coordinate axes,

tan 2β =
2W12

W11 −W22

. (12)
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If W12 = 0, the axes of the ellipse are aligned with the coordinate directions. Both

the numerator and denominator of equation (12) can go to zero only if λ1 = λ2, which

means that the ellipse degenerates into a circle.

The values of the semi-major and semi-minor axes of the ellipse are 1/
√
λ1 and

1/
√
λ2. In the uncommon case of negative λ1 or λ2, the squared NMO velocity for at

least some azimuths is negative as well, and equations (8) and (10) no longer describe

an ellipse.

To find the matrix W from equation (9) and then the normal-moveout veloc-

ity from equation (8), we need to determine the spatial derivatives of the one-way

traveltime. For the model of a single homogeneous anisotropic layer with arbitrary

symmetry, W can be found explicitly as a function of the slowness vector (Grechka,

Tsvankin and Cohen 1999). If the reflector is horizontal,

W =
− q

q,11q,22 − q2
,12




q,22 −q,12

−q,12 q,11


 , (13)

where q ≡ q(p1, p2) ≡ p3 is the vertical component of the slowness vector, p1 and p2

are the horizontal slownesses, and q,ij ≡ ∂2q/∂pi∂pj; equation (13) is evaluated for

the zero-offset ray (p1 = p2 = 0).

The matrix W for horizontal events in monoclinic media is obtained from equa-

tion (13) by substituting the corresponding values of q [equations (5)] and the deriva-

tives q,i and q,ij which can be determined from the Christoffel equation (2). The

exact expressions for the matrices WP , WS1, and WS2 describing NMO ellipses of all

three waves in a monoclinic layer in terms of the stiffness coefficients cij are derived

in Appendix B.

Equations (B-2)–(B-7) help to identify the stiffness coefficients (and their combi-

nations) that influence the NMO ellipses. First, note that the coefficient c12 is not

present in any of the equations (B-2)–(B-7) and, therefore, cannot be found from the

NMO velocities of pure reflection modes in a horizontal monoclinic layer. The same

conclusion regarding c12 was drawn by Grechka, Theophanis and Tsvankin (1999) for
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a horizontal orthorhombic layer with a horizontal symmetry plane.

Second, the coefficients c16, c26, and c36, which vanish in orthorhombic media,

contribute to the diagonal elements WQ
11 and WQ

22 only through their products ci6cj6

(i, j = 1, 2, 3). Furthermore, the semi-axes of the NMO ellipses [equation (11)] do not

contain terms linear in ci6 either. Therefore, approximations for WQ
`` and elliptical

semi-axes linearized in the typically small stiffnesses ci6 should have the same form

as the corresponding exact expressions in orthorhombic media. This is a strong

indication that the parameterization introduced by Tsvankin (1997) for orthorhombic

symmetry can also be useful for monoclinic models.

In contrast, the off-diagonal matrix elements WQ
12 are approximately linear in

ci6. Since the rotation angle β of the NMO ellipse is almost proportional to WQ
12

[equation (12)], the coefficients ci6 are primarily responsible for the deviation of the

axes of the NMO ellipses from the polarization directions of the vertically propagating

shear waves; this is discussed in more detail in the next section.

ANISOTROPIC PARAMETERS OF MONOCLINIC MEDIA AND

LINEARIZED NMO ELLIPSES

Notation for monoclinic media

Analysis of the expressions for the NMO ellipses helped us to develop a convenient

parameterization for monoclinic media by generalizing Tsvankin’s (1997) notation for

orthorhombic symmetry. Expressions for these parameters in terms of the density-

normalized stiffness coefficients are given below. It should be emphasized that the

horizontal coordinate axes are aligned with the polarization directions of the vertically

traveling shear waves.

• VP0 – the P -wave vertical velocity:

VP0 ≡
√
c33 . (14)
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• VS0 – the vertical velocity of the fast shear wave S1 polarized in the x1-direction:

VS0 ≡
√
c55 . (15)

• ε(1) – the parameter defined analogously to the VTI coefficient ε in the [x2, x3]-

plane (the superscript denotes the axis x1 orthogonal to the [x2, x3]-plane):

ε(1) ≡ c22 − c33

2 c33
. (16)

• δ(1) – the parameter analogous to the VTI coefficient δ in the [x2, x3]-plane:

δ(1) ≡ (c23 + c44)2 − (c33 − c44)2

2 c33 (c33 − c44)
. (17)

• γ(1) – the parameter analogous to the VTI coefficient γ in the [x2, x3]-plane:

γ(1) ≡ c66 − c55

2 c55
. (18)

• ε(2) – the parameter analogous to the VTI coefficient ε in the [x1, x3]-plane:

ε(2) ≡ c11 − c33

2 c33
. (19)

• δ(2) – the parameter analogous to the VTI coefficient δ in the [x1, x3]-plane:

δ(2) ≡ (c13 + c55)2 − (c33 − c55)2

2 c33 (c33 − c55)
. (20)

• γ(2) – the parameter analogous to the VTI coefficient γ in the [x1, x3]-plane:

γ(2) ≡ c66 − c44

2 c44
. (21)

• δ(3) – the parameter analogous to the VTI coefficient δ in the [x1, x2]-plane:

δ(3) ≡ (c12 + c66)2 − (c11 − c66)2

2 c11 (c11 − c66)
. (22)
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• ζ (1) – the parameter responsible for the rotation of S1-wave NMO ellipse:

ζ(1) ≡ c16 − c36

2 c33
. (23)

• ζ (2) – the parameter responsible for the rotation of S2-wave NMO ellipse:

ζ(2) ≡ c26 − c36

2 c33
. (24)

• ζ (3) – the parameter responsible for the rotation of P -wave NMO ellipse:

ζ(3) ≡ c36

c33

. (25)

The vertical velocities and anisotropic coefficients ε(i), δ(i) and γ(i) are defined exactly

in the same way as the corresponding Tsvankin’s (1997) parameters for orthorhombic

media. One of the advantages of Tsvankin’s notation is the possibility of extending

the VTI equations for velocity and polarization to the vertical symmetry planes of

orthorhombic media by simply replacing Thomsen’s VTI parameters with the appro-

priate set of the coefficients ε(i), δ(i) and γ(i). Unfortunately, the monoclinic model

does not have vertical symmetry planes, and the VTI substitution is no longer valid.

Still, the “orthorhombic” coefficients proved useful in simplifying the NMO equations

in a monoclinic layer.

The parameters ζ (1,2,3) depend on the purely “monoclinic” stiffness elements

that vanish in orthorhombic media. The coefficient ζ (3) becomes identical to the

anisotropic parameter χz introduced by Mensch and Rasolofosaon (1997) if the ref-

erence velocity in their model is equal to
√
c33 and the coordinate axes x1 and x2

are rotated in such a way that the stiffness coefficient c45 = 0. The parameters ζ (1)

and ζ (2) are different from their counterparts in Mensch–Rasolofosaon (1997) notation

because the latter is based on the weak-anisotropy approximation for phase velocity.
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Approximations for NMO ellipses

To demonstrate that the anisotropic coefficients defined above are useful in de-

scribing the NMO ellipses in monoclinic media, we linearize the exact equations (B-2)–

(B-7) in terms of ζ (1), ζ(2), and ζ (3). Also, additional linearizations in the parameters

ε(1,2) δ(1,2) and γ(1,2) were performed for the elements WQ
12 of all matrices WQ (but not

for WQ
11 and WQ

22). This yields the following approximate expressions for the NMO

ellipses in a monoclinic layer:

W P
11 =

1

V 2
P0 (1 + 2 δ(2))

, W P
12 = −2

ζ(3)

V 2
P0

, W P
22 =

1

V 2
P0 (1 + 2 δ(1))

; (26)

W S1
11 =

1

V 2
S1

(1 + 2 σ(2))
, W S1

12 = −2
ζ(1)

V 2
S1

(
VP0

VS1

)2

, W S1
22 =

1

V 2
S1

(1 + 2 γ(1))
; (27)

W S2
11 =

1

V 2
S2

(1 + 2 γ(2))
, W S2

12 = −2
ζ(2)

V 2
S2

(
VP0

VS2

)2

, W S2
22 =

1

V 2
S2

(1 + 2 σ(1))
. (28)

Here

σ(2) ≡
(
VP0

VS1

)2 (
ε(2) − δ(2)

)
, σ(1) ≡

(
VP0

VS2

)2 (
ε(1) − δ(1)

)
, (29)

VS1 ≡ VS0 , VS2 ≡ VS0

√√√√1 + 2 γ(1)

1 + 2 γ(2)
; (30)

VS1 and VS2 are the vertical velocities of the fast and slow shear waves, respectively.

It is interesting that the approximate diagonal elements WQ
11 and WQ

22 in equa-

tions (26)–(28) are identical to the corresponding exact expressions for orthorhombic

media given in Grechka, Theophanis and Tsvankin (1999). As mentioned above,

the “monoclinic” coefficients ζ (1,2,3) contribute to WQ
11 and WQ

22 only through their

products which were dropped during the linearization procedure.

In contrast, the off-diagonal matrix elements WQ
12 in equations (26)–(28) are linear

in the coefficients ζ (1,2,3) and quadratic in the other anisotropic parameters. If we
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make the medium orthorhombic by setting ζ (1,2,3) = 0, the elements WQ
12 vanish,

which means that the NMO ellipses of all three modes are aligned with the axes x1

and x2 [see equation (12)]. In this case, the diagonal elements WQ
11 and WQ

22 determine

the normal-moveout velocities in the symmetry planes of orthorhombic media (i.e.,

the semi-axes of the NMO ellipses).

For monoclinic media, in general all three WQ
12 6= 0, and the axes of the NMO

ellipses of the P -, S1- and S2-waves deviate from the coordinate directions (i.e., from

the S-wave polarization vectors) and have different orientations. Sayers (1998) drew

similar conclusions from his study of the principal azimuthal directions of the P -

wave phase-velocity function in monoclinic media. Experimental evidence of the

misalignment of the P -wave NMO ellipse and shear-wave polarization directions was

presented by Pérez, Grechka and Michelena (1999) who analyzed multicomponent

data acquired over a fractured carbonate reservoir.

Numerical tests show that the accuracy of the approximations (26)–(28) depends

mostly on the parameters ζ (1,2,3) and is less sensitive to the other anisotropic co-

efficients. As follows from the results of Bakulin, Grechka and Tsvankin (1999),

for the simplest (and probably most common) monoclinic models due to two non-

orthogonal vertical fracture sets, the absolute values of ζ (1,2,3) are usually limited by

0.05-0.06. The example in Fig. 1 demonstrates that for such small values of ζ (1,2,3)

equations (26)–(28) (dotted lines) yield a qualitatively adequate approximation for

the exact NMO ellipses (solid) computed from equations (B-2)–(B-7). The error of

the weak-anisotropy approximation, however, rapidly increases if the absolute values

of the parameters ζ reach 0.08–0.1.

As predicted by equations (26)–(28), the axes of the NMO ellipses of P -, S1-, and

S2-waves in Fig. 1 are parallel neither to each other nor to the coordinate directions.

The azimuths of their semi-major axes with respect to the polarization vector of the

fast S-wave (azimuth 0◦ in Fig. 1) are βP = 32◦, βS1 = 349◦, and βS2 = 106◦. The
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difference in the orientations of the NMO ellipses is a distinctive feature of monoclinic

media that can be used in the inversion for the anisotropic parameters.

PARAMETER ESTIMATION

Analysis of the weak-anisotropy approximation

Although equations (26)–(28) lose accuracy with increasing |ζ (1,2,3)|, they provide

a useful insight into the influence of the medium parameters on normal moveout and

help to design the inversion procedure. Just one of the anisotropic coefficients, δ(3),

is not contained in any of these equations and, therefore, cannot be estimated from

NMO velocities of horizontal events. Since δ(3) is the only parameter that contains

the stiffness element c12, this result is consistent with our earlier observation that c12

does not contribute to the exact NMO ellipses [equations (B-2)–(B-7)].

The diagonal elements WQ
11 and WQ

22 of the matrices WQ in equations (26)–(28)

yield the NMO velocities along the x1- and x2-axes (i.e., in the polarization directions

of the vertically propagating shear waves). As mentioned above, WQ
11 and WQ

22 do not

contain terms linear in the “monoclinic” coefficients ζ (1,2,3); the same is true for the

semi-axes of the NMO ellipses 1/
√
λQ` .

Neglecting the contributions of the ζ coefficients to the diagonal elements of

the NMO ellipses makes the inversion of WQ
11 and WQ

22 completely analogous to the

parameter-estimation problem in orthorhombic media discussed by Grechka, Theo-

phanis and Tsvankin (1999). As in orthorhombic media, the elements WQ
`` for the

three waves (or the semi-axes of the ellipses λQ` ) provide us with five equations for

the unknown parameters. Although there seems to be a total of six equations, the

elements W S1
22 and W S2

11 in equations (26)–(28) are equal to each other. (This follows

from the relations (30) between the vertical shear-wave velocities and the anisotropic

parameters γ(1) and γ(2).) In combination with the vertical velocities VP0, VS1 and
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VS2 , the semi-axes of the NMO ellipses provide us with eight equations for eight un-

known parameters – the velocities VP0, VS0 = VS1 , and six anisotropic coefficients

ε(1,2), δ(1,2) and γ(1,2). Feasibility of this inversion procedure for orthorhombic media

has been proved by Grechka, Theophanis and Tsvankin (1999) who developed an

inversion algorithm based on moveout velocities of P - and PS-waves and successfully

tested it on physical-modeling data.

The three remaining anisotropic coefficients of monoclinic media (ζ (1,2,3)) can be

estimated from the off-diagonal matrix elements WQ
12, which yield three linear (in

the weak-anisotropy approximation) equations for the three unknowns. Essentially,

we infer the parameters ζ from the rotation angles βQ of the NMO ellipses because

βQ are approximately proportional to WQ
12 [equation (12)]. Only if the elongation of

the NMO ellipses is small (i.e., the ellipses are close to circles), the rotation angles

βQ are poorly constrained by the data. In this case, however, the elements WQ
12

(and the coefficients ζ (1,2,3)) have a more substantial influence on the elliptical semi-

axes. As follows from equation (11), for quasi-circular ellipses with the eigenvalues

λQ1 ≈ λQ2 , the diagonal elements WQ
11 and WQ

22 are close to each other, which increases

the contribution of WQ
12 to λQ1,2.

Hence, the vertical velocities and NMO ellipses of the waves P , S1 and S2 contain

enough information for moveout inversion in monoclinic media. Below, we confirm

this conclusion by performing numerical inversion based on the exact NMO equations.

Numerical inversion in a single monoclinic layer

Input data for the parameter-estimation procedure include the vertical velocities

and NMO ellipses of the three pure modes (P , S1, S2) determined from either wide-

azimuth reflection data or walkaway VSP’s. If the source does not generate shear

waves, in reflection surveys they can be replaced with the converted modes PS1 and

PS2. As shown by Grechka, Theophanis and Tsvankin (1999), azimuthally dependent
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NMO velocities of converted waves in horizontally layered media with a horizontal

symmetry plane are also described by the elliptical function (8). Furthermore, the

generalized Dix equation discussed below leads to a simple relationship between the

NMO ellipses of P -, S-, and PS-waves that can be used to obtain the NMO velocities

of the pure shear reflections from P and PS data (Grechka, Theophanis and Tsvankin

1999).

The coordinate frame needed for moveout inversion can be established by per-

forming Alford (1986) rotation of small-offset shear-wave data to identify the S-wave

polarization directions at vertical incidence. Such a rotation is necessary anyway since

the split shear or converted waves have to be separated prior to moveout analysis.

To invert the NMO ellipses for the medium parameters, we rewrite the exact

NMO equations (B-2)–(B-7) in terms of the anisotropic coefficients defined by equa-

tions (14)–(25). Also, we represent the measured vertical shear-wave velocity VS2

through the γ coefficients using equation (30). Since the vertical velocities VP0 and

VS0 = VS1 are determined directly from the data, we need to invert the slow S-wave

velocity VS2 and the NMO ellipses of the three pure modes for the vector of the

anisotropic coefficients χ ≡ [ε(1), ε(2), δ(1), δ(2), γ(1), γ(2), ζ(1), ζ(2), ζ(3)].

The inversion is performed by minimizing the following objective function:

F(VP0, VS0,χ) ≡
[
V̂P0

VP0
− 1

]2

+

[
V̂S1

VS1

− 1

]2

+

[
V̂S2

VS2

− 1

]2

+
∫ 2π

0

[
V̂ P

nmo(α)

V P
nmo(α)

− 1

]2

dα +
∫ 2π

0

[
V̂ S1

nmo(α)

V S1
nmo(α)

− 1

]2

dα

+
∫ 2π

0

[
V̂ S2

nmo(α)

V S2
nmo(α)

− 1

]2

dα , (31)

where the hats denote the measured quantities, while the quantities without hats are

computed for a given set of medium parameters. The NMO velocities are obtained

by substituting the exact equations (B-2)–(B-7) for the matrices WQ into the equa-

tion (8) of the NMO ellipse. The measured vertical velocities VP0 and VS0 are included

in the objective function to allow for adjustments in their values that may be needed
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to better approximate the NMO ellipses in the presence of noise in input data. We

search for a minimum of the objective function F using the simplex method (Press et

al. 1987), with the initial values of the anisotropic coefficients determined from the

weak anisotropy approximation [equations (26)–(28)].

Fig. 2 displays the inversion results for a monoclinic layer with the parameters

specified in Fig. 1. The exact NMO velocities of the three modes were computed

for azimuths 0◦, 45◦, 90◦, and 135◦ from equations (B-2)–(B-7) and (8). To simulate

errors in measured data, we added Gaussian noise with a variance of 2% to the vertical

and NMO velocities. Then we reconstructed the NMO ellipses for each realization

of the data (distorted by noise) and carried out the inversion based on the objective

function (31).

The inversion procedure was repeated 200 times for different realizations of the

Gaussian noise to examine the stability of the parameter estimation. The error bars

in Fig. 2 correspond to ± the standard deviation and represent the 95% confidence

intervals for each anisotropic parameter. Overall, the stability of the inversion algo-

rithm is quite satisfactory, but there is a substantial variation in the results from one

anisotropic parameter to another. In particular, it is interesting that the error bars

for ζ (1) and ζ (2) are much smaller than those for ζ (3) and the other anisotropic param-

eters. This is explained by the structure of equations (26)–(28) for the off-diagonal

elements WQ
12. The expressions for W S1

12 and W S2
12 have scaling factors (VP0/VSk)

2

(k = 1, 2) that reach 4.0 and 6.5 for the model used in our numerical test. Therefore,

the elements W Sk
12 are much more sensitive to ζ (1) and ζ (2) than W P

12 is to ζ (3), which

helps to recover ζ (1,2) with a higher accuracy.

It may seem that the parameters ζ (1,2) in Fig. 2 are so well constrained because

the S-wave NMO ellipses used for the inversion are noticeably elongated (Fig. 1),

and their orientations are well defined. Our next test, however, indicates that the

coefficients ζ are extracted in a stable fashion even if the NMO velocity is weakly

dependent on azimuth, and the NMO ellipses are close to circles. For the model
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in Fig. 3 the ellipticity (i.e., the fractional difference between the semi-major and

semi-minor axes of the NMO ellipse) for the P -, S1-, and S2-waves reaches only 1.9%,

1.7%, and 2.1%, respectively. Therefore, for all three modes the azimuths βQ of the

semi-major axes are poorly constrained by the data. One may expect that adding a

velocity error with a 2% variance (again, we repeated the inversion procedure for 200

realizations of Gaussian noise) can produce significant changes in the orientations of

the ellipses and, consequently, sizeable errors in the ζ-coefficients.

However, the error bars for all anisotropic parameters in Fig. 4 are very similar

to those in Fig. 2. To explain this result, recall that the angles βQ themselves are

not used in the inversion algorithm which operates with the matrices WQ and NMO

ellipses. If the ellipses are quasi-circular, their semi-axes become rather sensitive to

the off-diagonal element WQ
12, which helps to constrain the coefficients ζ (1,2,3).

Parameter estimation in layered media

The inversion technique introduced above can be extended to horizontally layered

monoclinic media using the generalized Dix equation of Grechka, Tsvankin and Cohen

(1999) that yields the exact effective NMO velocity for stratified anisotropic models

above a horizontal or dipping reflector. The matrix W(L) responsible for the effective

NMO ellipse from the L-th interface [equation (8)] can be obtained by the following

Dix-type averaging of the interval matrices:

[W(L)]−1 =
1

τ(L)

L∑

`=1

τ` W
−1
` , (32)

where W` defines the interval NMO ellipse in layer ` and τ(L) =
∑L
`=1 τ`; τ` are the

interval zero-offset traveltimes. Equation (32) is valid for any anisotropic symmetry

and fully accounts for the azimuthal variation of the NMO velocity.

Rewriting equation (32) in the Dix-type differentiation form,

W−1
` =

τ(`) [W(`)]−1 − τ(`− 1) [W(`− 1)]−1

τ(`)− τ(`− 1)
, (33)
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allows one to compute the interval NMO ellipse W` from the NMO ellipses W(`− 1)

and W(`) corresponding to the top and bottom of the `-th layer. If the reflector

is dipping, application of equation (33) is complicated by the need to compute the

matrix W(`−1) (and the interval matrices W(`) in the overburden) for the horizontal

slowness components of the oblique zero-offset ray. This problem does not arise for

horizontal events considered in this paper because the slowness vector of the zero-

offset ray is vertical, and the matrix W(`− 1) should be evaluated for the measured

reflection event from the (`− 1)-th interface.

The interval NMO ellipses can then be inverted for the anisotropic parameters

using our single-layer algorithm. The coordinate frame in each layer is defined by

the polarization directions of the split shear waves which can be obtained from Al-

ford (1986) rotation of the reflected arrivals followed by polarization layer stripping

(Thomsen, Tsvankin and Mueller 1999).

Although Grechka, Tsvankin and Cohen (1999) developed equations (32) and (33)

for reflection data, it can also be applied to the NMO ellipses measured in walk-

away VSP geometry. Note that the zero-offset reflected ray in laterally homogeneous

anisotropic media with a horizontal symmetry plane is always vertical. Therefore,

to simulate a reflection experiment, VSP traveltimes should be recorded around a

common midpoint located at the projection of the downhole receiver on the surface.

Then azimuthally dependent moveout around this CMP location can be used to

extract the NMO ellipses and the matrices W which will be analogous to those for

horizontal reflection events.

To test the parameter estimation procedure for stratified monoclinic media, we

used a three-layer model with the parameters given in Table 1. According to our

convention, the coordinate axes x1 and x2 correspond to the polarization directions

of the vertically propagating S1- and S2-waves, which were the same in all layers.

To reproduce a walkaway VSP experiment, we placed three “downhole” receivers at

the layer interfaces (the depths are z = 1.0, 1.5, and 2.5 km). Using 3-D anisotropic
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ray tracing, we computed the traveltimes of the P -, S1-, and S2-waves between the

receivers and surface sources placed on six differently oriented lines making the angles

0◦, 30◦, 60◦, 90◦, 120◦, and 150◦ with the x1-axis.

The maximum source-receiver offset reaches 1.0 km, which corresponds to a ray-

propagation angle of 45◦ away from the vertical for the most shallow receiver. The

traveltimes for this receiver, shown in Fig. 5, substantially vary with azimuth and ex-

hibit strong nonhyperbolic moveout. The simplest way to estimate normal-moveout

velocity in the presence of nonhyperbolic moveout, often used in conventional pro-

cessing, is to mute out far offsets. It is well known (e.g., Alkhalifah and Tsvankin

1995; Grechka and Tsvankin 1999a) that in most cases reflection moveout (especially

that of P -waves) is well-represented by a hyperbola up to offsets approximately equal

to the reflector depth for reflection data or to one half of the receiver depth for VSP

data. Here, however, we choose to preserve the whole moveout curve and correct

for nonhyperbolic moveout by applying an equation containing quartic terms in off-

set. Unlike NMO velocity, the azimuthal variation of the fourth-order moveout term

does not have an elliptical form. For a monoclinic layer with a horizontal symmetry

plane, this term can be represented by a quartic oval curve that depends on five in-

dependent parameters (Sayers and Ebrom 1997). Therefore, the traveltimes of each

mode between a given receiver and all sources at the surface were fitted to a quartic

moveout equation (Tsvankin and Thomsen 1994) that contains nine free parameters:

the vertical traveltime τ0, three elements of the matrix W responsible for the NMO

ellipse, and five quantities describing the quartic moveout term. Since we were not

interested in inverting the azimuthal dependence of nonhyperbolic moveout, we did

not use a more elaborate moveout approximation of Tsvankin and Thomsen [1994,

equation (30)] that converges at infinitely large offsets. The moveout parameters

were obtained by least-squares minimization using the traveltimes at all offsets and

azimuths.

The subsequent processing required only four out of nine parameters – the ver-
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tical time and the elements of the matrix W. The NMO ellipses obtained from the

traveltime data for all three receivers comprise the left column in Fig. 6. The right

column displays the interval NMO ellipses determined from the generalized Dix equa-

tion (33). Comparison of the two columns in Fig. 6 shows how the changing shape of

the effective ellipses translates into the interval ellipse. For example, as the receiver

moves from the top to the bottom of the second layer (see Fig. 6a,b), the effective

NMO velocity of the S1-wave (solid line) increases at azimuth 60◦ and decreases at

azimuth 150◦. As a result, the interval S1-ellipse in the second layer is extended at

azimuth 60◦ and squeezed at azimuth 150◦ (Fig. 6e).

The interval NMO ellipses of the three modes (Fig. 6d–6f), along with the vertical

velocities obtained from the vertical times and the exact receiver depths, represent

the input data for the parameter estimation procedure described above. The inverted

anisotropic parameters listed in Table 2 are quite close to the actual values in Table 1.

The maximum error reaches only 0.03 for the two γ coefficients in the second layer.

This error, as well as the smaller errors for other anisotropic coefficients, is due to

the influence of nonhyperbolic moveout which has not been completely removed by

the quartic terms in our moveout equation. Muting out far offsets (or possibly using

a more accurate nonhyperbolic moveout equation, see Tsvankin and Thomsen 1994)

reduces the errors in the inverted anisotropic parameters to negligible values of less

than 0.01.

DISCUSSION AND CONCLUSIONS

Effective monoclinic media with a horizontal symmetry plane represent a general

anisotropic model of hydrocarbon reservoirs with two or more vertical fracture sys-

tems. An analytic study of normal moveout in monoclinic media, presented here,

leads to a Thomsen-style notation that captures the combinations of the stiffness

coefficients responsible for the NMO ellipses of P - and S-waves. Natural horizon-
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tal coordinate directions for monoclinic models are associated with the orthogonal

polarization vectors of the vertically traveling shear waves. The same orientation

of the x1- and x2-axes is commonly chosen for the higher-symmetry orthorhombic

media, where the S-wave polarizations for vertical propagation are confined to the

vertical symmetry planes. Hence, aligning the horizontal coordinate axes with the

S-wave polarization directions provides a convenient connection between monoclinic

and orthorhombic models and allows us to define a set of dimensionless anisotropic

parameters by a relatively straightforward extension of Tsvankin’s (1997) notation

for orthorhombic media. Our parameterization yields concise expressions for the

NMO ellipses of horizontal events in a monoclinic layer similar to those obtained

by Tsvankin (1997) and Grechka and Tsvankin (1998a) for orthorhombic symmetry.

Another advantage of the selected coordinate frame is the reduction in the number

of medium parameters from thirteen to twelve.

The anisotropic coefficients of monoclinic media can be separated into two dis-

tinctly different groups. The first group contains seven parameters (ε(1,2), δ(1,2,3),

and γ(1,2)) defined identically to the corresponding Tsvankin’s (1997) coefficients in

orthorhombic media. While δ(3) has no influence on the NMO ellipses of P - and

S-waves, the remaining six coefficients control the normal-moveout velocities in the

coordinate directions x1 and x2. The weak-anisotropy approximation for these NMO

velocities has the same form as that in the vertical symmetry planes of orthorhombic

media. Furthermore, the parameters ε(1,2), δ(1,2), and γ(1,2) are largely responsible for

the semi-axes of the NMO ellipses of all three modes.

Three additional anisotropic coefficients ζ (1,2,3) (the second parameter group) de-

pend on the elements of the monoclinic stiffness tensor which vanish in orthorhombic

media. Nonzero ζ coefficients cause the rotation of the NMO ellipses with respect to

the horizontal coordinate axes (i.e., with respect to the shear-wave polarization vec-

tors). In orthorhombic media, ζ (1,2,3) = 0, and the axes of all NMO ellipses coincide

with the S-wave polarization directions.
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Analytic expressions for the NMO velocities show that the NMO ellipses of the

P -, S1-, and S2-waves in a horizontal monoclinic layer, combined with the vertical

velocities or reflector depth, provide sufficient information for estimating eleven (out

of twelve) medium parameters. (The only parameter not constrained by the NMO

ellipses of horizontal events is δ(3).) The first step in the parameter-estimation proce-

dure is to carry out Alford (1986) rotation of short-offset shear-wave data to determine

the polarization directions at vertical incidence and establish the coordinate frame

for the moveout inversion. Then wide-azimuth 3-D reflection data or multi-azimuth

walkaway VSP surveys can be used to reconstruct the NMO ellipses of the waves P ,

S1, and S2. If shear waves are not excited, they can be replaced (in reflection surveys)

by the split converted waves PS1 and PS2. Although the inversion assumes that all

interfaces are horizontal, mild dips under 10◦ do not cause measurable distortions of

NMO ellipses because the NMO velocity for subhorizontal reflectors is approximately

governed by the isotropic cosine-of-dip dependence (e.g., Alkhalifah and Tsvankin,

1995).

Our algorithm is designed to invert the exact NMO equations for the anisotropic

parameters ε(1,2), δ(1,2), γ(1,2) and ζ (1,2,3). Although the vertical velocities of the P -

wave (VP0) and fast shear wave (VS0) are supposed to be determined directly from the

data, we include them in the objective function to improve the fit to the measured

NMO ellipses in the presence of noise. Numerical tests on noise-contaminated data

indicate that the inversion procedure is sufficiently stable, and all eleven parameters

are well constrained by the vertical and NMO velocities.

The most serious restriction of our methodology for reflection data is the assump-

tion that at least one of the vertical velocities (or reflector depth) is known. In general,

from reflection moveout alone we can determine only the ratios of the vertical ve-

locities of the P - and S-waves. Approximations (26)–(28) show that in this case the

NMO ellipses of horizontal events do not contain enough information for estimating

the anisotropic parameters. The same conclusion applies to VTI and orthorhom-
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bic media (Tsvankin and Thomsen 1995; Grechka, Theophanis and Tsvankin 1999),

where certain combination of the anisotropic coefficients (i.e., the “anellipticities” η)

can be obtained from dipping events or nonhyperbolic moveout. Similar algorithms

can be developed for monoclinic media as well, but the large number of independent

parameters may prevent them from being practical. For instance, it can be shown

that P -wave NMO velocity from dipping reflectors depends on at least nine parame-

ters, which requires extracting three or more NMO ellipses for different dips and/or

azimuths of the reflector.

The moveout-inversion procedure is also based on the assumption that the medium

is laterally homogeneous. However, as long as the model is composed of horizontal

layers with a horizontal symmetry plane, the influence of weak lateral variation in

the elastic constants on the NMO ellipse can be removed using the methodology of

Grechka and Tsvankin (1999b). The only information required by their algorithm is

the curvature of the zero-offset traveltime surface at the common midpoint that can

be estimated directly from surface seismic data.

Using the generalized Dix equation of Grechka, Tsvankin and Cohen (1999), we

extended the parameter-estimation procedure to horizontally layered monoclinic me-

dia. Alford (1986) rotation and polarization layer-stripping (Thomsen, Tsvankin and

Mueller 1999) should be applied prior to the inversion to find depth-varying polar-

ization directions of the vertically propagating shear waves. Although both the Dix

differentiation and polarization layer stripping have known limitations with respect

to the vertical resolution, they give stable results for coarse intervals with sufficient

thickness. The accuracy of our algorithm in evaluating interval anisotropic parameters

was verified by inverting ray-traced reflection traveltimes in a three-layer monoclinic

model.
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APPENDIX A–SELECTION OF THE COORDINATE FRAME

The four-rank elastic stiffness tensor c
(mnc)
ijk` in monoclinic media can be written in

the form of the 6 × 6 matrix c(mnc) [see equation (1)] using the so-called Voigt recipe:

11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, and 12→ 6. Rotating the tensor c
(mnc)
ijk` by

an arbitrary angle θ around the vertical axis x3 yields a tensor

c̃
(mnc)
i′j′k′`′ = c

(mnc)
ijk` ri′irj′jrk′kr`′` , (A-1)

which has the same form as the original tensor c
(mnc)
ijk` ; summation over repeated indices

from 1 to 3 is implied. rm′m in equation (A-1) are components of the rotation matrix

defined as

r =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1



. (A-2)

The rotation of the tensor c(mnc) by the angle

θ =
1

2
tan−1 2 c45

c55 − c44

(A-3)

results in c̃45 = 0 (Helbig 1994; Mensch and Rasolofosaon 1997; Sayers, 1998). As fol-

lows from the Christoffel equation, the horizontal axes in the coordinate frame where

c̃45 = 0 are parallel to the polarization vectors of the vertically propagating shear

waves. Indeed, for vertical propagation (i.e., for the slowness vector p = {0, 0, p3}),

the Christoffel equation (2) takes the form:



c55p
2
3 − 1 c45p

2
3 0

c45p
2
3 c44p

2
3 − 1 0

0 0 c33p
2
3 − 1







U1

U2

U3




= 0 . (A-4)

The third equation (A-4) describes the vertically polarized P -wave with the slowness

qP ≡ pP3 =
1√
c33

, (A-5)
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while the first and the second equations define the slownesses and polarizations of the

split shear waves.

Suppose the coordinate frame is rotated around the x3-axis by the angle θ defined

in equation (A-3), so that the coefficient c45 in equations (A-4) vanishes. Then this

rotation diagonalizes the matrix in equations (A-4):




c55p
2
3 − 1 0 0

0 c44p
2
3 − 1 0

0 0 c33p
2
3 − 1







U1

U2

U3




= 0 . (A-6)

Evidently, the polarization vectors U, which represent the eigenvectors of equa-

tions (A-6), coincide with the horizontal coordinate axes of the new, rotated co-

ordinate frame. Let us choose, for definiteness, the x1-axis of the rotated coordinate

frame to be parallel to the polarization direction of the fast shear wave S1, while the

x2-axis is parallel to the polarization of the slow wave S2. Then the slownesses of the

S-waves are given by [equation (A-6)]

qS1 ≡ pS1
3 =

1√
c55

, qS2 ≡ pS2
3 =

1√
c44

. (A-7)

Since the S1-wave travels faster than S2,

qS1 < qS2 , (A-8)

or

c55 > c44 . (A-9)

30



APPENDIX B–EXACT EQUATIONS FOR THE NMO ELLIPSES OF PURE

MODES

Equation (13) of the main text can be used to obtain NMO ellipses of any pure

(non-converted) modes in a horizontal homogeneous arbitrary anisotropic layer. The

vertical slowness components q of the zero-offset ray in a monoclinic layer with the

chosen coordinate frame are specified by equations (5). The derivatives q,i ≡ ∂q/∂pi,

and q,ij ≡ ∂2q/∂pi∂pj can be computed directly from the Christoffel equation (2)

treated as an implicit relation between the slowness components F (p1, p2, q(p1, p2)) =

0. Differentiating equation (2) yields (Grechka, Tsvankin and Cohen 1999)

q,i = −Fpi
Fq

and

q,ij = −Fpipj + Fpiqq,j + Fpjqq,i + Fqqq,iq,j

Fq
, (B-1)

where Fpi ≡ ∂F/∂pi, Fq ≡ ∂F/∂q, Fpipj ≡ ∂2F/∂pi∂pj , Fpiq ≡ ∂2F/∂pi∂q, and Fqq ≡

∂2F/∂q2. All terms in equation (B-1) can be found explicitly from the Christoffel

equation (2).

Substituting the vertical slowness components (5) (the horizontal slownesses are

equal to zero) and their derivatives (B-1) into the general equation (13), we obtain

the following exact expressions for the elements of the matrices WQ (Q = P , S1, or

S2) describing the NMO ellipses of the pure modes.

• P -wave:

W P
11 =

1

fP

[
(c33 − c55)

(
c2

23 + 2 c23 c44 + c33 c44

)
+ c2

36 (c33 − c44)
]

;

W P
12 = −c36

fP
[c33 (c44 + c55 + c13 + c23)− c44 (c55 + c13)− c55 (c44 + c23)] ; (B-2)

W P
22 =

1

fP

[
(c33 − c44)

(
c2

13 + 2 c13 c55 + c33 c55

)
+ c2

36 (c33 − c55)
]
,
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where

fP =
(
c2

13 + c33 c55

) (
c2

23 + 2 c23 c44 + c33 c44

)

+ 2 c13

(
c23

2 c55 + c44 c55 (c33 + 2 c23)− c2
36 (c23 + c44)

)
(B-3)

+ c2
36

(
c33 (c44 + c55)− 2 c55 (2 c44 + c23) + c2

36

)
.

• S1-wave:

W S1
11 =

c66 (c55 − c33) + c2
36

fS1
;

W S1
12 =

c16 (c33 − c55)− c36 (c13 + c55)

fS1
; (B-4)

W S1
22 =

c2
13 + 2 c13 c55 + c2

55 + c11 (c55 − c33)

fS1
,

where

fS1 = c66 (c13 + c55)2 + (c33 − c55)
(
c2

16 − c11 c66

)
− 2 c16 c36 (c13 + c55) + c11 c

2
36 .

(B-5)

• S2-wave:

W S2
11 =

c2
23 + 2 c23 c44 + c2

44 + c22 (c44 − c33)

fS2
;

W S2
12 =

c26 (c33 − c44)− c36 (c23 + c44)

fS2
; (B-6)

W S2
22 =

c66 (c44 − c33) + c2
36

fS2
,

where

fS2 = c66 (c23 + c44)2 + (c33 − c44)
(
c2

26 − c22 c66

)
− 2 c26 c36 (c23 + c44) + c22 c

2
36 .

(B-7)
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FIGURES

FIG. 1. Exact (solid) and approximate (dotted) NMO ellipses in a monoclinic layer

with the following parameters: VP0 = 2.0 km/s, VS0 = 1.0 km/s, ε(1) = 0.3, ε(2) = 0.4,

δ(1) = 0.2, δ(2) = 0.25, γ(1) = −0.1, γ(2) = 0.15, ζ (1) = −0.03, ζ (2) = −0.02,

ζ(3) = 0.04.

FIG. 2. Results of the moveout inversion for a monoclinic layer with the vertical

velocities and the parameter vector χ ≡ [ε(1), ε(2), δ(1), δ(2), γ(1), γ(2), ζ(1), ζ(2), ζ(3)]

for the model from Fig. 1 . The dots represent the exact values of the anisotropic

parameters, the bars mark the ± standard deviation in each parameter. The stan-

dard deviations in the velocities VP0 and VS0 (not shown here) are 2.1% and 2.0%,

respectively.

FIG. 3. Exact NMO ellipses in a monoclinic layer with the parameters VP0 = 2.0

km/s, VS0 = 1.0 km/s, ε(1) = 0.123, ε(2) = 0.075, δ(1) = δ(2) = 0.1, γ(1) = −0.1,

γ(2) = 0.15, ζ (1) = −0.002, ζ (2) = −0.003, ζ (3) = 0.02.

FIG. 4. Results of the moveout inversion for a monoclinic layer with the parame-

ters from Fig. 3 . The dots represent the exact values of the anisotropic parameters,

the bars mark the ± standard deviation in each parameter. The standard deviations

in the velocities VP0 and VS0 are equal to 2.0%.

FIG. 5. Squared traveltimes of the direct P -, S1-, and S2-waves excited at the surface

and recorded by a “downhole” receiver at a depth of 1.0 km. Each symbol corre-

sponds to a fixed source-receiver azimuth, as indicated in the upper-left corner of the

plot.

FIG. 6. (a), (b), (c) NMO ellipses determined from ray-traced traveltimes for the
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downhole receivers at depths z = 1.0, 1.5, and 2.5 km, respectively. (d), (e), (f) In-

terval NMO ellipses computed for the first (subsurface), second and third layer using

the generalized Dix equation (33). Dotted ellipses correspond to the P -wave, solid –

to the S1-wave, and dashed – to the S2-wave.
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FIG. 1. Exact (solid) and approximate (dotted) NMO ellipses in a monoclinic layer with

the following parameters: VP0 = 2.0 km/s, VS0 = 1.0 km/s, ε(1) = 0.3, ε(2) = 0.4, δ(1) = 0.2,

δ(2) = 0.25, γ(1) = −0.1, γ(2) = 0.15, ζ(1) = −0.03, ζ(2) = −0.02, ζ(3) = 0.04.
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FIG. 2. Results of the moveout inversion for a monoclinic layer with the vertical ve-

locities and the parameter vector χ ≡ [ε(1), ε(2), δ(1), δ(2), γ(1), γ(2), ζ(1), ζ(2), ζ(3)] for the

model from Fig. 1. The dots represent the exact values of the anisotropic parameters, the

bars mark the ± standard deviation in each parameter. The standard deviations in the

velocities VP0 and VS0 (not shown here) are 2.1% and 2.0%, respectively.
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FIG. 3. Exact NMO ellipses in a monoclinic layer with the parameters VP0 = 2.0 km/s,

VS0 = 1.0 km/s, ε(1) = 0.123, ε(2) = 0.075, δ(1) = δ(2) = 0.1, γ(1) = −0.1, γ(2) = 0.15,

ζ(1) = −0.002, ζ(2) = −0.003, ζ(3) = 0.02.
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FIG. 4. Results of the moveout inversion for a monoclinic layer with the parameters

from Fig. 3. The dots represent the exact values of the anisotropic parameters, the bars

mark the ± standard deviation in each parameter. The standard deviations in the velocities

VP0 and VS0 are equal to 2.0%.
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FIG. 5. Squared traveltimes of the direct P -, S1-, and S2-waves excited at the surface

and recorded by a “downhole” receiver at a depth of 1.0 km. Each symbol corresponds to

a fixed source-receiver azimuth, as indicated in the upper-left corner of the plot.
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FIG. 6. (a), (b), (c) NMO ellipses determined from ray-traced traveltimes for the down-

hole receivers at depths z = 1.0, 1.5, and 2.5 km, respectively. (d), (e), (f) Interval NMO

ellipses computed for the first (subsurface), second and third layer using the generalized

Dix equation (33). Dotted ellipses correspond to the P -wave, solid – to the S1-wave, and

dashed – to the S2-wave.
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