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ABSTRACT

A major complication caused by anisotropy in velocity analysis and imaging is
the uncertainty in estimating the vertical velocity and depth scale of the model from
surface data. For laterally homogeneous VTI (transversely isotropic with a vertical
symmetry axis) media above the target reflector, P-wave moveout has to be combined
with other information (e.g., borehole data or converted waves) to build velocity
models for depth imaging. The presence of lateral heterogeneity in the overburden
creates the dependence of P-wave reflection data on all three relevant parameters
(the vertical velocity Vpo and Thomsen coefficients € and ¢) and, therefore, may help
to determine the depth scale of the velocity field.

Here, we propose a tomographic algorithm designed to invert NMO ellipses (ob-
tained from azimuthally varying stacking velocities) and zero-offset traveltimes of
P-waves for the parameters of homogeneous VTI layers separated by either plane
dipping or curved interfaces. For plane non-intersecting layer boundaries, the interval
parameters cannot be recovered from P-wave moveout in a unique way. Nonetheless,
if the reflectors have sufficiently different azimuths, a priori knowledge of any single
interval parameter makes it possible to reconstruct the whole model in depth. For
example, the parameter estimation becomes unique if the subsurface layer is known
to be isotropic. In the case of 2-D inversion on the dip line of co-oriented reflectors,
it is necessary to specify one parameter (e.g., the vertical velocity) per layer.

Despite the higher complexity of models with curved interfaces, the increased
angle coverage of reflected rays helps to resolve the trade-offs between the medium
parameters. Singular value decomposition (SVD) shows that in the presence of suffi-
cient interface curvature all parameters needed for anisotropic depth processing can
be obtained solely from conventional-spread P-wave moveout. By performing tests
on noise-contaminated data we demonstrate that the tomographic inversion proce-

dure reconstructs both the interfaces and the VTI parameters with high accuracy.
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Both SVD analysis and moveout inversion are implemented using an efficient mod-
eling technique based on the theory of NMO-velocity surfaces generalized for wave
propagation through curved interfaces.

Keywords.— P-waves, VTI media, moveout inversion, tomography.

INTRODUCTION

Vertical transverse isotropy, believed to be the most common anisotropic model for
sedimentary basins, can have a significant influence on velocity analysis and imaging
of reflection data. It is well known that the kinematics of P-waves in VTI media is
controlled by the vertical velocity Vpy and Thomsen’s (1986) anisotropic coefficients
€ and ¢ (for a detailed overview, see Tsvankin 2001). Accurate estimation of these
parameters from reflection data is a key issue in building VTI velocity models for
seismic imaging.

Inversion of P-wave data in VTI media was addressed in a number of recent
publications, including Bube and Meadows (1997), Grechka and Tsvankin (1998),
Bartel et al. (1998), Le Stunff and Grenié (1998), Le Stunff and Jeannot (1998) and
Sexton and Williamson (1998). Time-domain imaging for vertical transverse isotropy
is largely based on the result of Alkhalifah and Tsvankin (1995) who proved that
P-wave moveout for laterally homogeneous VTI media above the reflector depends
on just two parameters — the normal-moveout (NMO) velocity from a horizontal

(zero-dip) reflector Vomo(0) and the anellipticity coefficient 7:
V;nno(o) = VPO vV1+2 57 (1)

and

€e—90
1426

(2)

n=

Whereas Vimo(0) and 7 are sufficient to carry out time processing [i.e., NMO correc-

tion, DMO (dip-moveout) removal and time migration|, they do not constrain the
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vertical velocity Vpg and reflector depth — parameters needed for anisotropic depth
imaging.

The two-parameter description of P-wave time-domain signatures, however,
breaks down in the presence of lateral heterogeneity above the reflector (Alkhali-
fah, Biondi and Fomel 1998; Grechka and Tsvankin 1999b). Although lateral velocity
variations or non-horizontal interfaces introduce additional unknowns to be estimated
from reflection data, they may also provide information about the Thomsen param-
eters. Grechka and Tsvankin (1999b) developed a Dix-type averaging procedure for
NMO velocities in laterally heterogeneous anisotropic media and applied it to moveout
analysis for vertical transverse isotropy. Their results show that the NMO velocity of
reflected P-wave arrivals which cross dipping intermediate interfaces depends on the
individual values of Vpg, € and §. Le Stunff, Grechka and Tsvankin (2001) presented
an example of a successful inversion of P-wave traveltimes for the parameters Vpy, €
and ¢ of a dipping VTI layer overlying a homogeneous isotropic medium.

The topic of this paper is P-wave moveout inversion for more complicated VTI
models composed of multiple homogeneous layers separated by either plane dipping or
curved interfaces. Our analysis demonstrates that 3-D wide-azimuth P-wave moveout
data from N plane non-intersecting interfaces constrain up to 3N — 1 combinations
of the 3N interval parameters Vpgn, €,, 0, (n =1, ..., N). Hence, to determine the
interval values Vpg , €,, and d,, uniquely and reconstruct the model in depth, at least
one of the parameters has to be known a priori. The inversion is generally better
posed if the subsurface contains additional reflecting boundaries, such as fault planes.

To carry out parameter estimation for VI media with curved boundaries, we
develop an efficient algorithm for modeling multi-azimuth and multi-offset reflection
traveltimes based on an extension of the theory of NMO-velocity surfaces (Grechka
and Tsvankin 1999b). Singular value decomposition and actual inversion of P-wave
reflection data show that for some VTI models with smooth curved interfaces param-

eter estimation in depth can be accomplished without any a priori information.
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MODELS WITH PLANE DIPPING INTERFACES
Methodology of tomographic inversion

Model representation and input data.—We consider a model composed of N
homogeneous VTI layers (some of them may be isotropic) separated by plane dip-
ping non-intersecting interfaces (Fig. 1). The inversion methodology introduced here
operates exclusively with surface P-wave data acquired in wide-azimuth 3-D surveys.
The model parameters responsible for P-wave kinematics include the interval vertical
velocities Vpy ,,, anisotropic coefficients €, and 4, and the interface dips ¢,,, azimuths
¥, and depths z, (the depth can be measured, for example, under the coordinate

origin O). Thus, the model vector

m= {VPO,na €n, 57” ana wna Zn}a (n = 1, ey N) (3)

is characterized by 6/N independent quantities. It is convenient to split the vector m

into two vectors 1 and i, where 1 contains the layer parameters,
IE{VPO,naGnﬁdn}a (n:17---:N)7 (4)

and i describes the interfaces,

i={én, Yn, 2}, (m=1,..., N). (5)

Clearly, each vector (1 and i) has 3N components.

Velocity analysis of 3-D multi-azimuth P-wave data recorded at common mid-
points (CMP) with coordinates Y = [V, Y3] can provide the one-way zero-offset
reflection traveltimes 79(Y, n) from all interfaces and the corresponding NMO veloc-
ities Vimo() (v is the azimuth). Azimuthally dependent NMO velocity of any pure
mode is described by an ellipse that can be expressed in terms of a 2 x 2 symmetric

matrix W (Grechka and Tsvankin 1998):

V=2 (o) = Wy cos® a + 2 Wigsin a cos o + Wy sin® o, (6)

nmo
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where
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Here 7(z1, z3) is the one-way traveltime from the zero-offset reflection point to the
location x{z1, o} at the surface, 7 is the one-way zero-offset traveltime, and p;
are the components of the slowness vector corresponding to the ray recorded at the
point x.

The matrices W(Y, n) can be obtained from azimuthal velocity analysis based
on the hyperbolic moveout equation parameterized by the NMO ellipse, as described
by Grechka and Tsvankin (1999a). Using the zero-offset (or stacked) time sections of
reflection events, we can pick the reflection slopes and determine the ray parameters
p(Y, n) = [p:1(Y, n), po(Y, n)] of the zero-offset rays.

Since the layers in our model are homogeneous and the interfaces are plane (Fig. 1),
the slowness components p; (Y, n), p2(Y, n) are independent of the CMP coordinate
Y. Taking into account that

87—0 (Y7 n)

8Y; = pj(n) ) (] =1, 2) ’ (8)

the traveltimes 79(Y, n) can be expressed as linear functions of Y;:
70(Y, n) = 10(0, n) + p1(n) Y1 + p2(n) Y. (9)

Here 75(O, n) are the traveltimes recorded at the coordinate origin O. Using equa-

tion (9), the input data d(Y, n) can thus be represented in the following form:
d(Y) 7'L) = {TO(O, n)a pl(n)’ p?(n)’ Wll(Ya n)a Wl?(Ya n), W22(Y: n)}a (10)

wheren=1, ..., N.

The feasibility of the inversion for m is controlled by the character of the spatial
variation of the effective NMO ellipses W(Y, n). To analyze the dependence of W
on the CMP coordinate Y, we next review the procedure of building effective NMO

ellipses in laterally heterogeneous media.



Effective NMO ellipse.—Grechka and Tsvankin (1999b) introduced the concept
of NMO-velocity surfaces and used it to develop a methodology for obtaining effective
(i.e., measured at the surface) NMO ellipses W in laterally heterogeneous anisotro-
pic media. Two relevant results of their work applicable to the model at hand are
summarized below.

The NMO-velocity Vimo(£L) recorded along CMP line £ arbitrarily oriented in 3-D
space is given by

1

= T 11
L) FUE ()

where L is the unit vector and T denotes transposition. The 3 x 3 symmetric matrix
U is expressed in terms of the spatial derivatives of the one-way traveltime 7 or the

slowness vector p:

0*7(x)
70 0xy, 0Ty,

apk (X)

0Tm

Upm = . (k,m=1,2,3). (12)

x=Y

=Ty
x=Y

Here 7y is the one-way zero-offset traveltime, and the derivatives are evaluated at the
CMP locationx =Y.

The matrix U describes a quadratic NMO-velocity surface obtained by plotting
NMO velocity as the radius-vector along all possible directions of CMP lines. Grechka
and Tsvankin (1999b) showed that if the medium in the vicinity of the common

midpoint is homogeneous, then
det U =0, (13)

and the NMO-velocity surface is a cylinder. Other possible shapes include an ellipsoid
and a one-sheeted hyperboloid. The NMO ellipse W recorded in the plane P can be

viewed as the intersection of the NMO-velocity surface U with P:
W=UP. (14)

In particular, if P is a horizontal plane, equation (14) defines the NMO ellipse (7).
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The Dix-type averaging procedure of Grechka, Tsvankin and Cohen (1999) is
applicable to the intersections W,(Y) of the interval NMO-velocity cylinders (see
Grechka and Tsvankin 1999b) by the model interfaces. Each interval cylinder is
computed for a fictitious reflector orthogonal to the slowness vector of the interval
zero-offset ray. For example, suppose the model contains two layers separated by
a dipping interface (Fig. 2). Then the intersection W(Y, 2) of the effective NMO-
velocity cylinder (measured at the surface) with a plane parallel to the intermediate

interface is obtained from the following Dix-type averaging formula:
— -1 _ _
(Y, 2) [W(Y, 2] = m01(Y) (Wi(Y)] ' +m00(Y) (Wa(Y)*, (15)

where 791 and 79 are the interval zero-offset traveltimes, W;(Y) (shaded in gray)
and W,(Y) (dashed) are the intersections of the NMO-velocity cylinders in the first
and second layers with the intermediate interface. The ellipse described by W (Y, 2)
is then projected along the effective NMO-velocity cylinder onto the horizontal plane
to find the effective NMO ellipse W (Y, 2).

In the model with plane interfaces (Fig. 1), zero-offset ray trajectories from the
same interface are parallel to each other at different CMP locations Y. As a result,
the interval slownesses, group-velocity vectors and the matrices W, [equation (15)]
are independent of the CMP coordinate Y, whereas the interval traveltimes 79, (Y)
are linear functions of Y. Therefore, the NMO ellipses W (O, n) and W(Y, n)
measured at points O and Y differ only due to variations in the length of the interval
ray segments. This suggests that the dependence of W(Y, n) on Y does not provide
any information about the model parameters not contained in the NMO ellipses
W (O, n). The conclusion that it is sufficient to measure the NMO ellipses at a single
CMP location is supported by numerical results below.

Thus, the data vector (10) can be written as

d(Y, n) = {d(O, n), Y — O} (16)



Feasibility of parameter estimation

It is clear from equation (16) that although traveltime data at different common
midpoints may be useful in practice to suppress noise, they give the same information

about the medium parameters as does the data vector
d(oa n) = {TO(Oa TL), p(n), W(O: 77,)} (17)

at a single CMP. Thus, analyzing the dependence of the vector d(O, n) on the pa-
rameter vector m [equation (3)] should be sufficient for evaluating the feasibility of
the inversion. For brevity, henceforth the CMP coordinate will be omitted.

For an N-layered VTI model, the vectors d and m contain 6 N components each.
Therefore, the vector m can be obtained uniquely from the data d only if all compo-
nents of d are independent. Unfortunately, this is not the case for VI media. The
P-wave NMO ellipse W (1) from a dipping reflector overlaid by a homogeneous VTI
medium provides only two equations for the medium parameters because its orienta-
tion is fixed by the reflector azimuth ; that can be found from the reflection slopes

(Grechka and Tsvankin 1998):

po(1) _ Wan(1) = Wia(1) + y/ [Wonl(1) = Waa (D)) + 4WH(1).

tan 1= 00 2 W (1)

(18)

—_

Specifically, the semi-axes of the NMO ellipse in the first layer constrain the zero-dip
NMO velocity Vamo(0) and the anellipticity coefficient 7 [equations (1) and (2)]. As
a result, the data vector in the top layer contains only five components. Singular-
value decomposition (SVD) analysis performed below shows that if all interfaces have
different strikes, this is the only relationship among the components of the data
vector.

For inversion purposes, it is convenient to split the vector d(O, n) into two parts.
For a given (“trial”) set of the interval VTI parameters 1, [equation (4)], the values of

To(n) and the horizontal slownesses p;(n), pa(n) can be used to estimate the depths,



dips and azimuths of the interfaces i, [equation (5)]. Indeed, knowledge of the param-
eters of the first layer 1; is sufficient for computing the vertical slowness component
from the Christoffel equation and obtaining the slowness vector [p;(1), p2(1), p3(1)].
Since the slowness vector of the zero-offset ray is orthogonal to the reflector, it defines
the reflector normal. Then we can find the group-velocity vector (ray) in the first
layer and use the traveltime 74(1) to determine the depth z; of the first reflector.
Once the first interface has been reconstructed, the slowness vector in the second
layer can be obtained from Snell’s law and used to find the orientation of the second
reflector. The zero-offset traveltime of the reflection from the second interface gives an
estimate of the reflector depth, etc. Continuing this procedure downward yields the
dips, strikes (or azimuths) and depths of all interfaces of the trial model. Evidently,
any errors in the input data or trial layer parameters 1, will distort the interfaces i,,.
The best-fit vector of the layer parameters 1,, has to be found by inverting the NMO
ellipses W (n) because the rest of the input data was already used to reconstruct the
interfaces. Therefore, to study the feasibility of the inversion procedure it is sufficient

to perform SVD analysis of the 3N x 3N matrix of Frechét derivatives

_ 0 W (n)

F ol

(k,n=1,..., N). (19)

Here we assume that the vector i, which specifies the interfaces, is such that the
zero-offset traveltimes and horizontal slowness components for each trial model ex-
actly match those in the data. The NMO ellipses are computed using the formalism
developed by Grechka and Tsvankin (1999b).

Figure 3 shows a typical result of SVD analysis of the NMO ellipses for the pa-
rameters 1 = {Vpg 1, €1, 01, Vpo 2, €2, 02} in a two-layer model. While the last singular
value is always equal to zero, the other five do not vanish if the azimuths of the inter-
faces are different (see the curves marked by squares, diamonds and triangles). The
presence of two vanishing singular values when the strikes of both interfaces coincide

(the circles in Fig. 3) is not surprising, because in this case the axes of the NMO
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ellipse from the bottom of the model are aligned with the dip and strike directions
(i.e., the model becomes 2-D), and there is one less independent data component.

The model from Fig. 3 can be used to support the statement that the inversion
results are independent of the CMP location. We repeated our computation for a
number of different common midpoints and obtained the same curves of singular
values as those in Fig. 3. Moreover, the singular values do not change when the NMO
ellipses computed at a number of CMP locations are used in the Frechét matrix (19)
stmultaneously. Therefore, it is indeed sufficient to carry out the inversion using the
NMO ellipses from all interfaces measured at a single CMP.

To get a more quantitative assessment of the feasibility of the inversion for the
model from Fig. 3, we performed a series of SVD analyses of the matrix W;; for
different values of the dip (¢;) and azimuth (¢;) of the first interface. The results,
displayed in Fig. 4, indicate that it should be possible to estimate five parameter
combinations for any ¢; and 1;, except for ¢; = 0° and ; = 0° or 180°. In the first
case (¢; = 0°), the first layer is horizontal and the NMO ellipse W (1) degenerates
into a circle that constrains just one combination of the medium parameters. For
11 = 0° or 180°, the two reflectors are co-oriented, and the 3-D model becomes 2-D,
which reduces the number of equations to four.

The observations drawn from Figs 3 and 4 can be extended to an arbitrary number
of VTT layers. At a maximum, the NMO ellipses constrain 3N — 1 combinations of
the 3N interval parameters {Vpon, €,, 0} (n =1, ..., N), provided the model inter-
faces have different azimuths. Otherwise, P-wave traveltimes contain less information
about the medium. For instance, if the azimuths of all interfaces are identical, the
model degenerates into 2-D, and the NMO ellipses from different reflectors are co-
oriented. Thus, only their semi-axes constrain the layer parameters, and the number
of independent equations reduces to 2N. In the limiting case of horizontal layers, the
NMO ellipses become circles defined by the N interval zero-dip NMO velocities [equa-

tion (1)]. Hence, unambiguous inversion is impossible without additional information;
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some practical possibilities are discussed below.

Parameter estimation using a priori information

Specifying one of the parameters.—The results of the previous section suggest
that a priori knowledge of a single layer parameter may be sufficient to overcome the
ambiguity. For example, it might be possible to estimate the vertical velocity Vpg 1
in the top layer using a shallow borehole and then obtain the anisotropic parameters
€1 and §; from the NMO ellipse W(1). According to our SVD results, this should be
sufficient for estimating the remaining medium parameters.

To verify this conclusion, we performed several numerical tests, with typical results
listed in Table 1. We traced reflected rays through a three-layer VTI model for
nine CMP locations (Fig. 5 and Table 1), added Gaussian noise to the computed
NMO velocities and zero-offset traveltimes, and found the layer parameters by least-
squares fitting of the NMO ellipses. Although, as discussed above, multiple common
midpoints do not provide new information for the inversion, they help to obtain more
stable results in the presence of random noise.

To constrain the inversion, the parameter §; = 0.04 was assumed to be known,
which allowed the other parameters to be estimated with good accuracy (Table 1).
The errors generally increase with depth, as can be expected from Dix-type algo-
rithms. The low accuracy in the parameter €3 in the bottom layer is also associated
with insufficient angle coverage of the reflected rays.

The choice of §; as the known parameter was arbitrary; holding any other interval
parameter at the correct value produces similar results. It is always possible to
reconstruct the whole model if the vertical velocity Vpg, or one of the anisotropic
coefficients (e, or ¢,) in any layer is known. The inversion procedure also works well
in the special case of isotropy, i.e., when ¢, and J, are set to zero in one or more

layers.
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Specifying vertical velocity in 2-D models.—We also examined the case when
all interfaces in the three-layer medium discussed above have the same azimuth. The
axes of the NMO ellipses W(1), W(2), and W(3) in such a model are parallel to
the dip and strike directions, and the moveout data provide only six equations (two
semi-axes for each ellipse). Since the model has a total of nine medium parameters
(three per layer), three parameters have to be specified in advance.

One possibility, examined in the test from Fig. 6 and Table 2, is to assume that
the vertical velocities in the model are known, for example, from vertical seismic
profiling (VSP) data. We modeled the NMO ellipses and zero-offset traveltimes for
several CMP locations distributed along the dip direction (Fig. 6) and performed the
inversion of noise-contaminated data. The vertical velocities in each layer, Vpy; =1
km/s, Vpoo = 2 km/s, and Vpg 3 = 3 km/s, were assumed to be known. The inverted
interval parameters €, and J,, are in close agreement with the actual values (Table 2).
Comparable accuracy was achieved in a number of other tests involving more layers
and different levels of noise.

Specifying a relationship between ¢ and j.—Another way to reduce the number
of unknowns is to impose an empirical relationship between € and d, such as those
discussed by Ryan-Grigor (1998), in at least one layer. We found that making € a
known function of ¢ [i.e., € = ¢(d)] generally makes the parameter estimation unique.

Let us assume, for example, that the relationship between the interval ¢, and 9,
is linear (8, = ky €,), with the coefficients k, known a priori. Figure 7 displays the
contours of the smallest singular value for a two-layer VTT model in which §; = k; €;
and dy = kg es (in principle, specifying k; alone would be sufficient). Although this
singular value was computed as a function of k; and k9, the axes in Fig. 7 are labeled
in terms of the anellipticity coefficients 7, = (€, —d,)/(1+24,) (for weak anisotropy,
N & €, — 0p) to demonstrate that the only vanishing singular value corresponds to

elliptical anisotropy of the whole model (i.e., 7 = no = 0). If either n; # 0 or g # 0,
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none of the eigenvalues goes to zero, and the inversion becomes feasible. This is
illustrated by the satisfactory inversion results for the model with 7, = 7, = 0.05 in
Table 3.

One special case when this approach does not help is elliptical anisotropy. Even if
all layers are known to be elliptically anisotropic (k, = 1, €, = J,,), and the number
of the relevant VTI parameters reduces to 2N, the 3N — 1 equations for the NMO
ellipses do not have a unique solution. This conclusion is in agreement with the results
of Dellinger and Muir (1988) obtained using linear transformations (stretching) of the

isotropic wave equation.

Models with intersecting boundaries

A priori information may not be needed at all for models with intersecting bound-
aries in some of the layers. The presence of different reflector dips in the same depth
interval causes reflected rays to span more spatial directions, which helps to con-
strain the interval anisotropic parameters. While media with curved interfaces are
discussed in detail in the next section, here we show how additional dips can remove
the nonuniqueness in the parameter estimation.

Let us suppose, for example, that the intermediate interface in the two-layer VTI
model from Fig. 3 is bent in such a way that it has two plane portions with the same
dip ¢1 = 40° but different azimuths ¥; = 30° and ¢/; = 90°. Recording reflections from
the bottom of the model that cross both portions of the intermediate interface yields
an additional NMO ellipse (i.e., three more equations). The absence of vanishing
singular values for this problem (Fig. 8; the smallest singular value is 0.02) indicates
that all parameters can be resolved uniquely.

Parameter estimation may also become feasible if the model contains a dipping
fault plane, and the data include the reflections from both the fault and layer bound-

aries. A similar model was used by Alkhalifah and Tsvankin (1995), who developed
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a dip-moveout inversion method to estimate the interval values of 1 from surface P-
wave data. Alkhalifah and Tsvankin (1995), however, assumed that each zero-offset
reflected ray crosses only horizontal interfaces on its way to the surface.

In our models (e.g., Fig. 9), intermediate interfaces are dipping, which creates
the dependence of NMO ellipses from both horizontal and dipping reflectors on the
interval values of € and §. Even for 2-D media, fault planes in some of the layers may
make it possible to determine all relevant VTI parameters. For example, the semi-
axes of the three NMO ellipses corresponding to the zero-offset rays marked in Fig. 9
provide us with six equations. SVD analysis reveals no zero singular values (i.e., the
interval parameters can be found uniquely), albeit the smallest singular value in this

case is just 0.0014 compared to 0.02 in Fig. 8.

MODELS WITH CURVED INTERFACES

Here the tomographic methodology is extended to wide-azimuth P-wave data
acquired over layered VTT media with curved interfaces. First, we develop an efficient
moveout modeling algorithm by introducing a correction for the interface curvature

into the Dix-type equations of Grechka and Tsvankin (1999b).

NMO velocity in anisotropic media with curved interfaces

NMO velocity on a curved CMP line.—If the CMP line o is curved, as in
acquisition from non-flat topography (e.g., Gray, Maclean and Marfurt 1999), its
curvature will influence the value of NMO velocity Vimo(or). The expression for

Vamo (o) is derived in Appendix A:
Vio(@) =LULY + 1p - K, (20)

nmo

where
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(21)

is the second-order derivative of the radius-vector & with respect to the half-offset h;
it is evaluated at the common midpoint (zero offset). Depending on the sign of the
dot product p - IC, the line curvature can either increase or reduce the NMO velocity.

Dix-type averaging in media with curved interfaces.—Equation (20) can be ap-
plied to a CMP line o confined to any curved surface s. The NMO velocity Vimo(s, £)

along direction £ on s is given by equation (B-9),
Vi2(s,) =t (W+np-k) LT, (22)

where W is the NMO ellipse obtained as the intersection of the NMO-velocity surface

U with the plane P tangent to s at the common midpoint. The matrix

0%s

" Ohidhy |, _,

Kij (1,7 =1,2) (23)

is composed of the second-order derivatives of s(h;, he) with respect to the half-offsets
hy and hy (Fig. B-1); the values hy = hy = 0 correspond to the CMP location.

If s represents the boundary between two layers, the NMO ellipse is discontinuous
across the tangent plane P, with the jump depending on the difference between the
slowness vectors above (p(*)) and below (p(*)) surface s. As shown in Appendix C,
equation (22) leads to the following expression for the NMO ellipse W) on the

“positive” side of the interface:
W = WO — 7 (p(+) _ p(—)) K, (24)

where the term 7 (p(+) — p(_)) - Kk represents a correction for the interface curvature.

The above results make it possible to generalize the Dix-type averaging procedure
of Grechka and Tsvankin (1999b) to media with curved interfaces. Suppose the
model above the reflector contains /N homogeneous layers, and we obtained the NMO-

velocity cylinder in the layer immediately above the reflector. Slicing this cylinder by
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the plane tangent to the N — 1th interface at the intersection point of the zero-offset
ray yields the NMO ellipse Wﬁl__)l. Applying equation (24), we find the ellipse Wnt)l

corrected for the interface curvature. Then this procedure continues upward, and the

results are substituted into the Dix-type averaging equation:

N

W™ 37 = 3 (W™ 0, (25)

n=1

where W(N) is the effective NMO ellipse at the earth’s surface, and 7y, are the
interval zero-offset traveltimes. Application of equation (25) involves projecting the
NMO-velocity cylinders onto the planes tangent to the layer interfaces following the
methodology of Grechka and Tsvankin (1999b). Note that equation (15) introduced
above is a special case of equation (25) for a two-layer model with a plane intermediate
interface.

Equation (25) allows us to compute the effective NMO ellipse W, which can
be obtained from velocity analysis of 3-D multi-azimuth reflection data. Since it is
necessary to trace only one (zero-offset) ray per common midpoint, the hyperbolic
portion of pure-mode reflection moveout can be modeled without the time-consuming

calculation of multi-offset and multi-azimuth traveltimes.

Methodology of inversion

Model representation and input data.—The above theory provides a convenient
tool for traveltime modeling that can be efficiently used in parameter-estimation al-
gorithms. As before, the input data d include the NMO ellipses W (n), the zero-offset
P-wave traveltimes 79(n), and the reflection slopes in orthogonal directions (horizon-
tal slownesses) p(n) = [p1(n), pa(n)] measured for all interfaces (n =1, ..., N). This
set of input parameters does not constrain the interval values of Vpq, € and ¢ if the
VTTI layers are homogeneous and separated by plane non-intersecting boundaries (see
the first section). Here, however, the interfaces are allowed to be curved, while the

layers are still assumed to be homogeneous.
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Our goal is to determine whether or not the data
d(Y, n) = {n(Y, n), p(Y, n), W(Y, n)}, (26)

acquired at a number of CMP locations Y = [V}, 5] can be inverted for all relevant

interval parameters

m = {VPO,na €n,y 5na Cj1j2,n}: (27)

(nzl,,N, j1:1, Jl, 2—1 JQ)

The matrices ¢,, contain the coefficients of the basis functions describing the depths
zn (Y1, Ys) of the model interfaces.

Since the quantities ¢,, have to be estimated from the data, the inversion procedure
can be simplified by adopting a linear relationship between z,(Y1,Y2) and ¢, j,.n. In
principle, this requirement can be satisfied by representing the interfaces in terms of

arbitrary basis functions Bj, (Y1) and B;,(Y2):

J1 Ja2

w(Y1,Y2) = 30 D7 Giuon Bii (V1) By (Va) .- (28)

Jj1=1 ja2=1

For simplicity, here we elected to implement the polynomial representation

J1 Ja
(V1 Y2) = 30 30 Guian Y1 VE (29)

Jj1=1 je2=1

Feasibility of parameter estimation

For models with plane interfaces, the dependence of the data vector (26) on the
CMP coordinate Y does not provide any new information about the model param-
eters. This is no longer the case in the presence of interface curvature because zero-
offset reflection rays change direction with CMP location. Therefore, the spatial
variation of the data may help to constrain the inversion and determine the depth

scale of the model.
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Similar to the approach outlined above for plane interfaces, the zero-offset tra-
veltimes 79(n) and the reflection slopes p(n) can be used to find the shape of the

interfaces z,(Y) for any given estimate of the layer parameters (i.e., a trial model)
IZ{VPO,'m €n, 6n}7 (7’1,:1, ey N) (30)

This is achieved by tracing zero-offset rays downward and computing the coordinates
of the reflection points and the corresponding interface normals. In contrast to media
with plane interfaces, however, the number of common midpoints and their spatial
distribution determine our ability to reconstruct the shape of curved interfaces.
Since the slowness vector of each zero-offset ray is orthogonal to the reflector at
the reflection point R (Fig. 10), it provides the orientation (i.e., the azimuth and
polar angle) of the unit normal b, (R) to the reflecting interface. In addition, the
zero-offset traveltime yields the depth of the reflection point R. Therefore, the triplet
{170(n,Y), p1(n,Y), p2(n,Y)} at the CMP location Y provides three constraints on
the quantities (j ;,» specifying the reflector z,(Y) [equation (29)]. This implies that
the number M of common midpoints required to obtain J; x Jy coefficients ¢,, has to

satisfy the inequality

M > J13J2 . (31)

For example, four appropriately chosen common midpoints (M = 4) in Fig. 11 should
be sufficient for reconstructing J; J, = 3 x 3 = 9 coeflicients that define each model
interface. We solve the equations for the coefficients ¢, by least squares using all
available CMP locations.

While the traveltimes 79(n,Y) and slopes p(n,Y) are used to obtain z,(Y), the
information required to estimate the interval parameters 1 [equation (30)] is provided
by the NMO ellipses W (n). To prove that the NMO ellipses may constrain the layer
parameters uniquely, we present an example of singular value decomposition (SVD)

analysis for the two-layer VTI model shown in Fig. 11. The ellipses measured from

19



the two reflectors at four CMP locations (triangles in Fig. 11) provide 2 x 4 x 3 = 24
equations for the six components of the vector 1.
Thus, the feasibility of the inversion can be evaluated by applying SVD to the

24 x 6 matrix F of Frechét derivatives

_0W(n,Y)

F= (32)

computed for correct values of model parameters m. Since none of the singular
values vanishes (Fig. 12), the input data provide sufficient information for parameter
estimation, and this VTT model can be fully reconstructed in the depth domain from
P-wave reflection traveltimes.

Clearly, it is not, always possible to obtain VTT parameters using just P-wave data.
For example, as the curvature of the intermediate interface in Fig. 11 decreases, our
model approaches that with plane interfaces wherein at least one singular value is zero
(see above). One of the singular values also vanishes when either layer is elliptically

anisotropic, so that €, = d,, (Dellinger and Muir 1988).

Inversion examples

To confirm the SVD results, we carried out actual inversion of P-wave data for the
model in Fig. 11 in the presence of noise. Reflection traveltimes were computed for
240 common midpoints placed at every 25 m along the two dashed lines between the
triangles in Fig. 11. This provided an overdetermined system of 240 x 3 = 720 equa-
tions for reconstructing the matrix ¢ describing each interface. We added Gaussian
noise to the modeled NMO velocities and zero-offset traveltimes, and obtained the
parameter vector m [equation (27)] using the two-step inversion procedure discussed
above.

Comparing the results of this test with the actual parameters (Table 4), we con-

clude that all three parameters in both layers were found with good accuracy. The
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relative errors in the interval vertical velocities Vpg, and absolute errors in the ani-
sotropic coefficients are comparable to the standard deviation of the noise added to
the NMO velocities. The inversion results (for the same input data) do not depend
on the initial guess for the model parameters, which suggests that the least-squares
objective function in a certain vicinity of the correct solution is unimodal. Knowledge
of the interval VTI parameters Vpg ,, €, and 6, is sufficient to reconstruct the depth
and shape of the interfaces and build the entire VTT model in depth.

Another example, this time for a three-layer VTI model with more complicated
shape of the interfaces is shown in Fig. 13 and Table 5. The data vector d(Y,n)
was determined from the traveltimes computed at 600 common midpoints located
along two lines with a spacing of 15 m. The accuracy of parameter estimation on
noise-contaminated data (Table 5) is comparable to that in the example from Table 4.
Therefore, for a subset of layered VTT models with curved interfaces, P-wave reflection

traveltimes provide sufficient information for the inversion in the depth domain.

DISCUSSION AND CONCLUSIONS

The possibility of inverting P-wave reflection data for the interval parameters
of layered VTT media strongly depends on the geometry of intermediate interfaces.
While only the zero-dip NMO velocity Vimo(0) and the anellipticity coefficient 7 can be
obtained for laterally homogeneous VTI media above a dipping reflector, the presence
of dipping or curved interfaces in the overburden may help to estimate all three
relevant anisotropic parameters (V4 ,, €, and 6,). Here, we examined the inversion
of P-wave NMO ellipses and zero-offset traveltimes (measured from multi-azimuth
3-D reflection data) for the interval VTI parameters and the shape and depth of the
interfaces. Since this method operates with NMO (stacking) velocities determined on
moderate-length CMP spreads, it can be called “stacking-velocity tomography.”

The objective function, which has to be minimized during the inversion, is ob-
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tained in two steps. First, for each trial set of the interval VTI parameters P-wave
zero-offset traveltimes and reflection slopes (horizontal slownesses) are used to re-
construct the reflectors and build the trial model in depth. Second, we compute
the effective NMO ellipses of reflection events and define the objective function as a
measure of the difference between the modeled ellipses and those estimated from the

data.

Plane interfaces

If the interfaces are plane, have different azimuths, and do not cross each other,
the P-wave NMO ellipses in an N-layer model yield 3N — 1 independent equations
for the 3N interval parameters Vj ., €, and d,,. Unfortunately, the spatial variation
of the NMO ellipses for this model does not provide any additional information for
the inversion procedure. Therefore, in general, surface 3-D P-wave data alone are
insufficient to determine the unknown VTI parameters and reconstruct the plane
interfaces uniquely.

This ambiguity, however, can be overcome if a single parameter in any layer is
known a priori. For example, in many cases the subsurface layer may be assumed to
be isotropic (€; = §; = 0), or the vertical velocity in it may be estimated in a shallow
borehole. The inversion can also be made unique by introducing some relationship
between the parameters (e.g., between € and §) in at least one of the layers. The only
model for which this approach fails to remove the ambiguity is elliptical anisotropy
(€, = Oy).

For 2-D models with co-oriented interfaces, the axes of all NMO ellipses are parallel
to the dip and strike directions, and the number of independent equations reduces
to 2N. Therefore, for 2-D inversion it is necessary to specify one parameter for
each layer beforehand; for instance, the vertical velocities may be known from VSP

measurements. The inversion is generally better constrained if the medium contains
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multiple dips (e.g., a throughgoing fault plane). For some types of models with
intersecting interfaces the parameter estimation can be performed without any a

priori information.

Curved interfaces

To compute azimuthally dependent NMO velocity in models with curved inter-
faces, we generalized the theory of NMO-velocity surfaces (Grechka and Tsvankin
1999b) by deriving a correction for the interface curvature. The new methodology
is designed to compute NMO ellipses over arbitrary anisotropic media with curved
interfaces by tracing a single zero-offset ray for each reflection event. This model-
ing algorithm, which is orders of magnitude faster than 3-D two-point ray tracing,
provides a foundation for efficient traveltime inversion.

The feasibility of the interval parameter estimation was studied using singular
value decomposition (SVD) followed by the inversion of noise-contaminated data.
The input parameters for the inversion include azimuthally dependent P-wave NMO
velocities (i.e., NMO ellipses) and zero-offset traveltimes acquired at a number of
common midpoints over the study area. In contrast to media with plane interfaces,
for a subset of VTT models with curved interfaces it is possible to reconstruct the
model in depth without using additional information. Interface curvature increases
the angle coverage of reflected rays, which helps to constrain the parameters of the
anisotropic velocity field. Only if the anisotropy of one or more layers is close to
elliptical, does the depth scale become poorly constrained by P-wave data regardless
of the interface shape, which agrees with the results of Dellinger and Muir (1988).

The most critical assumption that ensured the success of the inversion procedure
is that the model is composed of homogeneous layers. Allowing for a variation in
the VTI parameters within some of the layers may prevent us from resolving the

three principal components of the model: anisotropy, irregular (curved) interfaces
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and lateral velocity variation. Even for isotropic models with irregular interfaces and
laterally varying velocity, the traveltime inversion is generally non-unique (Goldin
1986). Still, in some special cases it may be possible to separate the contributions
of each of those three factors to the reflection traveltimes; this topic requires further
investigation.

On the whole, our results indicate that for a range of laterally heterogeneous
VTI models it is possible to build velocity models in depth (and, therefore, perform

anisotropic depth imaging) using surface P-wave data.
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APPENDIX A-NMO VELOCITY ON A CURVED CMP LINE

Here we extend the derivation of the NMO velocity measured along a straight
arbitrarily oriented CMP line given by Grechka and Tsvankin (1999b) to CMP lines
with nonzero curvature at the common midpoint. Our derivation is based on expand-
ing the pure-mode reflection traveltime ¢ in a Taylor series in half offset h (h = 0 at
the CMP location). The traveltime is assumed to be smooth enough for all needed
derivatives to exist at zero offset.

Let us denote by o (0) the coordinate of the common midpoint O (Fig. A-1) on the
curved CMP line o. If the CMP line is parameterized as a function of its arclength
h, the coordinates of the source S and receiver R become o (—h) and o(h). Since
we are interested in the small-offset approximation of the reflection traveltime, the
function o (h) can be replaced by its quadratic Taylor series expansion in the vicinity

of h =0:
o(h) = o(0) + Lh+ 3 KA +ofh?). (A-1)

Here L is the unit vector tangent to the CMP line at h = 0,

do
L= — , (A-2)
dh |, _,
and K is related to the curvature of the CMP line,
d’o
K= el (A-3)
h=0

The pure-mode two-way reflection traveltime ¢ measured at small offsets h along

the CMP line o can be expanded in a similar quadratic Taylor series,

dt(o(h),r d*t(o(h),r
t(a(h),r) :t(a(O),r) + % h+% % R*+ ... (A-4)

The traveltime ¢ depends on the source and receiver positions and on the coordinate
r of the reflection point. Summing up the one-way traveltimes 7 corresponding to the

down- and upgoing rays, we can write
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t(o(h),r) = 7(o(=h),x) + 7(a(h),r). (A-5)

We begin with showing (following the derivation of Tsvankin and Grechka 2000)
that the reflection point dispersal (i.e., the deviation of r from the zero-offset reflection
point g in Fig. A-1) has no influence on the values of the derivatives dt/dh and d?t/dh?

at h = 0, so equation (A-5) can be replaced with

t(o(h),r) =t(o(h),x0) = (0 (~h),10) + (' (h), 7o) - (A-6)

Let us examine the difference

At = t(a(h),r) — t(o(h), 1)

(A-7)

fixed O and h

between the traveltimes corresponding to the specular reflection point r and to the
zero-offset (non-specular) reflection point ry. The source and receiver are located
along the CMP line o at the fixed half-offset h. The difference At can be expanded
in a Taylor series in the distance p = |r — ry| between the points r and ry (Fig. A-1).
At zero-offset, r = ry and At|,—o = 0 as follows from equation (A-7). Since the
traveltime has an extremum at the specular reflection point r (Fermat’s principle),

the series At(p) starts with the quadratic term

where

&t(o(h),r)
A(U(h ) - dp? (A-9)
Differentiating equation (A-8) with respect to h yields
dAt dA(cr(h)) ) dp(cr(h))
=P (o(h)) +2A(a(h)) p(a(h)) e (A-10)
Since p = 0 at h = 0, the derivative

dAt

— =0. (A-11)

dh |, _,
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Therefore,

dt (a’(h), r) dt (a(h), ro)
N N (A-12)
Next, we differentiate equation (A-10) again:
2at dPA(e(h)) dA(o(h) dp(o(h)
anz = cghQ )p (o) +4 <dh )”("(h)> <dh )
dp(a(h))]’ dp(o(h
+2 A(o(h) [% +24(a () (o (k) %. (A-13)
Evaluating the derivative (A-13) at h = p = 0, we obtain
PAt dp(em) |
T~ 2alem) i) ] (A-14)

To show that the derivative (A-14) is zero, we note that both the traveltime and the
ray trajectory of a pure reflection mode remain the same if we interchange the source

and receiver positions (the reciprocity principle). Hence,

r(o(h)) =r(o(-h)) (A-15)
and, therefore,
p(a’(h)) = ‘r(a(h)) - ro‘ = ‘r(a(—h)) - ro‘ = p(a(—h)) , (A-16)
i.e., p is an even function of A for any fixed CMP line . Consequently,
dp(a(h))
J = A-1
h=0
so equation (A-14) results in
d’At
=0. A-18
dh? |, _, ( )

Thus, we have proven that

d2t(0'(h), r)
dh?

_ th(cr(h), ro)

a2 , (A-19)

h=0
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and the derivatives in the series (A-4) can be obtained by differentiating equation (A-
6). This result is equivalent to the normal-incidence-point (NIP) theorem proved by
Chernyak and Gritsenko (1979) [their proof can be also found in Goldin (1986)] and
by Hubral and Krey (1980).

The zero-offset (h = 0) traveltime can be expressed as [see equation (A-6)]

t(a(h),x)| _ =ty =27(c(0)). (A-20)

h=0
Differentiating equation (A-6) and taking into account equation (A-1), we find

dt(a(h))

=0. A-21

h=0

3
_y S—T(—Ek—i—ﬁk—i-QICkh-l—o(h))
k=1 99k

h=0

Differentiating the one-way traveltime with respect to h twice yields

Er(o) & (o) doy dow & 07(0(R) oy

= . A-22
T 2 B don dh dh T oy di? (A-22)
Using equations (A-1), (A-6) and (A-22) leads to
&*t(o(h)) 3 0°r(a(h)) 3 or(o(h))
_— =2 —_ Ly Lo+ 2 —_—r Kr. (A-23
dh? kz_l Ooy, Oop, kb ,;1 Joy, ke )
h=0 m= h=0 = h=0
Noting that
9| _9 (A-24)
Bak h=0 8l‘k h=0
equation (A-23) can be rewritten in the following form:
d%(a’(h)) 2 9% (x) 3 07 (x)
— =2 — LiLlm+2) Kk, . (A-25)
dh? o kmzzl 0z 0T |,_, = Ok |,

Equation (A-25) relates the second-order derivative of the two-way traveltime ¢ with
respect to the half-offset and the second-order spatial derivatives of the one-way
traveltime 7 from the zero-offset reflection point.

To obtain an equation for the NMO velocity along the CMP line o, we substitute
the derivatives (A-21) and (A-25) into the series (A-4):
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3 0?7 (x) 3 0t (x)
= 2 — ) A-2
t(cr(h)) to + h {k,mZZI axk axm o ﬁk Em + kgl a’L‘k o }Ck ( 6)

Squaring this equation and keeping the quadratic and lower-order terms with respect

to h yields
2(o(h)) = 2+ 2t 12 {ézl % Ll +,§:1 agi:) - /ck} . (A-27)
Introducing the source-receiver offset
X=2h, (A-28)
we rewrite equation (A-27) in its final form,
(o(X)) =t + (LUL +7p-K) X2, (A-29)

where 7y = /2 is the one-way zero-offset traveltime. Here T denotes transposition,

and the 3 x 3 symmetric matrix U is defined as

r(x) om(x)
m = = ) ka = 11 25 3 A-
U ™ Sar D . ™ on . (k,m 3) (A-30)
or(x
pk(x) = aik) ) (ka m = 1: 25 3)a (A_31)

are the components of the slowness vector p = [p1, p2, p3]. In equation (A-29) p is
evaluated at the CMP location.

Comparing equation (A-29) with the conventional definition of the NMO velocity
Vamo (o) along the CMP line o,

X2
2 42
?(o(X)) =1 + 7 o) (A-32)
we conclude that
V.2(e)=LUL +7p-K. (A-33)
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APPENDIX B-NMO VELOCITY AT A CURVED SURFACE

Equation (A-33) can be used to describe the azimuthal variation of the NMO

velocity measured along CMP lines at a curved surface s. Let us specify the surface
s = s(hy, ha) (B-1)

by a pair of curvilinear orthogonal coordinates h; and hy (Fig. B-1) in such a way

that the half-offset h along the CMP line & is given as (for h — 0)

hi=h cosa (B-2)
and

ho = h sina, (B-3)

where « is the azimuth of the tangent to the CMP line at the common midpoint O
with respect to the axis h; (Fig. B-1).

For simplicity, the axis z3 of the coordinate frame is directed along the normal b
to the surface s(hq, hy) at the CMP location. This implies that the tangent vector £

to the CMP line at O [see equation (A-2)] is
L =cosa, sina, 0], (B-4)
and we can replace £ with the vector ¢ which lies in s:
L= [Ly, L] =[cosa, sina]. (B-5)

To obtain the NMO velocity for any CMP line o within s, we need to express the
curvature I in equation (A-33) in terms of the derivatives of s with respect to the
coordinates hy and hy. Using equations (A-3), (B-2) and (B-3), we find

s L s didy
T dR? — Oh; Oh; dh dh

K

along O, h=0 2,] h=0

(B-6)
= Kq1 coS> a + 2 Kqy Sin o coS a + Koy sin® o ,
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where

82
Kij = 7S ) (Za] = 11 2) : (B_7)

Oh; Ohj ), _,

Equation (B-6) can be rewritten in matrix form using equation (B-5):

K=trtT. (B-8)
Equation (A-33) then yields
Vul(s,0) = £ (W+rop- k) (T, (B-9)
where
Wi; = Uiy, (1,7 =1,2). (B-10)

Thus, the directional dependence of the NMO velocity Vimo(s, ) measured on the
curved surface s can be described in terms of the following 2 X 2 symmetric quadratic

form:
W=W+7rp-K, (B-11)

where W is the matrix that represents the NMO ellipse in the plane tangent to s at

the CMP location, and 7y p - Kk is the correction for the curvature.
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APPENDIX C-CONTINUATION OF NMO VELOCITIES THROUGH

CURVED INTERFACES

Grechka and Tsvankin (1999b) developed concise Dix-type formulae for anisotro-
pic models composed of homogeneous layers separated by planar interfaces. They
showed that the effective NMO ellipse at a given CMP location can be obtained by
averaging the intersections of the NMO-velocity surfaces with the layer boundaries
along the zero-offset ray. Here, we use the results of Appendices A and B to extend
their procedure to media with curved interfaces.

The derivation of Grechka and Tsvankin (1999b) was based on the fact that the
intersections of the NMO-velocity surfaces U with the planar boundaries (i.e., the
NMO ellipses W) are the same on both sides of each interface. For curved interfaces,
the quantities continuous across the interfaces are the matrices VW defined by equa-
tion (B-11). Indeed, W determine the NMO velocities measured on the top (+) and

bottom (—) sides of the interface s (Fig. C-1). According to equation (B-11),

WH = W 4 7 pH) -k, (C-1)

W =W 47 pH) k. (C-2)

As shown in Appendix A, NMO velocity can be computed using the one-way tra-
veltimes from the zero-offset reflection point to the CMP line. Essentially, those
traveltimes correspond to the wavefront propagating from the zero-offset reflection
point. To satisfy the boundary conditions, the wavefront has to be continuous across
surface s, which implies that the NMO velocities measured on two sides of s at the

reflection/transmission point (Fig. C-1) are identical. Therefore,
wH — w) (C-3)
In contrast, the NMO ellipses W) and W) measured on two sides of the plane

P tangent to s have to be different because the slowness vector changes across the

interface. Combining equations (C-1)—(C-3), we find
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W = WO — 5 (p® = pO)) k. (C-4)

As discussed in the main text, the correction of NMO ellipses for the interface cur-
vature developed here can be used to extend the Dix-type averaging formulae of
Grechka, Tsvankin and Cohen (1999) and Grechka and Tsvankin (1999b) to media

with curved interfaces.
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Vo | €1 | 01 | Vpoa | €2 | 02 | Vpogs | €3 | O3

’ ’ )

(km/s) (km/s) (km/s)
Correct | 1.00 |0.08/0.04| 2.00 |0.20/0.10| 3.00 |0.10/0.05

Inverted| 0.99 [0.09| — | 2.02 |0.18(0.09| 2.96 |0.18|0.07

21 b1 (01 Z2 05 (0 Z3 ¢3 3
(km)|(deg)|(deg) |(km)|(deg) |(deg)|(km) |(deg)|(deg)
Correct | 1.00| 30.0 |-10.0{2.00 | 30.0 | 30.0 [ 4.00 | 10.0 | 70.0

Inverted| 1.00 | 29.8 |-10.0{1.98 | 29.9 | 30.4 | 3.98 | 10.3 | 70.5

Table 1. Comparison of the correct and inverted parameters of a three-layer VTI
model (see Fig. 5). The standard deviations of Gaussian noise added to the NMO

velocities and zero-offset traveltimes are 2.0% and 0.5%, respectively.
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Vo | €1 | 01 | Vpoa | €2 | 02 | Vpogs | €3 | O3

’ ’ )

(km/s) (km/s) (km/s)
Correct | 1.00 |0.08/0.04| 2.00 |0.20/0.10| 3.00 |0.10/0.05

Inverted] - ]0.08/0.04] - ]0.19/0.10] - [0.08|0.05

Table 2. Comparison of the correct and inverted values of parameters for the
three-layer VTI model shown in Fig. 6. The standard deviations of Gaussian noise
added to the NMO velocities and zero-offset traveltimes are 2.0% and 1.0%, respec-

tively.
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VP01 €1 VP02 €2

’ ’

(km/s) (km/s)
Correct || 1.00 [0.20| 2.00 [0.20

Inverted| 0.98 [0.18| 1.98 |0.17

Table 3. Comparison of the correct and inverted values of parameters for the
two-layer VTT model from Fig. 7. k; and ky are such that n; = n, = 0.05. NMO
velocities, computed at 200 CMP locations, were contaminated by Gaussian noise

with a standard deviation of 2%.
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VP01 €1 51 VP02 €2 52

I ’

(km/s) (km/s)
Correct | 1.00 [0.20/0.10| 2.00 [0.15[0.05

Inverted| 1.02 |0.17|0.07| 2.05 |0.11|0.03

Table 4. Inversion results for the two-layer VIT model in Fig. 11. The standard
deviations of Gaussian noise added to the NMO velocities and zero-offset traveltimes

are 2.0% and 1.0%, respectively.
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VP0,1 €1 | 01 | Voo | € | 02 | Vpos | €3 | O3

’ )

(km/s) (km/s) (km/s)
Correct | 1.80 [0.200.10| 2.00 |0.15(0.05| 2.30 |0.10|0.03

Inverted| 1.77 |0.23/0.12| 1.97 |0.17|0.07] 2.26 |0.12|0.05

Table 5. Inversion results for the three-layer VIl model in Fig. 13. The errors
in the inverted quantities are due to Gaussian noise added to the NMO velocities
(the standard deviation is 2.0%) and zero-offset traveltimes (the standard deviation

is 1.0%)
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FIGURES

FIG. 1. Zero-offset rays in a model containing a stack of VTI layers separated by

plane dipping interfaces.

FIG. 2. Generalized Dix-type formula averages the intersections of the interval NMO-

velocity cylinders with the model interfaces along the zero-offset raypath.

FIG. 3. SVD analysis for a two-layer VTI model with the parameters Vpy; = 2 km/s,
e = 0.15, §; = 0.05, Vpoo = 3 km/s, e = 0.25, § = 0.10. The singular values
are normalized by the greatest one. The interface depths under the CMP location
O =10, 0, 0] are z; = 1 km and z; = 3 km, the dips ¢; = 40° and ¢y = 20°, and the
azimuth of the bottom interface is 15 = 0°. The curves correspond to different az-
imuths of the intermediate (first) interface: o (1, = 0°), O (¥, = 30°), < (Y, = 60°)
and A (¢, =90°).

FIG. 4. Contours of the fifth eigenvalue (multiplied by 1000) as a function of the
dip ¢; and azimuth ); of the intermediate interface in a two-layer VTT model. The

parameters Vpo 1, €1, 01, Vpo 2, €2, 02, 21, 22, ¢2, and 1), are the same as those in Fig. 3.

FIG. 5. Zero-offset P-wave rays in the three-layer VTT model with the parame-

ters given in Table 1.

FIG. 6. Zero-offset rays in a three-layer VT model. All interfaces have the same
azimuth ”Q/Jl = 1/12 = ¢3 = 0°.

FIG. 7. Contours of the smallest singular value (multiplied by 1000) for a two-layer
VTI model. The relevant model parameters are Vpo; = 1 km/s, e = 0.20, 6, = & €1,

Vpo,z =2 km/s, €2 = 020, (52 = kg €9, ¢1 = 300, ’(ﬁl = 300, (bQ = 500, 1/12 == 00,
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z1 = 1 km, 2o = 3 km. The coefficients k; and k9 vary from 0 to 1.1.

FIG. 8. SVD analysis for a two-layer VTT model similar to the one in Fig. 3. This
time, however, the intermediate interface contains two segments with the same dip

¢1 = 40° but different azimuths ¥; = 30° and ), = 90°.

FIG. 9. The presence of fault-plane reflections in layered VTI medium might be

sufficient to reconstruct the model in depth using P-wave reflection data.

FIG. 10. Multi-azimuth CMP recording over a layered VI model with curved inter-

faces.

FIG. 11. Zero-offset rays in the two-layer VTI model used in the SVD analysis
(Fig. 12). CMP locations are marked by triangles. The relevant interval parameters
are Vpo1 = 1 km/s, ¢, = 0.20, 6; = 0.10, Vpoo = 2 km/s, e = 0.15, §, = 0.05.
The interfaces are described by 2-D quadratic polynomials, so {; and ¢, are 3 x 3

matrices.

FIG. 12. Normalized singular values for the model from Fig. 11.

FIG. 13. Three-layer VTT model used in the inversion with several traced zero-offset

rays. Common midpoints are located on the two gray dashed lines.

FIG. A-1. Reflection traveltimes are recorded along the curved CMP line o with
the common midpoint at O. Note the difference between the reflection points ry and

r of the zero-offset and nonzero-offset rays.

FIG. B-1. CMP line o at an curved surface described by the radius-vector s(hq, hs).

43



b is the unit vector orthogonal to the surface at the common midpoint O.
FIG. C-1. Zero-offset ray crossing a curved interface s. Plane P is tangent to the

interface at the intersection point; p{t) and p(~) are the slowness vectors on different

sides of the interface.
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FIG. 1. Zero-offset rays in a model containing a stack of VTT layers separated by plane

dipping interfaces.
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FIG. 2. Generalized Dix-type formula averages the intersections of the interval

NMO-velocity cylinders with the model interfaces along the zero-offset raypath.
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FIG. 3. SVD analysis for a two-layer VTI model with the parameters Vpg; = 2 km/s,
e1 = 0.15, 01 = 0.05, Vpo2 = 3 km/s, e = 0.25, o = 0.10. The singular values are
normalized by the greatest one. The interface depths under the CMP location O = [0, 0, 0]
are z; = 1 km and z9 = 3 km, the dips ¢; = 40° and ¢ = 20°, and the azimuth of the
bottom interface is 19 = 0°. The curves correspond to different azimuths of the intermediate

(first) interface: O (31 =0°), O (1 = 30°), < (1 = 60°) and A (31 = 90°).
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FIG. 4. Contours of the fifth eigenvalue (multiplied by 1000) as a function of the dip
¢1 and azimuth 11 of the intermediate interface in a two-layer VTI model. The parameters

Vpo,1, €1, 01, Vo2, €2, 02, 21, 22, (b2, and 1P are the same as those in Fig. 3.
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FIG. 5. Zero-offset P-wave rays in the three-layer VTI model with the parameters given
in Table 1.
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FIG. 6. Zero-offset rays in a three-layer VTI model. All interfaces have the same azimuth

P1 = Pg = 1p3 = 0°.
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FIG. 7. Contours of the smallest singular value (multiplied by 1000) for a two-layer
VTI model. The relevant model parameters are Vpg1 = 1 km/s, €; = 0.20, 6; = ki €,
Vpoo =2 km/s, €2 = 0.20, 62 = ka €2, 1 = 30°, 91 = 30°, ¢ = 50°, 9po = 0°, z = 1 km,

2o = 3 km. The coefficients k1 and ks vary from 0 to 1.1.
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FIG. 8. SVD analysis for a two-layer VTI model similar to the one in Fig. 3. This time,
however, the intermediate interface contains two segments with the same dip ¢; = 40° but

different azimuths ¢; = 30° and ; = 90°.
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FIG. 9. The presence of fault-plane reflections in layered VTI medium might be sufficient

to reconstruct the model in depth using P-wave reflection data.
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FIG. 10. Multi-azimuth CMP recording over a layered VTI model with curved inter-

faces.
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FIG. 11. Zero-offset rays in the two-layer VTI model used in the SVD analysis

(Fig. 12). CMP locations are marked by triangles. The relevant interval parameters are
Vpoi = 1 km/s, eg = 0.20, 6; = 0.10, Vpgo = 2 km/s, e = 0.15, d2 = 0.05. The interfaces

are described by 2-D quadratic polynomials, so {; and {5 are 3 X 3 matrices.
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FIG. 12. Normalized singular values for the model from Fig. 11.
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FIG. 13. Three-layer VTT model used in the inversion with several traced zero-offset

rays. Common midpoints are located on the two gray dashed lines.
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FIG. A-1. Reflection traveltimes are recorded along the curved CMP line o with the
common midpoint at O. Note the difference between the reflection points rg and r of the

zero-offset and nonzero-offset rays.
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FIG. B-1. CMP line o at an curved surface described by the radius-vector s(hy, hs).

b is the unit vector orthogonal to the surface at the common midpoint O.

99



(+)
~—P
- p(_)

n

zer o-offset ray

FIG. C-1. Zero-offset ray crossing a curved interface s. Plane P is tangent to the
interface at the intersection point; p(*) and p{~) are the slowness vectors on different sides

of the interface.
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