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Jérôme Le Rousseau? and Ilya Tsvankin?

?Center for Wave Phenomena, Department of Geophysics,

Colorado School of Mines, Golden, CO 80401-1887

†Texaco North America Production, 4601 DTC Blvd.,

Denver, CO 80237

ABSTRACT

Transverse isotropy with a vertical symmetry axis (VTI media) is the most com-

mon anisotropic model for sedimentary basins. Here, we apply P -wave processing

algorithms developed for VTI media to a 2-D synthetic data set generated by a finite

difference code. The model, typical for the Gulf of Mexico, has a moderate structural

complexity and includes a salt body and a dipping fault plane.

Using the Alkhalifah-Tsvankin dip-moveout (DMO) inversion method, we esti-

mate the anisotropic coefficient η responsible for the dip dependence of P -wave NMO

velocity in VTI media. In combination with the normal-moveout (NMO) velocity

from a horizontal reflector [Vnmo(0), the argument “0” refers to reflector dip], η is

sufficient for performing all P -wave time-processing steps, including NMO and DMO

corrections, prestack and poststack time migration. The NMO (stacking) velocities
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needed to determine Vnmo(0) and η are picked from conventional semblance velocity

panels for reflections from subhorizontal interfaces, the dipping fault plane and the

flank of the salt body. To mitigate the instability in the interval parameter estimation,

the dependence of Vnmo(0) and η on the vertical reflection time is approximated by

Chebyshev polynomials with the coefficients found by “global” fitting of all velocity

picks.

We perform prestack depth migration for the reconstructed anisotropic model

and two isotropic models with different choices of the velocity field. The anisotropic

migration result has a good overall quality, but reflectors are mispositioned in depth

because the vertical velocity for this model cannot be obtained from surface P -wave

data alone. The isotropic migrated section with the NMO velocity Vnmo(0) substituted

for the isotropic velocity also has the wrong depth scale and is somewhat inferior to

the anisotropic result in the focusing of dipping events. Still, the image distortions

are not significant because the parameter η, which controls NMO velocity for dipping

reflectors, is rather small (the average value of η is about 0.05). In contrast, the

isotropic section migrated with the vertical velocity V0 has a poor quality (although

the depth of the subhorizontal reflectors is correct) due to the fact that in VTI

media V0 can be used to stack neither dipping nor horizontal events. The difference

between V0 and the zero-dip stacking velocity Vnmo(0) is determined by the anisotropic

coefficient δ, which is greater than η in our model (on average, δ ≈ 0.1).

INTRODUCTION

Transverse isotropy with a vertical symmetry axis adequately describes elastic

properties of shale formations and thin-bed sedimentary sequences (Thomsen, 1986;

Sayers, 1994). Extending seismic processing to VTI media requires estimating ani-

sotropic parameters from surface (preferably, P -wave) seismic data. Alkhalifah and

Tsvankin (1995) showed that P -wave velocity analysis for models with a laterally

2



homogeneous VTI overburden above the target reflector can yield a single anisotropic

parameter (η) in addition to the NMO velocity for horizontal events Vnmo(φ = p = 0)

(φ is the reflector dip and p is the ray parameter of the zero-offset ray). In terms of

Thomsen’s (1986) parameters ε and δ and the P -wave vertical velocity V0, Vnmo(0)

and η are expressed as

Vnmo(0) = V0

√
1 + 2δ , (1)

and

η ≡ ε− δ
1 + 2 δ

, (2)

Obtained as functions of the vertical traveltime τ , Vnmo(0) and η control all P -wave

time-processing steps (NMO, DMO, time migration) needed to image reflectors be-

neath vertically inhomogeneous VTI media. Depth imaging (such as prestack depth

migration), however, requires knowledge of the vertical velocity that cannot be deter-

mined from surface P -wave data alone. [Only if the VTI medium above the reflector

is laterally heterogeneous (e.g., contains dipping interfaces), it may be possible to

invert P -wave reflection moveout for the individual values of V0, ε and δ (Le Stunff

et al., 1999; Grechka et al., 2000a,b).]

The interval values Vnmo,int(p = 0, τ) can be found using conventional Dix (1955)

differentiation of NMO (stacking) velocities from horizontal (or subhorizontal) inter-

faces. To estimate the interval η int(τ), Alkhalifah and Tsvankin (1995) and Alkhalifah

(1997) developed a Dix-type differentiation algorithm operating with NMO velocities

of dipping events. This procedure, however, is known to produce unreasonably strong

variations in the interval η values (Alkhalifah and Rampton, 1997). We suggest to

stabilize the inversion for interval η by representing the function η int(τ) curve as a

superposition of Chebyshev polynomials (Grechka et al., 1996). This allows us to

take advantage of the redundancy in the available velocity picks and estimate only

those (smooth) components of η int(τ), which are necessary to fit the NMO velocity

to a given degree of accuracy.
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Alkhalifah-Tsvankin parameter-estimation methodology has been successfully used

to perform anisotropic imaging in such exploration areas as offshore Africa (Alkhali-

fah et al., 1996) and Trinidad (Alkhalifah and Rampton, 1997), where massive shale

formations are characterized by substantial (VTI) anisotropy. In both areas, account-

ing for vertical transverse isotropy leads to dramatic improvements in the imaging

of dipping reflectors (fault planes) and helps to remove the distortions caused by

nonhyperbolic moveout in the stacking of subhorizontal events. Similar benefits can

be expected from VTI processing in the Gulf of Mexico (Meadows and Abriel, 1994;

Bartel et al., 1998), where widespread mis-ties in time-to-depth conversion provide

evidence of non-negligible anisotropy.

Here, we apply anisotropic processing to a 2-D synthetic data set generated by an

anisotropic finite-difference code. The model used in our synthetic test was fashioned

after a typical cross-section from the Gulf of Mexico (J. Leveille and F. Qin, pers.

comm.) and contains a number of VTI layers. Although the structural complexity of

the model is moderate, it includes a salt dome surrounded by sedimentary layers and a

relatively steep fault plane (Figure 1). The anisotropic parameters can be considered

as “best-guess” values that may well understate the magnitude of anisotropy in many

areas of the Gulf of Mexico.

After the parameter-estimation step based on the modified Alkhalifah-Tsvankin

method, we perform prestack depth migration of the data by means of a 45◦ finite-

difference scheme (Han, 1998). First, the correct anisotropic model is used to generate

a section that serves as a benchmark for comparison with other results. To simulate

the output of a conventional processing sequence, we carry out isotropic migration

with two different choices of the velocity function and discuss the distortions caused

by the influence of anisotropy. Also, we interpolate and extrapolate the results of the

anisotropic parameter estimation and perform depth migration with this approximate

anisotropic model (assuming that the vertical velocity is equal to the zero-dip NMO
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velocity). Although the model is weakly anisotropic, the VTI images have a superior

quality, especially in the focusing and positioning of the fault plane.

PARAMETER ESTIMATION

Methodology

Suppose a dipping reflector is embedded in a vertically inhomogeneous VTI medi-

um. The effective normal-moveout velocity and one-way zero-offset traveltime for

such a model are given by (Appendix A)

V 2
nmo,eff(p, τ) = − 1

t(p, τ)

∫ τ

0
V0(ξ)q′′(ξ) dξ , (3)

and

t(p, τ) =
∫ τ

0
V0(ξ) [q(ξ)− p q′(ξ)] dξ . (4)

In equations (3) and (4), p is the horizontal component of the slowness vector (the

ray parameter) of the zero-offset ray, the integration variable ξ has the meaning of the

one-way vertical traveltime (τ is the one-way vertical traveltime from the surface to

the zero-offset reflection point), and t(p, τ) is the one-way traveltime along the zero-

offset ray. The vertical slowness component q ≡ q(p) and its derivatives q ′ ≡ dq/dp

and q′′ ≡ d2q/dp2 can be obtained in an explicit form using the Christoffel equation.

A key result of Alkhalifah and Tsvankin (1995) is that both Vnmo,eff(p, τ) and t(p, τ)

depend on only two combinations of interval parameters of VTI media – the zero-dip

NMO velocity Vnmo,int(0, τ) and the parameter η int(τ). Therefore, the measurements

of the effective NMO velocity Vnmo,eff(p, τ) for two different dips (or for two values of

p) can be inverted for Vnmo,int(0, τ) and η int(τ).

In most cases, we can use horizontal events to determine the velocity Vnmo,eff(p =

0, τ) as a function of the vertical traveltime τ . Then, the interval values Vnmo,int(0, τ)
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can be found from the conventional Dix (1955) equation,

V 2
nmo,eff(0, τ) =

1

τ

∫ τ

0
V 2

nmo,int(0, ξ) dξ . (5)

Obtaining Vnmo,int(0, τ) from equation (5) essentially amounts to differentiating the

effective velocities Vnmo,eff(0, τ), which inevitably leads to amplification of errors in ve-

locity picking. To mitigate this instability, equation (5) can be solved by the technique

described in Grechka et al. (1996). This approach is based on approximating the ve-

locity picks by Chebyshev polynomials and finding the interval velocity Vnmo,int(0, τ)

in the Chebyshev domain. The desired smoothness of the solution and the degree

to which errors in the effective velocities propagate into the interval values can be

regulated by choosing the appropriate number of polynomials.

Once the function Vnmo,int(0, τ) has been estimated, the interval parameter η can

be found from the NMO velocity and zero-offset traveltime of dipping events [equa-

tions (3) and (4)]. The input data include the triplets of the horizontal slowness p

(reflection slopes on zero-offset sections), the corresponding zero-offset traveltime t,

and the effective NMO velocity Vnmo,eff . These triplets can be picked from the zero-

offset time sections generated for a range of stacking velocities or from semblance

velocity panels at a number of adjacent common-midpoint (CMP) locations. The

time-varying function η int(τ) is represented as a sum of Chebyshev polynomials and

reconstructed from the triplets {t, p, Vnmo,eff} using equations (3) and (4) in the fol-

lowing way. For a trial solution η int(τ) (specified at each iteration) and the zero-offset

traveltime t(p, τ) of a particular velocity pick, we find the corresponding vertical time

τ using equation (4). Next we calculate the velocity Vnmo,eff(p, τ) from equation (3)

and find the difference between the computed and measured values. Then η int(τ) is

updated to find the model that provides the best fit to all picked values Vnmo,eff(p, τ).
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Data processing

The parameter-estimation algorithm described above was applied to a 2-D data

set computed by finite differences for the VTI model shown in Figure 1. The section

contains a salt body and a fault plane, which produce dipping events needed to

estimate the parameter η. Judging by the magnitude of the coefficients ε and δ, some

of the intervals may be considered as moderately or even strongly anisotropic, with

the parameter ε approaching 0.3 in a thin layer at a depth of about 4.5 km (see

Figure 1b). The average value of δ, however, is only about 0.1. Also, the key time-

processing parameter η [equation (2)] is relatively small throughout the model, with a

maximum value of 0.09 and average close to 0.05 (Figure 1d). Whereas such η values

are not expected to cause serious problems in the focusing of reflection events, it is

still instructive to evaluate possible image distortions and the performance of isotropic

algorithms for such “quasi-elliptical” VTI media, which have moderate values of δ.

The function η int(τ) was obtained as follows:

• Common-shot gathers were resorted into common-midpoint (CMP) gathers. Since

the inversion algorithm needs moveout of dipping events to estimate η, we used only

those CMP gathers which contain reflections from the top of the salt body (CMP

locations from 4.9 to 6.7 km) and from the fault plane (CMP locations from 11.0 to

16.8 km). Thus, only about 30% of the data (Table 1) were actually included in the

anisotropic parameter estimation.

• Conventional semblance analysis was used to obtain Vnmo,eff(0, τ) from subhorizontal

events and the triplets {t, p, Vnmo,eff} from the reflections from the right flank of the

salt body and the fault plane. The ray parameter (horizontal slowness) p for dipping

events was determined using the lateral time shift of the corresponding semblance

velocity maxima.

• The parameter-estimation algorithm described above [based on equations (3)–(5)]

was applied to invert the zero-dip velocities Vnmo,eff(0, τ) and the triplets {t, p, Vnmo,eff}
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Fig. 1. Depth section showing parameters of the Amerada VTI model: (a) the P -

wave vertical velocity V0; (b) and (c) the Thomsen (1986) anisotropic parameters ε

and δ; (d) the Alkhalifah-Tsvankin parameter η.
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for the interval values Vnmo,int(0, τ) and η int(τ).

Model size: 21,945 m × 9,144 m

Number of shots: 361

Shot spacing: 61 m

Number of receivers per shot: 500

Receiver spacing: 12.2 m

Dominant frequency: 20 Hz

Recording time: 8 s

Sample rate: 4 ms

Aperture for modeling: −3, 048 m to +6, 096 m

Table 1. Parameters used in the finite-difference modeling.

There are two main sources of distortions in the estimation of the interval values of

Vnmo and η: incorrect model assumptions and errors in velocity picking. The inversion

procedure is designed for laterally homogeneous media above each dipping reflector,

whereas in our model most “subhorizontal” interfaces have dips up to 15◦. Ignoring

the dips in evaluating Vnmo(0) for this model leads to velocity errors (estimated from

the isotropic cosine-of-dip dependence of NMO velocity) reaching 3.5%.

Uncertainty in the velocity picking for dipping events may give rise to errors of

similar magnitude. Figure 2 displays a typical CMP gather located at 15.0 km and the

corresponding semblance panel. The arrival reflected from the fault plane is recorded

at a zero-offset time of 3.85 s. Apparently, this reflection has a much higher stacking

(NMO) velocity than those of the subhorizontal events near zero-offset times of 3.67

s and 4.05 s (Figure 2b). Partly due to the interference with the event at 3.67 s, the

fault-plane reflection produces a relatively broad semblance maximum (Figure 2a)

covering approximately 0.15 km/s along the velocity axis. As a result, we can expect
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Fig. 2. Typical semblance panel (a) and the corresponding CMP gather (b).

the uncertainty in velocity picking of about 3–4%.

Naturally, this error propagates into the interval values of Vnmo and η with am-

plification, thus causing instability in the straightforward Dix-type differentiation.

Application of Chebyshev polynomials, however, amounts to a smoothing operation

that helps to stabilize the inversion procedure and eliminate spurious points on the

interval curves.

Parameter-estimation results

The curves Vnmo,int and η int obtained as functions of the two-way vertical trav-

eltime for the left portion of the model are shown in Figure 3. The zero-dip NMO

velocity was determined by semblance velocity analysis of subhorizontal events, while

η was estimated using the NMO velocities and zero-offset traveltimes of reflections

from the right flank of the salt body (Figure 1). Due to the regularization (smooth-

ing) properties of our inversion algorithm, the curve η int(τ) represents a sufficiently
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Fig. 3. Interval values of (a) Vnmo and (b) η (solid lines) estimated as functions of

the two-way vertical traveltime using reflections from subhorizontal interfaces and

from the right flank of the salt body. The velocity analysis was performed for CMP

locations from 4.9 to 6.7 km. The dashed line shows the correct η-function for location

5.4 km.

accurate but smoothed version of the actual discontinuous η-function (dashed line in

Figure 3b).

Figure 4 displays the inversion results for the right side of the model, obtained

using reflections from the dipping fault plane. In this case, we were unable to detect

the low-η layer at a vertical time of 3 s (Figure 4b), which was too thin to pro-

duce a noticeable change in the effective stacking (NMO) velocity (for the level of

velocity errors described above). Apart from this problem, the algorithm adequately

reconstructed the low-frequency trend of the interval function η int(τ).
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Fig. 4. Interval values of (a) Vnmo and (b) η (solid lines) estimated using reflections

from subhorizontal interfaces and from the fault plane. The velocity analysis was

performed for CMP locations from 11.0 through 16.8 km. The dashed line shows the

correct η-function for location 13.8 km.

DEPTH MIGRATION

To resolve the vertical velocity needed for depth migration, P -wave reflection

moveout for our model has to be combined with other data, such as reflection trav-

eltimes of shear or converted waves; this joint inversion was not attempted on this

data set. Nonetheless, we carried out prestack depth migration to evaluate image dis-

tortions caused by replacing the correct anisotropic velocity field with the following

models:

1. Anisotropic model with the inverted η and the “best-guess” vertical velocity equal

to the zero-dip NMO velocity.

2. Purely isotropic model with the velocity equal to either the zero-dip NMO velocity
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Fig. 5. Prestack depth migration for the correct anisotropic model.

or the actual vertical velocity.

We used an extension to VTI media of the migration algorithm of Han (1998) based

on a 45◦ finite-difference scheme. Figure 5 shows a section obtained by prestack depth

migration of the data using the correct VTI model from Figure 1. Both the salt body

in the left part of the model and the fault plane are imaged reasonably well (also, see

the close-up in Figure 6a). The left part of the bottom of the salt body, however, is

almost invisible because of the limited recording aperture (Table 1). Also, some of

the multiple arrivals, such as those inside the salt, were only partially attenuated in

the stacking of the migrated data.

The migrated images in Figures 7 and 6b were obtained for an anisotropic ve-

locity model based on the parameter-estimation results described above. Since the

time-dependent η function was determined for only two ranges of CMP locations, the

η section was built by interpolating and extrapolating the curves from Figures 3b

and 4b. This smoothed and rather crudely interpolated version of the actual η field,

however, did not cause a degradation in the quality of image, except for a slight dete-

rioration in the focusing of the fault plane [compare sections (a) and (b) in Figure 6].
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tropic migration for the correct model; (b) anisotropic migration using the estimated
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migration using the vertical velocity V0.
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Fig. 7. Migration using an anisotropic model obtained by interpolation and extrapo-

lation of the inverted functions η int [Figures 3 and 4]. The vertical and NMO velocity

are taken equal to each other (δ = 0).

Clearly, fine details of the η-section do not have much influence on the migration

results. Also, the magnitude of η in the model was so small (on average, η ≈ 0.05,

Figure 1d) that high accuracy in restoring η was unnecessary.

To specify the vertical velocity for the anisotropic migration in Figures 7 and 6b,

we assumed that the parameter δ = 0 [i.e., V0 = Vnmo(0)], which leads to the incorrect

depth scale for the whole image. It is clear from equation (1) that the percentage

depth error in Figure 7 should be close to the average value of δ above the reflec-

tor. Indeed, the depth of subhorizontal reflectors in the lower right part of Figure 7

is overstated by about 7%, while the average δ in this part of model is about 0.1

(Figure 1c). Except for the depth error, the image in Figure 7 is quite close to the

benchmark section from Figure 5. For more structurally complicated models, how-

ever, it may be necessary to know all three relevant parameters (V0, ε and δ) to ensure

proper focusing of reflectors (Grechka et al., 2000a,b).

Figure 8 can be considered as the best possible output of the conventional isotropic

processing sequence. The isotropic velocity model used to generate Figure 8 is based

15



0

2

4

6

8

D
ep

th
 (

km
)

0 2 4 6 8 10 12 14 16 18 20 22
Midpoint (km)

Fig. 8. Isotropic migration for a model with the medium velocity equal to the

correct NMO velocity Vnmo(0).

0

2

4

6

8

D
ep

th
 (

km
)

0 2 4 6 8 10 12 14 16 18 20 22
Midpoint (km)

Fig. 9. Isotropic migration for a model with the velocity equal to the correct

vertical velocity V0. The arrows mark some of the intersecting reflectors.
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on the correct NMO velocity for horizontal reflectors conceivably obtained by error-

free semblance velocity analysis. Comparing the lower right portions in Figures 8

and 5, we notice that the subhorizontal reflectors are mispositioned in depth, which

was also the case in Figure 7. The overall quality of the image, however, is comparable

to that in Figures 5 and 7. For example, there are no crossing features (conflicting

dips) in the vicinity of the fault, which would have been indicative of the presence of

anisotropy. The continuity and crispness of the fault-plane reflection are somewhat

inferior to those in Figure 7, but the difference is not dramatic (compare Figures 6b

and 6c). The acceptable quality of the isotropic result is explained by the small

values of the η coefficient that controls the dip-dependence of NMO velocity in VTI

media. Ignoring η in this model cannot cause substantial distortions in the stacking

of dipping events, while the correct Vnmo(0) ensures that the horizontal reflectors are

focused well.

Another option in choosing the “isotropic” migration velocity is illustrated in

Figures 9 and 6d. This time, the data were migrated using the correct vertical

velocity V0, which in some cases may be obtained from check shots and well logs. As

expected, all subhorizontal reflectors in Figures 9 and and 6d are correctly positioned

in depth. However, the quality of the image is considerably lower than that on the

isotropic section migrated with the correct NMO velocity Vnmo(0). The difference

between V0 and Vnmo(0) causes misstacking of the subhorizontal events throughout

the model. Since the wrong values of Vnmo(0) also distort the NMO velocity of dipping

events, the reflections from the fault plane (Figure 6d) and from the flank of the salt

dome are poorly focused and positioned. Also notice the intersecting reflectors with

different dips marked by arrows in Figure 9.
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DISCUSSION AND CONCLUSIONS

This synthetic data test illustrates parameter-estimation and imaging issues for

VTI media with a small time-processing parameter η (average η ≈ 0.05) and a larger

parameter δ (average δ ≈ 0.1) responsible for time-to-depth conversion. Combin-

ing NMO (stacking) velocities for subhorizontal and dipping events, we obtained the

zero-dip NMO velocity Vnmo(0) and the Alkhalifah-Tsvankin coefficient η (the two

parameters needed for time imaging) as functions of the vertical reflection time. The

inversion algorithm, based on the representation of both parameters through Cheby-

shev polynomials, allowed us to reduce the instability in the Dix-type differentiation

and reconstruct the smooth components of the vertical variation in Vnmo(0) and η.

Dipping reflections from a fault plane and the salt body were available over only

two limited ranges of CMP locations on the left and right sides of the model (as is often

the case in practice). Therefore, 1-D η-estimation could be carried out separately for

those two groups of dipping events, with subsequent interpolation and extrapolation

of the η-curves for the whole model. Although this procedure reconstructs only large-

scale variations in η, a smoothed version of the η-field is usually sufficient for imaging

purposes.

Depth migration of the inverted anisotropic velocity model produces a high-quality

image close to that generated for the exact velocity field. Some inaccuracies in η

estimation do not cause visible distortions in the focusing and positioning of reflection

events, in part because the magnitude of η in the model is rather small. However,

since the vertical velocity for this model cannot be determined from surface P -wave

data, the image has the wrong depth scale (it was assumed that the vertical and

NMO velocities were equal to each other).

The same mispositioning of subhorizontal events is observed on the depth section

generated for a purely isotropic model with the velocity equal to the correct zero-
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dip NMO velocity Vnmo(0). Due to the small η-values, the overall image quality

is comparable to that of the anisotropic section, except for some degradation in the

focusing and continuity of the fault-plane reflection. Distortions in the isotropic image

based on the correct zero-dip stacking velocity become significant only for models with

average η values reaching or exceeding 0.1 (Alkhalifah et al., 1996; Alkhalifah, 1997).

Since the vertical velocity V0 is needed to image horizontal events at the correct

depth, the data were also migrated with the isotropic velocity model based on V0.

Although reflector depths in this case are indeed accurate, both the horizontal and

dipping reflections are poorly focused because in anisotropic media the vertical veloc-

ity is inappropriate for stacking reflection events of any dip. Note that the difference

between the vertical velocity and the zero-dip NMO velocity is determined by the

anisotropic coefficient δ, which is greater than η in this model.

Thus, application of isotropic depth migration in anisotropic media leads to in-

ferior image quality and/or inaccurate positions of reflectors in depth. No single

velocity is sufficient for generating a section with both good focusing and the correct

spatial position of reflection events, even for layer-cake geometry. In models with

moderate structural complexity, anisotropic migration with the correct inverted pa-

rameters Vnmo(0) and η provides good focusing and positioning of reflection events,

but may have the wrong depth scale. To obtain the vertical velocity and avoid depth

errors in migration, P -wave reflection traveltimes in models with a laterally homoge-

neous VTI overburden should be supplemented by shear (or converted-wave) data or

borehole information, such as check shots or well logs.
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APPENDIX A: NMO VELOCITY AND ZERO-OFFSET

TRAVELTIME IN VERTICALLY INHOMOGENEOUS VTI MEDIA

We consider reflection moveout in the dip plane of a reflector overlaid by a ver-

tically inhomogeneous VTI medium. The goal of this appendix is to express both

NMO velocity and zero-offset traveltime through the interval values of the horizontal

and vertical components of the slowness vector.

An exact expression for the dip-line NMO velocity in a symmetry plane of an ani-

sotropic layer was given by Tsvankin (1995) and rewritten in terms of the components

of the slowness vector by Cohen (1998):

V 2
nmo(p) =

q′′

p q′ − q , (A-1)

where p and q ≡ q(p) are the horizontal and the vertical components of the slowness

vector, respectively, q′ ≡ dq/dp, and q′′ ≡ d2q/dp2; all quantities are evaluated for the

zero-offset ray. The slowness vector can be obtained analytically by solving Christoffel

equation, which reduces (for a given phase or slowness direction) to a cubic equation

for the slowness-squared. The derivatives q′ and q′′ can be found in explicit form by

differentiating the Christoffel equation. Equation (A-1) is a special case of a more

general expression obtained by Grechka et al. (1999) for azimuthally varying NMO

velocity in an arbitrary anisotropic layer above a dipping reflector.

The one-way traveltime t(p) along an oblique ray in a vertical symmetry plane of

a homogeneous medium is given by (Grechka and Tsvankin, 1999)

t(p) = τV0 (q − p q′) , (A-2)

where τ is the one-way traveltime along the vertical projection of the ray, and V0 is

the vertical velocity.
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For vertically inhomogeneous media, the differential of the traveltime along a ray

arc can be written as

dt(p) = V0 (q − p q′) dτ . (A-3)

In the integral form, equation (A-3) yields

t(p, τ) =

τ∫

0

V0(ξ) [q(ξ)− p q′(ξ)] dξ . (A-4)

According to Snell’s law, the horizontal slowness p in equation (A-4) does not change

along the ray.

To obtain NMO velocity in vertically inhomogeneous media, we apply the Dix-

type averaging (Alkhalifah and Tsvankin, 1995) to equation (A-1):

V 2
nmo,eff(p, t(p, τ)) =

1

t(p, τ)

t∫

0

q′′(ν)

p q′(ν)− q(ν)
dν , (A-5)

where integration is performed along the (generally oblique) zero-offset ray. To make

equation (A-5) compatible with equation (A-4), it is convenient to use the vertical

traveltime as the integration variable. Taking equation (A-3) into account, we repre-

sent equation (A-5) as

V 2
nmo,eff(p, τ) = − 1

t(p, τ)

τ∫

0

V0(ξ) q′′(ξ) dξ . (A-6)

Equations (A-4) and (A-6) express the NMO velocity and zero-offset traveltime in

vertically inhomogeneous VTI media in a form convenient for moveout inversion.
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