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Depth-domain velocity analysis in VTI media using surface

P-wave data: Is it feasible?

Yves Le Stunff*, Vladimir Grechka, and Ilya Tsvankin*

ABSTRACT

The main difficulties in anisotropic velocity analysis
and inversion using surface seismic data are associated
with the multiparameter nature of the problem and in-
herent trade-offs between the model parameters. For
the most common anisotropic model, transverse isotropy
with a vertical symmetry axis (VTTI media), P-wave kine-
matic signatures are controlled by the vertical velocity V,
and the anisotropic parameters ¢ and §. However, only
two combinations of these parameters—NMO velocity
from a horizontal reflector V,;,,(0) and the anellipticity
coefficient »—can be determined from P-wave reflec-
tion traveltimes if the medium above the reflector is lat-
erally homogeneous. While V,,,,(0) and 5 are sufficient
for time-domain imaging in VTI media, they cannot be
used to resolve the vertical velocity and build velocity
models needed for depth migration.

Here, we demonstrate that P-wave reflection data can
be inverted for all three relevant VTI parameters (Vo, €
and §) if the model contains nonhorizontal intermediate

interfaces. Using anisotropic reflection tomography, we
carry out parameter estimation for a two-layer medium
with a curved intermediate interface and reconstruct the
correct anisotropic depth model. To explain the success
of this inversion procedure, we present an analytic study
of reflection traveltimes for this model and show that
the information about the vertical velocity and reflector
depth was contained in the reflected rays which crossed
the dipping intermediate interface.

The results of this work are especially encouraging
because the need for depth imaging (such as prestack
depth migration) arises mostly in laterally heteroge-
neous media. Still, we restricted this study to a relatively
simple model and constrained the inversion by assuming
that one of the layers is isotropic. In general, although
lateral heterogeneity does create a dependence of
P-wave reflection traveltimes on the vertical velocity,
there is no guarantee that for more complicated models
all anisotropic parameters can be resolved in a unique
fashion.

INTRODUCTION

This paper discusses the influence of lateral heterogeneity
(in the form of dipping interfaces along the raypath) on the
results of parameter estimation for transversely isotropic me-
dia with a vertical axis of symmetry (VTI). To constrain the
anisotropic velocity model using surface data, it is beneficial
to record reflected rays spanning a wide range of propagation
directions (e.g., Alkhalifah and Tsvankin, 1995; Tsvankin and
Thomsen, 1995). Angle coverage of reflection data can be in-
creased by processing dipping events or long-offset data from
horizontal interfaces. Wide-angle recording, however, implies
that the rays cover a relatively large subsurface area and may
be influenced by lateral heterogeneity in the form of either

smooth velocity variations or dip and irregular shape of inter-
mediate interfaces. In general, lateral heterogeneity may sig-
nificantly complicate the inversion process by introducing ad-
ditional trade-offs between the model parameters. (Note that
the problem of separating the contribution of lateral velocity
variation to reflection traveltimes from that of the shape of
interfaces is known to be quite involved even for isotropic me-
dia; see Goldin, 1986.) It turns out, however, that as long as the
subsurface structure and the velocity model remain relatively
simple, lateral heterogeneity can actually help in constraining
the parameters which are impossible to obtain in similar mod-
els with a homogeneous or horizontally layered overburden.
This point is illustrated here for a two-layer VTI medium with
a dipping intermediate interface.
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Parameter estimation in transversely isotropic media has
attracted considerable attention in the literature in the past
several years (e.g., Bube and Meadows, 1997; Bartel et al.,
1998; Grechka and Tsvankin, 1998; Le Stunff and Grenié, 1998;
Le Stunff and Jeannot, 1998; Sexton and Williamson, 1998).
One of the common conclusions that can be drawn from these
publications is that surface P-wave reflection data in VT1 me-
dia are inherently insufficient to constrain the vertical velocity
and reflector depth. Analytic support for this result is provided
by the work of Alkhalifah and Tsvankin (1995), who showed
that P-wave reflection traveltimes are fully controlled by only
two parameters—the NMO velocity from a horizontal reflector
Vimo(0) and the anellipticity coefficient n:

Vnmo(O) = VO\/ 1 + 25, (1)
€—39§

T=112s @)
Here, V; is the P-wave vertical velocity, and € and § are
Thomsen’s (1986) anisotropy parameters; Vy, €, and § fully
control P-wave kinematic signatures in VTI media (Tsvankin,
1996). Since the vertical velocity contributes to Vy,0(0) [equa-
tion (1)] only in combination with §, it seems that P-wave
traveltime data cannot be used to resolve V, and determine
the depth scale in VTI media. Therefore, one has to rely on
additional information (e.g., borehole data or shear waves) in
building anisotropic velocity models for prestack and poststack

depth migration.

The Alkhalifah-Tsvankin (1995) result, however, was de-
rived for laterally homogeneous VTI media above a dipping
reflector. The presence of lateral heterogeneity in the sub-
surface may, in principle, cause dependence of P-wave re-
flection traveltimes on the individual values of V,, €, and
8. Such a dependence was indeed observed by Alkhalifah
et al. (1998), who commented, however, that the depen-
dence was rather weak for the models they tested. Grechka
and Tsvankin (1999) developed a general methodology for
obtaining NMO velocities in laterally heterogeneous media
and used it to demonstrate that P-wave NMO velocities
from reflectors beneath layered VTI media with nonhori-
zontal intermediate interfaces may contain information about
the layers’ thicknesses. They emphasized that the dip of in-
termediate interfaces makes the P-wave reflection data de-
pendent on all three Thomsen parameters (Vy, €, and §).
Hence, an important practical issue is whether for a certain
class of laterally heterogeneous VTI models the parameters
Vo, €, and § can be determined unambiguously from surface
P-wave data.

Without attempting to answer this question in full generality,
we present a successful synthetic example of P-wave reflection
tomographyinalayered VITmodel with a curved intermediate
interface. Our results prove that P-wave reflection traveltimes
in some piecewise homogeneous VTI models can indeed be
inverted for the parameters V), €, and §, along with the depths
and dips of the reflecting interfaces. We begin with a description
of our numerical test and then give an analytic explanation of
the results using the theory of Grechka and Tsvankin (1999).

TOMOGRAPHIC INVERSION FOR A TWO-LAYER MODEL

The model chosen for tomographic parameter estimation is
shown in Figure 1. It contains two homogeneous layers (VTI

and isotropic) separated by a curved interface. The traveltimes
of P-waves reflected from both interfaces were calculated by
ray tracing; the acquisition parameters are listed in Table 1.

We added Gaussian noise with zero mean and a standard de-
viation of 2.5 ms to the traveltimes to simulate picking errors
and applied a tomographic algorithm (e.g., Stork and Clayton,
1985; Kaculini and Guiziou, 1992) to perform traveltime inver-
sion. The initial model was purely isotropic with the param-
eters estimated from conventional time-to-depth conversion
using the NMO velocities and zero-offset traveltimes. The to-
mographic procedure updates the model to minimize the misfit
between the input and computed traveltimes using a linearized
least-squares algorithm (Tarantola, 1987). We constrained the
inversion assuming that

1) the model consists of two homogeneous layers,
2) the bottom layer is isotropic, and
3) the bottom reflector is horizontal.

The intermediate interface was parameterized by a B-spline
with 12 nodes (one node per every 40 common midpoints). The
model parameters include the vertical velocity V, (t stands for
“top”) and the coefficients ¢, and §, in the VTI layer, the veloc-
ity V;, (bstands for “bottom”) in the isotropiclayer, the depth Z,
of the horizontal reflector, and the spline coefficients respon-
sible for the shape and position of the intermediate interface.
At each iteration all parameters were updated simultaneously.
As shown in Figure 2, the algorithm successfully converges to-
ward the correct solution after only a few iterations. Note that
since we determined both velocities V, and V,,, we can recon-
struct the actual depths and dips of both interfaces. Clearly,
in this example P-wave reflection traveltimes provide enough
information for building a model in the depth domain.

The results of our tomographic experiment may seem to con-
tradict the theory of Alkhalifah and Tsvankin (1995), as well
as the conclusions of some recent publications cited above. For

Table 1. Acquisition parameters used in ray tracing. The
number of receivers per CMP gather and the maximum offset
were reduced for CMP locations near the edges of the model.

Parameter Value
Number of common midpoints 500
CMP spacing 125 m
Number of receivers per CMP gather 40
Receiver spacing 100 m
Minimum offset Om

Maximum offset 4000 m

CMP coordinate (km)

0 3 6
5 VTI layer

=

& i Isotropic layer
=3

FiG. 1. The model used for tomographic parameter estima-
tion. The top layer is VTI with the P-wave vertical veloc-
ity V;=2.5 km/s and the anisotropic coefficients ¢, =0.2 and
8; =0.05. The bottom layer is isotropic with the P-wave veloc-
ity V, =3.5 km/s; the depth of the lower boundary Z, =3 km.
The intermediate interface has the dip ¢ =25° at the zero CMP
coordinate and is horizontal on the right.
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instance, Bube and Meadows (1997) state that in TI media - - -
the well-known velocity-depth ambiguity cannot be separated
as it can be done in the isotropic case.” Indeed, velocity—depth
ambiguity in our model cannot be overcome using the reflec-
tion from the intermediate interface that yields only the pa-
rameters Voo ((0) and n, in the VTI layer [see equations (1)
and (2)] (Alkhalifah and Tsvankin, 1995). Including the reflec-
tion from the bottom interface near the right edge of the model
where both interfaces are horizontal (Figure 1), one can also
determine the velocity V, in the isotropic layer from the con-
ventional Dix (1955) equation. The quantities Vymo,((0) and n,,
however, provide sufficient information only for time process-
ing and do not constrain the thickness of the VTI layer.

Below, we show that the success of the tomographic inver-
sion procedure was ensured by the traveltimes from the bottom
reflector near the left edge of the model, where the interme-
diate interface is dipping. This dip causes the dependence of
P-wave moveout on all four relevant parameters (Vi, W, €,
and §,), thus constraining the depth scale of the model.
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FiG. 2. The model parameters and time residuals obtained by
the iterative inversion algorithm. (a) Anisotropic coefficients ¢,
and §; (b) velocities V; and V,,; and (c) rms traveltime residuals.
The residuals at the fourth and fifth iterations are equal to the
standard deviation of the noise (2.5 ms) added to the data.

ANALYTIC EXPLANATION OF THE INVERSION RESULTS
Slopes of the zero-offset reflections

In the dip-moveout (DMO) inversion algorithm of
Alkhalifah and Tsvankin (1995), the slopes of reflection events
are supposed to be determined from the zero-offset time sec-
tion and used as the arguments of the NMO-velocity function.
As mentioned above, the DMO inversion in the VTI layer
yields the values of the zero-dip NMO velocity Vymo.1(0) and n
but not the true vertical velocity. The dip of the intermediate
interface, however, also creates a dependence of the slope of
the bottom reflection (p,) on the parameters of the top (VTI)
layer.

As shown in Appendix A, the value of p combined with
the slope p; of the reflection from the intermediate dipping
interface (Figure 3a) can be used to infer the vertical velocity
V;. Under the assumption of weak anisotropy and mild dip of
the intermediate interface, the relation between the two slopes
is given by [equation (A-6)]

Po Vb ~ (Vo — V). (3)

Since the velocity V, in the isotropic layer can be obtained us-
ing the Dix differentiation near the right edge of the model
(see above), equation (3) yields the velocity V;. For our model,
calculating V; directly from equation (3) yields V; =2.42 km/s,
which is reasonably close to the correct value V; =2.5 km/s.
Then, since the zero-dip NMO velocity Vome((0) can be de-
termined from moveout analysis on the right-hand side of the
model, we can use equation (1) to obtain the anisotropic coef-
ficient §;. Note that if the intermediate interface is horizontal,
pr = p =0 and equation (3) contains no information about the
velocities.

NMO velocity from the bottom reflector

Although, as discussed above, the zero-offset reflection
slopes are already sufficient for resolving the vertical velocity in
the VT layer using reflection tomography for the whole model,
here we show that additional information about V, is provided
by the NMO velocity of the bottom reflection event on the
left-hand side of the model. As before, we assume that the
zero-dip NMO velocity Vyme ((0) and n, were determined using
the data from the right-hand side of the model and the NMO
velocity Vimo.t(pr) from the intermediate interface (dashed line
in Figure 3b). Then, as follows from the work of Grechka and
Tsvankin (1999), the NMO velocity Vime v ( Pv) from the bottom
horizontal reflector on the left-hand side of the model (solid
line in Figure 3b) can be inverted for the coefficient §; and the
vertical velocity V; in the VTI layer. Two results of Grechka
and Tsvankin (1999) applicable to our problem can be briefly
summarized as follows.

1) Normal-moveout velocity of any pure-mode reflection
plotted from the common midpoint along all possible di-
rections of CMP lines in 3-D space forms a quadratic
NMO-velocity surface, which usually is either a one-
sheeted hyperboloid, or a cylinder, or an ellipsoid. If the
medium at the common midpoint islocally homogeneous,
the surface has to be a cylinder with the axis parallel to
the zero-offset ray at the CMP location.
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2) Dix-type averaging and differentiation procedures in
piecewise homogeneous media are applicable to the
cross-sections of the NMO-velocity cylinders by interme-
diate interfaces.

Here, we discuss a 2-D version of Grechka-Tsvankin’s (1999)
Dix-type averaging procedure that is adequate for our test
model (Figure 1). Since both layers are homogeneous and the
model is two-dimensional, the NMO-velocity surfaces of all
reflections are cylinders with the axes confined to the vertical
incidence plane. Cross-sections of these cylinders by the inter-
faces will represent ellipses (or circles in special cases) with the
axes in the incidence plane and orthogonal to it. Since in our to-
mographic experiment we did not measure traveltimes outside
the incidence plane, we apply the averaging scheme of Grechka
and Tsvankin just to the in-plane axes of the cross-sections.

Figure 4 illustrates the process of building the effective NMO
velocity Vimo b for the reflection from the bottom interface on
the left-hand side of our model (the intermediate interface is
assumed to be planar). Ve, and V¢ are the semiaxes (gray
lines in Figures 4a and 4b; full axes are shown) of the cross-
sections of two interval NMO-velocity cylinders (dashed lines
in Figures 4a and 4b) by the intermediate interface. Following
Grechka and Tsvankin (1999), these axes have to be averaged
according to the Dix (1955) formula,

V2 _ fbvczyl,b + rtvczyl,t (4)
cyl,eff T + Tt ’

where 1, and 7, are the zero-offset traveltimes in the bottom
and top layers (Figures 4a and 4b). V. i is the effective NMO
velocity in the direction parallel to the intermediate interface
(gray line in Figure 4c). Finally, the NMO velocity Vime.v(Pb)
(Figure 4d) on a surface CMP line is found by projecting Vey cff
along the axes of the NMO-velocity cylinder (dashed lines in
Figure 4d) onto the horizontal plane.

The result of this averaging operation can be written as
(Appendix B)

2
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where py, as above, is the slope of the reflection from the hor-
izontal interface on the zero-offset section (i.e., the horizontal
component of the slowness vector of the zero-offset ray taken
at the surface), g, =dq,/dp, is the derivative of the vertical
slowness component g, at the surface with respect to p,, and

Vnmo,t(p b )

zero-offset

Vnmo,b (O)

chl,e}/

0

FiG.4. Two-dimensional version of the Dix-type averaging pro-
cedure (Grechka and Tsvankin, 1999) for a two-layer model
with an intermediate dipping interface. Veyp (a) and Ve,
(b) are the in-plane semiaxes (full axes are shown) of the
cross-sections of the interval NMO-velocity cylinders in the
isotropic (bottom) and VTI layers. Dix-type averaging of
Veyip and Ve produces the in-plane axis Veyerr (c) of the
cross-section of the effective NMO-velocity cyfinder. Veylef 18
then projected along the effective cylinder onto the horizontal
plane, yielding the NMO velocity Vymo»(Pp) (d) measured at
the surface.
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FIG. 3. Zero-offset traveltimes and NMO velocities on the left-hand side of the model (Figure 1) where the dip of the intermediate
interface is constant. (a) One-way zero-offset traveltimes of the events reflected from the bottom horizontal interface (solid line)
and intermediate dipping interface (dashed). The slopes of these events (p, and p, respectively) can be used to constrain the vertical
velocity V, in the top (VTT) layer. (b) NMO velocities from the bottom interface [Viamo b( Po); solid line] and the intermediate interface

[Vnmo.t( pt), dashed line].



VTI Depth-Domain Velocity Analysis 901

Vimo.t(Pp) (Figure 4b) is the NMO velocity from the bottom
of the VTTI layer corresponding to the same value of p [i.e.,
Vamo.t(Pv) corresponds to the horizontal cross-section of the
interval NMO-velocity cylinder in the VTI layer].

Next, we analyze equation (5) to show that the NMO veloc-
ity Vamo.v(Pv) depends on §; for given values of Vo ((0) and 7.
Note that the normal-moveout velocity Vymo +( Pp) in the numer-
ator of the second term is a function of just py, 7, and Vyme,((0)
with no separate dependence on §; (Alkhalifah and Tsvankin,
1995). In contrast, &, does contribute to the numerator of the
first term through the product ' tan ¢. The simplest way to
demonstrate that g tan ¢ is indeed a function of §; is to obtain
its approximation in the weak-anisotropy limit [equation (B-8)
in Appendix B]:

Vnm(),t(O)(1 + St) - Vb
Nomor@) —Vop @

It can be shown that §; also influences the ratio of the trav-
eltimes in the two layers (t/ty). This ratio, unlike the term
q; tan ¢, changes with the CMP coordinate Xcmp, which makes
Vamo,b( Po) from equation (5) a laterally varying function as well
(Figure 3b). From the structure of equation (5) and the fact that
0, tan ¢ isnot a function of Xcwp, itis clear that the dependence
of g tan ¢ on §; cannot be compensated by the traveltime ratio
7/ 1 for all CMP locations.

We conclude that the NMO velocity of the bottom event
Vimo.b(Pb) as a whole depends on the anisotropic parameter
8, in addition to Vyme((0) and 7. According to equation (5),
our ability to invert Vymo »(Pp) for the parameter §; and, con-
sequently, for the depth of the intermediate interface is tied
to the interface dip ¢. The greater the dip, the better §; and
the vertical velocity V; are constrained by the reflection travel-
times. If the intermediate interface is horizontal, Vyme »( Py = 0)
is completely independent of §; because g tan ¢ =0.

qp tan ¢ ~ V,, [ Pb Vamo,¢(0)]*

Inversion on the left-hand side of the model

Our analytic results show that the presence of the dipping
intermediate interface plays a crucial role in constraining the
vertical velocity V, in the VTI layer. In the discussion above,
however, we assumed that the velocities Vo ((0) and V;, were
obtained from moveout analysis on the right-hand side of the
model (Figure 1). Below, we demonstrate that this assumption
is in fact unnecessary, and it is possible to find all VTI parame-
ters using only the traveltimes near the left edge of the model.

Neglecting the curvature of the intermediate interface, the
left-hand side of the model can be fully described by the fol-
lowing seven parameters: the dip ¢ and the depth Z; (e.g., at
the zero CMP coordinate Xcyp =0) of the intermediate in-
terface; the depth Z, of the horizontal reflector; the parame-
ters V,, €, and §; which control P-wave kinematics in the VTI
layer; and the velocity V, in the bottom isotropic layer. As indi-
cated by Figure 3, surface data may contain enough information
to resolve all these parameters. The zero-offset traveltimes in
Figure 3a are linear functions of the CMP coordinate Xcwp and
therefore provide a total of four constraints (i.e., four equations
for the unknown parameters). The NMO velocity Vymo«(Pt)
from the dipping interface (Figure 3b) does not depend on
Xcmp, thus adding one more equation. Two more equations
come from the NMO velocity Vymo»(Pb) of the bottom event
(Figure 3b) that depends almost linearly on Xcyp.

Thus, the traveltime data on the left-hand side of the model
yield seven nonlinear equations for seven unknown parame-
ters. We have solved these equations by the simplex method
and have obtained accurate estimates of the model param-
eters close to those determined from reflection tomography
(Figure 2).

DISCUSSION AND CONCLUSIONS

Lateral heterogeneity is commonly perceived as one of the
main hindrances in velocity analysis and parameter estima-
tion, especially if the medium is anisotropic. Therefore, it is
not surprising that parameter estimation in VTI media has
been largely based on the theory by Alkhalifah and Tsvankin
(1995) developed for laterally homogeneous overburden above
a horizontal or dipping reflector. The results of Alkhalifah and
Tsvankin (1995) clearly show that P-wave reflection travel-
times and time imaging in such a model are fully controlled by
the vertical traveltime and just two parameters—the zero-dip
NMO velocity Vimo(0) and the anisotropic coefficient n. While
the extension of time-domain velocity analysis and imaging to
VTI media produced a number of impressive results (such as
superior imaging of dipping reflectors), the problem of build-
ing anisotropic models for depth imaging without using addi-
tional information (e.g., borehole data or PS-waves) remained
unresolved.

This work demonstrates that for certain types of laterally
heterogeneous VTI media it may be feasible to invert P-wave
moveout for all three relevant Thomsen parameters (the ver-
tical velocity V, and the anisotropic coefficients ¢ and §) and
therby to find the depth-dependent velocity field. Our model
included a VTI layer with a curved lower boundary overlying
a purely isotropic layer. Analytic expressions for the reflection
slopes and NMO velocities show that the information about
the vertical velocity and thickness of the VTI layer was con-
tained in the reflection event transmitted through the dipping
intermediate interface.

Although we succeeded in using reflection tomography for
depth-domain parameter estimation in a two-layer VTI model
and corroborated the obtained results theoretically, the unique
solution may no longer exist if the model is more compli-
cated. For instance, if the bottom layer becomes anisotropic
(VTI), the traveltimes on the left-hand side of the model are no
longer sufficient for recovering the vertical velocities. Indeed,
the number of available equations remains the same (seven),
but the number of unknowns increases as a result of the ad-
dition of the anisotropic coefficients in the bottom layer. Ev-
idently, while the dip of intermediate interfaces and possibly
some other relatively simple types of lateral heterogeneity may
be helpful in anisotropic velocity analysis, the range of laterally
heterogeneous VTI models susceptible to the unambiguous to-
mographic inversion of reflection traveltimes should be rather
restricted. A systematic analysis of P-wave moveout inversion
for layered VT media with planar and irregular interfaces will
be given in our sequel publications.
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APPENDIX A
SLOPES OF THE REFLECTION EVENTS IN THE TOMOGRAPHIC MODEL

Here we find an approximate relation between the slopes of
the zero-offset reflections from the bottom and intermediate
interfaces in the model from Figure 1. To simplify the deriva-
tion, we assume that the anisotropy in the VTI layer is weak
and the dip of the interface is mild.

The zero-offset ray reflected from the bottom of the model
is vertical (i.e., perpendicular to the reflector) in the isotropic
layer and becomes oblique in the top (VTI) layer. The hori-
zontal slowness component of this ray at the surface (denoted
as pp) determines the slope of the bottom reflection on the
zero-offset time section. Applying Snell’s law at the interme-
diate interface yields an expression that involves p, and the
interface dip ¢:

Py + ‘[an¢>|:i - Qb:| =0, (A-1)
Vo

where V, is the velocity in the bottom layer and g, is the vertical
slowness component of the zero-offset ray at the surface.

Using the weak-anisotropy version of the Christoffel equa-
tion, we obtain the following expression for gy linearized in the
anisotropic parameters §; and 7

_ (1480 —y) —my?

v ;
Vnmo,l(o)\/ 1 - y

where Vymo,((0) is the zero-dip NMO velocity in the VTI layer
and Y =[P Vamo.t(0)]>. Substituting equation (A-2) into equa-

(A-2)

tion (A-1) and linearizing the result in the anisotropic coeffi-
cients yields

_o[t+s 177 3

ané = pb[vnmo,xm - VJ +0(m)
N L ) A-3
_pb[Vt_V_b:| +0(py) (A-3)

where V, is the vertical P-wave velocity in the top VTI layer.
Cubic and higher powers of py in equation (A-3) are not shown
explicitly because the corresponding terms should be small for
mild dips.

The dip ¢ can also be found using the reflection from the
intermediate interface. Since the slowness vector [ p;, g] of the
zero-offset reflected ray is orthogonal to the interface,

tan¢ = & (A-4)

Ot
Combining equation (A-2) (where g, should be replaced by g;
and p, by p;) and equation (A-4) allows us to express tan ¢
through the slope py:

tang = p Vi + O(p}). (A-5)

Substituting equation (A-3) into (A-5) and retaining only lin-
ear terms in p; and py leads to the following relation between
the slopes of the two reflection events:

Py = pt<1 — \\//—;) (A-6)
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APPENDIX B
NMO VELOCITY FROM THE BOTTOM REFLECTOR

The P-wave NMO velocity Vime» for the bottom reflection
event (Figure 4) can be found using the general formalism de-
veloped by Grechka and Tsvankin (1999). As discussed in the
main text, the Dix-type expressions of Grechka and Tsvankin
operate with the (elliptical) cross-sections of NMO-velocity
cylinders by the model interfaces. In our 2-D problem, we will
need to obtain only the in-plane axes of these cross-sections
(i.e., the axes confined to the vertical incidence plane).

First, we have to find the velocities Ve, and Ve ¢ (gray lines
in Figures 4a and 4b), which correspond to the cross-sections
of the interval NMO cylinders by the intermediate interface.
The NMO-velocity cylinder in the bottom layer (dashed lines
in Figure 4a) is circular with the axis parallel to the vertical
segment of the zero-offset ray. The radius of the circle at the
bottom of the NMO-velocity cylinder is simply equal to the
velocity V, because the bottom layer is isotropic. As illustrated
by Figure 4a, the cross-section Vy, of the cylinder by the in-
termediate interface is given by

Vo
cos¢’

Veylp = (B-1)
Equation (B-1) is the familiar expression for the dip-
component of NMO velocity in isotropic media.

The axis of the NMO-velocity cylinder in the VTT layer is
parallel to the group velocity vector (i.e., to the zero-offset ray;
see Figure 4b). The angle ¢ between the zero-offset ray and
vertical can be written as (Grechka et al., 1999)

tany = _9% = —qp, (B-2)

where p, and q, are the horizontal and vertical slowness com-
ponents of the zero-offset ray in the VTI layer. The quantity
Vamo,t(Pp) in Figure 4b corresponds to the dip component of
the NMO velocity from a dipping reflector (nonexistent in our
model) orthogonal to the slowness vector {Py, p}. Vamo.((Pb)
has to be projected onto the intermediate dipping interface
along the axes of the NMO-velocity cylinder (dashed lines in
Figure 4b). This projection, denoted by V,y , can be determined
from the law of sines:

cos ¥
Vet = V, —_—. B-3
cyl,t nmo,t( pb) COS(Iﬁ — ¢) ( )
Substituting tan ¢ from equation (B-2) yields
V,
chl,t _ nmo,t( pb) (B-4)

cosp(l — qf tang)

The second step in our derivation is the Dix averaging of
the velocities Veyp and Vg described by equations (B-1)
and (B-4):

2 —
chl,eff -

LW L Ve ]

T+ 7| cos?¢ cos? ¢(1 — g tan ¢)?
(B-5)

where 1, and t; are the zero-offset traveltimes in the bottom
and top layers. The averaged velocity Ve .t corresponds to the
cross-section of the effective NMO-velocity cylinder by a plane
parallel to the dipping interface (gray line in Figure 4c).

Finally, we project Vy it onto the horizontal plane to obtain
the NMO velocity Viamo.n(Pp) (Figure 4d) of the bottom reflec-
tion event that can be measured from surface data. This pro-
jection can be found directly from equations (B-3) and (B-4):

Vnmo,b(pb) = chl,eff%m

= Vyl,eff COS ¢(1 - q[/) tan ¢) (B'6)

Substituting equation (B-5) into equation (B-6) leads to the
final result:

V(o o YR 0+ nVi ()
nmo,b - :

Ty + Tt

(B-7)
Equation (B-7) is almost identical to the conventional Dix
(1955) formula, but it contains the factor (1 — g tan $)* that
appears because of the dip ¢ of the intermediate interface. To
gain insight into the dependence of ¢ tan ¢ on the model pa-
rameters, we simplify this expression, assuming that the dip ¢
is small (i.e., | tan ¢| <« 1) and anisotropy is weak (i.e., |5 < 1
and |n;| « 1). The derivative ¢}, can be obtained by differenti-
ating equation (A-2), while tan ¢ is given by equation (A-3).
Keeping only linear terms in the anisotropic coefficients and
terms up to quadratic in the slope p,, we find

Vnmo,t(o)(1 + 8t) - Vb
[Vnmo.t(o) - Vb]z

+0(py)- (B-8)

Clearly, even for weak anisotropy the term ¢}, tan ¢ depends not
only on the NMO velocity Vimo ((0) but also on the anisotropic
coefficient §;; implications of this result are discussed in the
main text.

ql,) tan¢ = Vb[ pbvnmo,t(o)]2



