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PP+ PS =SS

Vladimir Grechka™ and llya Tsvankin®

ABSTRACT

Converted (PS) waves can provide important infor-
mation about shear-wave velocity and, in the presence
of anisotropy, about the medium parameters responsi-
ble for both P- and S-wave propagation. Kinematics and
amplitudes of reflected PS-waves, however, possess such
undesirable features as moveout asymmetry, reflection
point dispersal, and polarity reversal, which preclude ap-
plication of conventional velocity-analysis methods to
mode conversions.

Rather than using PS-wave kinematics directly, here
we propose a method for reconstructing SS-wave reflec-
tion traveltimes from PP and PS data. The required pre-
processing steps include picking of PP and PS travel-
times on prestack data and identification (correlation)
of the PP and PS events from the same interfaces. The
key idea of the method is to match the reflection slopes
(horizontal slownesses) on common-receiver PP and PS
gathers. This procedure allows us to find the coordinates
of receivers that record PP- and PS-waves reflected at ex-
actly the same (albeit unknown) subsurface points and
to determine the shear-wave reflection traveltime tssas

a simple combination of the PP and PS traveltimes. The
reconstructed SS-wave moveout can then be processed
by velocity-analysis methods designed for pure reflec-
tion modes. The developed technique, however, cannot
be used to compute the true amplitudes of the reflected
SS-waves.

Our method has the following attractive features:

1) No information about the velocity field or aniso-
tropic parameters is required to obtain SS-wave
traveltimes from PP and PS data. If the input PP
and PS arrivals are picked correctly and correspond
to the same reflector, the method produces exact
traveltimes tss

2) The estimates of traveltimes and reflection slopes
are local, which makes reflection-point dispersal
irrelevant.

3) Another consequence of the local nature of this
procedure is that the portion of PS data in the
vicinity of the polarity reversal (where the PS am-
plitudes are small) can be muted out without com-
promising the quality of tss estimates for source—
receiver pairs with high PS amplitudes.

INTRODUCTION

Because of the high cost of shear-wave excitation, the dif-
ficulty of placing sources on the sea floor, and the often poor
quality of SS-wave data, it has become a practice in seismic
imaging and parameter estimation to replace pure SS reflec-
tions with mode-converted PS-waves. Converted waves are of
particular importance in offshore seismic, where they represent
the only available type of shear energy. For a number of explo-
ration scenarios, PS-waves provide valuable information about
the subsurface structure or medium properties that cannot be
inferred from conventional PP-wave data. Examples include

imaging through gas chimneys, characterization of naturally
fractured reservoirs, and estimation of rock and fluid parame-
ters (e.g., Granli et al., 1999; Pérez et al., 1999; Thomsen, 1999;
Gaiser, 2000).

In anisotropic media, shear-wave data play a crucial role in
velocity analysis and parameter estimation because PP-wave
reflection traveltimes alone usually are insufficient for esti-
mating even the subset of medium parameters responsible for
P-wave propagation. For example, if the medium is transversely
isotropic with a vertical symmetry axis (VTI), reflection move-
out of PP-waves generally constrains just two parameter com-
binations: the NMO velocity for a horizontal reflector Vo, p (0)
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and the anellipticity parameter n (Alkhalifah and Tsvankin,
1995; Grechka and Tsvankin, 1998). [It is possible to invert
PP reflection traveltimes for the vertical velocity Vp, and
Thomsen anisotropic coefficients € and § only for some VTI
models with laterally heterogeneous overburden (Grechka,
Pech, and Tsvankin, 2000a,b).] The addition of PS (PSV) re-
flection traveltimes to PP moveout in VTI media helps to re-
solve the vertical P- and S-wave velocities and the parameters €
and §, provided the reflector has a mild dip and the data are
acquired for a wide range of azimuths (Tsvankin and Grechka,
2000a,b). Joint inversion of PP and PS data can be used to es-
timate the parameters of the more complicated orthorhombic
and monoclinic media as well (Grechka et al., 1999; Grechka,
Contreras, and Tsvankin, 2000).

However, parameter-estimation algorithms operating with
PS data are impeded by several inherent features of reflection
moveout of mode-converted waves. The most significant prob-
lem in PS-wave velocity analysis stems from the asymmetry
of PS moveout with respect to zero offset, both on common-
midpoint (CMP) and common-conversion-point (CCP) gath-
ers (see examples in Tsvankin and Grechka, 2000a,b). In con-
trast, for pure modes (PP or SS) reflection traveltime t between
the source located at x(V) and the receiver at x® remains the
same if the source and receiver positions are interchanged:

tPP(X(l), X(2)) — tpp(X(z), X(1))
and
tss(X(l), X(2)) — tss(X(z), X(l))_ (1)

Hence, moveout of pure-mode reflections on CMP gathers is
an even function of the source-receiver offset X and can be de-
scribed by the traveltime series t?(x?). The hyperbolic moveout
equation, routinely applied in seismic processing, is a truncated
form of this series used for moderate offsets not exceeding
reflector depth.

Converted-wave traveltimes are symmetric with respect to
zero offset only if the subsurface is composed of laterally ho-
mogeneous horizontal layers with a horizontal symmetry plane.
Various aspects of PS-wave kinematics in this special case are
discussed for isotropic media by Tessmer and Behle (1988) and
for anisotropic media by Seriff and Sriram (1991), Tsvankin
and Thomsen (1994), Grechka et al. (1999), Thomsen (1999),
and others.

In general, however, the PS-wave reflection traveltime
tps(x(, ) is not reciprocal with respect to the source and
receiver positions:

tps(x, x?) # tps(x?, xV). 2)

The asymmetry of PS moveout makes the series t?(x?) in gen-
eral, and the hyperbolic moveout equation in particular, invalid
for mode conversions. For instance, moveout (stacking) veloc-
ity of PS-waves generally takes two different values for positive
and negative offsets on a CMP gather; Thomsen (1999) calls this
phenomenon the diodic velocity. Therefore, efficient velocity-
analysis methods developed for pure modes, such as algorithms
for anisotropic stacking-velocity tomography (Grechka, Pech
and Tsvankin, 2000a,b), cannot be applied to PS-waves.
Tsvankin and Grechka (2000b) have attempted to remove
the moveout asymmetry by resorting the data into the so-called
RTM (resorting to traveltime minimum) gathers wherein the

moveout is locally symmetric in the vicinity of the traveltime
minimum. Their procedure, however, does not remove the re-
flection point dispersal, requires building different gathers for
each source-receiver pair, and leads to complicated expres-
sions for the NMO velocity in RTM geometry.

Here, we suggest abandoning the whole concept of PS-wave
moveout analysis. Instead, we use PP- and PS-wave reflection
traveltimes tpp and tps to compute the SS-wave traveltimes
tss for the same reflector; this explains the title “PP + PS =
SS” of our paper. We reconstruct tssby obtaining information
about the PP and PS reflection slopes, or horizontal slownesses,
from the common-receiver gathers. Matching the slopes helps
to identify the receivers that record PP and SS events reflected
from exactly the same subsurface points and helps to find the
traveltime tss as a simple linear combination of the recorded
times tpp and tps. We begin by describing the concept of the
method in two dimensions and then discuss its extension to
three dimensions. Finally, a test on ray-traced synthetic data
illustrates application of the method in practice.

ANALYTIC FORMULATION
2-D problem

Suppose PP- and PS-wave reflection data are acquired along
a straight line in the dip direction of the subsurface structure
and, if the medium is anisotropic, the vertical incidence plane
is a plane of symmetry. Then the reflected rays do not deviate
from the incidence plane, and reflection traveltime depends on
only the in-plane velocity field (i.e., the kinematic problem is
two dimensional). For the purpose of theoretical development,
it is assumed that the P-wave sources and two-component re-
ceivers are continuously distributed along the line. The re-
ceivers record both PP reflections and P-to-S conversions at
the reflector; hence, using the terminology of Thomsen (1999),
we treat only C-waves rather than conversions at intermedi-
ate interfaces. The most fundamental assumption made here
is that both PP- and PS-waves are reflected from the same
boundary in the subsurface. (Errors arising from violating this
assumption will be discussed later.) The velocity field in our
model can be arbitrary and will not be specified throughout this
paper.

The goal of our procedure is to identify the PP and PS rays
excited by the same source and reflected at the same point
on the interface. Let us examine PP data resorted into the
common-receiver gather for a particular receiver located at
x@ (Figure 1). The reflection traveltime tpp(x®, x?) in the
vicinity of the source at x(!) can be approximated by a lin-
ear function of the source coordinate x(V. Tracking the PP re-
flection event on the common-receiver gather, we can find its
traveltime tpp(x(", x®), along with the local slope

dtpp(x, x@
ppp(x(l),xm):—”(dx ) 3)

x=x(1)

It is known from ray theory that the slope ppp(x), x®)
is equal to the horizontal in-line component of the slowness
vector (measured at the source location) of the ray that trav-
els from the source x) to the receiver x®. [The parameter
pee(xM, X)) is conventionally called the ray parameter; it can
also be called the inverse of the profile or apparent velocity on
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the common-receiver gather.] This ray satisfies Snell’s law at
the (generally unknown from surface data) reflection point R
(Figure 1), which means that

[p"(x) - R) —p"(R— x?)] x b(R)=0.  (4)

Here p?(x() - R) and p°(R — x®) are the slowness vectors
of the downgoing and upgoing P rays, respectively, and b(R) is
the normal to the reflector. All quantities in equation (4) are
evaluated at the reflection point R, where the projections of
the slowness vectors pP(x® — R) and p°(R — x@) onto the
reflector should be equal to each other.

Next, we examine a PS-wave converted from P to S at
the same reflector (Figure 2). Again, we resort the data into
common-receiver gathers for different receiver positions x®
to obtain the traveltimes tpg(x("), x®)) and the local reflection
slopes at the source position x(,

dtpg(x, x®
Pos (X, xV) = —Ps(dx ) 5)

x=x(1)

We are interested in finding a specific receiver location x©®,
such that

Pep (X, x®) = pes(x), x2). (6)
Equation (6) can be solved for the unknown coordinate
X(3) = X(3) (X(l), X(Z)) (7)

by scanning over receiver locations x® along the line. It is not
clear in advance whether such a solution exists for any given
coordinates x(V) and x® and whether it is unique. If it does not
exist (see the numerical example below), the whole procedure
is simply repeated for another pair of (xV), x®).If equation (6)
has several solutions, as in the case of shear-wave triplications
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Fic. 1. Reflected PP rays and traveltimes recorded on a
common-receiver gather.

(cusps), it is possible to find all of them and reconstruct the
multivalued traveltime tgs

Suppose equation (6) has at least one solution x®. Then
rays X Rx® and XV Rx® in Figure 2 have a common segment
xM R and, therefore, the same reflection point R. Indeed, both
rays are excited at the same source X! and in the same di-
rection specified by the horizontal slowness ppp(Xx(, x?) =
prs(xV, x®) [see equation (6)]. Since the initial conditions for
those two rays are identical and the rays travel through the
same medium, their trajectories have to coincide between the
source and the reflection point R, where one of the downgoing
waves gets converted into an S-wave.

An important point to mention is that the slowness vector
of the incident P ray just before the conversion is equal to
p"(x() — R), the quantity that appears in Snell’s law (4) for
the pure PP-wave reflection. The reflected PS ray x Rx®® also
obeys Snell’s law,

[pP(xV - R) —p5(R— x¥)] xb(R) =0,  (8)

where pS(R — x®) is the slowness vector of the upgoing S ray
at the reflection point R.

Next, let us switch the source and receiver positions by
placing the source at x? and the receiver at ). Repeating
the same event-tracking procedure on the common-receiver
PP-wave gather yields the reflection slope (Figure 3)

dtpp (X, X(l))

Pop (X(2)7 X(U) - i 9)

x=x(?

Note that although the traveltimes tpp(x(",x®) and
tpp(x?, x1) coincide with each other [equation (1)], the
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Fic. 2. The reflection slope ppg(xV, x®) on the com-
mon-receiver gather for the PS-wave recorded at x® is equal
to the slope ppp(x), x@) on the PP-wave common-receiver
gather at X,



1964 Grechka and Tsvankin

corresponding slopes are generally different, unless the
medium is laterally homogeneous:

pPP (X(l), X(2)) # pPP (X(z), X(l)) (10)

Repeating the procedure described above, we find the re-
ceiver coordinate X for which the slope pps(x®, x®) of the
converted PS-wave on the common-receiver gather satisfies
the condition

Pop (X, X1V) = ppg(x@, x). (11)

The PS-wave traveltime for this source-receiver pair is
tps(x@, x@). Hence, the converted-wave ray x@Rx® in
Figure 3 has the same reflection point R as that of the two
previously computed rays. The slowness vectors of the down-
going P and upgoing S rays for the path x®Rx® obey Snell’s
law at R:

[pP(x? - R) —pS(R— x¥)] xb(R) = 0.  (12)

Thus, we have identified three ray trajectories [x(VRx®,
xDRx® and xPRx®] with the same reflection point R
(Figure 3). Combining the segments Rx® and Rx™ yields a
pure shear ray x®Rx®.

Next, it has to be proven that the trajectory xX®Rx™ corre-
sponds to a real reflected SS ray excited at x® and recorded at
x® or vice versa. Combining equations (4), (8), and (12), we
find that the shear-wave slowness vectors at R [pS(x® — R)
and pS(R — x®)] satisfy Snell’s law:

[p3(x® — R) —p3(R— x¥)] xb(R) =0.  (13)

Therefore, the ray xX® Rx® corresponds to a pure SS reflection
for the source and receiver positions at x® and x®. As follows

Pop D x®) = pp (2D 2 p () x ) = p (2 2®)

t t
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Fic. 3. Matching the reflection slopes on common-receiver PP
and PS sections at locations x) and x@ helps to find the
source-receiver coordinates X® and x* of the pure SS ray
x®Rx™, This reconstructed SS ray has the same reflection
point R as the PP ray xORx® and PS rays x®Rx® and
X@Rx®,

from Figure 3, the reflection traveltime tsgx®, x)) along this
ray is given by

tSS(X(3)9 X(4)) — tPS(X(l)v X(3)) + tPS(X(z)v X(4))
— tpp(X(l), X(Z)). (14)

Hence, the traveltime of the pure SS reflection is found as
a simple combination of the measured PP and PS traveltimes.
The receiver positions x® and x® for the PS arrivals are in-
ferred from the slopes on common-receiver PP and PS gathers
without using any information about the subsurface velocity
model.

Extension to 3-D

The simplicity of our methodology can be maintained for
3-D multiazimuth multicomponent data. Let us assume that
the sources and receivers cover a certain area in the acquisition
plane x = [X, X;]. Then, for a given P-wave receiver x® =
[xfz), X;z)] we build acommon-receiver gather (data cube) in the
vicinity of the source x = [x", x{"]. The PP-wave reflection
slope

dtpp (X, X(z))

Ppp (X(l)’ X(z)) = dx

(15)

x=x(1)

and the traveltime tpp (x(), x®) are found by tracking the
event inside the 3-D data volume corresponding to the receiver
located at x*?). The two-component vector p,, = [Pop ;+ Pop, -
which is equal to the horizontal projection of the traveltime
gradient, can be found either by fitting a plane to the travel-
time surface tpp([X1, X2], x?) or by numerical differentiation
of the obtained traveltime table tpp.

Similarly, we obtain the local reflection slope of the PS-wave
excited at x(!) and recorded at x®,

o (x, x0) = dtps (x, x®)

dx D)

(16)

and the corresponding traveltime tps(x(, x®). If the
coordinates x® = [x x{] of the PS-wave receiver satisfy

the condition

Pep, (x(l), x(z)) = Ppg; (x(l), x(3)), i=12) @17

for both horizontal components of the vectors p,, and p.g,
the PP and PS rays have the same reflection point R.

Next, switching the P-wave source and receiver positions
exactly as has been done in two dimensions, we find the co-
ordinates x® = [x{* x{"] of the second PS-wave receiver
and the corresponding traveltime tps(x®, x™*). Finally, the
pure shear-wave traveltime tsgx®, x®) is obtained from

equation (14).

NUMERICAL TEST

To demonstrate the performance of the above method, we
present a numerical test using reflection traveltimes computed
by anisotropic ray tracing (e.g., Gajewski and PSencik, 1987).
Although such a test can be generated for 3-D heterogeneous
anisotropic media, we restrict ourselves to a 2-D example for
a VTI model composed of homogeneous layers (Figure 4).
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The irregular (curved) interfaces in the overburden were in-
troduced to create lateral heterogeneity.

We traced the rays corresponding to the PP and PSV reflec-
tions from the bottom of the model between 21 sources and
21 receivers with the coordinates X = i AX, AX = 0.1 km,
i =0,...,20 (Figure 4 shows the rays recorded at x = 0.5 km).
The contours of the reflection traveltimes tpp and tps for all
computed rays are plotted in Figure 5. Note that while the
PP-wave traveltimes (Figure 5a) are symmetric with respect
to zero offset in accordance with equation (1), the converted-
wave times (Figure 5b) are not. The asymmetry of the PS-wave
moveout, however, does not impede our algorithm designed to
generate the corresponding pure SS traveltimes.

a

Depth (km)

Source coordinate (km)

The ray-traced traveltime tables tpp and tps (each contains
21 - 21 = 441 values) represent the input data needed to re-
construct the shear-wave traveltimes tss First, the reflection
slopes on common-receiver gathers were computed by sim-
ple two-point linear interpolation. The approximation for the
slope p,, (xX1, x?) [equation (2?)], for example, is

o (X0, x©)
_tep (XM + Ax, x@) —tpp(x) — Ax, x?)
- 2AX ’

For each pair (x, x?), we find the coordinates of the corre-
sponding SS-wave sources and receivers x® and x® (Figure 6)

(18)
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FIG. 4. Reflected (a) PP and (b) PSV rays recorded by the receiver at X =0.5 km in a 2-D model containing three homogeneous VTI
layers separated by irregular interfaces. The vertical velocities in the layers (from top to bottom) are Vp( 1 = 2.0 km/s, Vg ; = 0.8 km/s;
Vpo2 =2.5 km/s, Vg, =1.25 km/s; and Vpg3 =3.0 km/s, Vg 3 =1.8 km/s. Thomsen (1986) anisotropic parameters are ¢; =0.20,

81 =0.10; ¢, =0.25, §, =0.05; and €3 =0.15, 5 = 0.10.
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FIG. 5. Traveltime contours (a) tpp and (b) tps for the model shown in Figure 4. The dashed lines indicate the zero-offset (a) PP and
(b) PS reflections.
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by matching the slopes of PP and PS arrivals on common-
receiver gathers as described above [equations (6) and (11)].
Since x® and x* do not necessarily coincide with the source—
receiver locations used in the modeling, we applied linear in-
terpolation between the slopes on adjacent common-receiver
gathers. The source and receiver positions for the pure SS ar-
rivals in Figure 6 are symmetric with respect to the zero-offset
line (dashed) because of reciprocity.

Note the absence of the reconstructed SS-wave sources and
receivers for relatively large offsets (the lower right and upper
left corners in Figure 6). Since the P-to-S velocity ratio is al-
ways greater than unity (Vp > Vs), the reconstructed SS rays
are closer to the reflector normal than are the correspond-
ing PP rays, as schematically shown in Figure 3. Therefore, in
the absence of strong lateral heterogeneity in the overburden,
the source-receiver distance (offset) for the obtained SS re-
flections is generally smaller than the offsets for the recorded
PP- and PS-waves; this is confirmed by Figure 6.

The relationship between the offsets of PP- and SS-waves
can be estimated from the approximation of Tessmer and Behle
(1988) derived for a single isotropic homogeneous layer above
a horizontal reflector:

2 1
hss~ —— hps~ — hpp, 19
1+~ Y (19)
where hgg hps, and hpp are the offsets corresponding to the
SS-, PS-, and PP-waves (respectively) and

= —. 20
7=V (20)
For a typical value v = 2, approximations (19) yield
2 1
hss~ — hps~ — hpp, 21
ss™ 3 Nps™ 5 Nee (21)

which is reasonably close to the result in Figure 6.

Another interesting observation is that Figure 6 contains
only 417 reconstructed positions of SS-wave sources and re-
ceivers, whereas the number of PP (and PS) data points is 441.

Receiver coordinate (km)

. . .« ®
0 02 04 06 08 1 12 14 16 18 2

Source coordinate (km)

FiG. 6. Coordinates of the SS-wave sources-receiver pairs re-
constructed from the PP and PS data for the test in Figure 4.

This happens because the curved intermediate interfaces in
our model (Figure 4) produce PP reflection slopes on some
common-receiver gathers that cannot be matched with any
measured PS-wave slopes. Figure 7 gives an example of such
a situation for the source located at 0.1 km. Clearly, the PP
slopes p,, for the receivers at 0.0 and 0.1 km are greater
than any of the available PS slopes. This means that the PS-
wave receiver locations x® sought by our algorithm are out-
side of our source-receiver array, and no SS traveltime can be
reconstructed for the PP-wave source-receiver pairs (x() =
0.1 km, x® = 0.0 km) and (x® = 0.1 km, x® = 0.1 km).
However, as shown below, the absence of SS reflections for
some source-receiver pairs does not compromise the quality
of the reconstructed traveltimes tsselsewhere.

To verify the accuracy of our method, the SS-wave travel-
times obtained from PP and SS data can be compared with
those computed by ray tracing. The ray-traced traveltimes of
the pure SS reflections for all 441 sources and receivers are
shown in Figure 8. The contours of tssare symmetric with re-
spect to the zero-offset line (dashed), as should be the case
for pure-mode reflections [equation (1)]. The comparison in
Figure 9 demonstrates that the traveltimes tssproduced by our
algorithm practically coincide with the ray-traced values within
the area occupied by the reconstructed SS-wave sources and
receivers in Figure 6. The maximum difference between the
estimated and ray-traced traveltimes tsgin Figure 9 is 1.6 ms.
This error stems primarily from the linear approximation (18)
for the reflection slopes and is enhanced by interpolating the
PS-wave slopes in the process of searching for the receiver po-
sitions x® and x®. An additional error is caused by interpolat-
ing the SS traveltimes (via 2-D smoothing polynomials) from
the irregular grid in Figure 6 to the regular one used in the ray
tracing.

Thus, PP and PS traveltimes (Figure 5) are sufficient for re-
constructing the corresponding SS-wave traveltimes (Figure 8).
It should be emphasized that as long as both PP- and PS-waves
are reflected from the same interface, our method is exact,
with errors caused solely by traveltime picking and numerical
implementation.
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FiG. 8. Contours of the ray-traced SS-wave traveltimes tss
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DISCUSSION

Although the numerical example above was given for a 2-D
line, we have also successfully tested the methodology on 3-D
multiazimuth, multicomponent synthetic data. The only reason
for not showing those results here is the difficulty of displaying
4-D traveltime fields, such as tpp([xfl), xgl) ], [xfz), xf) ]), and
4-D cubes of the reconstructed SS-wave source and receiver
positions (x®, x®) = ([x?, x¥], [x*, x{"7).

The numerical test was performed under ideal, noise-free
conditions and yielded almost perfect results. Since field-data
application may be hampered by such factors as noise, missing
data, and errors in interpretation, their influence is examined
below.

Influence of noise

To simulate traveltime picking errors, we added Gaussian
noise with a standard deviation of 2 ms to the input data (the
PP and PS traveltimes in Figure 5) and repeated the whole pro-
cedure. Figure 10 shows that the reconstructed positions of the
SS-wave sources and receivers are substantially different from
those in Figure 6. These errors were produced by equation (18),
which represents the simplest finite-difference approximation

281
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FIG. 9. Comparison of the ray-traced (solid lines) and reconstructed (dots) traveltimes tssfor the receivers located at (a) 0.4, (b) 0.8,
(c) 1.2, and (d) 1.6 km.
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of the derivative dtpp(x, X®)/dx and thus amplifies random
errors in the traveltimes.

To reduce the instability in the slope estimates, one should
compute them by fitting straight lines to several data points
(not to just two as was done here) or employ quadratic poly-
nomials. In our example, however, some additional smoothing
was provided by the polynomials used to interpolate and re-
grid the reconstructed traveltimes tss As a result, the SS travel-
times in Figure 11 show less scatter than that in the source and
receiver positions in Figure 10, with the maximum deviation
from the ray-traced traveltimes tssreaching 9 ms. The largest
errors concentrate near the edges of the area covered by the
reconstructed positions of the SS-wave sources and receivers
(compare Figure 10 with Figures 11a and 11b). Clearly, those
edge distortions can be removed by reducing the size of this
area used for further processing of the SS data.

Small PS reflection coefficient

Another potential problem for our method may be caused
by the small amplitude and the associated polarity reversal of
converted waves. It is known that the PS-wave reflection co-
efficient for gently dipping reflectors often vanishes in some
vicinity of zero offset. [The words “some vicinity” refer to the
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FiG. 11. Same as Figure 9 but after adding the noise to the data.
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fact that the PS-wave reflection coefficient does not necessar-
ily vanish at zero offset if the medium immediately above or
below the reflector is anisotropic. In fact, for reflector dips be-
yond 30°, the amplitude of the PS-wave in VTI media goes to
zero at relatively large source-receiver offsets (Tsvankin and
Grechka, 2000a)]. This leads to a polarity reversal and a reduc-
tion in the PS-wave amplitude for a certain range of offsets. To
model the implications of this phenomenon in the reconstruc-
tion of the SS traveltimes, we muted out the stripe of the PS
traveltime data (Figure 5b) with offsets hpg < 0.4 km, assuming
that the traveltimes tps at small offsets cannot be picked in a
reliable way because of the small reflection amplitude.

Repeating the procedure described above, we found the po-
sitions of SS-wave sources and receivers shown in Figure 12.
Comparison of this plot with Figure 6 reveals the absence of
reconstructed SS data at small source-receiver offsets. Also,
the number of obtained data points is down to 269 from 417 in
Figure 6.

The missing data, however, do not prevent our method
from accurately reconstructing the traveltimes tssin other ar-
eas (compare Figure 13 with Figure 9). The gaps in Figure 13
correspond to the missing data where the traveltimes tss
(dots) could have been found only by interpolation and
extrapolation.

The results in Figures 12 and 13 can be explained by the
locality of the slope estimates in our method. Indeed, since
the traveltimes tsg are obtained from local measurements of
the traveltimes tpp, tps and their slopes, the absence of PS data
for a certain range of offsets does not adversely influence the
performance of our procedure for other offsets.

Interpretation errors

An important assumption of our method is that the PP-
and PS-waves are reflected from the same interface in the
subsurface. Correlation of PP and PS reflections, however, is
not straightforward and often requires additional information,
such as borehole data. Possible consequences of interpretation
errors in correlating PP and PS data are illustrated in Figure 14.
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FIG. 12. Same as Figure 6 but after muting out the PS travel-
times for offsets hps < 0.4 km.

If the PS event is reflected from a deeper interface
than the PP reflection (Figure 14a), our method will recon-
struct the trajectory X¥R; R R, x® corresponding to a peg-leg
multiple SPPS with two PS conversions at points R; and R;.
Equation (14) in this case yields

tss=1t () R T tr R + trRR, + tR2 <) (22)

where tywg,, tr R, trr , aNd tg, o are the traveltimes along the ray
segments shown in Figure 14a (tg g and tgrg, actually correspond
to the P-wave). The traveltime in equation (22) clearly differs
from the traveltime of the SS-wave primary reflection from
either of the two interfaces.

In contrast, if the PS-wave is reflected from a more shal-
low interface than the PP-wave (Figure 14b), the reconstructed
traveltime does not correspond to any physical ray. Applying
equation (14), we obtain

tss=Lwg —tRR—trRRy 1 L) (23)

where tg r and tgg are P-wave traveltimes. The value of tssin
equation (23) can even become negative if the two interfaces
in Figure 14b are sufficiently separated in depth.

Thus, any errors in identifying and correlating PP- and PS-
reflections inevitably lead to incorrect traveltimes tss The dif-
ference in the kinematics of the correct and erroneously re-
constructed events (in particular, the difference between their
stacking velocities), however, might provide a criterion that
can be used to avoid interpretation errors.

CONCLUSIONS

We have suggested a method for reconstructing the travel-
times of pure SS-wave primaries from PP- and PS-wave reflec-
tion data. The key element of our approach is matching the
reflection slopes on common-receiver sections to identify PP-
and PS-waves reflected at the same (but generally unknown)
subsurface points. The algorithm can be implemented in either
two or three dimensions by tracking the PP and PS eventsinside
the prestack data volumes. The main features of the method
are summarized below.

1) The method is based on the sole assumption that the data
(PP-wave and PS-wave primary reflections) correspond
to the same reflector. Note that correlation of PP and PS
traveltimes requires some knowledge about the model
and may be rather complicated in practice. Other than
that, the method is entirely data driven, and no informa-
tion about the subsurface velocity field is needed.

2) The method operates with local reflection slopes (hori-
zontal slownesses) on common-receiver sections. This lo-
cality helps to avoid a number of complications inherent
in processing of converted-wave data, such as

a) Asymmetry of PS traveltimes and the diodic na-
ture of PS-wave NMO velocity.—Since the algo-
rithm needs only local reflection slopes on common-
receiver gathers, the asymmetry of PS moveout is
irrelevant.

b) Reflection-point dispersal for converted waves.—
PS-wave CMP gathers, which suffer from reflection-
point dispersal, are not used in the computation
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of SS traveltimes. The reflection points of the reflection points, however, remain unknown prior
PS-waves and the reconstructed SS-waves are guar- to velocity analysis.) The reflection-point dispersal
anteed to be exactly the same as those for the cor- on the reconstructed SS-wave CMP gathers is much
responding PP-waves. (The actual locations of the smaller than that on PS-wave gathers.
a b
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FiG. 13. Same as Figure 9 but after muting out the PS traveltimes for offsets hps < 0.4 km.

FiG. 14. If the PP- and PS-waves are reflected from different interfaces, our method will produce the SS traveltimes corresponding
to either (a) a peg-leg multiple or (b) a nonexistent raypath.
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c) Polarity reversal—Small amplitudes of PS-waves in
the vicinity of the polarity reversal hamper trav-
eltime picking in those areas. The locality of our
method makes it possible to mute out low-amplitude
PS traces without compromising the quality of re-
sults obtained from the remaining data.

3) The SS traveltimes tssreconstructed by our method are
exact. Provided the PP- and PS-wave are reflected from
the same interface, tssmay be distorted only by errors in
the estimation of the reflection slopes and interpolation
or extrapolation of the slopes and traveltimes.

4) Once the traveltimes tssare found, they can be processed
by means of any velocity-analysis technique developed
for pure modes. The reconstructed SS-wave moveout ve-
locities are especially attractive for anisotropic stacking-
velocity tomography because they provide information
complementary to that in PP-wave data (Grechka, Pech,
and Tsvankin, 2001).

5) To ensure that the SS data are reconstructed for a suf-
ficiently wide range of source-receiver offsets, it is nec-
essary to use long-offset input PP data. For the offset-
to-depth ratio of the SS-waves to be close to unity (the
value required for stable moveout velocity analysis), the
maximum offset of the PP-waves should reach or exceed
(depending on the P-to-S velocity ratio) about twice the
reflector depth.

6) While our method provides an accurate kinematic treat-
ment of PP, PS, and SS wavefields for models of arbi-
trary complexity, it is not amplitude preserving and is
not designed to recover the correct amplitudes of SS
reflections.

Application of the method to multicomponent 2-D field data
is described by Grechka, Tsvankin, et al. (2001).
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