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Introduction

ABSTRACT

Analytic description of seismic signatures in azimuthally anisotropic media is of
primary importance in characterization of fractured reservoirs. The formalism
developed here provides a convenient way of describing the behavior of group
velocity and polarization vector in models with orthorhombic symmetry. The
expressions for group and polarization vectors become particularly simple in
the coordinate system associated with the vertical plane that contains the phase-
velocity vector. For instance, two “in-plane” components of the group-velocity
vector can be obtained directly from the well-known equations for vertical trans-
verse isotropy (VTI media). Due to the presence of azimuthal anisotropy, the
group-velocity vector acquires an out-of-plane component that also has a concise
analytic representation.

To understand the influence of the anisotropic coefficients on the orientation
of the group and polarization vectors, we derived linearized weak-anisotropy
approximations based on the notation for orthorhombic media introduced by
Tsvankin (1996a). The relationship between the group and polarization vectors
in weakly orthorhombic models turned out to have the same form as in VTI
media (Rommel, 1994), although both vectors deviate from the vertical phase
plane. Our analytic results show that polarization and group directions usually
are close to each other, and in this sense P-wave polarization in orthorhombic
media is almost “isotropic.” This conclusion is in agreement with existing nu-
merical results (Tsvankin and Chesnokov, 1990) and was further verified here
by modeling for orthorhombic media with substantial anisotropy.
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data to the presence of azimuthal anisotropy (Lynn et
al., 1996). Clearly, interpretation of seismic signatures in

Azimuthally anisotropic models are commonly used to
describe fractured reservoirs that contain one or more
systems of vertical or dipping cracks. It was realized more
than a decade ago that seismic methods can provide valu-
able information about the orientation and physical prop-
erties of crack systems (Crampin, 1985). Although most
existing investigations of fractured media are limited to
the analysis of split shear waves at near-vertical incid-
ence (e.g., Thomsen, 1988), some recent experimental

studies have demonstrated the sensitivity of P-wave *

* The qualifiers in “quasi-P-wave” and “quasi-S-wave” will
be omitted.

azimuthally anisotropic media is impossible without an
analytic insight into the relation between the anisotropic
parameters and seismic wavefields.

The behavior of seismic signatures is relatively well
understood for the transversely (azimuthally) isotropic
model with a vertical symmetry axis (VTI media). A
summary of recent advances in the analytic description
of seismic velocities and amplitudes in VTI models can
be found in an overview paper by Tsvankin (1996a).
Some of the results obtained for vertical transverse iso-
tropy can be directly applied to TI models with a ho-
rizontal symmetry axis (HTI media) used to describe
the simplest fractured formations that contain parallel



282  B. Rommel and 1. Tsvankin

vertical penny-shaped cracks in a purely isotropic back-
ground. Evidently, such signatures as phase and group
velocity, polarization vector, and point-source radiation
pattern can be expressed in the same form for any homo-
geneous TI model, whether the symmetry axis is vertical
or horizontal.

Horizontal transverse isotropy, however, is a relat-
ively restrictive model that cannot be used to charac-
terize fractured reservoirs with two vertical crack sys-
tems, non-aligned cracks, or an anisotropic background
medium. Realistic fractured media may well have or-
thorhombic (Wild and Crampin, 1991), monoclinic or
even the lowest, triclinic symmetry. Orthorhombic mod-
els have three mutually orthogonal symmetry planes, in
which the Christoffel equation has the same form as in
transversely isotropic media (Musgrave, 1970; Schoen-
berg and Helbig, 1997). Therefore, body-wave velocit-
ies and polarizations in the symmetry planes of or-
thorhombic media are described by the same equations as
for VTI media. Tsvankin (1996b) used the limited ana-
logy with VTI media to introduce dimensionless aniso-
tropic parameters for orthorhombic media defined sim-
ilarly to Thomsen’s (1986) VTI coefficients €, §, and
~. This notation provides a simple way of obtaining
kinematic signatures and polarizations in the symmetry
planes of orthorhombic media by adapting the VTI equa-
tions represented through Thomsen parameters. The di-
mensionless parameters also proved to be well-suited
for developing a concise weak-anisotropy approximation
for phase velocity outside the symmetry planes of or-
thorhombic models. Another advantage of this notation
is the reduction in the number of independent parameters
responsible for P-wave kinematic signatures from nine
(in the conventional notation) to six (Tsvankin, 1996b).

Here, we present an exact expression for the group-
velocity vector, as well as concise weak-anisotropy ap-
proximations for the P-wave group and polarization
angles valid outside the symmetry planes of orthorhombic
media. By using an auxiliary coordinate system associ-
ated with the phase-velocity vector, we obtain the “in-
plane” components of the group and polarization vector
in the same form as for vertical transverse isotropy. Sim-
ilar approximations, derived for the “out-of-plane” com-
ponents, show that the group and polarization vector de-
viate from the phase vector in the same direction and are
typically close to each other. Our equation for the po-
larization vector has a much simpler form than the more
general expression developed by Psenéik and Gajewski
(1997) for arbitrary anisotropic media and specified for
orthorhombic models.
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Figure 1. Orthorhombic media have three mutually ortho-
gonal planes of mirror symmetry. One of the reasons for or-
thorhombic anisotropy is a combination of parallel vertical
cracks and vertical transverse isotropy (e.g., due to thin hori-
zontal layering) in the background.

Orthorhombic Symmetry System

Orthorhombic anisotropy describes several typical frac-
tured models including those containing a system of par-
allel vertical cracks in a VTI background medium or
two orthogonal crack systems (Figure 1). Media with
orthorhombic symmetry have three mutually orthogonal
planes of mirror symmetry; for the model with a single
crack system shown in Figure 1, the vertical symmetry
planes are defined by the directions parallel and nor-
mal to the cracks. The velocities and polarizations in
the symmetry planes of orthorhombic media are given
by the same equations as for vertical transverse iso-
tropy. (Body-wave amplitudes in the symmetry planes,
however, are influenced by the azimuthal velocity vari-
ations and require a special treatment.) Tsvankin (1996b)
has taken advantage of the limited equivalence between
orthorhombic and VTI media to introduce the following
dimensionless anisotropic parameters defined similarly to
the well-known Thomsen’s (1986) coefficients ¢, § and =
for vertical transverse isotropy:

e Vp( — the vertical velocity of the P-wave:

C33
v _ 1
PO p ( )

e V5o — the vertical velocity of the S-wave polarized
in the x1 direction:

\/7- (2)

Vso
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e ¢ — the VTI parameter € in the symmetry plane
[z1,z3]; the superscript “2” refers to the zs-axis that is
normal to the [z1, z3]-plane:

@ = 0112033033 _ 3)
¢® is close to the fractional difference between the P-
wave velocities in the z1- and z3-directions.

o 63 — the VTI parameter § in the [z, x3]-plane (re-
sponsible for near-vertical P-wave velocity variations,
also influences SV-wave velocity anisotropy):

(c13 + 055)2 — (c33 — 655)2

5(2)
2¢33 (c33 — ¢55)

(4)

o v _ the VTI parameter + in the [z1,z3]-plane
(close to the fractional difference between the SH-wave
velocities in the z1- and zs-directions):

(2) _ Ce6 —Cad 5
Y e (5)

o ¢ — the VTI parameter € in the [z2, z3]-plane:

(1) _ C22—cC33 6
o (6)

™
I

o () — the VTI parameter § in the [z2, z3]-plane:

s = (c23 + 044)2 — (c33 — 044)2 7)
a 2c33 (c33 — caa) '

o vV — the VTI parameter v in the |2, z3]-plane:
(1) _ Ce6 —Css 8
= ®)

e 6 — the VTI parameter § in the [z1, z2]-plane (z1
plays the role of the symmetry axis):

§® = (c12 + C66)2 — (e11 — 066)2 )
- 2¢11 (€11 — co6) '

Alternatively, the ¢ coefficient in the horizontal plane
can be expressed through the average of ¢11 and c2s:

p O (c12 + co6)* — (€ — co6)?
o 2¢ (¢ — ce6)
with € = (c11 + ¢22) /2.

; (10)

The parameter 3(3) makes weak-anisotropy approxima-
tions symmetric with respect to the vertical symmetry
planes but it does not allow to preserve the uniformity
in the definition of the § coefficients.

Therefore, the two vertical velocities and seven di-
mensionless anisotropic coefficients can replace the nine

independent stiffness components of the orthorhombic
model. Due to the equivalence with VTI media, the
new parameters can be conveniently used to describe
seismic velocities and polarizations in the symmetry
planes of orthorhombic media using the known VTI equa-
tions expressed through Thomsen parameters (Tsvankin,
1996b). Advantages of the new notation, however, are not
limited to the symmetry planes. All kinematic signatures
of P-waves in orthorhombic models are determined by
the vertical velocity (a scaling coefficient in homogen-
eous media) and only five anisotropy parameters: €W,
M, €@ 6 and §® (Tsvankin, 1996b), as compared
to nine stiffnesses in the conventional notation. Also, Ts-
vankin (1996b) presented a concise weak-anisotropy ap-
proximation for P-wave phase velocity in terms of these
five relevant coefficients. Below, we use these results to
give an analytic description of the P-wave group velocity
and polarization vector outside the symmetry planes of
orthorhombic media.

Group Velocity

General description

The group-velocity vector determines the direction of en-
ergy propagation (i.e., seismic rays) and, therefore, is
of primary importance in seismic traveltime methods.
While the phase-velocity vector (normal to the wave-
front) can be obtained directly from the Christoffel equa-
tion, evaluation of group velocity involves differentiating
the phase-velocity function with respect to the compon-
ents of the wave vector. For transversely isotropic media,
group velocity represents a relatively simple function of
phase velocity and phase angle with the symmetry axis
(Berryman, 1979). However, expressions for group velo-
city conventionally used for orthorhombic and lower sym-
metries are much more complicated and include the com-
ponents of the polarization vector in addition to phase
velocity (Musgrave, 1970). Here, the group-velocity vec-
tor in arbitrary anisotropic media is expressed directly
through phase velocity and its derivatives with respect
to the vertical (6) and azimuthal (¢) phase angles.

Let us introduce an auxiliary Cartesian coordinate
system [z,y, z] with the horizontal axes rotated by the
angle ¢ around the z3-axis of the original coordinate sys-
tem [z1, 2, z3], so that the phase-velocity vector lies in
the [z, z]-coordinate plane (Figure 2). The vertical (z)-
axis coincides with the axis z3 of the old system, while
the y-axis of the new coordinate system is normal to the
plane ¢ = const and points counterclockwise from the
original zi-axis.

The group velocity for any anisotropic medium can
be represented as follows (e.g., Berryman, 1979):
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Figure 2. The vectors of group (V) and phase (Vp) velo-
city in azimuthally anisotropic media (hereafter, we omit the
subscript in Vp). The phase-velocity vector lies in the [z, z]-
plane of an auxiliary coordinate system [z,y, z] and makes the
angle 6 with vertical. To describe the orientation of the group-
velocity vector, it is convenient to introduce the “in-plane”
(¥1) and “out-of-plane” (v2) group angles.
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where V' is the phase velocity, k is the wave vector, which
is parallel to the phase-velocity vector and has the mag-
nitude £k = w/V (w is the angular frequency), and &, ¥,
and 2 are the unit coordinate vectors. Differentiation with
respect to each component of the wave vector has to be
performed with the other two components held constant.
Since both group-velocity components in the [z, z]-plane
(Vaz and Vg.) are calculated for k, = 0, they are inde-
pendent from out-of-plane phase-velocity variations. As
further confirmed by the derivation in Appendix A, Vg,
and Vg, represent the same functions of phase velocity
as in any symmetry plane in arbitrary anisotropic media
(Tsvankin, 1995):

_ OkV)
. ov
= Vsinf+ 20 seomst cosf. (13)
_ 9kV)
Va. - Bkz (14)
= Vecosf — ov sin 6. (15)

06 ¢p=const

Note that equations (13) and (15) are identical to the
well-known expressions for the group-velocity vector in
VTI media (Berryman, 1979; Thomsen, 1986).

The transverse component of the group-velocity vec-
tor Vg, depends solely on azimuthal phase-velocity vari-
ations and exists only outside the symmetry planes. As
shown in Appendix A, Vg, is determined by the first de-
rivative of phase velocity with respect to the azimuthal
phase angle ¢:

akV)

\% = 16

Gy aky ( )
1 9V

B sin § % f=const . (17)

Equations (13)-(17) conveniently express the group-
velocity vector in arbitrary anisotropic media through
3-D variations in the phase-velocity function. Next, we
use this representation to gain insight into the behavior
of group velocity in orthorhombic media.

Weak-anisotropy approximation for group
velocity

Due to the complexity of the phase-velocity function,
equations (13)-(17) do not provide an easy insight into
the behavior of group velocity in orthorhombic media.
Here, we transform the expression for P-wave group-
velocity in orthorhombic media under the assumption of
weak anisotropy. The weak-anisotropy approximation for
P-wave phase velocity, linearized in the dimensionless
anisotropic coefficients, was given by Tsvankin (1996b):

Vp(8,¢) = Vpo (18)
[1 + 8(¢) sin® 6 cos” 0 + () sin” 9] ; (19)
8(¢) = 6Pcos’p+6Wsin’ g, (20)
e(g) = € cos® ¢+ eV sint ¢ +
(2¢® 4+ 6®)sin® ¢ cos® ¢, (21)
= ? cos? ¢+ e sin? ¢+
3 sin? $cos’ ¢. (22)

Equation (19) has exactly the same form as the
Thomsen’s (1986) weak-anisotropy approximation for
vertical transverse isotropy, but the parameters € and §
in orthorhombic media become azimuthally dependent.
In both vertical symmetry planes, equation (19) reduces
to the VTT expression that includes the appropriate pair
of the parameters € and § (¢ and 6 in the [z1,x3]-
plane and ) and §V) in the [x2, z3]-plane). Substituting
equation (19) into the group-velocity expressions (13)-
(17), we can obtain an explicit approximation for group
velocity in terms of the anisotropy parameters.
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The magnitude of the group-velocity vector can be
found from equations (13)-(17):

10v\2 LAY
V\/H(VW) +<Vsin0 %) - (29

Clearly, all anisotropic terms in equation (23) are

Ve =

quadratic in the anisotropy parameters. This means that
in the linearized weak-anisotropy approximation the ab-
solute values of phase and group velocity are identical, as
in VTI media. However, the difference between the dir-
ections of the group- and phase-velocity vectors cannot
be ignored even in the weak-anisotropy approximation.
It is convenient to describe the orientation of the group-
velocity vector in terms of the “in-plane” and “out-of-
plane” group angles. The in-plane group angle 9 (Fig-
ure 2) is defined as

Vi

tani); = VGw . (24)
Gz

In the weak-anisotropy limit, P-wave phase velocity

in each vertical [z, z]-plane is given by equation (19) that

has the same form as for vertical transverse isotropy.
Since both Vg, and Vg, represent the same functions
of the in-plane phase velocity as in VTI media, we can
obtain the weak-anisotropy approximation for the angle
11 by substituting e(¢) and d(¢) into the known VTI
equation (Thomsen, 1986):

tanyn = (1+ 2p)tan, (25)
where

p = 0(})cos20 + 2¢(¢)sin® b (26)

= 6(¢) +2[e(9) — 5(¢)]sin” 6 (27)

In the [z1, z3]-symmetry plane, §(¢) = 6P, e(¢) =
¢ while in the [z2,z3]-plane §(¢) = 6V, e(¢p) = ).

Expanding tan~! /1 in a Taylor series in the aniso-
tropic factor p and keeping just the linear term allows us
to rewrite equation (25) as

P =

The second group angle, 12, describes the deviation

6+ psin26. (28)

of the group-velocity vector from the vertical [z, z]-plane
¢ = const (Figure 2):

tany, = _ Vey (29)

VVE Ve
In the linearized weak-anisotropy approximation,

[Gy
tan = —.
an o Vro (30)

Substituting the phase-velocity expression (19) into

equation (17) for Vg, and dividing by Vpo [equa-
tion (30)], we find

tanys = g¢sin2¢siné, (31)
where
q = [6(1) — 5(2)] cos’ 0 +
[2 (e(l) — 6(2)) sin® ¢ + 5 cos 2(]5] sin? 9,
(32)

_ [50) _ 5(2)] cos 6 +
[eu) —e® 15D o 2¢] sin” 6. (33)

Since tan 2 in equation (31) is linear in the anisotropic
coefficients, it can be replaced with the angle 5 itself.

If the medium is azimuthally isotropic (VTI), then
00 = 6@ D = @ 5B = 0, and the angle 15 is
identically zero for all phase directions. Also, 12 = 0
in both vertical symmetry planes of orthorhombic me-
dia corresponding to ¢ = 0 and ¢ = 90°. Evidently,
the group-velocity vector deviates from the vertical plane
that contains the phase vector only outside the symmetry
planes of azimuthally anisotropic media.

Equations (25) and (31) can be efficiently used
in seismic tomography to relate the traveltimes in or-
thorhombic media to the anisotropy parameters. For in-
stance, the equations for the group angles can be com-
bined with the weak-anisotropy approximation for the
magnitude of the group-velocity vector [given just by the
phase-velocity equation (19)] to calculate explicit ana-
lytic expressions for the Frechét derivatives of the travel-
time needed in the singular value decomposition of the
tomographic inverse problem.

Weak-anisotropy approximation for
polarization

Plane-wave polarization vector in isotropic media is
either parallel (for P-waves) or orthorgonal (for S-waves)
to the phase (slowness) direction. In the presence of an-
isotropy, polarization is governed not only by the slow-
ness vector, but also by the elastic constants of the me-
dium. For a given slowness direction, the polarization
vectors of the three plane waves define the eigenvectors
of the symmetric Christoffel matrix and, therefore, are al-
ways mutually orthogonal. (Note that this property is no
longer valid for non-planar wavefronts because the three
body waves recorded at any receiver location correspond
to different slowness directions.) The polarization vector
of the plane P-wave, however, is not necessarily aligned
with either phase (slowness) or group (ray) vector; this
explains the term “quasi-P”-wave.

The weak-anisotropy approximation for the P-wave
polarization vector in orthorhombic media is derived in
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Appendix B. Using the auxiliary coordinate system in-
troduced above for the group-velocity vector, we find the
following expressions for the components of the polariz-
ation vector:

P, = (1 + 2B pcos’ 9) sin 6, (34)
P, = Bgsin2¢siné, (35)
P. = (1-2Bpsin®6) cosé, (36)

where p and ¢ were defined in equations (26) and (33),
and B is the coefficient suggested by Tsvankin (1996a):

1
B = ————. (37)
2(1 = Vo / Vo)

Alternatively, the polarization vector can also be ex-
pressed in polar coordinates, with the radial and vertical
components (the azimuthal angle is not shown here) given
by

P,
P,

(1 +2Bpcos’ 9) sinf, (38)
(1—2Bpsin® ) cos 6. (39)

The formal structure of P, and P, is the same in VTI
media (Rommel, 1994), but the factor p for orthorhombic
anisotropy is azimuthally dependent and should be recal-
culated for every azimuthal phase angle ¢.

The influence of anisotropy on P-wave polarization
is absorbed by the factors p and g, which depend on the
anisotropic coefficients and phase angles. For instance,
p is mostly controlled by the following parameter com-
binations: d(¢) near vertical, 2¢(¢) for 6 =~ 45° and
2¢(¢p) — d(¢) near horizontal (for a detailed discussion,
see the section on numerical examples). The anisotropic
terms in the expressions for P, and P, are also scaled
by a constant factor B that depends on the ratio of the
vertical velocities.

Note that the transverse component P, is propor-
tional to the linear anisotropic term ¢ and, therefore,
vanishes in isotropic media (and in VTI media as well).
In orthorhombic models the P-wave polarization vector
cannot have the out-of-plane component P, in both ver-
tical symmetry planes (¢ = 0° and ¢ = 90°). Likewise,
in the horizontal symmetry plane (6 = 90°) the vertical
polarization P, goes to zero.

Clearly, the orientation of the polarization and phase
vectors is generally different, with the deviation depend-
ent on the phase vector. In some directions, however,
the polarization and phase vectors may be parallel to
each other. These pure-mode directions are sometimes
called “longitudinal” (Schoenberg and Helbig, 1997)
and include, for example, the intersections of the sym-
metry planes of orthorhombic media. Within the ver-
tical symmetry planes, P-wave polarization in weakly

orthorhombic media becomes purely longitudinal if the
factor p (26) vanishes, and the equation

_ —4(¢)
el = - “w
has a real solution (Brugger, 1964). Outside the sym-
metry planes a longitudinal direction occurs if not only
p, but also the g goes to zero. Using equation (33) and
setting ¢ = 0, we find the following relationship between
the phase angles:

tan ¢

(6 = 53] + [5) 4+ () — )] tan? 6

_ [5(1) _ 5(2)] + [3(3) _ (6(1) _ 5(2))] tan? 6 .
(41)

If conditions (40) and (41) are simultaneously satisfied
(p = q = 0), the P-wave polarization vector is parallel
to the phase-velocity vector (to the first order in the an-
isotropy coefficients). From equations (25) and (31) it is
clear that for p = ¢ = 0 the group- and phase-velocity
vectors coincide with each other.

Equations (34)—(36) allow us to determine the
plane” and “out-of-plane” polarization angles defined in

“in_

the same way as the corresponding group angles. In the
weak-anisotropy approximation, the tangent of the in-
plane polarization angle vy with vertical is given by

Py
tanyy = P, (42)
= (1+2Bp)tané, (43)
or, expanding tan ! v,
rn = 6+ Bpsin26. (44)

The “in-plane” polarization angle for orthorhombic an-
isotropy has the same form as in VTI media (Rommel,
1994; Tsvankin, 1996a), but the coefficients ¢ and § in
the expression for p [equation (26)] are azimuthally de-
pendent.

Comparison with the results of Rommel (1994) and
Tsvankin (1996a) shows that both group and polariza-
tion angles in the vertical plane that contains the phase
vector are the same functions of €(¢), §(¢) and B as in
VTI media with the coefficients € and § and the ratio
of the vertical velocities Vso/Vpo. Therefore, conclusions
about the relative positions of the phase, group, and po-
larization vector obtained for vertical transverse isotropy
remain fully valid for the in-plane components of these
vectors in weakly orthorhombic media. Combining equa-
tions (28) and (44), we find the V'TI relationship
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in-plane deviation [deg]

0 15 30 45 60 75 90
vertical phase angle [deg]

Figure 3. In-plane deviation of the polarization vector (solid
black line) and the group-velocity vector (dashed black) from
the phase direction (i.e., v1 —#8 and 1 — 8, respectively) in the
[z1,z3]-plane (¢ = 0). The weak-anisotropy approximations
are shown by the solid gray line (polarization) and dashed
gray line (group velocity). The medium parameters are Vpo =
3000m/s, Vgo = 1200m/s, 1) = 0.25, ¢ = 0.15, 61 =
0.05, 6 = —0.1, and 5 = 0.15. In the [z1,z3]-plane e(¢) =
€ and §(¢) = 6(2). A pure mode exists at a vertical phase
angle § ~ 27° (longitudinal direction).

in-plane deviation [deg]

30 45 60 75 90
vertical phase angle [deg]

0 15

Figure 4. Same as Figure 3, but for the vertical plane ¢ =
30°. The effective anisotropy coefficients are ¢(30°) = 0.19 and
§(30°) = —0.06. A longitudinal direction occurs at § ~ 20°
which is smaller than in Figure 3.

B (¢ —6). (45)

From equation (45) it follows that the in-plane polariza-
tion vector lies between the group and phase directions,
but is closer to the group vector. Indeed, for plausible
values of the Vso/Vpo ratio, B belongs to the interval
0.5 < B <1 (Tsvankin, 1996a).

Outside of the vertical symmetry planes, the polar-
ization vector deviates from the vertical plane that con-
tains the phase vector due to the non-zero polarization
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Figure 5. Same as Figure 3, but for the vertical plane ¢ =

60°. The effective anisotropy coefficients are ¢(60°) = 0.25 and
4(60°) = 0.01. Here, the longitudinal direction disappears.
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Figure 6. Same as Figure 3, but for the [z2,z3] symmetry

plane (¢ = 90°). The effective anisotropy coefficients are

e =0.25 and 6(1) = 0.05. There is no longitudinal direction
at intermediate angles.

component P,. The “out-of-plane” polarization angle is
defined as

P,
tany, = —2t— 46
’ VP + F? (46
= Bgsin2¢sinf, (47)
or
va = Bgsin2¢sin (48)

Using equations (31) and (48), we find the relation
between the out-of-plane ray and polarization angles:

B (49)

Therefore, the polarization and group vector deviate from

1 9] =

the vertical phase plane in the same direction, and the
out-of-plane angles are scaled by the same factor B as
the deviations from the phase vector in the vertical plane.
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Figure 7. Out-of-plane deviation of the polarization vector
(solid black line) and the group-velocity vector (dashed black)
(i.e., v2 and 2, respectively) in the vertical plane ¢ = 30°).
The weak-anisotropy approximations are shown by the solid
gray line (polarization) and dashed gray line (group velocity).
The medium is the same as in Figure 3; the effective anisotropy
coefficients are ¢(30°) = 0.19 and §(30°) = —0.06.
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Figure 8. Same as Figure 7, but for the vertical plane ¢ =
60°. The effective anisotropy coefficients are €(60°) = 0.25
and 4(60°) = 0.01.

We conclude that the P-wave polarization vector in or-
thorhombic media always deviates from the phase direc-
tion towards the group vector, and the angle between the
polarization and group vectors is relatively small. This
analytic result is in good agreement with the numerical
analysis of P-wave polarizations in orthorhombic media
given in Tsvankin and Chesnokov (1990).

Numerical study of group velocity and
polarization

Here, we present numerical examples illustrating the ac-
curacy of the analytic approximations and the behavior
of the group and polarization vectors in orthorhombic
media. The whole suite of plots shows that the weak-

anisotropy approximations for the group and polarization
angles are sufficiently close to the exact solutions, even if
the magnitude of angular velocity variations is sunbstan-
tial. As could be expected from the design of the medium
parameters, the highest accuracy is achieved near the ver-
tical direction. Still, despite increasing deviations with
the vertical phase angle, the maximum error of the weak-
anisotropy approximations is limited by several degrees.
It should be emphasized that the model used in this sec-
tion cannot be considered weakly anisotropic since the
largest e coefficient reaches 0.25.

Figures 3—6 show the in-plane deviation of the polar-
ization and group vectors from the phase vector (v1 — 6
and 11 —0, respectively). The behavior of both differences
is controlled by the factor p [equation (26)] dependent on
the azimuthally varying parameters §(¢) and €(¢). For a
fixed azimuthal phase angle ¢, the polarization and group
angles are governed by §(¢) (near vertical), 2¢(¢) (near
6 = 45°), and 2¢(¢) — 6(¢) (near horizontal). In the ver-
tical direction (f = 0°) and the horizontal plane (6 = 90°)
the in-plane components of the group and polarization
vector are aligned with the phase vector, so vy =11 = 6.

For intermediate phase angles, the orientations of the
vectors are different, with the deviations determined by
the sign and magnitude of the above-listed terms. If both
d(¢) and 2¢e(¢p) — d(¢) are positive, the polarization and
ray angle are larger than the phase angle, which implies
that the polarization and group vector are tilted from
the phase vector towards horizontal (Figures 5 and 6).
If 0(¢) and 2¢(d) — 6(¢) are negative, then the polariz-
ation and group vectors deviate from the phase vector
towards vertical. Finally, each deviation has two extrema
(a maximum and a minimum) if these two terms have
opposite signs (Figures 3 and 4). At some angle between
the extrema, corresponding to p = 0 [equation (26)], the
in-plane components of the polarization and group vec-
tors are parallel to the phase vector. If p vanishes for a
certain angle 0 in one of the symmetry planes (as in Fig-
ure 3), this angle corresponds to a longitudinal direction,
where the polarization vector as a whole is parallel to the
phase vector, and the phase and group vectors coincide
with each other.

Since in orthorhombic media the term p is azi-
muthally dependent, a point where v1 = 11 = 6 might
disappear and reappear with changing azimuth. The
properties in each vertical plane of a weakly orthorhombic
medium are identical to those of the effective VTI me-
dium with the parameters e(¢) and §(¢), which determine
the character of azimuthal variations in polarization and
group velocity. It should be mentioned that e(¢) [equa-
tion (21)] does not change in a fully monotonous way
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between the vertical symmetry planes due to the influ-
ence of the coefficient 8" (especially near horizontal).

The deviations of both the polarization and group-
velocity vectors from the vertical phase plane are relat-
ively small and, in agreement with the weak-anisotropy
approximation, have the same sign (Figures 7 and 8).
The out-of-plane deviation is governed by the term ¢
[equation (33)] and depends on the differences §(¥) —§(®,
e — @) as well as on the coefficient §*. While §®)
and § are responsible for ¢ near vertical, e, ¢®, and
5 determine q for large angles 6.

Another parameter governing both the in-plane and
out-of-plane components of the polarization vector is a
combination of the vertical velocities that we denoted as
B [equation (37)]. With increasing ratio Vpg/Vso, the
value of B and the anisotropic term in expressions (44)
and (48) become smaller, and the polarization vector
moves closer to the phase vector and further away from
the group vector. Therefore, the deviation of the polariz-
ation vector from the phase vector is more pronounced in
hard rocks than in unconsolidated sediments. The para-
meter B has no influence the form of the deviation (e. g.,
on the position of the zeros, maxima and minima); rather,
it scales the deviation as a whole.

Discussion and Conclusions

We have presented analytic approximations for group ve-
locity and polarization vector of P-waves in media with
orthorhombic symmetry. Group velocity for arbitrary an-
isotropic media can be conveniently expressed through
phase velocity and its derivatives with respect to the
phase angles. We show that the group-velocity compon-
ents in the vertical plane that contains the phase-velocity
vector can be evaluated by analogy with transversely iso-
tropic models with a vertical symmetry axis (VTI me-
dia). The transverse component of the group-velocity
vector, normal to this vertical phase plane, depends on
the derivative of phase velocity with respect to the azi-
muthal phase angle and appears only outside the sym-
metry planes of azimuthally anisotropic media.

The exact group-velocity expression was transform-
ed into a much simpler weak-anisotropy approximation
for orthorhombic media using the phase-velocity equa-
tions given by Tsvankin (1996b). In the limit of weak
anisotropy, the group and phase velocity are equal to
each other, but the angle between the group- and phase-
velocity vector is linear in the anisotropic coefficients.
The analytic approximation for group angles can be used
in traveltime tomography to perform singular-value de-
composition or to build fast ray-tracing algorithms in
weakly anisotropic orthorhombic media.

Using the same auxiliary coordinate system associ-

ated with the phase-velocity vector, we also obtained a
concise weak-anisotropy approximation for the polariz-
ation angles. The relationship between the polarization,
group and phase angles in the vertical phase plane has
exactly the same form as in VTI media, but the ani-
sotropic coefficients € and § are azimuthally dependent.
It is interesting that the out-of-plane (azimuthal) devi-
ations of the polarization and group vector are scaled
by the same factors as their in-plane deviations from the
phase vector. As a result, the polarization and group vec-
tors diverge from the phase vector in the same direction
and are usually close to each other. This analytic conclu-
sion is supported by the numerical results of Tsvankin
and Chesnokov (1990) who found the P-wave polariz-
ation vector in orthorhombic media to be surprisingly
well-aligned with the group-velocity vector. In this sense,
P-wave polarization in orthorhombic media typically is
close to “isotropic” and will not create, for example, dis-
tortions in the radiation patterns (Tsvankin and Ches-
nokov, 1990). The polarization vector may still deviate
substantially from the phase vector, and this phenomenon
can be used to study anisotropy in VSP experiments.

The high accuracy of the analytic approximations
was confirmed by calculating the exact group and polar-
ization angles within and outside the symmetry planes
in orthorhombic media with pronounced velocity vari-
ations. The modeling reveals the magnitude of the azi-
muthal variation in the group and polarization angles,
verifies the position of the “longitudinal” directions, and
illustrates the influence of various parameter combina-
tions.
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APPENDIX A: Group velocity in
arbitrarily anisotropic media

Here, the group-velocity vector in arbitrary anisotro-
pic media is expressed as a function of phase velocity
V (6, ¢) represented through the spherical polar (6) and
azimuthal (¢) phase angles. For purposes of this deriv-
ation, it is convenient to use an auxiliary Cartesian co-
ordinate system [z, y, z] rotated by the angle ¢ around
the z3-axis of the original system [z1,z2, z3] (Figure 2).
We start with the general expression for group velocity
introduced in the main text (e.g., Berryman, 1979):
~ okV), OkV), OKkV),

Vo = Bt on, U w2

(A1)

where V is the phase velocity and k is the wave vector.
First, we obtain the two components of the group-velocity
vector confined to the vertical plane y = 0 (Vg and
Va:); in the following, we will call them the “in-plane”
components.

From equation (A1) we have

_ OkY)
Voo = o (A2)
ok OV
= Vor TFok, (A3)

To evaluate Vg, both V and k,; can be represented as
functions of the phase angle 6 with the vertical (z)-axis.
Keeping the components k, and k. constant and substi-

tuting k = \/k2 + k2 + k2, we get

ok ka» .
— = — = sinf. A4
8kcc ky,kz=const k ( )

The second term in the right-hand side of equation (A3)
takes the form

o
oV 89 p=const
" ok, =k A5
Ok ky,kz=const Ok, ( )
69 k>=const
Since k; =k, tan,
Ok, B k.
69 k,=const - cos? 6 ’ (A6)
Taking into account that k./k = cos 6, we obtain
ka_v = v cos . (A7)

8km W ¢p=const
Substituting equations (A4) and (A7) into equation (A3)
yields

. ov
Vsin b + W ‘gb:const

Similarly, the second in-plane component of the

Ve = cosf. (A8B)

group-velocity vector is given by

Vcos — B_V

89 p=const

Equations (A8) and (A9) for Vg, and Vg. are
identical to the expressions for the vertical and horizontal
components of the group-velocity vector in transversely

Vo = sin . (A9)

isotropic media in any symmetry plane in anisotropic
media (Tsvankin, 1995).

For the transverse component of the group-velocity
vector we have

a(kV)

Vay (A10)
aky kg ,k,=const
k, OV
= VY thge (A11)

The first term in the right-hand side of equation (A11)
vanishes because the transverse component of the wave
vector (ky) in the zz-plane is zero. Both the phase velo-
city V and k, in the second term are convenient to ex-
press through the azimuthal phase angle ¢ defined with
respect to the plane y = 0:

o
o ¢
d¢

Expressing k, through the second horizontal component
ks, we have

k, = kytang, (A13)
Therefore,
Oky _ ks (A14)

— > 7"
8¢ ka,k>=const cos d)
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Since the derivative should be taken at ¢ = 0,
Ok,
3¢

When computing the derivative of phase velocity with

= k. (A15)

ka,kz=const

respect to ¢, we have to take into account that both the
polar angle f and the azimuthal angle ¢ change with &,
and ¢. Therefore, we need to evaluate

ov _ v » N
a¢ kaz,kz=const ae $=const ad) ka,k,=const

A 9

a¢ f=const a¢ ka,k,=const

(A16)
From simple geometry,
ke 1
tanf = o= A17
an k2 cosd (A7)
and
2

a—q — ko cos 9, sing. (A18)
8¢ kz,kz=const kz COS2¢
Substituting ¢ = 0, we find that
% = 0. (A19)
8¢ kg, k,=const

If the y-axis points in the positive ¢-direction (counter-
clockwise from the x1-axis),

¢

o= 1, A20
5 (A20)
and equation (A16) reduces to
ov ov
— = — . (A21)
a¢ kaz,kz=const a¢ f=const

Using equations (A15) and (A21), we can rewrite equa-
tion (A12) as

ov. 10V

f=const

Finally, for the transverse component of the group vector
[equation (A11)] we have

k ov
Vay LEAS (A23)
km a¢ f6=const
1 ov
-— A24
sin § a¢ 6=const ( )

The y-axis in equation (A24) points in the direction of
increasing ¢, i.e., counterclockwise from the zi-axis of
the original coordinate system.

APPENDIX B: Polarization

The phase velocity and polarization of plane waves in
an unbounded anisotropic medium is described by the
Christoffel equation. The squared phase velocities v rep-
resent the eigenvalues of the symmetric Christoffel mat-
rix T, while the polarizations P are the corresponding
eigenvectors:

(T-»"T)P = 0, (B.1)

where I the unit matrix. The elements of the Chris-
toffel matrix T;; = askjimkn; depend on the density-
normalized stiffness tensor a and the unit vector in the
phase (slowness) direction n. For an orthorhombic me-
dium, the Christoffel matrix has the following form in
Voigt’s notation:

Tii = auni’ +aesena’ + assns’, (B.2)
T2 = (a12 + aes) nina, (B.3)
Tis = (a3 +ass)ning, (B.4)
Tee = a66n12 + a22n22 + a44n32, (B-5)
Tos = (a23 + aa4) nang, (B.6)
Tss = assni’ + aaans” + assns’. (B.7)

The phase velocities v are computed by solving the
characteristic determinant |T —v21| of the Christoffel
equation (B.1). Provided the three phase velocities (ei-
genvalues) v are distinct, the polarization P vector of any
mode is given by (Rokhlin et al., 1986):

BB = ) (B.8)
where

Wij = 3€iri€imnGrmGin (B.9)
is the adjunct matrix with

Gij = Ty —vd;;. (B.10)

Here, €;;1 is the Levi-Civita or permutation tensor, and
d;5 is the Kronecker symbolic §. Direct calculation gives

Wii = G22G33 — G32Gas, (B.11)
Wa = G33G11 — G13Gsa1, (B.12)
Wss = Gi11G22 — G21Ga2, (B.13)
Wiz = G31Ga23 — G21Gss, (B.14)
Wis = G32G21 — G22Gai, (B.15)
Was = G31G12 — G32G1. (B.16)

The first component of the polarization has an arbit-
rary sign; it is obtained from the general equation (B.8)
as
Wi

P2
! Wonm

(B.17)
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The other components of the polarization vector are com-
puted through P; from equation B.8, with the correct
relative sign being obtained automatically:

7%
P = W_"ll; , (B.18)
Wia
P = —2_ B.1
2 Wmmpl 3 ( 9)
Wis
p = 2 B.2
3 W P1 (B.20)

It may happen that for a certain slowness direction Wiy
and P; vanish. In this case, it is necessary to start with
another (nonzero) polarization component.

The anisotropy coefficients can be inserted anywhere
in the above expressions. We derived the weak-anisotropy
approximation for the P-wave polarization vector by rep-
resenting the Christoffel matrix T through Tsvankin’s
(1996b) anisotropy parameters, substituting T into equa-
tions (B.10)—(B.16) and carrying out linearization of the
polarization components.

Unfortunately, in general Cartesian coordinates the
polarization vector is rather complicated. Therefore, we
used the auxiliary Cartesian coordinate system [z, y, 2]
associated with the phase-velocity vector (Figure 2) and
obtained the following concise expressions:

P, = (1 + cipcosz 9) sin 6, (B.21)
€33 — Cs5
C33 . .
P, = ———gsin¢gcos¢sind, (B.22)
€33 — Cs5
P, = (1 — %8 psin® 9) cos b, (B.23)
€33 — Cs5

where the factors p and ¢ are defined in equations (26)
and (33) of the main text.



