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Estimation of fracture parameters from reflection seismic data—Part II:
Fractured models with orthorhombic symmetry

Andrey Bakulin*, Vladimir Grechka¥, and llya Tsvankin?

ABSTRACT

Existing geophysical and geological data indicate that
orthorhombic media with a horizontal symmetry plane
should be rather common for naturally fractured reser-
voirs. Here, we consider two orthorhombic models: one
that contains parallel vertical fractures embedded in a
transversely isotropic background with a vertical sym-
metry axis (VTI medium) and the other formed by two
orthogonal sets of rotationally invariant vertical frac-
tures in a purely isotropic host rock.

Using the linear-slip theory, we obtain simple ana-
lytic expressions for the anisotropic coefficients of ef-
fective orthorhombic media. Under the assumptions of
weak anisotropy of the background medium (for the first
model) and small compliances of the fractures, all ef-
fective anisotropic parameters reduce to the sum of the
background values and the parameters associated with
each fracture set. For the model with a single fracture
system, this result allows us to eliminate the influence of
the VTI background by evaluating the differences be-
tween the anisotropic parameters defined in the vertical
symmetry planes. Subsequently, the fracture weaknesses,
which carry information about the density and content
of the fracture network, can be estimated in the same
way as for fracture-induced transverse isotropy with a
horizontal symmetry axis (HTI media) examined in our

previous paper (part I). The parameter estimation pro-
cedure can be based on the azimuthally dependent re-
flection traveltimes and prestack amplitudes of P-waves
alone if an estimate of the ratio of the P- and S-wave
vertical velocities is available. It is beneficial, however,
to combine P-wave data with the vertical traveltimes,
NMO velocities, or AVO gradients of mode-converted
(PS) waves.

In each vertical symmetry plane of the model with
two orthogonal fracture sets, the anisotropic parameters
are largely governed by the weaknesses of the fractures
orthogonal to this plane. For weak anisotropy, the frac-
ture sets are essentially decoupled, and their parameters
can be estimated by means of two independently per-
formed HTI inversions. The input data for this model
must include the vertical velocities (or reflector depth)
to resolve the anisotropic coefficients in each vertical
symmetry plane rather than just their differences.

We also discuss several criteria that can be used to
distinguish between the models with one and two frac-
ture sets. For example, the semimajor axis of the P-wave
NMO ellipse and the polarization direction of the ver-
tically traveling fast shear wave are always parallel to
each other for a single system of fractures, but they may
become orthogonal in the medium with two fracture
sets.

INTRODUCTION

This is the second part of our series of three papers on char-
acterization of naturally fractured reservoirs using surface seis-
mic data. The main goal of the series is to provide a connection
between fracture detection methods and rock physics models
of fractured media, such as those developed by Hudson (1980,
1981, 1988), Schoenberg (1980, 1983), and Thomsen (1995).
In particular, we are interested in elucidating the dependence

of reflection seismic signatures on the physical properties of
the fractures and in developing inversion algorithms for esti-
mating fracture parameters using P-wave and converted (PS)
reflection data.

In the first paper of the series (Bakulin et al., 2000; hereafter
referred to as part I), we address these problems for transverse
isotropy with a horizontal axis of symmetry (HTI media), which
describes a single set of vertical, parallel, rotationally invariant
fractures in a purely isotropic background medium. HTT is the
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simplest azimuthally anisotropic model that provides valuable
insights into the behavior of seismic signatures over fractured
formations.

However, since the rock matrix usually exhibits some form
of anisotropy, it is difficult to expect the HTI model to be ade-
quate for typical fractured reservoirs. Here, we extend the ap-
proach of part I to more complicated, but likely more realistic,
orthorhombic models. The description of seismic signatures in
orthorhombic media can be simplified significantly by applying
Tsvankin’s (1997b) notation based on the analogy between the
symmetry planes of orthorhombic and T media. For instance,
P-wave velocities and traveltimes are fully controlled by the
P-wave vertical velocity and five dimensionless anisotropic co-
efficients, rather than by nine stiffnesses in the conventional
notation. Also, this parameterization yields concise exact ex-
pressions for the NMO velocities of pure modes reflected from
a horizontal interface (Grechka and Tsvankin, 1998).

As shown by Grechka et al. (1999), eight out of the nine pa-
rameters of orthorhombic media with a horizontal symmetry
plane can be obtained from the NMO velocities of horizontal
P- and split PS-events, provided the vertical velocities or re-
flector depth are known. Reflection moveout of P-waves alone
is sufficient to find the orientation of the symmetry planes,
the NMO velocities within them, and three anellipticity coef-
ficients n. The parameters 1, however, can be determined only
if dipping events or nonhyperbolic moveout is available.

While orthorhombic symmetry may be caused by a variety
of physical reasons, we restrict ourselves to two orthorhombic
models believed to be most common for fractured reservoirs:
(1) a single set of vertical cracks in a transversely isotropic
background with a vertical symmetry axis (VTI) and (2) two
systems of vertical fractures orthogonal to each other in an
isotropic background medium. If the intrinsic anisotropy of
the host rock and the anisotropy induced by the fractures are
weak, the anisotropic coefficients of the background and frac-
tures can be algebraically added in describing the effective
medium. This result provides important insights into the in-
fluence of fractures on the effective anisotropy and helps to
generalize the parameter estimation methodology of part I for
orthorhombic media. For both orthorhombic models we re-
late Tsvankin’s (1997b) anisotropic coefficients to the fracture
compliances and introduce practical fracture characterization
techniques operating with P- and PS-waves.

MODEL 1: ONE SET OF VERTICAL FRACTURES
IN A VII BACKGROUND

Effective orthorhombic medium

A single system of vertical fractures embedded in a VTI
matrix yields an effective orthorhombic medium in which one
of the symmetry planes coincides with the fracture plane. Ac-
cording to the linear-slip theory (Schoenberg, 1980, 1983), the
effective compliance tensor of such a medium can be obtained
by simply adding the excess fracture compliances to the com-
pliance of the background. [Part I compares the linear-slip
theory with the effective medium theories of Hudson (1980,
1981, 1988) and Thomsen (1995).] The inversion of the result-
ing compliance tensor yields the stiffness tensor (and the cor-
responding two-index stiffness matrix) of the fracture-induced
orthorhombic model. If the fracture faces are perpendicular

to the x;-axis, the effective stiffness matrix ¢ has the following
form (Schoenberg and Helbig, 1997; Appendix A):

Ci1 Ci2 Ci3 0 0 0
Crp C2 C3 0 0
C3 &3 C3 0 0
0 0 0 Cyq 0
0 0 0 0 cCs5 0
0O 0 0 0 0 cg
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where 0 is the 3 x 3 zero matrix and & and &, are given by
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Cizp(1 — An) C11b—ANC—b C13b<1—ANC—b>
11p 11p
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Ci3,(1—AN) Cip|{1—ANn— C3p, — AN—
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and
Caay, 0 0
=] 0 cu(l-Ay) 0 . (3)
0 0 Coop (1 — An)

Here cjj, are the stiffness coefficients of the VTI background
(constrained by €y, =Ci1,, —2Cssy); An, Ay, and Ay are the
dimensionless weaknesses of the fractures (Schoenberg and
Helbig, 1997; Bakulin and Molotkov, 1998), which change from
zero (no fractures) to unity (extreme fracturing). The tan-
gential weaknesses Ay and Ay provide a measure of crack
density, whereas the normal weakness Ay contains informa-
tion about the fluid content of the fractures and possible fluid
flow between the fractures and pore space (Schoenberg and
Douma, 1988; part I).

Matrix (1) describes a special type of orthorhombic media
with the stiffnesses satisfying the relation (Schoenberg and
Helbig, 1997)

Ci3(Ca2 + C12) = C3(Ci1 + Cr2). 4)

The existence of the additional constraint (4) stems from the
fact that while general orthorhombic media are characterized
by nine independent values of Gjj, the fracture-induced model
considered here is defined by only eight quantities (for a fixed
fracture orientation): five stiffness coefficients (Ci1,, Ci3,, Cs3,»
Cy4y,» and Ceg, ) Of the VTI background and three fracture weak-
nesses (Ay, Ay, and Ay).

The inversion of surface data for the physical parameters of
the fractures requires relating seismic signatures to the fracture
weaknesses. The results of Grechka and Tsvankin (1999) and
Grechka et al. (1999) show that, in orthorhombic media, such
commonly used signatures as NMO velocities and AVO gradi-
ents are most concisely expressed through the dimensionless
anisotropic coefficients introduced by Tsvankin (1997b). The
definitions of Tsvankin’s parameters €2, §0-23 and (12 in
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terms of the stiffness elements ¢; are given in Appendix B.
Substituting equations (1)—(3) for the stiffnesses of the
fracture-induced orthorhombic model into equations (B-1)-
(B-9) yields the anisotropic coefficients €, §, and y as functions
of AN, Ay, and Ay.

Weak-anisotropy approximation

The exact expressions for Tsvankin’s anisotropic parame-
ters in terms of the weaknesses, however, are too compli-
cated to give insight into the influence of the fractures on
the effective anisotropic model. Therefore, we assume that
Thomsen’s (1986) coefficients €y, 8y, and y, of the VT back-
ground, along with the weaknesses Ay, Ay, and Ay, are small
quantities of the same order. Linearization of the effective stiff-
ness matrix in these small quantitites [equation (A-17)] shows
that for weak anisotropy the effective anisotropic coefficients
€12 5123 "and (-2 should represent the sums of the VTI
background parameters e, 8y, and y, and the corresponding
anisotropic coefficients of the HTI medium resulting from the
fractures in an imaginary isotropic host rock sufficiently close
to the VTI background model. This isotropic medium can be
characterized, for instance, by the P- and S-wave velocities Vp
and Vs equal to the vertical velocities Vpg, and Vg, in the VTI
background.

Since this result provides a theoretical basis for most of the
subsequent discussion, we prove it for one of the anisotropic
coefficients—the parameter €® defined by equation (B-3).
Substituting the stiffnesses from equations (1) and (2) into
equation (B-3) yields

)
13p
Ci1, — C33, — An| Ci1, — o

11y

cis
2C33b 1—- Ay ——b
C11,C33y,

Using the definition of the coefficient €, in the VTI background
medium [e, = (Ci1y, — C33,)/(2C33,, ); see Thomsen (1986)], equa-
tion (5) can be rewritten as
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Linearizing this equation with respect to €, and Ay, we drop

the anisotropic term in the denominator to obtain

2
¢, —c
1 1
€@ x gy — Ay—b Do (7)
2C11,C33,,

Since (c};, — i3, )/(Ci1,Cs3,) is multiplied by the already small
weakness Ay, it can be replaced in the weak anisotropy ap-
proximation by the corresponding isotropic quantity 4g(1 — g),
where g=V§, /V3,, is the ratio of the squared vertical S-and
P-wave velocities in the background. Thus, equation (7) can
be represented as

€® ~ ey —29(1 — g)An. (8)

The combination —2g(1 — g)Ay can be recognized as the lin-
earization of the anisotropic coefficient ¢¥) (Riiger, 1997;

Tsvankin, 1997a) in an HTI medium due to a single set of verti-
cal fractures perpendicular to the x;-axis that are embedded in
a purely isotropic rock with the squared S-to-P velocity ratio
g (part I). Hence, equation (8) implies that

€@~ e+ M. 9)

We conclude that in the weak anisotropy limit the anisotropic
coefficient € reduces to the sum of the Thomsen background
parameter e, and the coefficient € of the HTI model due to
the fractures embedded in an isotropic medium close enough
to the VTI background medium. Similar linearizations for the
other anisotropic parameters of the effective orthorhombic
model are given below.

Symmetry plane [x;, x3] parallel to the fractures.—The lin-
earized anisotropic coefficients in the symmetry plane [X, X3],
derived from equations (B-6)—(B-8), have the following form:

e = ¢, (10)
sM = sy, (11)

and
PO = 4 22 5 = (12)

Therefore, for weak anisotropy coefficients ¢ and §1 coin-
cide with those of the VTI background medium. This is an
expected result; if rotationally invariant fractures are intro-
duced into an isotropic matrix, the plane [x,, 3] represents the
so-called isotropy plane of the effective HTI medium. In the
isotropy plane the velocities of all waves are not influenced
by the fractures and remain constant for all propagation direc-
tions (e.g., Tsvankin, 1997a). The coefficient y ) does not coin-
cide with y, only because, in contrast to the more conventional
model from part I, the fractures considered here are not rota-
tionally invariant (i.e., Ay # Ay). The difference between Ay
and Ay, however, has no bearing on parameters (V) and 5.

In addition to the basic set of anisotropic parameters intro-
duced by Tsvankin (1997b), it is useful to consider the anel-
lipticity coefficients 5->3 responsible for time processing of
P-wave data (Grechka and Tsvankin, 1999). For weak ani-
sotropy, the n coefficient in the [X;, X;]-plane given by equa-
tion (B-10) is also equal to the background value:

1 = np. (13)

Symmetry plane [x;, x3] perpendicular to fractures.—The
weak-anisotropy approximations of the anisotropic coeffi-
cients in the plane [x;, X3] are given by

€? = e, —29(1 — 9)An, (14)
8@ = 8, —2g9[(1 —2g9)An + Av], (15)
yO = — %, (16)
and
1® =y +2g[Av — gAN]. (17)

Each of the expressions (14)-(17) contains two terms with
a distinctly different physical meaning. The first term is the
corresponding anisotropic coefficient of the VTI background,



1806 Bakulin et al.

while the second term absorbs the influence of the fractures.
As discussed above for €®), the fracture-related terms in equa-
tions (14)—(17) are approximately equal (assuming Ay = Ay)
to the coefficients €V, §V) V) and nV) (respectively) derived
in partIforafracture set embeddedin anisotropic background.

The constraint on the effective stiffnesses [equation (4)]
leads to an additional relationship between the anisotropic co-
efficients. In the weak anisotropy limit, equation (4) can be
rewritten as

@y =

1 1-2
y — [3<2>_3<1)_(e@)_e(n)?ﬂ, (18)

49

It is interesting that the background parameters and the tan-
gential compliance Ay have no influence on constraint (18),
which depends only on the differences between the anisotropic
coefficients in the vertical symmetry planes, i.e., on €¥), §(V),
and y). As a result, equation (18) is analogous to the con-
straint given by Tsvankin (1997a) and part I for HTI media
due to rotationally invariant fractures (i.e., for Ay = Ay).

Horizontal symmetry plane [x1, x;].—The only Tsvankin’s
(1997b) anisotropic coefficient defined in the horizontal plane
is 8@ [equation (B-9)]. After linearization, it becomes

8® =2g[An — An. (19)

The parameter 6 does not contain any background aniso-
tropic coefficients because [X;, ;] is the isotropy plane of the
VTI medium. Since 8 is defined with respect to the x;-axis,
which is normal to the fractures, equation (19) coincides with
the expression for the generic Thomsen coefficient § obtained
for VTI media due to horizontal fractures by Schoenberg and
Douma (1988).

The linearized anellipticity coefficient ® [equation (B-12)]
has the form

n® =2g[An — gAN]. (20)

Estimation of the anisotropic parameters from reflection data

Inversion of reflection data for the effective parameters
of orthorhombic media is discussed by Grechka and Tsvankin
(1998, 1999), Riiger (1998), and Grechka et al. (1999). We now
give a brief overview of their parameter-estimation methods
operating with either wide-azimuth P-wave data or a combina-
tion of azimuthally dependent signatures of P- and PS-waves.

P-wave signatures.—NMO velocity of P-waves in a hori-
zontal orthorhombic layer is described by an ellipse with the
axes in the vertical symmetry planes (Grechka and Tsvankin,
1998). Since for both orthorhombic models considered here
the orientation of the symmetry planes is determined by
the strike of the fractures, the axes of the P-wave NMO el-
lipse yield the fracture azimuth(s). In the orthorhombic model
due to a single fracture set, 8¢ > §® [see equation (32)] and
the semimajor axis of the P-wave NMO ellipse points in the
direction of the fracture plane. This result holds for horizontal
transverse isotropy as well (part I).

If s = 8@ and the P-wave NMO velocity from a horizontal
reflector is azimuthally independent (i.e., the ellipse degener-
ates into a circle), the azimuths of the symmetry planes can be
obtained from the NMO ellipse of a dipping event (Grechka

and Tsvankin, 1999). P-wave reflection traveltimes from dip-
ping interfaces or the azimuthal variation of nonhyperbolic
moveout (Al-Dajani et al., 1998) can also be inverted for the
anellipticity coefficients n", n®, and n® [equations (13), (17),
and (20)]. Nonnegligible values of both 1" and n® help to
detect the presence of anisotropy in the background and dis-
criminate between HTI and orthorhombic models. For HTI
media, all anisotropic coefficients (including 7) in one of the
symmetry planes should go to zero.

The semiaxes Vé?lmo and V,g')]mo of the P-wave NMO el-
lipse from a horizontal reflector are given by (Grechka and
Tsvankin, 1998)

Vi o = Veov/1 + 250,

Hence, VS,LmO can be combined with the vertical velocity Vp
to determine 8V and §@. If Vp is unknown, the P-wave NMO
ellipse constrains the difference x between the two § coeffi-

cients:
(Vo) = (Veamo)” _ 6080
N N

P,nmo

(i=12). (1)

~s@_s)

X
(22)

Additional information for parameter estimation is provided
by prestack amplitudes of P-waves. In the weak-anisotropy
approximation, the variation of the P-wave amplitude varia-
tion with offset (AVO) gradient between the vertical symmetry
planes is governed by the expression § — §( — 8g(y@ — 1)
(Riiger, 1998). Therefore, if the squared velocity ratio g is
known and §® — §( has been found from the P-wave NMO
ellipse [equation (22)], the AVO gradient yields an estimate of

y@ 0,

P- and PS-wave signatures.—Although P-wave data alone
may be used to estimate a subset of the effective parameters of
orthorhombic media, it is highly beneficial to combine P-wave
traveltimes or amplitudes with the signatures of shear or con-
verted waves. Since S-waves are not generated in most explo-
ration surveys, we emphasize the joint inversion of P-waves
and P- to S mode conversions. The vertical traveltimes of P-
and PS-waves give a direct estimate of the vertical-velocity
ratio needed to compute the fracture weaknesses. The shear-
wave splitting parameter at vertical incidence, conventionally
evaluated from the time delays between the fast and slow shear
or converted waves, is close to y® — y (. Also, the difference
between the AVO gradients of the PS-wave in the vertical sym-
metry planes can be combined with the azimuthal variation of
the P-wave AVO gradient or the P-wave NMO ellipse to ob-
tain another estimate of y® — y(M. A more detailed discus-
sion of the azimuthal AVO inversion of PS-waves is given in
part L.

Grechka et al. (1999) outline the following methodology of
the joint moveout inversion of P- and PS-waves. Similar to
pure modes, the azimuthally varying NMO velocity of either
split PS-wave in a horizontal orthorhombic layer is described
by an ellipse aligned with the vertical symmetry planes. The
semiaxes of the NMO ellipses of the P- and two split PS-waves
(i.e., the symmetry-plane NMO velocities) can be used to re-
construct the NMO ellipses of the pure shear waves § and S.
Assuming that wave S represents an SV (in-plane polarized)
mode in the [X;, X3]-plane [the superscript (1)], the semiaxes of



Fractured Orthorhombic Media 1807

the shear-wave ellipses are expressed as
2 1
VE o = Ve 1+2y@ =vQ) (23)
V& imo = Veiv/1+ 200, (24)
VS imo = VeVl +20@), (25)

1 2
VS o = Ve /1 +2y 0 = v (26)

Here 6V and o are the anisotropic coefficients

Veo \*
(V_51> (e — M) (27)

and

&M

and

Vo)’

and Vg and Vg are the vertical velocities of the split shear

waves § and S:
14+2y®
Vg =V —_— 29
st 2,/ 1+2,® (29)

Ve = V). (30)

and

If one of the vertical velocities or the reflector depth is known
and the anisotropic parameters §(>) have been obtained from
P-wave moveout, the shear-wave NMO ellipses make it pos-
sible to find four additional coefficients—e (-2 and 2. The
only anisotropic parameter not constrained by conventional-

spread normal moveout in a horizontal orthorhombic layer is
8O,

Estimation of fracture parameters

Inversion for the weaknesses.—Since we are mostly inter-
ested in evaluating the properties of the fracture set, it is con-
venient to remove the influence of the background medium at
the outset of the inversion procedure. Inspection of equations
(10)—(17) shows that the contribution of the VTI background
parameters can be eliminated by computing the difference be-
tween the anisotropic coefficients in the planes parallel and
orthogonal to the fractures:

e® — e = _2g(1 — g)A, (31)
8@ —sM = —29[(1 —2g)An + Av] ~ x, (32)
L, 0 _%, (33)
n® — M =2g[Ay — gAn]. (34)

Equations (31)—(34) are identical to the expressions for e(),
M),y and ™) (respectively) in HTI media due to a single
set of vertical rotationally invariant fractures with the weak-
nesses Ay and Ay (part I). Therefore, the weaknesses can be
determined from equations (31)-(34) using the HTI expres-
sions described in detail in part I. We emphasize that obtaining
Ay and Ay requires knowledge of any two of the differences
€@ _ M 5@ _ 5 @ _ (M and n@ — O,

As discussed, x ~8® — 81 can be estimated from the elon-
gation of the P-wave NMO ellipse for horizontal events [equa-
tion (22)]. Also, »® and (") can be obtained using the NMO ve-
locities of dipping P-events or nonhyperbolic moveout. Thus,
P-wave moveout data provide sufficient information to deter-
mine the weaknesses Ay and Ay from equations (32) and (34):

(62 — 50) + (n® — )

S () B 9
1 [1-2g
& =z [T(na) ) — (59 — 5<1>)].
(36)

In principle, the inversion based on equations (35) and (36)
requires knowledge of the squared vertical-velocity ratio g,
which cannot be found without shear or converted-wave data.
However, numerical tests (and the results of part I) show that
even a relatively rough estimate of g is sufficient for recovering
the weaknesses with acceptable accuracy.

P-wave moveout data may provide not just the difference
between 7@ and (") but also the individual values of these co-
efficients. Therefore, in addition to substituting 7 — n® into
the equations for the weaknesses, we can use the approximate
relation (13), n™ =y, to determine the n coefficient in the
background VTI model.

If the P-wave moveout information is limited to the NMO
ellipse from a horizontal reflector, it is possible to obtain the
difference y® — y (@ by including the P-wave AVO gradients
in the directions parallel and perpendicular to the fractures.
The algorithm based on the NMO ellipses of horizontal events
and AVO gradients is identical to the one described in part I
for HTI media. The presence of anisotropy in the background
has no influence either on estimating §® — 81 and y® — y®
or on inverting these differences [equations (32) and (33)] for
the weaknesses Ay and Ay .

In multicomponent surveys, the vertical traveltimes of PS-
waves (in combination with P-wave data) provide estimates of
g and the splitting coefficient y? — y(®. Thus, another possi-
ble set of input parameters includes the P-wave NMO ellipse
from a horizontal reflector (yielding §® — §() and the vertical
traveltimes of converted modes.

Note that the weakness Ay does not enter any of the differ-
ences (31)—(34), despite the fact that it appears in equations
(12) and (16) for y( and y®. However, even the individual
values of (1) and y® constrain the combination y, — Ay /2 but
not Ay separately. The only source of information about Ay
is n® or 8 [equations (19) and (20)], which can be estimated
using the NMO velocities of P-wave reflections from dipping
interfaces (Grechka and Tsvankin, 1999):

an="" 4 ga 37
H= 29 + gAN. (37)

If dipping events are not available, the data cannot be in-
verted for the coefficient #® and, therefore, for the weakness
Ay. In this case, a reasonable simplifying assumption is that
the fractures are rotationally invariant and Ay = Ay. Then the
number of independent medium parameters reduces to seven,
and §® and 7 can be expressed as

53 = 5@ _ 50 _ (@ _ (1), (38)

77(3) - ,7(2) — 77(1)_ (39)
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Interpretation of the weaknesses in terms of the physical
properties of the fractures is discussed in part I. For rotation-
ally invariant penny-shaped cracks, the tangential weakness
Ay = Ay gives an estimate of the crack density, while the nor-
mal weakness Ay represents a sensitive, albeit nonunique, in-
dicator of fluid content.

Numerical examples.—Although the weak-anisotropy ap-
proximations provide useful insight into the parameter esti-
mation problem, it is preferable to use the exact equations for
actual inversion. In the examples below, we compute the frac-
ture weaknesses Ay, Ay, and Ay, along with the anisotropic
coefficient n, of the background, by inverting the values of x
[equation (22)], nV, n®, and n® presumably extracted from
P-wave seismic data. The goal of this numerical study is to ex-
amine the sensitivity of the inverted parameters to errors in the
input data and in the parameters of the background medium.

Our nonlinear inversion algorithm is based on equations (1)—
(3) for the stiffness elements and on the exact expressions for
the anisotropic coefficients given in Appendix B. The weak-
anisotropy approximations (13) and (35)—(37) are used only
to obtain the initial guesses for the weaknesses and the co-
efficient np. The parameters of the background medium are
9= Vg,/ Vo, =0.25,8,=0.2,and y, = 0.1 (e, can be expressed
through 3, and 7). Although the only background parame-
ter in equations (35)—(37) is the squared velocity ratio g, the
anisotropic coefficients &, and y;, of the VT medium are con-
tained in the exact equations for the stiffnesses and effective
anisotropic parameters and must be specified for the inversion.

o7 B
a

0.67 %o

0.5 H .'...

0.4 *ey

0.3,

0.2 R

0.k i . H

-0.35 -0.3 -0.25 -0.2

0.7

0.6¢4, .

0.5 R .°}O......’
: o....

0.4

0.3

0.2

0.1

0.05

As shown below, however, the inversion results are insensitive
to variations of g, &, and y;, within the range important in prac-
tice. The fracture set is defined by the weaknesses Ay =0.5 and
Ay = Ay = 0.2, which approximately correspond to values for
penny-shaped gas-filled cracks (see part I).

The inversion results are displayed in Figure 1. For the cor-
rect input parameters (and the correct background parameters
0, 8, and yp,), the inversion algorithm produces accurate values
of the weaknesses and n,. Errors in the measured anisotropic
parameters of up to £0.1 result in similar (often smaller) errors
in the inverted values, indicating that the parameter estimation
procedure is reasonably stable. As expected from the analytic
results, different inverted parameters are most sensitive to er-
rors in different measured quantities. For example, errors in x
produce comparable distortions in all three weaknesses, reach-
ing and sometimes exceeding £0.1 (Figure 1a). The anelliptic-
ity coefficient ny, is quite sensitive to errors in ") (Figure 1b)
and is almost independent of the other input parameters, in
accordance with the weak-anisotropy approximation (13). Er-
rors in M and n® of about £0.1 cause smaller errors (£0.05)
in the tangential weaknesses Ay and Ay than in the normal
weakness Ay (20.1; Figures 1b,c). The weakness Ay is sen-
sitive primarily to errors in n® (Figure 1d), as suggested by
equation (37). In the weak-anisotropy limit, Ay and Ay are in-
dependent of 5 [equations (35) and (36)], which is confirmed
by Figure 1d.

In the second test, we examine the influence of errors in
the background parameters g, 8y, and 4, (Which were assumed
known a priori in the previous example) on the inversion
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Fic. 1. Numerical inversion of x, n", n®, and »® for the fracture weaknesses Ay (dotted line), Ay (dash-dotted), Ay (dashed),
and the coefficient 7y, of the background medium (solid). Errors of +0.1 were introduced in (a) x, (b) 1, (c) '?, and (d) 5,
with the other input parameters held at the correct values. In the absence of errors, the inversion yields the correct values of the

weaknesses and 7, (large dots).
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results. Substantial errors in g of £0.1, or up to 40%, lead
to relatively small distortions of only about +0.03 in all in-
verted parameters except Ay (for Ay the errors reach £0.1;
Figure 2a). The anisotropic coefficients &, and y;, have an even
smaller influence on the estimated quantities, especially on the
tangential compliances (Figure 2b,c). This result is especially
encouraging because 8, and y, are difficult to estimate from
surface seismic data without information about the vertical ve-
locities or reflector depth.

Estimation of background parameters.—As discussed
above, the individual values of the anisotropic parameters € 1-2),
812 and ¥ can be found by combining P-wave moveout
data with the reflection traveltimes of PS-waves (provided the
reflector depthis known). Then it is possible to estimate not just
the fracture weaknesses but also the squared vertical-velocity
ratio g and the background anisotropic parameters €, &y, and
w [equations (10)—(12); to find yp,, we assume Ay = Ay].

For the numerical example in Figure 3, the input data in-
cluded the vertical and NMO velocities of P- and split S-waves,
where the shear-wave signatures were supposedly determined
from P and PS data. The NMO velocity of each mode was
computed in three azimuthal directions with a step of 45° and
approximated with an ellipse to find the NMO velocities in the
symmetry planes. Then the vertical velocities and symmetry-
plane NMO velocities were combined to determine €2, §(1:2),

0‘7_ .....
0.6,
0.50

0.41-

0.3

0.2 : rS

(IR | s S [

&5 02 0.25 03 0.35

and y? from equations (21) and (23)—(26). To check the in-
fluence of measurement errors, we added Gaussian noise with
a standard deviation of 2% to the vertical and NMO velocities
and performed the inversion for 200 sets of the distorted input
parameters. The algorithm is based on the exact expressions
for the anisotropic coefficients derived from equations (1)—(3),
with the starting model computed using the weak-anisotropy
approximation. Since the inversion errors in Figure 3 are lim-
ited by £0.05, the estimation of both weaknesses and all back-
ground parameters is sufficiently stable.

Background and
fracture parameters

S o RREREH

SOb /%Ob gb 6b ’Yb AN A |4

Fic. 3. Inversion of the vertical and NMO velocities of the P-
and split S-waves for the parameters of the fractures and VTI
background. The dots mark the correct values of the parame-
ters; it is assumed that Ay = Ay. The bars correspond to & one
standard deviation in the inverted quantities caused by
Gaussian noise in the input data with a standard deviation
of 2%.
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FIG. 2. Influence of the background parameters (a) g= VSJO /VF,0 , (b) &y, and (c) y on the inversion results from Figure 1 for the
correct values of x and »>?, Dotted llne—AN, dash-dotted—Ay ; dashed—A; solid—p,.
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MODEL 2: TWO ORTHOGONAL FRACTURE
SETS IN ISOTROPIC ROCK

Another practically important fractured model with or-
thorhombic symmetry is composed of two orthogonal vertical
fracture sets embedded in an isotropic or VTI background. To
simplify the parameter estimation procedure, we assume that
the fractures are rotationally invariant and the background ma-
trixis purely isotropic. Choosing the x;-axis to be perpendicular
to the first set of fractures, we obtain the compliance matrices
for both fracture systems in equations (A-3) and (A-14) where,
because of the rotational invariance, the compliances satisfy
Kvi = Ky1 =Ky and Ky, = Ky = Kr,. Building the effective
matrix of the excess compliance [equation (A-12)] and adding
the compliance of the isotropic background yields the effective
stiffness matrix [equation (A-1)]

cii ¢ ¢3 0O O O
C G C3 0 0 0

e Ci3 C3 Cc3 O 0 O _ ¢ |0
0 0 0 cg4 O O 01/&)°
0 0 0 0 Css 0
0O o0 0 O

0 ce6
(40)

where 0 is the 3 x 3 zero matrix and the matrices ¢ and ¢, are
given by

¢ =
(A +2p)lymg Alimyg Alimy
— Alymy (A4 2u)lsmy Alomy ,
Alimy Alamy (A +2p)(13ms —14)
(41)
&=
(1= Ata) 0 0
0 u(l — Atq) 0
0 0 (I-Am)(A - A1)

(1-AT1AT2)
(42)

Here, A and p are the Lamé parameters of the background
medium and

b=1-rAn1, l3=1-r*Ap,
Iy = 4r’g* Ani Ang,

my =1-—rAp,

lh =1—Ani,

my =1-rAny,
(43)

m =1-— Ang,

9=pu/(r+2u) = V3/ V3,
d=1- rZANlANz.

r=1-2g,

The values Ay; and At (i =1, 2) are the normal and tangential
fracture weaknesses (see part I) related to the fracture compli-
ances by the equations

Kni(d +2u)

Aynj = — 2 T2
N T K+ 20)

(44)

and
Ky
1+ Krip’

which represent a special case (valid for an isotropic back-
ground) of equations (A-4).

Since both fracture planes and the horizontal plane consti-
tute three orthogonal planes of mirror symmetry, the effective
medium must be orthorhombic with the nine stiffness elements
[equation (40)]. Our model, however, represents a special case
of general orthorhombic media with only six independent pa-
rameters: A, 4, Ani, At1, Anz, and A1,. As follows from equa-
tions (41) and (42), the three additional relationships (con-
straints) between the stiffnesses are

Ci2(C33 + C23) = C13(C22 + C23), (46)
1
C44 + Css _ _>’ (47)

(45)

Ari

2(ci1 +¢i3) = (Cr1C33 — € (
( 13) C44Css Co6

and

2(C + C3) = (G233 — G33) <M - i) (48)

C44Css Co6

Models with two identical orthogonal fracture sets, character-
ized by fewer independent parameters, are discussed in Ap-
pendix C.

Anisotropic coefficients in the weak-anisotropy limit

Equations (40)-(43), combined with the definitions from
Appendix B, can be used to express Tsvankin’s (1997b)
anisotropic coefficients in terms of the fracture weaknesses A+
and Ap;. Here we restrict ourselves to linearized expressions
obtained in the limit of small fracture compliances A1y, < 1
and Az <« 1. The result of this linearization can be predicted
from equation (A-13): since in the linear approximation frac-
ture systems are not influenced by each other, the effective or-
thorhombic medium is composed of two HTI media produced
by each fracture set individually.

Symmetry plane [x;, x3].—The anisotropic parameters with
the superscript (1) are defined in the symmetry plane [X;, X3],
which is parallel to the first set of fractures and orthogo-
nal to the second one. In the absence of the second set, the
[%2, X3]-plane would coincide with the isotropy plane of the
HTI medium associated with the first fracture system. There-
fore, we can expect these parameters to be largely influenced
by the second set of fractures orthogonal to the X,-axis. In-
deed, the linearized ¢, 8, y, and 5 coefficients in the [%, X3]
plane depend only on the weaknesses Ay, and Ar;:

eM = —29(1 — g)Ana, (49)

sM = —2g[(1 — 2g) ANz + A1a], (50)
A

y 0 = _%, (51)

17(1) = Zg[ATz — gANZ], (52)

where g=VZ/V} is the ratio of the squared S- and P-wave ve-
locities in the background. Equations (49)—(52) coincide with
the expressions for the anisotropic coefficients V), §V), V),
and n™) of the HTI model associated with the second fracture
set.
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Symmetry plane [x;, x3].—Likewise, the linearized aniso-
tropic coefficients in the symmetry plane [X;, X;] are governed
by the weaknesses of the first fracture set. As follows from the
symmetry of the model, the expressions for ¢, §®, y® and
7@ are fully analogous to equations (49)—(52):

e® = —29(1 — g)Ani, (53)
8@ = —29[(1 - 29)An1 + A11], (54)
yO = _%’ (55)
n® =2g[A11 — gAN1]. (56)

Symmetry plane [x1, x;].—The remaining anisotropic coef-
ficient 8 defined in the horizontal symmetry plane [x, %] is
given by

8(3) = Zg[AN1 — AT1] — 29[(1 — 2g)A N2+ ATZ]. (57)

The linearized parameter §© is equal to the sum of the generic
Thomsen coefficient § caused by horizontal fractures in VTI
media (the term 2g[Ani — A11]; see Schoenberg and Douma,
1988) and the HTI coefficient §) is due to vertical fractures
(part I). To explain this result, recall that §®) is defined with
respect to the X; -axis, which is orthogonal to the first fracture set
(so this set becomes horizontal if the x;-axis is made vertical in
VTI media) and lies in the planes of the second set of fractures
(making this set vertical).

The anellipticity coefficient 7 [equation (B-12] in the hor-
izontal plane is

72(3) — Tl(l) + 71(2)' (58)

Relations between anisotropic coefficients.—The nine stiff-
nesses of the effective orthorhombic model contain only six in-
dependent quantities, which leads to the three constraints (46)—
(48). Rewriting equations (46) and (47) through Tsvankin’s
(1997b) parameters yields

- 1 ; ~1—2g .

O — —[s® _ O —

L0 = 49[3 O } (=12, (59

where quadratic and higher-order terms in the anisotropic co-

efficients were dropped. The same result can be obtained from

the linearized expressions for the anisotropic coefficients given

above. Equation (59) is identical to the relationship between
€M, 8V and yV) of HTI media (Tsvankin, 1997a; part I).

The remaining constraint (48) takes the form

53 =51 4 5@ _ 262, (60)

Equations (59) and (60) show that in Tsvankin’s notation our

orthorhombic model can be fully described by the two vertical

velocities and four anisotropic coefficients §(? and (-2,

In the special case of penny-shaped gas-filled fractures, the
normal and tangential compliances are equal to each other
(Kn1 = K1 and Ky, = K1;) and, as noticed by Schoenberg and
Sayers (1995), the anellipticity parameters in the symmetry
planes go to zero:

n® = y@ = 3 0, (61)

Estimation of fracture parameters

The structure of equations (49)—(56) for the anisotropic co-
efficients suggests that estimation of the weaknesses of the

orthogonal fracture sets can be decomposed into two HTI-
type inversions in the vertical symmetry planes discussed in
part I. Here, we verify the accuracy of the weak-anisotropy ap-
proximations and outline two possible strategies for obtaining
the weaknesses from surface reflection data. One is based on
azimuthally dependent P-wave reflection moveout alone; the
other uses both P- and converted-wave data. In contrast to the
model with a single fracture set, we must know one of the ver-
tical velocities (or reflector depth) because the inversion algo-
rithm requires the individual values of Tsvankin’s anisotropic
coefficients rather than their differences.

P-wave inversion.—As for the model with a single fracture
set, the fracture orientation can be determined directly from
the P-wave NMO ellipse (or the NMO ellipses of converted
waves), unless the ellipse degenerates into a circle. This and
some other special cases are discussed in Appendix D. Suppose
the parameters 8V and §® have been found using the semiaxes
of the P-wave NMO ellipse from a horizontal reflector and the
vertical velocity [equations (21)]. Combining the § coefficients
with the anellipticity parameters M and n® (also determined
from P-wave moveout) allows us to solve equations (50), (52),
(54), and (56) for the weaknesses

ANt = —%, (62)

(| k]

i
and

Aty = ﬁ [%71(1) - 3(1):|- (65)

The equations for each pair of weaknesses [(62)—(63) and (64)—
(65)] are identical to those obtained in part I for HTI media
due to a single set of rotationally invariant fractures.

To test the accuracy of the weak anisotropy approximations
(62)—(65), we computed the exact anisotropic coefficients §(-2)
and n"? for three fractured models in Table 1 [using equations
(40)—(42) and the definitions from Appendix B] and inverted
them for the weaknesses in the limit of weak anisotropy. Table
1 shows that approximations (62)—(65) give reasonably good
estimates of the fracture weaknesses. The only significant er-
ror, in the tangential weakness of the second fracture set, is
unrelated to the first set because it remains the same for the
corresponding HTT model (third row in Table 1).

Inversion of P- and PS-wave data.—If dipping events are
not available and CMP spreads are not sufficiently long for
using nonhyperbolic moveout, it may be possible to find
the anisotropic coefficients €12, §0:2 and y1-? by combin-
ing P- and PS-wave data [equations (23)—(26)]. Since these
anisotropic parameters depend on only four fracture weak-
nesses, P- and PS-wave data (including the vertical veloci-
ties or reflector depth) provide useful redundancy in the in-
version procedure. In the weak-anisotropy approximation, the
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weaknesses can be computed, for example, as

Ve,
Arp=-2yP =1- <$> , (66)
sl
(1) 2
\Y/
Arp=-2yV=1- (—%J) : (67)
1 5@
ANni=———|A —_— 68
N1 1—29|: T1+2g ) (68)
1 s
Ang=——| A — . 69
N2 1—29|: T2+Zg (69)

Figure 4 shows the results of numerical inversion based
on NMO equations (23)—(26) and the exact expressions for
Tsvankin’s anisotropic coefficients in terms of the fracture
weaknesses. Similar to the numerical example in Figure 3,
the vertical velocities and azimuthally varying NMO veloci-
ties of P- and S-waves (input data) were distorted by Gaussian
noise with a standard deviation of 2%. The initial model was
found from the weak-anisotropy approximations (66)—(69).
The standard deviations for the inverted weaknesses are rela-
tively small, with errors in the tangential compliances Ar; and
A+, being somewhat lower than those in Ay; and Ayg,.

DISCUSSION AND CONCLUSIONS

Applying the linear-slip theory developed by
Schoenberg (1980, 1983), we studied two types of orthorhom-
bic media believed to be representative of naturally fractured
reservoirs. The first model contains a single set of vertical frac-
tures embedded in a VTI background (e.g., the background

Table 1. Comparison of the actual fracture parameters with
those estimated by inverting the exact anisotropic coefficients
[equations (40)-(42) and Appendix B] using the linearized
equations (62)—(65); the squared velocity ratio g = 0.25. The
first model is composed of two orthogonal fracture sets in an
isotropicbackground; the second and third models contain only
one fracture set (i.e., they have the HTI symmetry).

Model Fracture parameters Ay A1 Ano A1o
1 Actual 030 015 0.60 030
Estimated 028 014 0.66 021
2 Actual 030 0.15 0 0
Estimated 030 0.14 0 0
3 Actual 0 0 0.60 0.30
Estimated 0 0 0.67 021
.g g 0.6 = .. i ........ . . . .
c o : : :
o g 0.4 , .............................................. ................... !
S & : ; g
ge | | -
§ ‘g 0 .‘ ...................... . ................... I ..................... 1 .................... :

‘./S'/‘é’ AN1 AT1 AN2 AT2

FiG. 4. Inversion of the P- and S-wave vertical and NMO ve-
locities for the model with two orthogonal fracture sets. The
input data were contaminated by Gaussian noise with a stan-
dard deviation of 2%, and the inversion was repeated 200 times
for different realizations of the input parameters. The bars cor-
respond to £ one standard deviation in the inverted quantities.

anisotropy may result from fine layering), while the second is
produced by two orthogonal systems of rotationally invariant
vertical fractures in an isotropic host rock. For both effective
models we obtained Tsvankin’s (1997b) anisotropic parame-
ters, which capture the combinations of the stiffness coefficients
responsible for commonly measured seismic signatures.

To gain a better understanding of the influence of fractures
on the effective medium, we simplified the anisotropic param-
eters under the assumption of weak background and fracture-
induced anisotropy. For the model with a single fracture set,
the anisotropic parameters of the HTI medium due to the frac-
tures are added to the background coefficients to produce the
linearized effective parameters of the orthorhombic medium.
Therefore, by computing the difference between the effective
coefficients defined in the vertical symmetry planes, we elim-
inate the influence of the background and reduce the inverse
problem to that for horizontal transverse isotropy (part I). The
information necessary for this inversion procedure can be ob-
tained from azimuthally dependent P-wave reflection travel-
times alone if dipping events or nonhyperbolic moveout are
available (also, it is necessary to have an estimate of the ra-
tio of the P- and S-wave vertical velocities). Alternatively, the
inversion can be performed by combining the P-wave NMO el-
lipse from a horizontal reflector with other data, such as the az-
imuthally varying P-wave AVO gradient or the vertical travel-
times and, possibly, NMO velocities of the split converted (PS)
modes. For weak anisotropy, the algorithm based on the NMO
ellipses and AVO gradients of P- and PS-waves reflected from
horizontal interfaces is identical to that outlined in part I for
HTImedia (i.e., it is independent of the presence of anisotropy
in the background).

In the case of two orthogonal fracture sets, the linearized
expressions for the effective anisotropic coefficients in each
vertical symmetry plane contain only the contribution of the
fractures orthogonal to this plane. As a result, the inversion
for the fracture weaknesses splits into two separate inversion
procedures in the symmetry planes, which can be carried out
using the HTT algorithm of part I. In contrast to the model
with a single fracture set, however, determination of the weak-
nesses of both fracture sets requires knowledge of the vertical
velocities in addition to the azimuthally varying surface seismic
signatures.

Although both effective media considered here have or-
thorhombic symmetry, the results of our analysis indicate sev-
eral possible ways to identify the correct underlying physical
model. In both cases, the stiffness tensor is described by fewer
independent parameters than for general orthorhombic media,
and the anisotropic coefficients for the models with one and
two fracture sets satisfy different constraints. Another useful
criterion is the sign of the anisotropic parameters. The coeffi-
cients €1, 812 "and (12 for the model with two orthogonal
systems of fractures in an isotropic background are negative
[equations (49)—(51) and (53)—(55)]. In contrast, € and y (and
often § as well) defined in the fracture plane of the model with
a single fracture set in a VT background are usually positive.
Also, we can distinguish between the two models by compar-
ing the polarization direction of the vertically traveling fast
shear wave with the orientation of the semimajor axis of the P-
wave NMO ellipse. For one set of fractures (in either isotropic
or VTI background), they always coincide with each other;
for two systems of fractures with different fluid content, they
may become orthogonal. This happens, for example, if the two
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inequalities At > At and (1 —29)Any + Aty < (1 —29)Ana +
A+, (or, equivalently, 8@ > §() are satisfied simultaneously.
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APPENDIX A
COMPLIANCE FORMALISM FOR FRACTURED MEDIA

Here we review both exact and approximate methods of
obtaining effective parameters of fractured media using the
results of Schoenberg (1980, 1983), Schoenberg and Douma
(1988), Schoenberg and Muir (1989), Nichols et al. (1989), and
Molotkov and Bakulin (1997). A discussion of different ap-
proaches to effective medium theory for fractured models can
be found in part I.

To simplify the derivation of the effective elastic parameters
of fractured media, it is convenient to use the compliances s in-
stead of the stiffnesses ¢. The effective compliance matrix of a
fractured medium can be written as the sum of the background
compliance s, and the so-called matrix of excess fracture com-
pliance s+:

¢l =s=sp+ss. (A-1)

If the background is VTI, then the stiffness matrix is given by

Ciib Ci2p Cisp O 0 0
Cizp Cup Cip O 0 0
=5 = Cisp Ci3p Cip O 0 0 ’
0 0 0 Cs4p 0 0
0 0 0 0 C44p 0

0 0 0 0 0 Cep

(A-2)

where Cjop = Cj1p — 2Cs6p. The matrix s¢ of the excess compli-
ance of a fracture set with the normal in the X;-direction can
be written as

K 0 0 0 O 0
0O 00 0 O 0
o — 0 000 O 0 ’ (A-3)
0 000 O 0
0 0 0 0 Ky O
0 0 0 0 0 Ky

where Ky is the normal fracture compliance and Ky and Ky
are the two shear compliances in the vertical and horizontal di-
rections. The matrix s is no longer diagonal if the fractures are
corrugated (part I; for more details, see part III of this series).
Since Ky # Ky, fractures described by matrix (A-3) are some-
times called orthorhombic (Schoenberg and Douma, 1988).

It is convenient to replace the excess fracture compliances
Kn, Ky, and Ky by the following dimensionless quantities in-
troduced by Schoenberg and Helbig (1997):

A KnCi1p Ky Casp
N= T, v=—",
1+ KnCiip 14+ Ky Cap Ad)
< .
An H Co6b

1+ KnGCoon
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Then equation (A-3) becomes

St =
AN 490 0 0
Cip(l — AN)

0 000 0 0

0 000 0 0

0 000 0 0

A
0 000 — Y 0
Caap(1 — Av)
0 000 0 __H
Coon(1 — An)

(A-5)

We call Ay, Ay, and Ay the normal, vertical, and hori-
zontal weaknesses introduced by the fractures (Bakulin and
Molotkov, 1998). The weaknesses vary from 0 to 1, with the
zero value corresponding to unfractured media and unity de-
scribing heavily fractured media in which the P- (for Ay =1)
or S-wave (for Ay =1 or Ay =1) velocity vanishes for propa-
gation across the fractures (part I).

Substituting equations (A-2) and (A-5) into equation (A-1)
yields the effective stiffness matrix for a single fracture set em-
bedded in a VTI background (Schoenberg and Helbig, 1997):

c= (él 0), (A-6)

0 &
where
él =
Ci1, (1 — An) Ciz, (1 — An) C13,(1 — An)
2
¢ c
1 12
Ciz, (1 — An) Cllb—AN—b C13b<1—AN—b>
Cllb C11b ’

>
Ci2 Ci
Cizp(1 — An) C13b<1—AN—b) C33b—ANC—b

Ci1y 11,
(A-7)
Ca4b 0 0
=] 0 cup(l—Ay) 0 . (A-8)
0 0 Cosb(1 — An)

and 0 is the 3 x 3 zero matrix.
Alternatively, the same result can be obtained using the se-
ries

c=[sp+si] ' =[(I+ Sbe_])Sb]_l = cp[I+step] !
=¢p Z(—Sfcb)k, (A-9)
k=0

where L is the 6 x 6 identity matrix. Series (A-9) converges to
equation (A-6) if all eigenvalues of the matrix s ¢, have abso-
lute values less than 1. This is always the case if the weaknesses

An, Ay, and Ay, which define nonzero eigenvalues of the ma-
trix s; [see equation (A-5)], are sufficiently small.

Equation (A-9) can serve as the basis for developing use-
ful approximations for the effective stiffness matrix e¢. If the
crack density (or fracture intensity) is small and the weaknesses
{AN, Av, Ay} < 1, we may truncate series (A-9) by keeping
only linear terms with respect to Ay, Ay, and Ay:

(A-10)

It is interesting to note that equation (A-10) becomes exact
if we replace the matrix s¢ [equation (A-5)] by its linearized
version:

C~ Cy— CpStCph.

An/c, 0 0 0 0 0
0 0 0 0 0 0
gn_| 0 000 0 0
e 0 00 0 0 0
0 0 0 0 Av/C44b 0

0 000 0  Au/ce

(A-11)

Approximation (A-10) can be used to obtain two impor-
tant results. First, it can be extended in a straightforward way
to multiple fracture sets (Nichols et al., 1989). If the effective
compliance represents the sum of the excess compliances of N

fracture sets,
N
si=Y s,
i=1

then for the effective stiffness ¢ we have from equation (A-10)

(A-12)

N
CRCp— Z CpStiCh. (A-13)
i=1

The compliance matrix s;; cannot be described by equa-
tion (A-3) if the normal n; to the i th fracture set does not coin-
cide with the x;-axis. The matrices s; for arbitrary orientation
of n; may be obtained from equation (A-3) using the so-called
Bond rotation (Winterstein, 1990). For example, the compli-
ance matrix for a fracture set with the normal n; = [0, 1, 0] has
the form

0O 0 0 0 0 O
0 Kn 0 0 0 O
Sri = 0O 0 0 0 0 O (A-14)
0 0 0 Ky 0 O
0O 0 0 0 0 O
0 0 0 0 0 Ky

Second, equation (A-10) is well suited for deriving the weak-
anisotropy approximation for the stiffnesses of effective media
formed by fractures embedded in an anisotropic background.
We assume that the background medium is weakly anisotropic,
so that

iso ani

cp=¢,° +ecy, (A-15)

where ¢° is the stiffness matrix of a purely isotropic solid that
approximates ¢, in some sense, ¢i" is the anisotropic portion
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of ¢y, and ¢ <« 1. We also assume that the elements of the frac-
ture compliance matrix are of the same order as ¢ and can be
denoted as es¢. If we represent the effective stiffness matrix ¢
in a form similar to equation (A-15), equation (A-10) can be
rewritten as

¢ +ec®™ xep® + e — (ep° + ec)™) est (ep° + ec)™).

M =M — g%’ (A-17)
This equation, valid in the weak anisotropy limit, can be loosely
interpreted in the following way: the anisotropy ¢ of an ef-
fective medium containing fractures in an anisotropic back-
ground described by ¢, is equal to the sum of the background
anisotropy ¢ and the anisotropy caused by the fractures em-

bedded into any isotropic medium with ¢i° sufficiently close

A-16 . . B .
( ) to ¢, [see equation (A-13)]. The matrix c;° must satisfy the
Collecting the terms linear in ¢ yields inequality |(||eo||/lIcECl]) — 1] <e.
APPENDIX B

ANISOTROPIC PARAMETERS FOR ORTHORHOMBIC MEDIA

The basic set of the anisotropic parameters for orthorhom-
bic media has been introduced by Tsvankin (1997b). His no-
tation contains the vertical velocities of the P-wave and one
of the S-waves and seven dimensionless Thomsen-type (1986)
anisotropic coefficients. The definitions of those parameters in
terms of the stiffnesses ¢;; and density p are given below.

Vpo—the P-wave vertical velocity:

C
Vpg = |22 (p is density). (B-1)
V o

Vg—the velocity of the vertically traveling S-wave polarized

in the X;-direction:
C
Vo = 2. (B-2)
P

€@_—the VTI parameter ¢ in the [X;, X3] symmetry plane
normal to the X,-axis [this explains the superscript (2)]:

Ci1 —C33
6(2) = W (B'3)

8@ —the VTI parameter 8 in the [x;, X3] plane:

5@ = (€13 4 ©55)* — (€33 — Cs5)°

B-4
2€33(C33 — Cs5) B4)
y@—the VTI parameter y in the [x;, X;] plane:
Co6 — Ca4
y@=2_ (B-5)

2Cy4
eD—the VTI parameter ¢ in the [%,, X;] symmetry plane:
Cp — C
) = 22— 3 (B-6)
2C33

80 —the VTI parameter 8 in the [X,, X3] plane:

s = (C23 4 Caa)? — (Ca3 — Cay)?

B-7
2C33(C33 — Caa) (B-7)
y(D—the VTI parameter y in the [X;, X;] plane:
Co6 — Cs5
yH=2_2 (B-8)

2055

8®)—the VTI parameter § in the [X;, ;] plane (x; plays the
role of the symmetry axis):

50) = (€12 4 Co6)* — (Ci1 — Co6)°
2¢11(Ci1 — Co6) '

These nine parameters fully describe wave propagation in
general orthorhombic media. In particular applications, how-
ever, it is convenient to operate with specific combinations of
Tsvankin’s parameters. For example, P-wave NMO velocity
from dipping reflectors depends on three coefficients n, which
determine the anellipticity of the P-wave slowness in the sym-
metry planes (Grechka and Tsvankin, 1999). The definitions of
723 are analogous to that of the Alkhalifah—Tsvankin (1995)
coefficient n in VTI media:

nM—the VTI parameter 5 in the [X;, X3] plane:

(B-9)

M) _ 5
=< B-10
n T 250 (B-10)
n®—the VTI parameter 7 in the [X;, X;] plane:
@ _ 50
@ "9 B-11
1 14260 (B-11)
n®—the VTI parameter 7 in the [X;, %] plane:
(1) _ @ _ §0)(1 4 2¢@
€ € €
7 = ( ) (B-12)

(1+2e@)(1+25®)

Vertical transverse isotropy may be considered as a special
case of orthorhombic media, where

e =@ —¢, (B-13)

s =@ =, (B-14)

yO =y@ =y, (B-15)

§®) =0, (B-16)
and, as a consequence,

nM =y =n, (B-17)

n® =0. (B-18)
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APPENDIX C
TWO IDENTICAL FRACTURE SETS

If the model includes two identical orthogonal fracture sets
in a purely isotropic background, only four effective stiffnesses
out of nine remain independent because the stiffness matrix
depends on just four quantities: A, i, Ay; =Anz = Ay, and
At1= A7, = A7. From equations (40)—(43) it follows that in
this case Cj; = Cy, €13 = Cy3, and Cyy = Css. Constraints (47) and
(48) become identical and, together with equation (46), may
be reduced to

C12(C33 + C13) = C13(Ci1 + C13) (C-1)

and
2(C11 + C13)Ca4Co6 = (2Ce6 — Cas) (C11C33 — C3).  (C-2)

We can call this medium quasi-VTI because its stiffness ma-
trix is close to the one for vertical transverse isotropy. Un-
like real VTI media, however, the stiffnesses of the quasi-VTI
model satisfy constraints (C-1) and (C-2), which replace the
VTI relationship ¢;; =Cj, + 2Cs6. Indeed, the combination of
the stiffnesses that must vanish in VTI media can be written in
the exact form as

_ 4MZ(KT—KN)
(14 2uKn)(1 +2pKr)

Ci1 — 2Cs6 — Ci2 (C-3)

Hence, because of the difference between the normal and shear
compliances, the model with two identical fracture sets does not
have the VTI symmetry.

The anisotropic coefficients of quasi-VTI media are de-
scribed by equations (B-3)—(B-5), (B-13)—(B-15), and

42 (0 + ) (Kt — Kn)

5B — _

2+ ————
L H 1420+ pw)Ky

Interestingly, quasi-VTI media have two additional vertical
symmetry planes at 45° with respect to planes [x, X;] and
[%2, X3]. Clearly, expressions for anisotropic coefficients ¢,
802 and y ), which could be defined within these symmetry
planes, are different from those given by equations (49)—(58).

Two identical scalar fracture sets

If we further assume that both fracture sets are filled with
gas [i.e., Ky = K1; Schoenberg and Sayers (1995); part 1], the
effective medium becomes VTI. The effective stiffnesses given
below depend only on the background parameters A and © and
the weakness At = (Ktu)/(1 + Krp) [equation (45)]:

(I—-Ap[1+Ar(3—49)]

Cii = (A +2p) 5 , (C5)

1- A2
Ciz=A D Ly (C-6)

1-Ar(8g-5

s = (1 2219 23) (C-7)
Cu = p(1 — A7), (C-8)

1- Ay
Co6 "7 T AL (C-9)

where

D = (14 A7)[1 + A2 - 39)]. (C-10)

The five stiffness elements of this three-parameter VTI
medium are related by two constraints that can be ob-
tained by substituting the VTI relation ¢;; = Cj; +2Cgs into
equations (C-1) and (C-2). In terms of Thomsen’s (1986)
anisotropic coefficients, these constraints take the form

e=06=4y(1+2y)(1—-g). (C-11)

The equality € = § indicates that the effective medium is ellipti-

r A1+ 4uKy cally anisotropic. In the weak-anisotropy limit, equation (C-11)
x|+ 2 + p)(Ky — KN)"‘% yields
L + 2/,LKN
L2+ Ky e=05~4y(1-9). (C-12)
+2u2 KTM} ] (C-4)
1+ 2pKn For a typical value g=0.25, e =5 ~3y.
APPENDIX D

FRACTURE CHARACTERIZATION FOR TWO ORTHOGONAL FRACTURE SETS: SPECIAL CASES

Azimuthally independent P-wave NMO velocity

In contrast to the case of a single fracture set in an isotropic
or VTI background, the orientation of two orthogonal fracture
systems cannot always be found from the P-wave NMO ellipse
from a horizontal reflector. If 8 = §® or, equivalently,

(1 — Zg)ANl + A1 = (1 — Zg)ANz + A1 (D-l)

[equations (50) and (54)], the P-wave NMO ellipse degener-
ates into a circle. This equation does not necessarily imply that
the two systems of fractures are identical because it can be
satisfied for fracture sets with different crack densities (e.g.,
At1 > At;) and different fluid saturations (An; < Anp). The
azimuths of fractures in this case can be found from the shear-

wave polarization directions or by using P-wave reflections
from dipping interfaces and/or the azimuthal variation of P-
wave nonhyperbolic moveout.

Equal tangential weaknesses

If the tangential weaknesses are equal to each other
(At11 = Ats), the anisotropic coefficients y™® and y® also be-
come identical [see equations (51) and (55)] and there is no
shear-wave splitting at vertical incidence. Hence, the fracture
orientation cannot be determined from shear-wave splitting.
However, if the fracture sets have different normal weaknesses
(An1 # Anz), the fracture azimuths can be found using P-wave
NMO ellipses from a horizontal or a dipping reflector.
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Identical fracture sets (quasi-VTI medium)

In the case of two identical orthogonal fracture sets, neither
the P-wave NMO ellipse from a horizontal reflector (it degen-
erates into a circle because V) = §®) nor the shear-wave po-
larization directions (y® = y®, see Appendix C) can be used
to detect the fracture orientation. Still, since §® (or »®) differs
from zero, the orientation can be found from normal moveout
of dipping P events or from P-wave nonhyperbolic moveout.
The rest of the inversion procedure is similar to that for the
general case of two different fracture systems.

Despite the absence of shear-wave splitting in the vertical
direction, S-waves can still be used for estimating fracture pa-
rameters. The wavefront of the slow shear wave in quasi-VTI
media always has cusps at 45° with respect to the symmetry
planes [xi, X3] and [x;, X3] (Figure D-1) if ¢;; —2C¢ — C12 >0
[or, equivalently, K1 > Ky; see equation (C-3) and part I]. This
wavefront structure by itself can be used to identify the sym-
metry directions (and, therefore, the fracture strikes) if a suf-
ficient number of azimuthal measurements is available. Once
those directions are found, we can use equations (23)—(29) for

the NMO velocities of the S - and S-waves in the vertical sym-
metry planes and estimate the fracture parameters based on
equations (66) and (68). It is interesting that in quasi-VTI me-
dia the S-wave NMO velocities from a horizontal reflector are
defined, strictly speaking, only within the vertical symmetry
planes because the shear-wave singularity makes the S-wave
offset-traveltime curve nondifferentiable in any other azimuth.

Identical gas-filled fracture sets (VTI medium)

Finally, if two identical fracture sets are gas filled, the ef-
fective medium becomes VTI (Appendix C). Since the VTI
model is azimuthally isotropic, it is impossible to find the frac-
ture orientation from seismic data. The single parameter At
(or K1) needed to describe the fractures can be found from any
anisotropic coefficient given by equations (49)—(56) if the back-
ground Vs/Vp ratio is known. Estimating several anisotropic
coefficients provides a redundancy that can be used to verify
the validity of this model [see equation (C-11)]. Indeed, this
VTI medium is elliptical (¢ = §) and has a specific relationship
(C-12) between € and y.

Ty 1 - b
. 08{ - "
(7]
€ €
§ 0° X 05
~ 044 =~y
nE N
0 .
0 Y .
0 0
@ 05 | 0'(52)
i 2,
Vi (kmis) VS (kmis) V.7 (kmis) > V,s (kmls)

FiG. D-1. Group velocity surfaces of the (a) fast and (b) slow shear waves for the model with two identical orthogonal fracture
sets. The background velocities are Vp =2 km/s and Vs=1 km/s. The fracture weaknesses Ay =0 and At =0.15 approximately
correspond to fluid-filled penny-shaped cracks with a crack density of 7%.



