
GEOPHYSICS, VOL. 65, NO. 6 (NOVEMBER-DECEMBER 2000); P. 1818–1830, 6 FIGS., 1 TABLE.

Estimation of fracture parameters from reflection seismic data—Part III:
Fractured models with monoclinic symmetry

Andrey Bakulin∗, Vladimir Grechka‡, and Ilya Tsvankin‡

ABSTRACT

Geophysical and geological data acquired over nat-
urally fractured reservoirs often reveal the presence of
multiple vertical fracture sets. Here, we discuss modeling
and inversion of the effective anisotropic parameters of
two types of fractured media with monoclinic symmetry.
The first model is formed by two different nonorthog-
onal sets of rotationally invariant vertical fractures in
an isotropic host rock; the other contains a single set of
fractures with microcorrugated faces.

In monoclinic media with two fracture sets, the shear-
wave polarizations at vertical incidence and the orienta-
tion of the NMO ellipses of pure modes in a horizontal
layer are controlled by the fracture azimuths as well as
by their compliances. While the S-wave polarization di-
rections depend only on the tangential compliances, the
axes of the P-wave NMO ellipse are also influenced by
the normal compliances and therefore have a different
orientation. This yields an apparent discrepancy between
the principal anisotropy directions obtained using P and

S data that does not exist in orthorhombic media. By
first using the weak-anisotropy approximation for the
effective anisotropic parameters and then inverting the
exact equations, we devise a complete fracture charac-
terization procedure based on the vertical velocities of
the P- and two split S-waves (or converted PS-waves)
and their NMO ellipses from a horizontal reflector. Our
algorithm yields the azimuths and compliances of both
fracture systems as well as the P- and S-wave velocities
in the isotropic background medium.

In the model with a single set of microcorrugated frac-
tures, monoclinic symmetry stems from the coupling be-
tween the normal and tangential (to the fracture faces)
slips, or jumps in displacement. We demonstrate that for
this model the shear-wave splitting coefficient at verti-
cal incidence varies with the fluid content of the frac-
tures. Although conventional fracture models that ig-
nore microcorrugation predict no such dependence, our
conclusions are supported by experimental observations
showing that shear-wave splitting for dry cracks may be
substantially greater than that for fluid-filled ones.

INTRODUCTION

This work completes our series of three papers on seismic
characterization of naturally fractured reservoirs. The first two
papers are devoted to the model with a single system of rota-
tionally invariant fractures in an isotropic background (Bakulin
et al. 2000a; hereafter referred to as part I) and to fractured
models with orthorhombic symmetry (Bakulin et al. 2000b;
part II). Parts I and II contain a detailed review of recent pub-
lications on fracture characterization that is not repeated here.
All three papers strive to build a bridge between rock physics
theories of fractured media and seismic methods of fracture
detection. They also attempt to develop efficient fracture char-
acterization methodologies based on surface reflection data.
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Theoretical tools (the so-called effective medium theories)
for modeling the seismic response of fractured media have
existed since the early 1980s (e.g., Schoenberg, 1980, 1983;
Hudson, 1980, 1981, 1988; Thomsen, 1995). In particular,
Schoenberg (1980, 1983) and Schoenberg and Muir (1989) sug-
gest treating fractures as highly compliant surfaces inside a
solid host rock. According to their linear-slip theory, the ef-
fective compliance of a rock mass with one or several frac-
ture sets can be found as the sum of the compliances of the
host (background) rock and those of all the fractures. Then
the background and fracture parameters can be related to
the effective Thomsen-type anisotropic coefficients, which gov-
ern the influence of anisotropy on various seismic signatures.
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This formalism can be used to invert seismic signatures for
the fracture compliances and to make inferences about the
physical properties of the fracture network. (Schoenberg and
Douma (1988) and part I show that fracture compliances ef-
fectively absorb such information about the microstructure
of fractures as their shape, possible interaction, partial sat-
uration, the presence of equant porosity, etc. This informa-
tion cannot be obtained unambiguously from seismic data
alone.)

In part I we implement these ideas for transversely isotropic
media with a horizontal symmetry axis (HTI) formed by a sin-
gle set of vertical rotationally invariant fractures. A system of
vertical fractures in a VTI (transversely isotropic with a ver-
tical symmetry axis) background or two orthogonal fracture
sets in an isotropic host rock lead to a medium of orthorhom-
bic symmetry examined in part II. Further complications intro-
duced into the model may lower the symmetry of the effective
medium to monoclinic. First experimental evidence of mono-
clinic symmetry in the subsurface is provided by Winterstein
and Meadows (1991), who analyze walkaway vertical seismic
profiling (VSP) data over a fractured reservoir.
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Here, we discuss two types of fracture-induced monoclinic
media. The first model contains two different nonorthogonal
sets of rotationally invariant fractures in an isotropic back-
ground. We prove that all fracture parameters of the effective
monoclinic medium with a horizontal symmetry plane can be
estimated using the vertical and NMO velocities of the P- and
two split S(or PS)-waves reflected from horizontal interfaces.
It should be emphasized that shear-wave data alone do not
contain enough information to constrain the model parame-
ters (Liu et al., 1993). Also, we confirm the result of Grechka
et al. (2000) that the polarization directions of the vertically
propagating shear waves generally are not aligned with the
axes of the P-wave NMO ellipse (which cannot happen in the
higher symmetry HTI or orthorhombic media). A similar con-
clusion is drawn by Sayers (1998) who examines the azimuthal
variation of the P-wave phase-velocity function in monoclinic
media. This gives a plausible theoretical explanation for the dis-
crepancies in the fracture orientation estimated from P- and
S-wave data by Pérez et al. (1999).

The second monoclinic model examined here has a vertical
symmetry plane and consists of a single set of microcorrugated
(rotationally noninvariant) fractures in an isotropic matrix. We
derive the shear-wave splitting coefficient as a function of the

compliances and show that it is substantially different for fluid-
filled and dry fractures.

TWO SETS OF VERTICAL FRACTURES

Effective elastic parameters

Within the framework of the linear-slip theory, the effec-
tive compliance matrix s of a rock with multiple fracture sets
can be determined as the sum of the compliance sb of the back-
ground medium and the fracture compliances s f (Nichols et al.,
1989; Schoenberg and Muir, 1989; Molotkov and Bakulin, 1997;
Bakulin and Molotkov, 1998). Considering two different arbi-
trarily oriented fracture sets with the compliances s f 1 and s f 2 in
a purely isotropic background, we can represent the effective
compliance as

s = sb + s f 1 + s f 2 ≡ c−1, (1)

where c is the stiffness matrix of the effective medium. The
compliance sb of the isotropic background, written in terms of
the Lamé parameters λ and µ, has the form

Assuming that both fracture sets are rotationally invariant,
their matrices s f i (i = 1, 2) can be described by the normal
and tangential (with respect to the crack faces) compliances
KNi and KT i . If the normal ni to the i th fracture set points in
the direction of the x1-axis, the compliance matrix is given by
(Schoenberg and Douma, 1988; Schoenberg and Sayers, 1995;
part I)

s
x1
f i =



KNi 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 KT i 0

0 0 0 0 0 KT i


. (3)

Rotation of the fracture normal by the angle φi around the
x1-axis changes the matrix s f i according to the so-called Bond
transformation,

s f i = N(φi ) s
x1
f i NT(φi ), (4)

where the 6× 6 matrix N (NT is the transpose) is explicitly writ-
ten in Winterstein (1990). The exact expressions for s f i , taken
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from Schoenberg et al. (1999), are given in Appendix A. It
seems to be natural to choose the coordinate frame in such a
way that one of the fracture sets is orthogonal to the axis x1

(or x2), as is done by Liu et al. (1993). As we discuss below,
however, a simpler effective stiffness matrix can be obtained
by aligning the horizontal coordinate axes with the polariza-
tion directions of the vertically traveling S-waves. In this case,
neither fracture system is orthogonal to one of the horizontal
coordinate directions.

Equations (1)–(4) make it possible to compute the com-
pliance (s) and stiffness (c) matrices of the effective medium
formed by two vertical fracture sets in an isotropic background.
Analysis of the compliance matrix [see equations (A-1)–(A-9)
for a single fracture set] shows that this medium is monoclinic
with a horizontal symmetry plane. Below, we discuss the in-
version of the effective anisotropic coefficients of monoclinic
media for the fracture parameters.

Anisotropic coefficients of monoclinic media

Dimensionless anisotropic parameters, first introduced by
Thomsen (1986) for VTI media, proved to be extremely useful
in seismic velocity analysis and inversion. The main advantage
of Thomsen’s notation is in capturing the combinations of the
stiffness coefficients responsible for a wide range of seismic
signatures (Tsvankin, 1996). Thomsen-style notation for HTI
media was introduced by Rüger (1997) and Tsvankin (1997a).
(In part I we discuss the inversion of the anisotropic coefficients
ε(V), δ(V), and γ (V) of fracture-induced HTI media for the frac-
ture compliances.) Tsvankin (1997b) shows that orthorhombic
media can be conveniently described by seven anisotropic co-
efficients and two vertical velocities (of the P- and one of the
split S-waves), with a total of only six parameters fully respon-
sible for the P-wave kinematics. Tsvankin’s notation simplifies
the expressions for azimuthally varying NMO velocities in or-
thorhombic media (Grechka and Tsvankin, 1998) and helps to
identify the subset of the medium parameters that can be de-
termined using P-wave surface reflection data (Grechka and
Tsvankin, 1999).

An extension of Thomsen parameters to monoclinic media
is suggested by Grechka et al. (2000). They note that the ex-
pression for NMO ellipses of P- and S-waves from horizontal
reflectors take a particularly simple form if the horizontal coor-
dinate axes x1 and x2 coincide with the polarization directions
of the vertically propagating split shear waves S1 and S2. In this
natural coordinate frame the stiffness coefficient c45 vanishes
(Helbig, 1994; Mensch and Rasolofosaon, 1997),

c45 = 0, (5)

and the number of independent stiffnesses reduces from 13
to 12.

Grechka et al. (2000) replace the stiffness elements with the
vertical velocities of P-waves (VP0) and one of the S-waves
(VS0) and 10 anisotropic coefficients denoted as ε(1,2), δ(1,2,3),
γ (1,2), and ζ (1,2,3) (Appendix B). These parameters can be di-
vided into two different groups. The first contains the vertical
velocities and the ε, δ, and γ coefficients, which are defined
exactly in the same way as Tsvankin’s (1997b) parameters for
orthorhombic media. These nine quantities mainly control the
semiaxes of the NMO ellipses of waves P, S1, and S2 reflected
from horizontal interfaces. The second group includes the three

ζ coefficients responsible for the rotation of the NMO ellipses
with respect to the coordinate axes (Grechka et al., 2000).
The parameter ζ (3) determines the orientation of the P-wave
NMO ellipse, whereas ζ (1) and ζ (2) govern the rotations of the
S1- and S2-ellipses, respectively [see equations (B-10)–(B-12)].
This definition of the ζ coefficients distinguishes the notation
of Grechka et al. (2000) from the Thomsen-style parameteriza-
tion of arbitrary anisotropic media introduced by Mensch and
Rasolofosaon (1997).

Estimation of fracture parameters

Grechka et al. (2000) show that 11 (out of 12) parameters of
monoclinic media [VP0, VS0, ε(1,2), δ(1,2), γ (1,2), and ζ (1,2,3)] can
be estimated in a stable way using the vertical velocities and
NMO ellipses from horizontal reflectors of the P- and two split
S-waves. If the survey is acquired with P-wave sources, pure
shear reflections can be replaced by the converted waves PS1

and PS2; this option is especially practical for offshore data.
Our goal is to demonstrate that the 11 effective quantities

listed above can be inverted for the following physical parame-
ters of the model: the P- and S-wave velocities VP and VS in the
isotropic background, the azimuths φ1 and φ2 of the normals to
the fracture faces, and dimensionless fracture weaknesses de-
noted by1Ni and1T i (i = 1, 2). The weaknesses are related to
the fracture compliances KNi and KT i as (Hsu and Schoenberg,
1993; part I)

1Ni = (λ+ 2µ) KNi

1+ (λ+ 2µ) KNi
and 1T i = µ KT i

1+ µ KT i
,

(i = 1, 2), (6)

where1Ni and1T i are always positive and vary from zero (no
fracturing) to unity (extreme degree of fracturing).

For isolated penny-shaped cracks, vanishing values of the
ratio 1Ni/1T i correspond to fluid-filled fractures, whereas
1Ni/1T i ≈ (λ+ 2µ)/µ (or KNi ≈ KT i ) indicate that the cracks
are dry. Also, regardless of the type of crack infill, the tangen-
tial weakness1T i is close to twice the crack density ei (part I).
If we ignore the influence of one fracture system on the other
(a reasonable assumption for small crack density), these rela-
tions hold for the weaknesses of each system.

Following Grechka et al. (2000), we choose the axis x1 to
coincide with the polarization direction of the fast shear wave
S1 at vertical incidence (Figure 1). In this coordinate frame,
c45 vanishes [equation (5)], providing an additional constraint
for the fracture parameters. This constraint can be obtained
by analyzing the nonzero elements of the effective compliance
matrix s [equation (1)] and the matrices sb [equation (2)], s f 1,
and s f 2 [equations (A-1)–(A-9)]. Since s44, s45, and s55 are the
only nonzero elements of the fourth and fifth columns and the
fourth and fifth rows of s, the inverse (stiffness) matrix c has a
block (

c44 c45

c45 c55

)
=
(

s44 s45

s45 s55

)−1

.

Hence, c45 = 0 requires that

s45 = 0, (7)
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which can be satisfied only if [see equations (1), (2), and (A-7)]

KT1 sin 2φ1 + KT2 sin 2φ2 = 0. (8)

Replacing the compliances with the weaknesses [equation (6)]
yields

1T1

1−1T1
sin 2φ1 + 1T2

1−1T2
sin 2φ2 = 0. (9)

Thus, we have a total of 12 equations [11 monoclinic param-
eters VP0, VS0, ε(1,2), δ(1,2), γ (1,2), and ζ (1,2,3) plus constraint (9)]
to be solved for eight unknowns [VP, VS, 1Ni , 1T i , and φi

(i = 1, 2)]. The nonlinear relations between the anisotropic co-
efficients and fracture parameters make it necessary to apply
numerical methods and study the uniqueness of the solution.
As shown below, our inversion algorithm converges toward val-
ues close to the actual model parameters, given a reasonable
magnitude of errors in the input data.

Equations (8) and (9) allow us to make two important con-
clusions about the fracture orientation even prior to the in-
version. First, equation (9) can be satisfied only if the fracture
azimuths φ1 and φ2 (assumed to lie between −π/2 and π/2)
have opposite signs because both 1T1 and 1T2 are nonnega-
tive (Figure 1). Therefore, the angle between the normals (and
the two crack systems themselves) can be found as φ1−φ2; the
absolute values of φ1 and φ2 are equal only if 1T1=1T2.

Second, equation (8) indicates that for a fixed angle between
the fractures, the azimuths φ1 and φ2 are controlled only by the
ratio of the tangential compliances KT1/KT2. The shear-wave
polarization directions bisect the angles between the fractures
if KT1= KT2. To find the fracture orientation relative to the
shear-wave polarization directions when KT1 6= KT2, we need
to supplement equation (8) with the condition

c55 > c44. (10)

Inequality (10) ensures that the fast shear wave S1 is polarized
along the x1-axis (Figure 1). Using equations (1)–(4), we can
rewrite condition (10) in the form

KT1 cos 2φ1 + KT2 cos 2φ2 < 0. (11)

FIG. 1. Two sets of parallel vertical fractures form an effective
monoclinic medium. The fracture normals make the angles φ1
and φ2 with the axis x1 that coincides with the polarization
direction of the vertically traveling S1-wave. To define φ1 and
φ2 in a unique fashion, we assume that −π/2≤φ1 <π/2 and
−π/2<φ2≤π/2.

Combined with equation (8), inequality (11) unambiguously
defines the directions of both fracture sets for given values of
KT1, KT2, and the angle φ1−φ2.

Let us assume that the first fracture set has a higher tangen-
tial compliance (KT1 > KT2). Analysis of equations (8) and (11)
shows that in this case the normal to the first fracture set lies
within the intervalπ/4<φ1 < 3π/4. Hence, the polarization di-
rection of the fast (S1) shear wave (i.e., the x1-axis) is always
closer to the strike of the more compliant fractures. Accord-
ing to the quantitative estimates in Figure 2, for KT1/KT2 > 3
the S1-polarization direction does not deviate by more than
10◦ from the strike of the first fracture system. In the limit of
KT1À KT2, the medium becomes effectively HTI, and the po-
larization of the S1-wave is parallel to the first fracture set; this
result is well known for horizontal transverse isotropy (e.g.,
Winterstein, 1990).

Weak-anisotropy approximation.—If the fracture density is
small and the weaknesses 1Ni¿ 1 and 1T i¿ 1, the effective
medium is weakly anisotropic. In this case, it is possible to
simplify the expressions for the anisotropic coefficients by lin-
earizing them in the weaknesses 1Ni and 1T i (Appendix C).
Equations (C-1)–(C-11) show that all ε, δ, and γ coefficients
are even functions of the fracture azimuths φ1 and φ2, and in-
formation about the signs of the azimuths can be obtained only
from the ζ coefficients. Since ζ (1,2,3) determine the rotation of
the P- and S-wave NMO ellipses with respect to the shear-wave
polarization directions (Grechka et al., 2000), this result indi-
cates the importance of carefully measuring the orientation of
the elliptical axes.

The linearized expressions (C-1)–(C-11) can be used to esti-
mate all fracture parameters following, for instance, the al-
gorithm outlined in Appendix D. To check the accuracy of
the weak-anisotropy approximation, we computed the exact
anisotropic coefficients for the fracture parameters given in
Table 1 and carried out the inversion using the equations from
Appendix D. For typical moderate values of the tangential

FIG. 2. Azimuth of first fracture system (|φ1− 90◦|) as a func-
tion of the ratio of the tangential compliances KT1/KT2. Each
curve corresponds to a different angle between the fracture sys-
tems: φ1−φ2= 20◦ (circles), 40◦ (triangles), 60◦ (dashed line),
and 80◦ (solid line).
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compliances for both fractures systems (if the fractures are
penny-shaped, the crack densities are e1≈1T1/2= 0.06 and
e2≈1T2/2= 0.10), our approximation leads to noticeable er-
rors in two weaknesses (1T1 and 1N2). However, it can still
be used to obtain a good initial guess for the nonlinear
inversion.

Special case: Equal tangential weaknesses.—It is instructive
to examine the special case of equal tangential weaknesses of
the two fracture systems:

1T1 = 1T2 ≡ 1T . (12)

Then, as follows from equation (9),

φ1 = −φ2 ≡ φ, (13)

and the S1-wave polarization direction bisects the angle be-
tween the fracture sets (see Figure 2 for KT1= KT2, which corre-
sponds to1T1=1T2). Substituting relations (12) and (13) into
equations (C-1)–(C-11), we obtain equations (E-3)–(E-13),
which can be inverted for the fracture parameters in a rela-
tively straightforward fashion. The results of Appendix E indi-
cate that the fracture azimuth φ and the weaknesses 1T , 1N1,
and 1N2 can be found just from the vertical velocities of the
P- and S-waves and the P-wave NMO ellipse; the shear-wave
NMO ellipses provide redundant information.

If the tangential weaknesses of the two fracture sets are
equal, the orientations of the pure-mode NMO ellipses are
related in a simple way to the fracture azimuths. For instance,
the azimuth θP of the semimajor axis of the P-wave NMO el-
lipse can be written in the weak-anisotropy approximation as
(Grechka et al., 2000)

tan 2θP = 2ζ (3)

δ(2) − δ(1)
. (14)

Substituting equations (E-7), (E-8), and (E-13) into equa-
tion (14), we find

tan 2θP = AP tan 2φ, (15)

where

AP = (1N2 −1N1)(1− 2g)
(1N1 +1N2)(1− 2g)+ 21T

. (16)

Note that |AP| ≤ 1, which implies that the axes of the P-wave
NMO ellipse deviate from both fracture azimuths (except for
the special case of orthogonal fractures discussed below). Also,
if1N2 6=1N1, the angle θP 6= 0 and the P-wave ellipse is rotated
with respect to the polarization directions of the vertically
propagating shear waves, as noted by Grechka et al. (2000) (see
also Sayers, 1998). This may explain the discrepancies in the
fracture orientation estimated from the P-wave NMO ellipse

Table 1. Comparison of the actual fracture parameters with
those estimated from the exact anisotropic coefficients using
the linearized formulas from Appendix D.

Parameter VS/VP 1N1 1T1 φ1 1N2 1T2 φ2

Actual 0.5 0.25 0.12 30◦ 0.00 0.20 −13◦
Estimated 0.5 0.20 0.04 40◦ 0.08 0.22 −5◦

and S-wave polarizations described by Pérez et al. (1999). The
same conclusion is true for the NMO ellipses of the S1- and
S2-waves whose rotation angles are determined by the param-
eters ζ (1) and ζ (2) (Grechka et al., 2000). As follows from equa-
tions (E-11) and (E-12) for the fracture-induced monoclinic
model, ζ (1) 6= 0 and ζ (2) 6= 0.

If the two fracture systems are identical [i.e., 1N1=1N2 in
addition to 1T1=1T2], the axes of the P-wave NMO ellipse
are aligned with the shear-wave polarization directions (AP =
θP = 0). In this case, the medium becomes orthorhombic, and
S-wave polarization vectors (which bisect the fractures) lie in
the vertical symmetry planes of the model. For 1N1=1N2, all
three ζ coefficients vanish, so the shear-wave NMO ellipses are
cooriented with the P-wave ellipse.

Another special case of orthorhombic symmetry is that of
different but orthogonal fracture sets (2φ= 90◦). If only the
normal weaknesses1N1 and1N2 are different (but1T1=1T2),
shear waves do not split at vertical incidence and have no de-
fined polarization directions (part II).

For monoclinic media, the axes of the P-wave NMO el-
lipse and the polarization vectors of the vertically traveling
S-waves are parallel only if the ratio of the tangential and nor-
mal compliances is the same for both fracture systems (i.e.,
ζ (3)= 0 if KN1/KT1= KN2/KT2 or 1N1/1T1=1N2/1T2). This
result, valid only in the weak anisotropy approximation, can
be obtained from equations (8), (9), and (C-11). For example,
ζ (3)= 0 if the normal and tangential compliances are equal to
each other, which agrees with the result of Sayers (1998).

Arbitrary fracture sets.—The main significance of the lin-
earized approximations for the fracture parameters is in pro-
viding insight into the behavior of the anisotropic coefficients
and a good initial model for the inversion procedure. Here
we discuss the inversion of the anisotropic parameters for the
fracture compliances and orientations based on the exact equa-
tions (1)–(4) for the stiffnesses and the definitions from Ap-
pendix B. We assume that the quantities VP0, VS0, ε(1,2), δ(1,2),
γ (1,2), and ζ (1,2,3) have been estimated from the vertical and
NMO velocities of the P- and split S-waves (or converted PS-
waves). To examine the stability of the inversion algorithm, we
introduce errors in all quantities [similar to those shown in Fig-
ures 2 and 4 in Grechka et al. (2000)] caused by Gaussian noise
with a variance of 2% added to the NMO velocities. The vari-
ances of the errors in the effective parameters are as follows:
2% in VP0 and VS0, 0.01 in ζ (1) and ζ (2), and 0.03 in all other
anisotropic coefficients. The fracture parameters that give the
best fit to the error-contaminated values of the vertical veloc-
ities and anisotropic coefficients are found by minimization
using the simplex method.

Figure 3 displays typical inversion results for the VP/VS ra-
tio in the isotropic background and weaknesses 1Ni and 1T i .
The standard deviation in the estimated VS/VP ratio (3.1%)
is somewhat higher than that in the input vertical velocities
VP0 and VS0 but is still quite acceptable. The errors in the
weaknesses 1T i are about twice as large as those in the in-
put anisotropic coefficients. This error amplification can be
understood from the weak-anisotropy approximations (D-6)
and (D-8), which indicate that 1T i are derived from the γ co-
efficients multiplied by a factor of 2; similar results are obtained
for models with one system of fractures in parts I and II.
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The accuracy of the inverted normal weaknesses1Ni is even
lower than that of 1T i . This can also be explained using the
weak-anisotropy approximations (C-1)–(C-11), which contain
terms in the form1T i ±a1Ni with |a|< 1. Therefore, the same
errors in the input anisotropic coefficients can be compensated
by greater variations in 1Ni compared to those in 1T i . Even
though the errors in 1Ni are rather significant, Figure 3 shows
that we can still distinguish between dry fractures [the first
system with KN1≈ KT1 or1T1(1−1N1)≈ g1N1(1−1T1)] and
fluid-filled ones with 1N2≈ 0. The unphysical values 1N2 < 0
appear in Figure 3 because random errors added to the data
may produce anisotropic coefficients that do not correspond
to any fractured media.

MICROCORRUGATED FRACTURES AND
FLUID-DEPENDENT SHEAR-WAVE SPLITTING

Shear-wave splitting at vertical incidence traditionally has
been regarded as the most reliable measure of fracture intensity
for a set of parallel vertical fractures embedded in an isotropic
or VTI host rock. The fractional difference between the S-wave
vertical velocities VS1 and VS2 is expressed through the so-called
shear-wave splitting parameter γ (S), defined as

γ (S) ≡ V2
S1 − V2

S2

2V2
S2

≈ VS1 − VS2

VS2
. (17)

It has been common knowledge among researchers working on
fracture characterization that γ (S) depends only on the crack
density and does not contain information about the fluid con-
tent of the fractures. This conclusion seems to have been con-
firmed both theoretically (Hudson, 1981; Thomsen, 1995) and
experimentally (e.g., Martin and Davis, 1987; Winterstein and
Meadows, 1991). On the other hand, Guest et al. (1998) present
a case study where the splitting parameter for gas-filled cracks
proves to be significantly higher than that for brine-filled ones,
which clearly contradicts the existing understanding. Here, we
give a possible theoretical explanation of these observations
by obtaining the effective parameters of a fracture set with
microcorrugated faces. The idea of the theory is to allow the
coupling between the tangential slip along fracture faces (re-
sponsible for shear-wave splitting) and the normal slip known
to depend on the fluid content.

FIG. 3. Results of the inversion for the parameters of two frac-
ture systems and the background velocities. The dots mark the
actual values of the fracture parameters; the bars correspond to
± one standard deviation in the inverted quantities. Not shown
are the standard deviations in the estimated background veloci-
ties VP and VS (2.0% and 2.5%, respectively) and in the fracture
azimuths (9◦; the actual values are φ1= 30◦ and φ2=−12.8◦).

Linear-slip model for fractures with microcorrugated faces

As in the previous section, our analysis is based on the linear-
slip theory of Schoenberg (1980), Schoenberg and Muir (1989),
and Schoenberg and Sayers (1995). For simplicity, we examine
a single system of parallel fractures with the normal n= [1, 0, 0]
in an isotropic background medium. The matrix of the excess
fracture compliance in this case has the form (Schoenberg and
Douma, 1988; part I)

s f =



KN 0 0 0 KN V KN H

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

KN V 0 0 0 KV KV H

KN H 0 0 0 KV H KH


, (18)

where KN is the normal fracture compliance that relates the
jump of the displacement normal to the fracture (i.e., the nor-
mal slip) to the normal stress in the direction [1, 0, 0]. The val-
ues KV and KH are the tangential compliances relating the slips
and stresses in the vertical [0, 0, 1] (KV ) and horizontal [0, 1, 0]
(KH ) directions. The compliance KN V couples the normal slip
to the tangential vertical stress or, equivalently, the tangential
slip in the direction [0, 0, 1] to the normal stress. Likewise, the
compliances KN H and KV H couple the horizontal stress in the
[0, 1, 0] direction to the normal and vertical slips.

The conventional conclusion about the shear-wave splitting
coefficient γ (S) being independent of fracture infill is based
on the assumption that the normal and tangential slips are
decoupled (KN V = KN H = KV H = 0) and the matrix (18) is di-
agonal. An alternative model of cracks with microcorrugated
faces (see Figure 4) is suggested by Schoenberg and Douma
(1988). Since the stresses in either the normal (x1) or vertical

FIG. 4. Cross-section of a vertical fracture with microcorru-
gated faces. This microstructure leads to the coupling between
the normal and tangential slips (after Schoenberg and Douma,
1988).
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(x3) direction applied to such a fracture produce slips in both
x1- and x3-directions, the compliance component KN V must be
nonzero. In contrast, the component KV H can always be set
to zero by the appropriate rotation of the coordinate system
(Berg et al., 1991). Below, we show that fractures characterized
by the compliances

KN H = KV H = 0 and KN V 6= 0 (19)

cause infill-dependent shear-wave splitting.

Effective model of fractured media

If a fracture system with the compliances described by equa-
tions (18) and (19) is embedded in an isotropic rock, the effec-
tive stiffness matrix has the form [see equation (1)]

c−1 = sb + s f , (20)

where the background compliance matrix sb is given by equa-
tion (2). Evaluating the components of the matrix c yields

c =



c11 c12 c12 0 c15 0

c12 c33 c23 0 c35 0

c12 c23 c33 0 c35 0

0 0 0 c44 0 0

c15 c35 c35 0 c55 0

0 0 0 0 0 c66


. (21)

Equation (21) describes a monoclinic medium with the vertical
symmetry plane [x1, x3]. The stiffness elements are given by

c11 = (λ+ 2µ)
1+ EV

D
, c12 = λ1+ EV

D
,

c15 = −
√
µ(λ+ 2µ)

EN V

D
,

c33 = (λ+ 2µ)
(1+ EV )(1+ νEN)− νE2

N V

D
,

(22)

c23 = λ (1+ 2gEN)(1+ EV )− 2gE2
N V

D
,

c35 = −λ
√

gEN V

D
,

c44 = µ, c55 = µ1+ EN

D
, and c66 = µ

1+ EH
,

where

D = (1+ EN)(1+ EV )− E2
N V, ν = 4µ(λ+ µ)

(λ+ 2µ)2
,

g = µ

λ+ 2µ
,

and λ and µ are the Lamé constants of the host rock. The
dimensionless compliances EN , EV , EH , and EN V are defined
as follows (Hsu and Schoenberg, 1993):

EN = (λ+ 2µ)KN, (23)

EV = µKV , (24)

EH = µKH , (25)

EN V =
√
µ(λ+ 2µ)KN V. (26)

The stability condition requires that matrix (18) be nonneg-
ative definite. In our case, this condition implies that all dimen-
sionless compliances EN , EV , and EH are nonnegative and

EN EV − E2
N V ≥ 0. (27)

Shear-wave splitting coefficient

The velocities of the split shear waves traveling in the vertical
direction in the monoclinic medium described by equation (21)
are given by

V2
S1 =

µ

ρ
(28)

and

V2
S2 =

2
ρ

c33c55 − c2
35

c33 + c55 +
√

(c33 − c55)2 + 4c2
35

, (29)

where ρ is the density. While the velocity VS1 of the fast shear
wave is simply equal to the background S-wave velocity, the
slower velocity VS2 depends on the fracture compliances EN ,
ET , and EN V .

Assuming weak anisotropy (EN¿ 1, ET¿ 1, and EN V¿ 1)
and keeping the linear and quadratic terms in the dimension-
less compliances, we obtain the shear-wave splitting coefficient
[equation (17)] as

γ (S) ≈ EV

2
− E2

N Vg(3− 4g)
2(1− g)

. (30)

Equation (30) shows that the coupling between the normal and
tangential slips (i.e., EN V 6= 0) always reduces the value of γ (S).

To analyze the influence of fluid content on shear-wave split-
ting for fractures with microcorrugated faces, we generalize the
criterion given by Schoenberg and Sayers (1995) for isolated
penny-shaped cracks. They point out that the ratio KN/KV may
serve as an indicator of fluid saturation because it vanishes for
fluid-filled cracks and is equal to unity if the cracks are dry.
The result of Schoenberg and Sayers (1995), however, is for-
mulated for KN V = 0 and must be modified for microcorrugated
fractures.

Let us consider the 2× 2 submatrix

s̃ f =
(

KN KN V

KN V KV

)
(31)

of the compliance matrix (18). Note that the Schoenberg-
Sayers criterion for KN V = 0 is equivalent to the statement that
the fractures are fluid filled if one eigenvalue of s̃ f is equal to
zero, whereas the fractures are dry if the matrix s̃ f has two
equal eigenvalues.

We assume that the same relationship between fluid satu-
ration and the eigenvalues of s̃ f holds for the more general
case with KN V 6= 0. To justify this assumption, we recall that
the excess compliance matrix s f relates the stress applied to
the fracture faces to the slip or the jump of the displacement
across the fractures (Schoenberg, 1980). The eigenvalues of s f

or s̃ f are the coefficients that relate the magnitudes of the slip
and the stress vectors in the principal directions. Intuitively, we
expect dry fractures to be equally compliant in all directions
(there is no material inside to stiffen them), so the eigenvalues
of the fracture compliance matrix are supposed to be equal. In
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contrast, fluid-filled fractures are noticeably stiffer in a particu-
lar direction where the applied stress tends to squeeze the fluid.
Thus, the eigenvalue corresponding to this direction should be
significantly smaller than the other eigenvalues.

The submatrix (31) has equal eigenvalues if and only if
KN = KV and KN V = 0, which means [see equation (26)] that

EN V = 0. (32)

For one of the eigenvalues of s̃ f to go to zero, it is required that
K 2

N V = KN KV or [equations (23), (24), and (26)]

E2
N V = EN EV . (33)

Since E2
N V ≤ EN EV [inequality (27)], equations (32) and (33)

impose strict bounds on possible absolute values of EN V .
Substituting equations (32) and (33) into equation (30) yields

the shear-wave splitting coefficients for dry and fluid-filled
cracks:

γ
(S)
dry ≈

EV

2
(34)

and

γ
(S)
wet ≈

EV

2

[
1− ENg(3− 4g)

1− g

]
. (35)

Hence, for microcorrugated fractures the splitting coefficient
is always higher for dry than for fluid-filled fractures, which is
consistent with the observations of Guest et al. (1998). Figure 5
illustrates the influence of the dimensionless compliance EN V

on the shear-wave splitting coefficient. In this particular exam-
ple, γ (S) decreases by about 30% as the fluid saturation changes
from zero (EN V = 0) to 100%. Also note that the approxima-
tion (30) gives a reasonably accurate qualitative description of
γ (S).

FIG. 5. Shear-wave splitting coefficient γ (S) computed from the
exact equations (17), (28), and (29) (solid) and the approxima-
tion (30) (dashed) as a function of the dimensionless compli-
ance EN V . The model parameters are g= 0.16, EN = 1.3, and
EV = 0.25.

DISCUSSION AND CONCLUSIONS

The objective of this series of papers was to analyze the de-
pendence of seismic signatures on the physical parameters of
fracture networks and to develop fracture characterization al-
gorithms operating with surface seismic data. In part I we con-
sidered the simplest model of a single vertical fracture system
in a purely isotropic host rock (HTI medium) and showed that
the fracture compliances, or the dimensionless fracture weak-
nesses, are the only quantities that can be unambiguously esti-
mated from seismic data. The microstructure of the fractured
formation (e.g., the shape of fractures, their possible interac-
tion, the presence of equant porosity, etc.), however, cannot
be evaluated without additional information. For example, if
the fractures are known to be penny-shaped and isolated from
pore space, the weaknesses give a direct estimate of the crack
density and fluid content of the fracture system.

By deriving the relationships between the weaknesses and
Thomsen-type anisotropic coefficients, we were able to study
the behavior of surface seismic signatures in fracture-induced
HTI (part I) and orthorhombic (part II) media. The analytic
results for HTI media provided the basis for inversion algo-
rithms designed to estimate the orientation and weaknesses of
a vertical fracture set using P-wave reflections alone or a com-
bination of P and converted (PS) data. In part II we extended
our parameter estimation methodology to orthorhombic me-
dia formed either by a single fracture set in an anisotropic (VTI)
host rock or by two orthogonal fracture sets in an isotropic
background.

This paper has investigated the inverse problem for an ef-
fective monoclinic medium caused by two nonorthogonal sets
of rotationally invariant fractures. The weaknesses and az-
imuths of both fracture systems, along with the velocities in
the isotropic background, can be obtained using the vertical
velocities and NMO ellipses (from horizontal interfaces) of the
P-wave and two split S-waves. In principle, pure S reflections
can be replaced in the inversion procedure by the converted
(PS) waves. Using the weak anisotropy approximation, we ob-
tain simple, linearized expressions for the fracture parameters,
which can serve as a good initial guess for the nonlinear inver-
sion algorithm. Numerical analysis shows that the tangential
compliances are generally estimated with a higher accuracy
than the normal ones, but the difference between the normal
compliances of dry and fluid-filled cracks can still be detected
in the presence of noise in the data.

Parameter estimation is particularly convenient to carry out
in the natural coordinate frame associated with the polarization
directions of the vertically propagating S-waves. These direc-
tions are controlled only by the weaknesses 1T i tangential to
the fracture faces and are independent from the normal weak-
nesses 1Ni . In the special case of equal tangential weaknesses
1T1=1T2, shear-wave polarization directions bisect the angles
between the fracture systems, and all fracture weaknesses can
be obtained just from the shear-wave splitting coefficient γ (S)

and the P-wave NMO ellipse. For different tangential compli-
ances, the polarization vector of the fast shear wave deviates
toward the strike of the more compliant fracture system.

It is important to note that the axes of the P-wave NMO
ellipse generally do not coincide with either the polarization
directions of the vertically traveling S-waves or the fracture
strike (the same is true for the S-wave NMO ellipses). This
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result may explain the observations of Pérez et al. (1999) who
find that the predominant fracture orientation obtained us-
ing P-wave azimuthal moveout analysis does not agree with
that inferred from shear-wave polarizations.

We also examine another monoclinic model that contains a
single system of vertical fractures with microcorrugated faces
in an isotropic host rock. An important feature of this model
is the coupling between the slips (jumps in displacement) in
the directions normal and tangential to the fractures. This
coupling leads to the dependence of the splitting coefficient
γ (S) of the vertically traveling S-waves (determined by the
tangential slip or tangential weakness) on the fluid content of
the fractures (which influences the normal slip). For typical
fracture parameters, γ (S) may noticeably decrease with fluid
saturation, which is consistent with the case study of Guest
et al. (1998).
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APPENDIX A

COMPLIANCE OF AN ARBITRARY ORIENTED VERTICAL FRACTURE SET

The compliance matrix of a fracture system orthogonal to
the x1-axis is given in equation (3). Applying Bond transfor-
mation (4) [see Winterstein (1990)] to matrix (3), Schoenberg
et al. (1999) obtain the compliance s f (for brevity, the number i
of the fracture set is omitted) of a fracture system with the nor-
mal n= [cosφ, sinφ, 0] (Figure A-1). The nonzero elements of
the matrix s f have the following form:

s11 f =
3KN + KT

8
+ KN

2
cos 2φ + KN − KT

8
cos 4φ,

(A-1)

s12 f =
KN − KT

8
(1− cos 4φ), (A-2)

s16 f =
KN

2
sin 2φ + KN − KT

4
sin 4φ, (A-3)

s22 f =
3KN + KT

8
− KN

2
cos 2φ + KN − KT

8
cos 4φ,

(A-4)
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FIG. A-1. Set of vertical fractures with the normal making the
angle φ with the x1-axis. The azimuth φ is positive in the coun-
terclockwise direction.

APPENDIX B

ANISOTROPIC PARAMETERS OF MONOCLINIC MEDIA

Using the coordinate frame in which the x1- and x2-axes coin-
cide with the polarization directions of the vertically traveling
shear waves, Grechka et al. (2000) define anisotropic param-
eters for monoclinic media by generalizing Thomsen’s (1986)
and Tsvankin’s (1997b) notations for VTI and orthorhombic
symmetry systems. Expressions for these parameters in terms
of the stiffness coefficients and density ρ are given below.

VP0—P-wave vertical velocity:

VP0 ≡
√

c33

ρ
. (B-1)

VS0—velocity of the vertically traveling S1-wave, which is
polarized in the x1-direction:

VS0 ≡
√

c55

ρ
. (B-2)

Dimensionless anisotropic parameters:

ε(1) ≡ c22 − c33

2c33
, (B-3)

δ(1) ≡ (c23 + c44)2 − (c33 − c44)2

2c33(c33 − c44)
, (B-4)

γ (1) ≡ c66 − c55

2c55
, (B-5)

ε(2) ≡ c11 − c33

2c33
, (B-6)

δ(2) ≡ (c13 + c55)2 − (c33 − c55)2

2c33(c33 − c55)
, (B-7)

γ (2) ≡ c66 − c44

2c44
, (B-8)

δ(3) ≡ (c12 + c66)2 − (c11 − c66)2

2c11(c11 − c66)
. (B-9)

ζ (1)—the parameter responsible for the rotation of S1-wave
NMO ellipse:

ζ (1) ≡ c16 − c36

2c33
. (B-10)

ζ (2)—the parameter responsible for the rotation of S2-wave
NMO ellipse:

ζ (2) ≡ c26 − c36

2c33
. (B-11)

ζ (3)—the parameter responsible for the rotation of P-wave
NMO ellipse:

ζ (3) ≡ c36

c33
. (B-12)

Parameters (B-1)–(B-9) are identical to those defined by
Tsvankin (1997b) for the higher-symmetry orthorhombic me-
dia. The additional anisotropic coefficients ζ (1,2,3) are responsi-
ble for the rotation of the NMO ellipses of the waves P (ζ (3)),
S1(ζ (1)), and S2(ζ (2)) with respect to the coordinate axes. The
coefficient ζ (3) is analogous to the parameter χz introduced by
Mensch and Rasolofosaon (1997).

APPENDIX C

WEAK-ANISOTROPY APPROXIMATION FOR MEDIA WITH TWO VERTICAL FRACTURE SYSTEMS

Here, we use equations (1)–(4) and the expressions for the
compliance matrix from Appendix A to obtain linearized ap-
proximations for the anisotropic parameters defined in Ap-
pendix B. We assume that the weaknesses of both frac-
ture systems are small (1Ni¿ 1 and 1T i¿ 1) so that the

anisotropy of the effective monoclinic medium is weak. Keep-
ing only terms linear in 1Ni and 1T i leads to the expres-
sions listed below. The parameter δ(3) is not given here since
it has no influence on the NMO velocities of horizontal
events.

s26 f =
KN

2
sin 2φ − KN − KT

4
sin 4φ, (A-4)

s44 f = KT
1− cos 2φ

2
, (A-5)

s45 f = KT
sin 2φ

2
, (A-6)

s55 f = KT
1+ cos 2φ

2
, (A-7)

s66 f =
KN + KT

2
− KN − KT

2
cos 4φ. (A-8)
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VP0 = VP

[
1− (1− 2g)2

2
(1N1 +1N2)

]
. (C-1)

VS0 = VS

[
1− 1T1

4
(1+ cos 2φ1)− 1T2

4
(1+ cos 2φ2)

]
.

(C-2)

ε(1) = −2g
{[

(1− g)1N1+ (1T1− g1N1) cos2 φ1
]
sin2 φ1

+ [(1− g)1N2 + (1T2 − g1N2) cos2 φ2
]
sin2φ2

}
.

(C-3)

ε(2) = −2g
{[

(1− g)1N1+ (1T1 − g1N1)sin2φ1
]
cos2φ1

+ [(1− g)1N2+ (1T2− g1N2)sin2φ2
]
cos2φ2

}
.

(C-4)

δ(1) = −2g
{
[(1− 2g)1N1 +1T1]sin2φ1

+ [(1− 2g)1N2 +1T2]sin2φ2
}
. (C-5)

δ(2) = −2g
{[

(1− 2g)1N1 +1T1
]
cos2φ1

+ [(1− 2g)1N2 +1T2]cos2φ2
}
. (C-6)

γ (1) =
[

2(1T1 − g1N1)cos2φ1 − 1T1

2

]
sin2φ1

+
[

2(1T2 − g1N2)cos2φ2 − 1T2

2

]
sin2φ2. (C-7)

γ (2) =
[

2(1T1 − g1N1)sin2φ1 − 1T1

2

]
cos2φ1

+
[

2(1T2 − g1N2)sin2φ2 − 1T2

2

]
cos2φ2. (C-8)

ζ (1) = g

4
[2g(1N1 sin 2φ1 +1N2 sin 2φ2)

− (1T1 − g1N1)sin 4φ1 − (1T2 − g1N2)sin 4φ2].

(C-9)

ζ (2) = g

4
[2g(1N1 sin 2φ1 +1N2 sin 2φ2)

+ (1T1 − g1N1)sin 4φ1 + (1T2 − g1N2)sin 4φ2].

(C-10)

ζ (3) = g(1− 2g)(1N1 sin 2φ1 +1N2 sin 2φ2). (C-11)

The values VP and VS are the P- and S-wave velocities in the
isotropic background, and

g ≡ V2
S

V2
P

. (C-12)

Since the parameters of the effective monoclinic model de-
pend on only eight parameters of the fractures and background
medium, not all of the anisotropic coefficients are independent.
Combining equations (C-9)–(C-11) yields

ζ (3)

ζ (1)+ ζ (2)
= 1

g
− 2. (C-13)

It can be proved that this result remains valid for any strength
of the anisotropy. Another relation between the effective co-
efficients, which follows from equations (C-3)–(C-8), has the
form

δ(1) − δ(2) = 4g
(
γ (1)− γ (2))+ 1− 2g

1− g

(
ε(1)− ε(2)).

(C-14)
Equation (C-14) coincides with the constraint derived in part II
for the effective orthorhombic medium caused by one system
of fractures in a VTI background.

APPENDIX D

ESTIMATION OF FRACTURE PARAMETERS IN THE WEAK-ANISOTROPY LIMIT

The linearized approximations from Appendix C can be used
to invert the anisotropic parameters of monoclinic media for
the orientation and compliances of both fracture sets. A con-
venient way of performing this inversion procedure is outlined
here.

Three ζ -coefficients combined in the form [equation (C-13)]

ζ (3)

ζ (1) + ζ (2)
= 1

g
− 2 (D-1)

give an estimate of g or the VS/VP ratio [see equation (C-12)] in
the background. To avoid errors stemming from dividing two
small numbers, g can be approximately found from the ratio of
vertical velocities: g≈V2

S0/V2
P0 [see equations (C-1) and (C-2)].

Two combinations,

δ(1) + δ(2) = −2g[(1− 2g)(1N1 +1N2)+ (1T1 +1T2)]

(D-2)

and

ε(1) + ε(2) + g(γ (1) + γ (2)) = −g

2
[4(1− g)(1N1 +1N2)

+ (1T1 +1T2)], (D-3)

can be used to find the sums of the normal and tangential
compliances:

1N1 +1N2 = A− B

3− 2g
≡ S1N (D-4)

and

1T1 +1T2 = 4 (g− 1)A+ (1− 2g)B

3− 2g
≡ S1T , (D-5)

where

A = δ(1) + δ(2)

2g
and B = 2

g

[
ε(1)+ε(2)+g

(
γ (1)+γ (2))].
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Equations (C-7) and (C-8) can be rewritten in the form

1T1 cos 2φ1+1T2 cos 2φ2= 2
(
γ (1)− γ (2))≡Dγ . (D-6)

Combined with the linearized equation (9),

1T1 sin 2φ1 +1T2 sin 2φ2 = 0, (D-7)

equation (D-6) can be solved for 1T1 and 1T2:

1T1 = Dγ sin 2φ2

sin 2(φ2 − φ1)
, 1T2 = −Dγ sin 2φ1

sin 2(φ2 − φ1)
. (D-8)

Substituting equation (D-8) into equation (D-5) yields a rela-
tionship between the fracture azimuths:

Dγ cos(φ2 + φ1) = S1T cos(φ2 − φ1). (D-9)

Note that the denominator in equations (D-8) does not vanish
for1T1=1T2 because the azimuths φ1 and φ2 in this case have
opposite signs (φ1=−φ2).

Similarly, equations (C-3), (C-4), (C-9), and (C-10) can be
combined to obtain

1N1 cos 2φ1 +1N2 cos 2φ2 = ε(1) − ε(2)

2g(1− g)
≡ Dε (D-10)

and

1N1 sin 2φ1 +1N2 sin 2φ2 = ζ (2) + ζ (1)

g2
≡ Sζ . (D-11)

Equations (D-10) and (D-11) give the following expressions
for the normal weaknesses:

1N1 = Dε sin 2φ2 − Sζ cos 2φ2

sin 2(φ2 − φ1)
,

(D-12)
1N2 = −Dε sin 2φ1 + Sζ cos 2φ1

sin 2(φ2 − φ1)
.

Substituting equation (D-12) into equation (D-4), we find a
second relation between the azimuths:

Dε cos(φ2 + φ1)+ Sζ sin(φ2 + φ1) = S1N cos(φ2 − φ1).

(D-13)

Equations (D-9) and (D-13) can be solved for φ2 + φ1 and
φ2 − φ1:

φ2 + φ1 = tan−1
[DγS1N −DεS1T

S1TSζ

]
. (D-14)

Using equation (D-9), we find

φ2 − φ1 = cos−1
[ Dγ
S1T

cos(φ2 + φ1)
]
. (D-15)

Equations (D-14) and (D-15) make it possible to determine
the fracture azimuths φ1 and φ1.

After recovering the fracture orientation, we can compute
the four weaknesses 1T i and 1Ni from equations (D-8) and
(D-12). Finally, equations (C-1) and (C-2) yield the P- and
S-wave velocities in the background.

APPENDIX E

SPECIAL CASE OF EQUAL TANGENTIAL WEAKNESSES

Suppose the tangential weaknesses of the crack systems are
equal, so that

1T1 = 1T2 ≡ 1T . (E-1)

Then it follows from equation (9) that

φ1 = −φ2 ≡ φ. (E-2)

Substituting equations (E-1) and (E-2) into the weak-
anisotropy approximations (C-1)–(C-11) yields

VP0=VP

[
1− (1− 2g)2

2
(1N1 +1N2)

]
, (E-3)

VS0=VS

[
1− 1T

2
(1+ cos 2φ)

]
, (E-4)

ε(1)=−2g
{
(1− g)(1N1 +1N2)

+ [21T − g(1N1 +1N2)]cos2φ
}
sin2φ, (E-5)

ε(2)=−2g
{
(1− g)(1N1 +1N2)

+ [21T − g(1N1 +1N2)]sin2φ
}
cos2φ, (E-6)

δ(1)=−2g{(1− 2g)(1N1 +1N2)+ 21T }sin2φ, (E-7)

δ(2)=−2g{(1− 2g)(1N1 +1N2)+ 21T }cos2φ, (E-8)

γ (1)= {2[21T − g(1N1 +1N2)]cos2φ −1T
}
sin2φ,

(E-9)

γ (2)= {2[21T − g(1N1 +1N2)]sin2φ −1T
}
cos2φ,

(E-10)

ζ (1)= 2g2(1N1 −1N2)sinφ cos3φ, (E-11)

ζ (2)= 2g2(1N1 −1N2)sin3φ cosφ, (E-12)

and

ζ (3) = g(1− 2g)(1N1 −1N2)sin 2φ. (E-13)

Equations (E-3)–(E-13) are much easier to invert for the
fracture parameters than the more general expressions of Ap-
pendix C. Having estimated g from either equation (D-1) or
the VS0/VP0 ratio, we obtain the fracture azimuth as

δ(1)

δ(2)
= ζ (2)

ζ (1)
= tan2φ. (E-14)

Note that the angle between the two systems of cracks is equal
to 2φ. The tangential weakness 1T can be found from the
shear-wave splitting coefficient γ (S) which, in the limit of weak
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anisotropy, reduces to the difference between γ (2) and γ (1):

γ (S) = γ (2) − γ (1) = −1T cos 2φ. (E-15)

Then any of equations (E-11)–(E-13) for the ζ coefficients give
the difference between the normal weaknesses1N1−1N2. The
sum 1N1 +1N2 can be determined, for instance, from δ(1) and

δ(2) [equations (E-7) and (E-8)]:

1N1 +1N2 = 1
2g− 1

(
δ(1) + δ(2)

2g
+ 21T

)
. (E-16)

Combined with the difference 1N1−1N2 obtained earlier,
equation (E-16) yields the individual values of the normal
weaknesses 1N1 and 1N2.


