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ABSTRACT

Common-midpoint moveout of converted waves is generally asymmetric with

respect to zero offset and cannot be described by the traveltime series t2(x2) con-

ventionally used for pure modes. Here, we present concise parametric expressions

for both common-midpoint (CMP) and common-conversion-point (CCP) gathers of

PS-waves for arbitrary anisotropic, horizontally layered media above a plane dipping

reflector. This analytic representation can be used to model 3-D (multi-azimuth)

CMP gathers without time-consuming two-point ray tracing and compute such at-

tributes of PS moveout as the slope of the traveltime surface at zero offset and the

coordinates of the moveout minimum.

In addition to providing an efficient tool for forward modeling, our formalism

helps to carry out joint inversion of P and PS data for transverse isotropy with a

vertical symmetry axis (VTI media). If the medium above the reflector is laterally

homogeneous, P -wave reflection moveout cannot constrain the depth scale of the

model needed for depth migration. Extending our previous results for a single VTI

layer, we show that the interval vertical velocities of the P - and S-waves (VP0 and VS0)

and Thomsen parameters ε and δ can be found from surface data alone by combining

P -wave moveout with the traveltimes of the converted PS(PSV )-wave.

If the data are acquired only on the dip line (i.e., in 2-D), stable parameter estima-

tion requires including the moveout of P - and PS-waves from both a horizontal and

a dipping interface. At the first stage of the velocity-analysis procedure, we build an

initial anisotropic model by applying a layer-stripping algorithm to CMP moveout of

P - and PS-waves. To overcome the distorting influence of conversion-point dispersal

on CMP gathers, the obtained interval VTI parameters are refined by collecting the

PS data into CCP gathers and repeating the inversion.

For 3-D surveys with a sufficiently wide range of source-receiver azimuths, it is

possible to estimate all four relevant parameters (VP0, VS0, ε and δ) using reflections

from a single mildly dipping interface. In this case, the P -wave NMO ellipse deter-
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mined by 3-D (azimuthal) velocity analysis is combined with azimuthally dependent

traveltimes of the PS-wave. On the whole, the joint inversion of P and PS data

yields a VTI model suitable for depth migration of P -waves, as well as processing

(e.g., transformation to zero offset) of converted waves.

Keywords.—converted wave, seismic anisotropy, seismic inversion, reflection

moveout.
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INTRODUCTION

With recent advances in the acquisition of multicomponent data (e.g., the technol-

ogy of ocean-bottom cable), converted waves find an increasing number of applications

in seismic exploration. For example, PS-waves proved helpful in imaging hydrocar-

bon reservoirs beneath gas clouds, where conventional P -wave methods suffer due

to the high attenuation of compressional energy (Thomsen 1999). Also, converted

waves contain information about shear-wave velocities and other medium parameters

which cannot be constrained using P -wave data alone; this is especially important in

anisotropic media.

For transverse isotropy with a vertical symmetry axis (VTI medium), P -wave re-

flection traveltimes alone are generally insufficient to determine reflector depth (or

vertical velocity) and establish the depth scale of the model. P -wave kinematic sig-

natures in VTI media depend on the vertical velocity VP0 and Thomsen’s (1986)

anisotropic coefficients ε and δ (Tsvankin 1996; 2001). However, P -wave moveout in

horizontally layered VTI media above a dipping reflector is fully controlled just by

the interval normal-moveout (NMO) velocity from a horizontal interface [Vnmo,P (0)]

and the “anellipticity” parameter η (Alkhalifah and Tsvankin 1995):

Vnmo,P (0) = VP0

√
1 + 2δ , (1)

η ≡ ε− δ
1 + 2δ

. (2)

The parameters Vnmo,P (0) and η can be found from the dip dependence of the P -

wave NMO velocity or nonhyperbolic (long-spread) moveout of horizontal events and

used for all time-domain P -wave processing steps including NMO and dip-moveout

(DMO) corrections and time migration (Alkhalifah and Tsvankin 1995; Grechka and

Tsvankin 1998a,b). While this time-processing methodology has proved to be quite

effective on field data (Alkhalifah et al. 1996; Anderson et al. 1996), the inherent
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trade-offs between VP0, ε and δ in equations (1) and (2) preclude anisotropic parameter

estimation in depth.

To construct anisotropic models for depth imaging, P -wave reflection traveltimes

have to be combined with borehole information (e.g., check shots or well logs), shear

or converted waves. In the exploration context, the most practical option is the

joint inversion of P - and PS-reflections, particularly for offshore surveys with data

collection on the ocean bottom. Tsvankin and Grechka (2000; hereafter referred to as

Paper I) examined this inverse problem in 2-D (i.e., in the dip plane of the reflector)

for the model of a single VTI layer. Their analysis shows that it is not sufficient to

supplement P -wave NMO velocities from horizontal and dipping reflectors (yielding

the parameters Vnmo,P (0) and η) with the traveltimes of horizontal PSV events (the

PSV -wave will be denoted here simply by PS). To achieve stability in estimating the

vertical velocities, the inversion procedure has to include dip moveout (i.e., reflection

traveltimes from a dipping interface) of PS-waves.

If the reflector is dipping, the common-midpoint moveout curve of the PS-wave

is asymmetric with respect to zero offset (because the traveltime does not stay the

same if the source and receiver are interchanged) and may not have a minimum

for relatively steep dips exceeding 40-50◦. Paper I introduces an exact parametric

representation of PS-wave moveout on CMP gathers in vertical symmetry planes

of anisotropic homogeneous media and gives concise expressions for such attributes

of the traveltime curve as the slope at zero offset, NMO velocity at the traveltime

minimum, etc. For VTI media, those attributes of dipping PS events proved to be

sufficiently sensitive to the model parameters for the joint inversion of P - and PS

traveltimes to give accurate estimates of VP0, VS0 (the shear-wave vertical velocity), ε

and δ. The main limitations of the algorithm developed in Paper I are the simplicity

of the model (2-D, single layer) and the reliance on CMP geometry in which PS-waves

suffer from conversion-point dispersal.

Here, the methodology of Paper I is extended to more realistic, vertically hetero-
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geneous anisotropic media above a dipping reflector. We develop general 3-D para-

metric traveltime-offset relationships for PS-waves recorded on multi-azimuth CMP

and common-conversion-point (CCP) gathers and also provide simplified 2-D expres-

sions valid in vertical symmetry planes of the model. (CCP gathers are composed

of traces with PS arrivals which have the same conversion point on the reflector.)

Those analytic results are incorporated into 2-D and 3-D inversion algorithms for

VTI media capable of estimating all four relevant parameters (VP0, VS0, ε and δ)

from P and PS data. Numerical examples confirm the accuracy and efficiency of our

parameter-estimation methodology for typical layered VTI models.

PARAMETRIC DESCRIPTION OF CONVERTED-WAVE MOVEOUT

Conventional-spread reflection moveout of pure modes on CMP gathers in both

isotropic and anisotropic media is usually close to a hyperbolic curve parameterized by

normal-moveout velocity (e.g., Tsvankin and Thomsen 1994; Grechka and Tsvankin

1998b). For mode-converted waves, however, CMP moveout in most cases is asym-

metric with respect to zero offset and cannot be fitted to a hyperbola centered at the

CMP location. Only in the special case of horizontally layered media with a horizon-

tal symmetry plane the traveltime of converted waves becomes an even function of

the source-receiver offset (Grechka, Theophanis and Tsvankin 1999).

Here, we give a parametric representation of reflection moveout of converted waves

in layered anisotropic media. The model is composed of a stack of horizontal layers

above a generally dipping plane interface. The P -to-S (or S-to-P ) conversion is as-

sumed to take place only at the bottom of the model (reflector); Thomsen (1999)

suggested to call PS-modes of this type “C-waves.” First, we treat the 2-D problem

of wave propagation in vertical symmetry planes and then proceed with an analytic

description of azimuthally dependent PS moveout over an arbitrary anisotropic lay-

ered model. Exact 2-D and 3-D expressions for the traveltime and offset on both
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CCP and CMP gathers are followed by the derivation and analysis of the moveout

attributes needed in the inversion procedure.

2-D expressions for vertical symmetry planes

Suppose the acquisition line is confined to the dip plane of the reflector overlaid

by an arbitrary number of horizontal layers (Fig. 1). The anisotropic symmetry does

not need to be specified at this stage, but the vertical incidence plane is assumed to

be a plane of mirror symmetry in all layers. Therefore, both rays and phase-velocity

vectors of reflected waves cannot deviate from the dip plane of the reflector, and the

kinematics (but not necessarily the dynamics) of wave propagation can be treated in

two dimensions.

Fig. 2 illustrates the behavior of converted-wave moveout on CMP and CCP gath-

ers above a layered VTI medium. Similar to the single-layer case discussed in Paper

I, the traveltime minimum on CMP gathers moves towards larger offsets for steeper

dips, which makes the moveout curve increasingly asymmetric with respect to x = 0.

If the dip does not exceed 30-40◦, the traveltime minimum can often be recorded on

a sufficiently long CMP gather (Fig. 2a).

For larger dips, the traveltime monotonically decreases with offset (Fig. 2c,e), and

the short-offset moveout is mostly controlled by the slope of the moveout curve at

zero offset. The moveout in Fig. 2e is truncated because the conversion point at

x ≈ 1 km reaches the intersection of the reflector with the bottom of the second layer

(i.e., layer 3 pinches out). This shape of the traveltime function suggests that the

moveout attributes of the PS-wave suitable for the parameter-estimation procedure

can include the zero-offset moveout slope dt/dx|x=0 and, for mild dips, the normalized

offset of the traveltime minimum xmin/tmin. Another attribute that was used in the

single-layer model is the NMO velocity of the PS-wave at the traveltime minimum

(Paper I), but for stratified VTI media it is difficult to derive it in a closed analytic
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form.

The dependence of converted-wave CCP moveout on dip is more complicated.

For the model in Fig. 2, the traveltime minimum first moves towards negative offsets

with increasing dip (Fig. 2b,d) and then returns back almost to the zero-offset location

(Fig. 2f).

In principle, the traveltime and offset of the PS-wave on CCP gathers can be found

by simply summing up the single-layer 2-D expressions of Paper I. The solution of

the 2-D problem, both in CCP and CMP geometry, can also be found as a special

case of the more general 3-D equations by aligning the axis x1 with the dip plane of

the reflector and eliminating the projections of the slowness vector on the x2-axis.

The traveltime of the PS arrival with the conversion point at interface N (Fig. 1) is

given by [see equation (A-17)]

t = t
P

+ t
S

=
N∑

`=1

z(`) (q(`)
P
− p

1P
q(`)
,1P

+ q(`)
S
− p

1S
q(`)
,1S

) . (3)

where z(`) (` = 1, 2, ... N − 1) are the thicknesses of the horizontal layers in the

overburden, z(N) is the thickness of layer N above the conversion point, q(`)
P

and

q(`)
S

are the interval vertical slownesses of the P - and S-waves, p
1P

and p
1S

are the

projections of the slowness vector on the axis x1 (ray parameters), q(`)
,1P
≡ dq(`)

P
/dp

1P

and q(`)
,1S
≡ dq(`)

S
/dp

1S
. Since the medium above the reflector is laterally homogeneous,

the ray parameters p
1P

and p
1S

remain constant between the reflector and the surface;

they are related to each other through Snell’s law at the reflector.

The corresponding source-receiver offset can be found from equation (A-18) as

x = x
1S
− x

1P
=

N∑

`=1

z(`) (q(`)
,1P
− q(`)

,1S
) . (4)

Since the x1-axis points updip (Fig. 1), the offset x in equation (4) is positive if the

P -leg is located downdip with respect to the S-leg; the same sign convention was

adopted in Paper I.

To compute the traveltime and offset from equations (3) and (4), we need to

specify one of the ray parameters (p
1P

or p
1S

) and find the other from Snell’s law
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at the reflector. The vertical slownesses q(`)
P

and q(`)
S

in each layer, along with the

derivatives q(`)
,1P

and q(`)
,1S

, can be determined from the Christoffel equation (Grechka,

Tsvankin, and Cohen 1999). Therefore, scanning over one of the ray parameters

produces a CCP gather for the conversion point located at depth
∑N
`=1 z

(`).

To generate a CMP gather, it is necessary to relate the thickness z(N) of the N -

th layer above the CCP to the layer thickness z(N)
CMP

beneath the common midpoint

(Fig. 1). Setting ζ1 = 1 and ζ2 = 0 in 3-D expression (A-23) leads to

z(N) =
z(N)

CMP
− tan φ

2

∑N−1
`=1 z(`) (q(`)

,1P
+ q(`)

,1S
)

1 + tan φ
2

(q(N)
,1P

+ q(N)
,1S

)
. (5)

Substitution of z(N) from equation (5) into equations (3) and (4) yields the traveltime

and offset of the PS-wave recorded on the CMP gather specified by z(N)
CMP

. In the

special case of a single layer, the sum over the N − 1 layers in the numerator has to

be dropped, and z(N) reduces to the expression obtained in Paper I.

Thus, a CMP gather of converted waves in symmetry planes of layered anisotropic

media can be computed without time-consuming two-point ray tracing. It is still nec-

essary to satisfy Snell’s law at the reflector and solve the Christoffel equation in each

layer for both P - and S-waves, but the whole computation of t and x for each source-

receiver pair has to be performed only once (i.e., for a single ray). Also, note that in

media with a horizontal symmetry plane (e.g., VTI and HTI) the Christoffel equation

q(p) = 0 has an analytic solution because it reduces to a quadratic polynomial in q2.

3-D description of PS moveout

Next, consider a PS-wave formed by the mode conversion at a plane dipping

interface underlying an arbitrary anisotropic homogeneous medium. For recording in

CMP geometry, the sources and receivers are placed on lines with different azimuths

but the same CMP location (Fig. 3). In general, an incident P -wave in such a model

excites two reflected shear modes (PS1 and PS2) propagating towards the surface
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with different velocities and polarizations. The formalism introduced below is valid

for either PS-wave with substitution of the appropriate slowness vector.

Using the 3-D relationship between the slowness and group-velocity vectors, the

traveltime of the wave reflected (converted) at the depth zr can be written in the

form (Appendix A)

t = t
P

+ t
S

= zr (q
P
− p

1P
q
,1P
− p

2P
q
,2P

+ q
S
− p

1S
q
,1S
− p

2S
q
,2S

) , (6)

where the subscript “2” refers to the projections on the x2-axis, and for each wave

q,2 ≡ ∂q/∂p2 . As before, the slowness vectors of the P and S-waves are related to

each other by Snell’s law at the reflector: their projections onto the reflector should

be identical.

The source-receiver vector x = AC (Fig. 3) is obtained in Appendix A as

x = {(x
1S
− x

1P
), (x

2S
− x

2P
)} = zr {(q,1P − q,1S ), (q

,2P
− q

,2S
)} . (7)

Equation (7) yields the following expressions for the source-receiver offset x and

the azimuth α of the source-receiver line with respect to the x1-axis:

x = |x| = zr
√

(q
,1P
− q

,1S
)2 + (q

,2P
− q

,2S
)2 , (8)

α = tan−1

(
q
,2P
− q

,2S

q
,1P
− q

,1S

)
. (9)

Equations (6), (8) and (9) are sufficient for generating common-conversion-point gath-

ers of the PS-wave.

As in the 2-D problem treated in the previous section, common-midpoint moveout

can be modeled by replacing zr with the reflector depth beneath the CMP location

[equations (A-13) and (A-14)]:

zr =
z

CMP

1 + tan φ
2

[(q
,1P

+ q
,1S

) ζ1 + (q
,2P

+ q
,2S

) ζ2]
, (10)

where ζ1 and ζ2 are the components of a horizontal unit vector that points in the updip

direction of the reflector. Equations (6) and (7), with zr defined in equation (10),
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produce the traveltime and the source-receiver vector of a PS-wave on the CMP

gather described by z
CMP

.

The corresponding expressions for layered arbitrary anisotropic media are devel-

oped in Appendix A and will not be reproduced here. The parametric 3-D equations

for traveltime and offset are particularly convenient for generating the entire multi-

azimuth (3-D) CMP gather, with sources and receivers occupying a wide range of

azimuths and offsets. This can be done by scanning over the two horizontal slowness

components of one of the waves (e.g., p
1P

and p
2P

), obtaining the corresponding slow-

ness vector of the other wave from Snell’s law and computing the traveltime and offset

from equations (6), (7) and (10) or the more general expressions for layered media

(Appendix A). Such an algorithm is orders of magnitude faster than two-point ray

tracing for each source-receiver pair in the 3-D CMP gather (of course, the curvature

of the reflector has to be small).

The parametric approach, however, is less efficient in modeling a single CMP line

with a given orientation. In this case, it is necessary to search for the slowness vectors

of the P - and S-waves which do not only comply with Snell’s law at the reflector, but

also satisfy equation (9) for the azimuth of the CMP line. Therefore, it is preferable

to compute the whole 3-D gather on a grid of two horizontal slownesses (e.g., those

of the P -wave) and build the needed CMP lines by interpolation.

Attributes of the moveout curve

Moveout slope at zero offset.—Since common-midpoint traveltime of converted

waves is generally asymmetric with respect to x = 0, short-spread moveout is largely

controlled by the slope of the moveout curve at zero offset (rather than by the NMO

velocity, as is the case for pure modes). The zero-offset moveout slope of the PS-wave

in a VTI layer is quite sensitive to the anisotropic parameters and represents a useful

attribute for moveout inversion (Paper I).
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Paper I also shows that the slope (apparent slowness) of the CMP moveout curve

of any pure or converted wave recorded in a vertical symmetry plane is equal to

one-half of the difference between the ray parameters (horizontal slownesses) at the

source and receiver locations. A 3-D generalization of this result for CMP traveltime

in arbitrary anisotropic, heterogeneous media is given in Tsvankin (2001):

dt

dx

∣∣∣∣∣
x

=
1

2
[p

R
(h, α)− p

I
(−h, α)] , (11)

where dt
dx

∣∣∣
x

is the reflection slope on a CMP line described by the source-receiver

vector x, h ≡ |x|/2 is half the source-receiver offset, and p
I
(h, α) and p

R
(h, α) are

the projections of the slowness vectors of the incident and reflected rays on the CMP-

line azimuth α; the positive direction of the CMP line is taken from the source to

the receiver. In general, p
I
(h, α) and p

R
(h, α) should be evaluated at the source

and receiver locations (respectively), but in our model each ray parameter remains

constant between the reflector and the surface.

To obtain the moveout slope at x = 0 in the 2-D problem, we need to compute the

values of p
1P

= p
I

and p
1S

= p
R

for the zero-offset PS ray. The source-receiver offset

in CMP geometry can be found from equation (4) with z(N) defined in equation (5).

Setting the offset x in equation (4) to zero yields an equation that can be solved for

one of the ray parameters (e.g., p
1P

); the other ray parameter is determined from

Snell’s law at the reflector.

A similar procedure can be devised for the 3-D problem. The slownesses of the

P - and S-legs of the zero-offset ray should be obtained by setting x [equation (8) for

a single layer and (A-18) for layered media] for a given z
CMP

to zero and using Snell’s

law. Then the slowness vectors are projected onto the CMP line, and the slope of the

moveout curve at zero offset is computed from equation (11).

Normalized offset of the traveltime minimum.—For relatively mild dips up to

30-40◦, the common-midpoint traveltime curve of the PS-wave usually has a minimum

(tmin) at a certain offset xmin (Fig. 2). The normalized offset xmin/tmin served as
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another attribute in the single-layer inversion procedure introduced in Paper I.

For a stratified 2-D model, the values of xmin and tmin can be found from equa-

tions (3), (4) and (5), where the ray parameters p
1P

= p
I

and p
1S

= p
R

should

correspond to the traveltime minimum. Since at x = xmin the slope of the moveout

curve goes to zero, the ray parameters should be equal to each other: p
1P

= p
1S

= pmin

[see equation (11)]; pmin is determined from Snell’s law at the reflector. Then the ratio

xmin/tmin is given by

xmin

tmin
=

∑N
`=1 z

(`) (q(`)
,1P
− q(`)

,1S
)

∑N
`=1 z

(`) (q(`)
P
− pminq(`)

,1P
+ q(`)

S
− pminq(`)

,1S
)

∣∣∣∣∣∣
pmin

. (12)

Note that, in contrast to the single-layer model, the normalized offset xmin/tmin from

equation (12) depends not only on the elastic parameters and reflector dip (Paper I),

but also on the layer thicknesses.

Likewise, in the 3-D model the traveltime minimum on a CMP line with a

given azimuth α corresponds to equal values of the slowness projections p
R
(h, α) =

p
I
(−h, α) = pmin, which can be found from Snell’s law.

PARAMETER ESTIMATION IN LAYERED VTI MEDIA

The formalism introduced above is valid for PS moveout in horizontally layered,

arbitrary anisotropic media above a dipping reflector. Below, these general results are

combined with known expressions for the dip-dependent NMO velocity of P -waves

to develop a parameter-estimation methodology for transversely isotropic media with

a vertical symmetry axis (VTI). We start with an overview of the 2-D inversion

algorithm for the single-layer model and proceed with a description of 2-D and 3-D

moveout inversion for stratified VTI media.
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Review of the 2-D single-layer algorithm

The goal of the parameter-estimation methodology introduced in Paper I is to

invert the moveout of P and PS-waves from both a horizontal and a dipping reflector

for the P - and S-wave vertical velocities (VP0 and VS0) and the anisotropic coefficients

ε and δ. P -wave reflection moveout in a VTI layer is fully governed by the parameters

Vnmo,P (0) and η [equations (1) and (2)] and, therefore, yields two equations for the

medium parameters. The remaining information for the inversion is provided by the

moveout of converted modes and the ratios of the zero-offset traveltimes of P - and

PS-waves.

The moveout curve of the PS-wave from a horizontal reflector is symmetric with

respect to zero offset because the VTI model has a horizontal symmetry plane. Fur-

thermore, typically PS traveltimes on CMP spreads limited by reflector depth can be

adequately described by the NMO velocity defined in the same way as that for pure

modes (Grechka, Theophanis and Tsvankin 1999). NMO velocities of pure and con-

verted modes in horizontally layered VTI media are related by the following Dix-type

equation (Seriff and Sriram 1991; Tsvankin and Thomsen 1994):

tPS0 V
2

nmo,PS(0) = tP0 V
2

nmo,P (0) + tS0 V
2

nmo,SV (0) , (13)

where tP0 and tS0 are the vertical traveltimes of the P and S-waves, and tPS0 =

tP0 + tS0. Equation (13) shows that combining P and PS data allows us to determine

the SV -wave NMO velocity Vnmo,SV (0) given (for a single VTI layer) by

Vnmo,SV (0) = VS0

√
1 + 2σ , (14)

σ ≡
(
VP0

VS0

)2

(ε− δ) . (15)

Therefore, horizontal P and PS events in a VTI layer can be used to obtain the

NMO velocities of P -waves [equation (1)] and SV -waves [equation (15)]. Also, the

vertical-velocity ratio κ ≡ VP0/VS0 can be deduced from the vertical traveltimes of
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P - and PS-waves. This set of input data provides three constraints on four unknown

medium parameters. Hence, for a given value of one of the parameters (e.g., δ), we

can determine the other three from the horizontal events (Paper I):

VP0 =
Vnmo,P (0)√

1 + 2δ
, (16)

VS0 =
VP0

κ
, (17)

σ =
1

2

[
V 2

nmo,SV (0)

V 2
S0

− 1

]
, (18)

ε =
σ

κ2
+ δ . (19)

Next, the moveout of dipping events has to be inverted for the anisotropic coeffi-

cient δ. In principle, it seems to be sufficient to obtain the parameter η [equation (2)]

using the P -wave NMO velocity from a dipping reflector. In this case, however, the

parameter-estimation procedure is too unstable to be used in practice because small

errors in η ≈ ε−δ propagate with substantial amplification into the vertical velocities

[Paper I; see equations (14) and (15)].

A significant improvement can be achieved by including the moveout attributes

of the PS-wave reflected from the same dipping interface. The attributes used in the

single-layer problem are the slope of the moveout curve at zero offset, and, if the PS-

wave traveltime has a minimum tmin(xmin) on the CMP gather, the normalized offset

xmin/tmin and the NMO velocity defined at x = xmin. Numerical examples in Paper

I confirm the accuracy and stability of this inversion methodology in the presence of

realistic errors in input data.

2-D inversion in layered VTI media

Stage 1: CMP gathers.—The analytic 2-D expressions for PS moveout given

above are valid if the dip plane of the reflector coincides with a vertical symmetry
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plane of all layers in the overburden. For example, if the medium is orthorhombic

with two mutually orthogonal symmetry planes, our formalism can be used for two

specific orientations of the reflector confined to the symmetry planes. (For any other

reflector orientation, the 2-D equations are applicable only under the assumption of

weak azimuthal anisotropy.) For azimuthally isotropic VTI media, however, there

are no restrictions on the direction of reflector strike because each vertical plane is a

plane of symmetry.

Since building CCP gathers requires knowledge of model parameters, at the first

stage of the inversion procedure the interval values of the parameters VP0, VS0, ε

and δ are estimated using P and PS data collected into CMP gathers. Suppose

the model consists of several horizontal VTI layers intersected by a dipping interface

(e.g., by a fault plane, see Fig. 4). After having determined the parameters of the

subsurface layer using the single-layer algorithm described above, we proceed with the

moveout inversion for the second layer. Horizontal P and PS events are used first

to determine the interval zero-dip NMO velocities of P and S-waves and the P -to-S

vertical-velocity ratio. Combining P - and PS-wave NMO velocities for reflections

from the bottom of the second layer, we obtain the corresponding S-wave NMO

velocity from equation (13). Then the interval P - and S-wave NMO velocities in

the second layer are found using the conventional Dix differentiation (e.g., Tsvankin

and Thomsen 1994, 1995). The ratio of the interval vertical velocities in layer 2

(κ(2) ≡ V
(2)
P0 /V

(2)
S0 ) can be determined in a straightforward way from the zero-offset

traveltimes of the P - and PS-waves.

Therefore, the horizontal events provide the three quantities required by the single-

layer inversion algorithm (V
(2)

nmo,P (0), V
(2)

nmo,SV (0) and κ(2)). Equations (16)–(19) can

then be used to express the interval parameters of the second layer through trial

values of the anisotropic coefficient δ(2) exactly in the same way as in the single-

layer problem. The dip of the reflector in the second layer and the thickness z(2)
CMP

– quantities needed to estimate the moveout attributes of the PS-wave below – are
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calculated for the trial model using the traveltime and the ray parameter p(2)
P0

of

the zero-offset P -wave reflection from the dipping interface (p(2)
P0

can be determined

from the reflection slope on the zero-offset section). Hence, the horizontal P and

PS reflections and the dipping P event are sufficient for completely defining the trial

model that corresponds to the chosen value of δ(2).

Next, dipping P and PS events generated in the second layer and recorded on

the dip line can be inverted for δ(2) and, therefore, for the full set of the interval

parameters. The layer-stripping algorithm of Alkhalifah and Tsvankin (1995) and

Alkhalifah (1997) makes it possible to find the interval NMO velocity V
(2)

nmo,P (p(2)
P0

) of

the dipping P -wave event in the second layer. To obtain V
(2)

nmo,P (p(2)
P0

), it is necessary

to know two parameters of the subsurface layer – the zero-dip NMO velocity V
(1)

nmo,P (0)

and the coefficient η(1).

As discussed above, the moveout of horizontal events and the P -wave NMO ve-

locity V
(2)

nmo,P (p
P0

) have to be supplemented with attributes of the converted-wave

moveout from a dipping interface for estimating the medium parameters with suffi-

cient accuracy. The inversion algorithm operates with the slope of the moveout curve

at zero offset (dt/dx|x=0) and, for mild dips, also with the normalized offset of the

traveltime minimum. Computation of these attributes for a layered VTI model using

equations (11) and (12) is described above.

The parameter δ(2) (and, consequently, the full parameter set of the second layer)

is obtained by minimizing the objective function

F
CMP

=

[
Vnmo,P (p

P0
)− V meas

nmo,P (p
P0

)

V meas
nmo,P (p

P0
)

]2

+

[
(dt/dx|x=0)− (dt/dx|x=0)

meas

(dt/dx|x=0)meas

]2

+

[
(xmin/tmin)− (xmin/tmin)meas

(xmin/tmin)meas

]2

, (20)

where the superscript “meas” denotes the measured values, and the quantities without

a subscript are computed for a trial VTI model. The function (20) represents a system

of three nonlinear equations with a single unknown parameter δ(2). If the moveout
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curve of the PS-wave does not have a minimum on the CMP gather, the objective

function includes only the terms with Vnmo,P (p
P0

) and dt/dx|x=0.

Hence, the dip moveout of the PS-wave is represented by either two or just one

attribute. To increase the accuracy of the parameter estimation, we can include the

whole conventional-spread CMP moveout of the PS-wave into the objective function.

In this case, we generate the CMP gather of the PS-wave from equations (3), (4)

and (5) for a given value of δ(2) and find the rms difference between the modeled and

measured traveltimes.

After the parameters of the second layer have been obtained, the parameter-

estimation procedure continues downward in a layer-stripping fashion. It should be

mentioned that the above operations with the horizontal events are entirely based on

the Dix equation and, therefore, do not involve any information about the parameters

of the subsurface layers. In contrast, the inversion of the P and PS traveltimes from

a dipping reflector cannot be carried out without the parameter-estimation results

for the overlying medium. If the overburden is known to be isotropic or elliptically

anisotropic, its parameters (VP0, VS0, and ε = δ) can be extracted just from the

moveout of horizontal P and PS events. In general VTI media, however, the layer-

stripping procedure cannot be performed using horizontal events alone.

Numerical examples.—The 2-D inversion algorithm designed for CMP gathers

was tested on horizontally layered VTI models with throughgoing dipping interfaces.

It was assumed that both horizontal and dipping P and PS events for each layer can

be recorded in each layer (Fig. 4), so that the input data would include the NMO

velocities and vertical traveltimes of both modes from the horizontal reflectors, the

NMO velocities and reflection slopes of the dipping P events, and the attributes of

the dip moveout of the PS-wave. All these parameters were computed using the

exact equations given above and distorted by Gaussian noise to simulate errors in the

data. Then the layer-stripping parameter-estimation algorithm based on the objective
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function (20) was applied to 200 realizations of the noise-contaminated vector of input

parameters.

For the three-layer model in Fig. 5 the dips do not exceed 35◦, and the objective

function for the first two layers includes the normalized offset of the traveltime mini-

mum. The scatter in the estimated parameters of the subsurface layer (Figs 5a,b) is

the same as in the single-layer inversion results of Paper I. All four parameters (VP0,

VS0, ε, δ) are recovered in a reasonably stable fashion, with the quasi-linear trends

close to the lines corresponding to the correct values of η (Fig. 5a) and VP0/VS0

(Fig. 5b). This is not surprising because η and VP0/VS0 represent the parameter

combinations most tightly constrained by the data. The velocity ratio VP0/VS0 is

determined directly from the vertical traveltimes, while η controls the P -wave NMO

velocity from dipping reflectors.

The results for the second layer (Figs 5c,d) are comparable to those for layer 1

because the subsurface layer is relatively thin, and the layer-stripping does not lead

to a substantial error amplification. For the bottom layer (Figs 5e,f), however, the

scatter in all four parameters becomes noticeably higher due to the distortions in the

interval quantities produced by the layer-stripping procedure and error accumulation

with depth.

The model used in Fig. 6 contains a steeper throughgoing interface, with the dips

in the 45–55◦ range. Comparison of Figs 5 and 6 shows that the clouds of points

become less elongated with increasing dip, which signifies a more stable inversion

procedure in all three layers. This result is explained by the higher sensitivity of the

P -wave NMO velocity and PS-wave moveout slope (xmin/tmin could not be used) to

the anisotropic parameters for larger dips. A similar influence of dip was observed

for the single-layer model in Paper I.

Stage 2: CCP gathers.—If the reflector has a non-negligible curvature or ir-

regular shape at the scale of the CMP gather, the moveout of converted waves in
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CMP geometry may be distorted by conversion-point dispersal. Since all analytic

expressions above, including equation (5), are derived for a plane reflector, the inver-

sion procedure in this case may produce inaccurate parameter estimates. To mitigate

conversion-point dispersal, it is preferable to carry out both velocity analysis and

processing of PS-waves on common-conversion-point (CCP) gathers. Collecting PS

data into CCP gathers, however, has to be based on a known velocity model. While

the lateral position of the reflection (conversion) point in isotropic media is controlled

by the VP/VS ratio, in VTI media it is also sensitive to the anisotropic coefficients

(Rommel 1997; Thomsen 1999). Therefore, velocity analysis on CCP gathers in our

algorithm is preceded by the moveout inversion in CMP geometry described in the

previous section.

Assuming that the inversion on CMP gathers yields a good approximation for the

medium parameters, we search for the best-fit interval parameters in a close vicinity of

the obtained values. Suppose the parameters of the first (subsurface) layer have been

determined, and we can use them to refine the inversion results for the second layer.

First, the horizontal PS events from the top and bottom of layer 2 are collected into

CCP gathers using the model determined at the first stage of the inversion. Semblance

analysis on these CCP gathers gives updated values of the PS-wave NMO velocities

from horizontal reflectors and, therefore, a more accurate estimate of the SV -wave

velocity V
(2)

nmo,SV (0). With the updated V
(2)

nmo,SV (0) and the previously found values of

V
(2)

nmo,P (0) and κ(2), the computation of the parameters of the second layer is repeated

for a restricted range of δ(2).

For each trial set of the medium parameters we reconstruct the dip and depth of

the reflector in the second layer and collect the traces with the PS reflection from the

dipping interface into CCP gathers. The common conversion point for the dipping

PS event is chosen to coincide with the zero-offset reflection point of the dipping

P -wave event – the reflection used to estimate the dip and depth of the interface.

Then the PS traveltimes on the CCP gather are generated using equations (3)
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and (4), and the best-fit δ(2) is determined from the following objective function:

FCCP =

[
Vnmo,P (p

P0
)− V meas

nmo,P (p
P0

)

V meas
nmo,P (p

P0
)

]2

+

[
∆tPS
tmax
PS

]2

, (21)

where ∆tPS is the rms difference between the modeled and measured traveltimes

of the dipping PS event on the CCP gather, and tmax
PS is the maximum measured

traveltime.

The general flow of the layer-stripping algorithm remains the same as that for CMP

gathers. In principle, it is possible to skip the inversion on CMP gathers altogether

and carry out the parameter-estimation for each trial value of δ in CCP geometry, but

this algorithm is much more time consuming because it involves repeated building

and analysis of CCP gathers.

3-D inversion of wide-azimuth data

The 2-D inversion algorithm requires identifying and inverting P - and PS-waves

from two (horizontal and dipping) interfaces for each depth interval, which may be

difficult to accomplish in practice. Here we show that it may be possible to obtain all

model parameters using a single dipping reflector, if both P and PS data are recorded

for a wide range of source-receiver azimuths (in the so-called “wide-azimuth” surveys).

For simplicity, we restrict ourselves to a homogeneous VTI layer with a plane dipping

lower boundary.

Azimuthally dependent reflection traveltimes of pure modes in anisotropic media

were discussed in detail in Grechka and Tsvankin (1998b) and Grechka, Tsvankin

and Cohen (1999). NMO velocity can be expressed as the following function of the

azimuth α in the horizontal plane (Grechka and Tsvankin 1998b):

V −2
nmo(α) = W11 cos2 α + 2W12 sinα cosα +W22 sin2 α , (22)

where W is a symmetric matrix defined as Wij = τ0
∂pi
∂xj

, pi (i = 1, 2) are the horizontal

components of the slowness vector for rays between the zero-offset reflection point and
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the surface location {x1, x2}, and τ0 is the one-way traveltime at the CMP location.

The derivatives in the expression for Wij are evaluated at the common midpoint.

Unless reflection traveltime decreases with offset in at least one azimuthal direction,

Vnmo(α) defines an ellipse in the horizontal plane.

Since the VTI model is azimuthally isotropic, the axes of the NMO ellipse are

parallel to the dip and strike directions of the reflector. For P -waves, both axes of

the NMO ellipse and, therefore, NMO velocity in any direction are fully controlled

by the parameters Vnmo,P (0) and η (Grechka and Tsvankin 1998b).

The first step of the inversion procedure is to specify a trial value of one of the

parameters responsible for P -wave kinematics (e.g., δ) and find the other two (VP0

and ε) using the parameters Vnmo,P (0) and η determined from the P -wave NMO

ellipse. Then, similar to the 2-D algorithm, we obtain the horizontal slownesses (ray

parameters) p
1P

and p
2P

of the zero-offset P -reflection from the reflection slopes on the

zero-offset (stacked) section measured in at least two different azimuthal directions

(Grechka and Tsvankin, 1998b). For given parameters of the trial model, p
1P

and p
2P

can be used to compute the vertical slowness q
P

of the zero-offset P -wave ray.

The slowness vector of the zero-offset ray is orthogonal to the reflector, so it

provides both the dip and azimuth of the reflecting interface for the trial model.

Reflector azimuth can also be determined from the orientation of the NMO ellipse, if

at least three sufficiently different source-receiver azimuths are available. Next, the

zero-offset traveltime of the P -wave can be recomputed into the distance between the

CMP and the reflector along the zero-offset ray, thus yielding the reflector depth.

Therefore, given one of the VTI parameters (e.g., δ), wide-azimuth P -wave data

are sufficient for obtaining two other parameters (VP0 and ε) and the spatial position

(dip, azimuth and depth) of the reflector. The last step is to estimate δ and the

vertical shear-wave velocity VS0 (a parameter not constrained by P -wave moveout)

using 3-D PS-wave data.

For laterally homogeneous models with a horizontal symmetry plane, common-
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midpoint reflection moveout of PS-waves is symmetric with respect to zero offset,

and their azimuthally dependent NMO velocity represents an ellipse (Grechka, Theo-

phanis and Tsvankin 1999). Reflector dip, however, makes PS-wave moveout asym-

metric for any orientation of the CMP line with respect to the dip plane. Therefore,

using a multi-azimuth (3-D) CMP gather of PS-waves in parameter estimation in-

volves analysis of a traveltime surface built as a function of the source and receiver

coordinates.

We search for the best-fit pair {δ, VS0} by matching the traveltimes of the PS-

wave on a 3-D CMP gather. As in the 2-D problem, it is possible to invert the DMO

attributes of the PS-wave, such as the moveout slope at zero offset [see equation (11)].

However, we elect to include the whole traveltime surface and define the objective

function as the rms difference between the measured traveltimes and those computed

for a trial model using the parametric traveltime-offset relationships (6), (7) and (10).

The minimization of the objective function is carried out using the simplex method.

Since the forward-modeling operation does not involve multi-azimuth and multi-offset

two-point ray tracing, the algorithm allows for a fast examination of a relatively wide

range of both unknown parameters.

This 3-D inversion procedure was tested on ray-traced reflection traveltimes of P -

and PS-waves generated for a VTI layer with the parameters listed in the caption

of Fig. 7. To determine the input PS traveltimes on a regular [x, y] grid of source

locations, the traveltime surface was approximated by a 2-D quartic polynomial in

the horizontal source coordinates. The times at the grid points were then distorted

by Gaussian noise with a standard deviation of 1% (Fig. 7). The same polynomial

approximation was used for the PS traveltime surfaces computed for each trial model.

The inversion algorithm searched for the model providing the smallest rms time resid-

ual at the grid points (rather than at the original source locations).

The results of the inversion are quite close to the actual values of the VTI pa-

rameters: VP0 = 2.02 km/s (error=0.02 km/s), VS0 = 1.01 km/s (error=0.01 km/s),
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ε = 0.29 (error=–0.01), δ = 0.09 (error=–0.01). The dip, azimuth and depth of the

reflector were also reconstructed with high accuracy. It should be emphasized that

the reflector dip in this test was quite mild (15◦), which may hamper estimation of

the parameter η using P -wave data alone (Grechka and Tsvankin 1998b). However,

the high sensitivity of PS traveltimes to the anisotropic parameters even at small

dips makes the inversion procedure as a whole sufficiently stable.

In principle, the model can be refined by collecting the PS data into multi-azimuth

common-conversion-point gathers and repeating the inversion. This methodology is

similar to our 2-D algorithm operating in CCP geometry, but building CCP gathers

in 3-D is much more costly.

DISCUSSION AND CONCLUSIONS

Most recent applications of converted waves were focused on improved imag-

ing of targets poorly illuminated by P -wave data. In transversely isotropic media,

PS(PSV )-waves can also play an important role in parameter estimation because

they are governed by the same anisotropic coefficients (ε and δ) as P -waves. While

P -wave reflection data contain enough information to carry out time-domain process-

ing (NMO, DMO and time migration), they cannot be used to constrain the depth

scale in horizontally layered VTI models above a dipping or horizontal reflector. [The

recent work of Grechka and Tsvankin (1999) and Le Stunff et al. (2001) indicates that

for some piecewise homogeneous VTI media with dipping interfaces in the overburden

P -wave moveout can be inverted for the vertical velocity.]

In our previous paper on this subject (Tsvankin and Grechka 2000; Paper I) we

discussed modeling and inversion of PS data in a vertical symmetry plane of a single

anisotropic layer. Here, the results of Paper I are extended to more realistic multi-

layered, arbitrary anisotropic media above a plane dipping reflector. Considering

3-D PS-wave data in both common-midpoint (CMP) and common-conversion-point
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(CCP) geometry, we express the traveltime and the source-receiver vector in a para-

metric form through the slowness components of the P - and S-legs of the reflected

ray. After relating the P and S horizontal slownesses (ray parameters) via Snell’s law

at the reflector, the CMP traveltime curve can be computed without two-point ray

tracing. This formalism also gives a concise description of such moveout attributes of

the PS-wave, needed in the inversion procedure, as the slope of the moveout curve

at zero offset and the normalized offset of the traveltime minimum.

The parametric representation of PS moveout is then used to invert P and PS

data for the anisotropic parameters of VTI media. The 2-D inversion, which operates

with dip-line reflection data originally collected into CMP gathers, is designed for

horizontally layered VTI media with throughgoing dipping reflectors. [The same

model was adopted by Alkhalifah and Tsvankin (1995) in their well-known velocity-

analysis method based on P -wave data.] The interval NMO velocities of horizontal

P and PS events, determined from the conventional Dix equation, are combined

with the moveout of P - and PS-waves from a dipping interface to estimate all four

unknown interval parameters (VP0, VS0, ε and δ).

PS-waves in CMP geometry, however, may be corrupted by conversion-point dis-

persal on non-planar interfaces. Therefore, we suggest to refine the 2-D inversion

results by collecting PS data into common-conversion-point (CCP) gathers and re-

peating the parameter-estimation procedure. Since the generation of the CCP gath-

ers requires knowledge of the velocity model, it is preceded by the inversion of CMP

moveout described above.

For wide-azimuth multicomponent 3-D surveys, additional information is provided

by the azimuthal variation of P and PS traveltimes. Numerical testing shows that

P and PS reflections from a single mildly dipping interface are sufficient to obtain

the VTI parameters VP0, VS0, ε and δ and build an accurate depth model. The

remaining anisotropic coefficient γ can be found from PSH conversions which exist

for all azimuthal directions outside the dip plane.
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Our inversion algorithms produce the depth distribution of the four parameters

responsible for all signatures of P - and PS(PSV )-waves in VTI media. Therefore,

the inversion results can be used in prestack and poststack depth migration of P -wave

data and processing of PS data for models with a stratified VTI overburden. The

main practical difficulty in implementing the joint inversion of P - and PS-waves is to

identify in a reliable fashion the pure and converted events reflected from the same

interface.

Also, recovery of the asymmetric PS traveltime curves (in 2-D) and surfaces (in

3-D) is a complicated operation that may be hampered by strong spatial amplitude

variations and phase reversals of the converted wave. Conventional semblance tech-

niques are developed for moveout functions symmetric with respect to zero offset and,

therefore, cannot be applied to either CMP or CCP gathers of PS-waves converted at

a dipping interface. In Paper I, we suggested to perform semblance analysis of mode

conversions along hyperbolas shifted with respect to zero offset. This approach, how-

ever, is accurate only for mild reflector dips and cannot properly account for nonhy-

perbolic moveout. A more general method, which relies on local-coherency measures

rather than on a particular functional form of the moveout curve, was developed by

Bednar (1997). As an added benefit, his algorithm yields the local moveout slope

for each source-receiver offset. Tests of Bednar’s (1997) method on synthetic noise-

contaminated PS-wave data (Tsvankin 2001) show that the reconstructed moveout

closely follows the correct traveltimes.

The 2-D algorithm remains valid without any modification in the vertical symme-

try planes of layered orthorhombic media. The more general 3-D analytic formalism

and approach to depth-domain velocity analysis can be used not just for vertical

transverse isotropy, but also for lower-symmetry anisotropic models.
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APPENDIX A–3-D TRAVELTIME-OFFSET RELATIONSHIPS FOR THE

PS-WAVE

Single arbitrary anisotropic layer

Suppose the mode conversion occurs at a plane dipping interface beneath an

anisotropic homogeneous layer. Similarly to the 2-D case treated in Paper I, the

traveltime along the P -wave leg can be found as

t
P

=
zr

g
P

cosψ
P

=
zr
g

3P

, (A-1)

where zr = RD is the depth of the reflection (conversion) point R, ψ
P

is the angle

between the P -ray and the vertical and g
P

is the P -wave group velocity (Fig. 3). The

vertical component g3 of the group-velocity vector, expressed through the slowness

vector, has the form (Grechka, Tsvankin and Cohen 1999)

1

g3

= q − p1 q,1 − p2 q,2 , (A-2)

where p1 and p2 are the horizontal components of the slowness vector, q ≡ p3 is the

vertical component, q,1 ≡ ∂q/∂p1 , and q,2 ≡ ∂q/∂p2 .

Substituting equation (A-2) into equation (A-1) yields the P -wave traveltime as

a function of the slowness components:

t
P

= zr (q
P
− p

1P
q
,1P
− p

2P
q
,2P

) , (A-3)

where q
,jP
≡ ∂q

P
/∂p

jP
(j = 1, 2). Taking into account the contribution of the S-leg,

we obtain the following expression for the PS-traveltime:

t = t
P

+ t
S

= zr (q
P
− p

1P
q
,1P
− p

2P
q
,2P

+ q
S
− p

1S
q
,1S
− p

2S
q
,2S

) . (A-4)

The slowness vectors of the P and S-waves are related to each other by Snell’s law

at the reflector (i.e., their projections on the reflector should be identical).
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The coordinates of the source and receiver can be related to the horizontal com-

ponent of the group-velocity vector and the length of the ray segment between the

reflector and the surface. Assuming that the source (A) excites P -waves and denot-

ing l
P

= AR (Fig. 3), the horizontal coordinates of the source with respect to the

conversion point R are given by

x
iP

= g
iP

l
P

g
P

= g
iP

zr
g
P

cosψ
P

= zr
g
iP

g
3P

(i = 1, 2) , (A-5)

where g
3P

should be positive because both l
P
> 0 and g

P
> 0. For example, if the

x3-axis points upward, the group-velocity vector should correspond to an upgoing

wave.

As shown in Grechka, Tsvankin and Cohen (1999), g
i
/g3 = −q

,i
(i = 1, 2), which

allows us to rewrite equation (A-5) as

x
iP

= −zr q,iP (i = 1, 2) . (A-6)

Hence, the source-receiver vector AC (Fig. 3) is described by

x = AC = {(x
1S
− x

1P
), (x

2S
− x

2P
)} = zr {(q,1P − q,1S ), (q

,2P
− q

,2S
)} . (A-7)

To find all source-receiver pairs with a common midpoint and form a CMP gather,

we replace zr with the vertical distance between the CMP and the reflector (z
CMP

=

OB, Fig. A-1). First, let us determine the distance BD (see the inset in Fig. 3)

between the CMP and the projection of the conversion point onto the surface. Since

BD =
1

2
AC−DC (A-8)

and DC = −zr {q,1S , q,2S}, we can use equation (A-7) to obtain

BD = {BD1, BD2} =
zr
2
{(q

,1P
+ q

,1S
), (q

,2P
+ q

,2S
)} . (A-9)

As illustrated by Fig. A-1, z
CMP

can be represented as

z
CMP

= zr +BD cos( 6 NOM) tanφ , (A-10)
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where φ is reflector dip and 6 NOM is the difference between the azimuths of the dip

plane and line BD. To ensure the correct sign of z
CMP
− zr, cos( 6 NOM) has to be

positive if point D is located updip from point B:

cos( 6 NOM) =
BD1 ζ1 +BD2 ζ2

BD
, (A-11)

where ζ1, ζ2 is a horizontal unit vector in the updip direction. Using equation (A-9),

we find

BD cos( 6 NOM) =
zr
2

[(q
,1P

+ q
,1S

) ζ1 + (q
,2P

+ q
,2S

) ζ2] . (A-12)

Equations (A-10) and (A-12) allow us to obtain zr as a function of z
CMP

:

zr =
z

CMP

1 + ∆z
, (A-13)

∆z =
tanφ

2
[(q

,1P
+ q

,1S
) ζ1 + (q

,2P
+ q

,2S
) ζ2] . (A-14)

Substituting z
CMP

from equation (A-13) into equation (A-4) yields the final ex-

pression for the traveltime of the PS-wave:

t =
z

CMP

1 + ∆z
(q
P
− p

1P
q
,1P
− p

2P
q
,2P

+ q
S
− p

1S
q
,1S
− p

2S
q
,2S

) , (A-15)

where ∆z is determined in equation (A-14). Similarly, the source-receiver vector (A-7)

is given by

x =
z

CMP

1 + ∆z
{(q

,1P
− q

,1S
), (q

,2P
− q

,2S
)} . (A-16)

Layered media

Suppose a plane dipping reflector is now overlaid by a stratified anisotropic

medium (all interfaces above the reflector are assumed to be horizontal) with arbi-

trary symmetry in each layer. As before, the sources and receivers are collected into
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either common-conversion-point gathers or CMP gathers with different orientation

(Fig. 3).

To find the traveltime and offset on CCP gathers, it is sufficient to sum up the

single-layer solutions from the previous section. Using equation (A-4), the traveltime

of the wave converted at interface N can be written as

t = t
P

+ t
S

=
N∑

`=1

z(`) (q(`)
P
− p

1P
q(`)
,1P
− p

2P
q(`)
,2P

+ q(`)
S
− p

1S
q(`)
,1S
− p

2S
q(`)
,2S

) , (A-17)

where z(`) is the thickness of layer `; for layer N , the thickness z(N) should be measured

above the conversion point. The horizontal components of the slowness vector for both

waves (p
iP

and p
iS

, i = 1, 2) remain constant between the reflector and the surface

because the medium along the raypath is horizontally homogeneous.

Likewise, for the source-receiver vector equation (A-7) yields

x = {(x
1S
− x

1P
), (x

2S
− x

2P
)} =

{[
N∑

`=1

z(`) (q(`)
,1P
− q(`)

,1S
)

]
,

[
N∑

`=1

z(`) (q(`)
,2P
− q(`)

,2S
)

]}
.

(A-18)

Therefore, after expressing p
iS

through p
iP

(or vice versa) using Snell’s law at the

reflector, CCP gathers in layered media can be generated in a rather straightforward

way from equations (A-17) and (A-18).

Moveout equations for CCP gathers can be adapted for CMP geometry by replac-

ing z(N) with the thickness of layer N beneath the CMP (z(N)
CMP

). Since all interfaces

in the overburden are horizontal, z(N)
CMP

can be expressed in the form of the single-layer

equation (A-10):

z(N)
CMP

= z(N) +BD cos( 6 NOM) tanφ , (A-19)

where BD is the distance between the CMP and the projection of the conversion

point onto the (horizontal) surface, and 6 NOM is the azimuth of the line BD with

respect to the dip plane of the reflector (Fig. A-1).

Using the relationship between BD and the source-receiver vector AC = x [equa-

tion (A-8), see the inset in Fig. 3)] and equation (A-18) leads to
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BD =
1

2

{[
N∑

`=1

z(`) (q(`)
,1P

+ q(`)
,1S

)

]
,

[
N∑

`=1

z(`) (q(`)
,2P

+ q(`)
,2S

)

]}
. (A-20)

The term [BD cos( 6 NOM)] is the projection of vector BD onto the dip direction

of the reflector [see equations (A-11) and (A-12)]:

BD cos( 6 NOM) =
1

2

{[
N∑

`=1

z(`) (q(`)
,1P

+ q(`)
,1S

)

]
ζ1 +

[
N∑

`=1

z(`) (q(`)
,2P

+ q(`)
,2S

)

]
ζ2

}
; (A-21)

as before, ζ1, ζ2 is a horizontal unit vector in the updip direction.

Substituting equation (A-21) into equation (A-19), we find

z(N)
CMP

= z(N) +
tanφ

2

{[
N∑

`=1

z(`) (q(`)
,1P

+ q(`)
,1S

)

]
ζ1 +

[
N∑

`=1

z(`) (q(`)
,2P

+ q(`)
,2S

)

]
ζ2

}
, (A-22)

which can be treated as a linear equation for z(N) with the solution

z(N) =
z(N)

CMP
− tan φ

2

{[∑N−1
`=1 z(`) (q(`)

,1P
+ q(`)

,1S
)
]
ζ1 +

[∑N−1
`=1 z(`) (q(`)

,2P
+ q(`)

,2S
)
]
ζ2

}

1 + tan φ
2

[(q(N)
,1P

+ q(N)
,1S

) ζ1 + (q(N)
,2P

+ q(N)
,2S

) ζ2]
.

(A-23)

If the model consists of a single layer, the sums
∑N−1
`=1 in the numerator vanish, and

equation (A-23) reduces to equation (A-13).

Using z(N) from equation (A-23) in equations (A-17) and (A-18) yields the

converted-wave traveltime and source-receiver vector in CMP geometry. The location

of the CMP gather is defined by the thickness z(N)
CMP

of layer N beneath the midpoint.
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FIGURES

FIG. 1. Geometry of a PS-reflection from a dipping interface in a vertical symmetry

plane of layered anisotropic media. x
1P

and x
1S

are the horizontal coordinates of the

(P -wave) source and the receiver; z(N) and z(N)
CMP

are the thicknesses of layer N above

the conversion point and below the CMP, respectively.

FIG. 2. Dip-line moveout of the PS-wave converted at a dipping interface beneath

three VTI layers (the top two layers are horizontal). The left column (a,c,e) are

common-midpoint (CMP) gathers, the right column (b,d,f) are common-conversion-

point (CCP) gathers. Each row corresponds to a different reflector dip φ: φ = 20◦

(a,b), φ = 40◦ (c,d) and φ = 60◦ (e,f). For positive offsets the P -wave leg is located

downdip from the S-wave leg.

The top layer (layer 1) has the following parameters: V
(1)
P0 = 2.0 km/s, V

(1)
S0 = 0.8

km/s, ε(1) = 0.1, δ(1) = 0.05, the thickness z(1) = 0.5 km; for layer 2, V
(2)
P0 = 2.3 km/s,

V
(2)
S0 = 1.0 km/s, ε(2) = 0.2, δ(2) = 0.1, z(2) = 1.5 km; for layer 3, V

(3)
P0 = 2.9 km/s,

V
(3)
S0 = 1.2 km/s, ε(3) = 0.15, δ(3) = 0.1, z(3) = 2 km. For CCP gathers, z(3) is the

thickness of layer 3 above the common conversion point; for CMP gathers, z(3) is the

distance between the projection of the CMP on the top of layer 3 and the reflector.

FIG. 3. Converted PS-wave (ray ARC) recorded on a common-midpoint line over

a homogeneous anisotropic layer with a dipping lower boundary. zr is the depth of

the conversion point, ψ
P

and ψ
S

are the angles between the P - and S-rays and the

vertical. The inset shows the source-receiver vector (AC), the common midpoint (B)

and the projection of the conversion point onto the surface (D).

FIG. 4. Zero-offset P -wave rays in a stratified VTI medium with a fault plane.

The inversion algorithm operates with horizontal and dipping events from each layer

(e.g., dipping events from layers 2 and 3 are recorded at CMP locations B and A).
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FIG. 5. Interval parameters ε, δ, VS0 and VP0 determined by inverting P and PS

moveout data from horizontal and dipping reflectors in a three-layer VTI medium.

The layer parameters are the same as in Fig. 2; the dips of the interfaces in each layer

are (from top to bottom) 30◦, 35◦ and 30◦. (a,b) – the results for the top layer (layer

1); (c,d) – layer 2; (e,f) – layer 3; the actual model parameters are marked by the

crosses. The input data were distorted by random noise with a standard deviation

of 0.5% for the vertical traveltimes, 1.5% for the zero-dip NMO velocities and 2% for

the moveout attributes of the dipping events.

FIG. 6. Inversion results for a three-layer VTI medium with steeper dipping in-

terfaces than those in Fig. 5 (the dips are 45◦, 50◦ and 55◦ from top to bottom). The

parameters VP0, VS0, ε and δ in each layer are the same as in Figs 2 and 5. The layer

thicknesses are z(1) = 0.5 km, z(2) = 1.0 km and z(3) = 2 km. (a,b) – the results for

layer 1; (c,d) – layer 2; (e,f) – layer 3.

FIG. 7. Traveltimes of the reflected PS-wave plotted as a function of the source

coordinate on a multi-azimuth CMP gather. The traveltime surface was approxi-

mated by a 2-D quartic polynomial and distorted by Gaussian noise with a standard

deviation of 1%. The model includes a homogeneous VTI medium with the parame-

ters VP0 = 2 km/s, VS0 = 1 km/s, ε = 0.3 and δ = 0.1 above a plane dipping reflector.

The azimuth of the dip plane coincides with the x-axis, the depth under the CMP is

1 km, the dip is 15◦.

FIG. A-1. Relationship between the depth zr = DR of the conversion point R and

the vertical distance z
CMP

= OB between the CMP and the reflector. ON and OH

are the dip and strike directions of the reflector (respectively), φ is reflector dip. Note

that MN⊥ON , OM = BD and z
CMP
− zr = RM = QN = ON tanφ.
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FIG. 1. Geometry of a PS-reflection from a dipping interface in a vertical symmetry

plane of layered anisotropic media. x
1P

and x
1S

are the horizontal coordinates of the

(P -wave) source and the receiver; z(N) and z(N)
CMP

are the thicknesses of layer N above the

conversion point and below the CMP, respectively.
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FIG. 2. Dip-line moveout of the PS-wave converted at a dipping interface beneath three

VTI layers (the top two layers are horizontal). The left column (a,c,e) are common-midpoint

(CMP) gathers, the right column (b,d,f) are common-conversion-point (CCP) gathers. Each

row corresponds to a different reflector dip φ: φ = 20◦ (a,b), φ = 40◦ (c,d) and φ = 60◦

(e,f). For positive offsets the P -wave leg is located downdip from the S-wave leg.

The top layer (layer 1) has the following parameters: V
(1)
P0 = 2.0 km/s, V

(1)
S0 = 0.8 km/s,

ε(1) = 0.1, δ(1) = 0.05, the thickness z(1) = 0.5 km; for layer 2, V
(2)
P0 = 2.3 km/s, V

(2)
S0 = 1.0

km/s, ε(2) = 0.2, δ(2) = 0.1, z(2) = 1.5 km; for layer 3, V
(3)
P0 = 2.9 km/s, V

(3)
S0 = 1.2 km/s,

ε(3) = 0.15, δ(3) = 0.1, z(3) = 2 km. For CCP gathers, z(3) is the thickness of layer 3 above

the common conversion point; for CMP gathers, z(3) is the distance between the projection

of the CMP on the top of layer 3 and the reflector.
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are the angles between the P - and S-rays and the vertical. The

inset shows the source-receiver vector (AC), the common midpoint (B) and the projection

of the conversion point onto the surface (D).
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FIG. 4. Zero-offset P -wave rays in a stratified VTI medium with a fault plane. The in-

version algorithm operates with horizontal and dipping events from each layer (e.g., dipping

events from layers 2 and 3 are recorded at CMP locations B and A).
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FIG. 5. Interval parameters ε, δ, VS0 and VP0 determined by inverting P and PS

moveout data from horizontal and dipping reflectors in a three-layer VTI medium. The

layer parameters are the same as in Fig. 2; the dips of the interfaces in each layer are (from

top to bottom) 30◦, 35◦ and 30◦. (a,b) – the results for the top layer (layer 1); (c,d) –

layer 2; (e,f) – layer 3; the actual model parameters are marked by the crosses. The input

data were distorted by random noise with a standard deviation of 0.5% for the vertical

traveltimes, 1.5% for the zero-dip NMO velocities and 2% for the moveout attributes of the

dipping events.
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FIG. 6. Inversion results for a three-layer VTI medium with steeper dipping interfaces

than those in Fig. 5 (the dips are 45◦, 50◦ and 55◦ from top to bottom). The parameters

VP0, VS0, ε and δ in each layer are the same as in Figs 2 and 5. The layer thicknesses are

z(1) = 0.5 km, z(2) = 1.0 km and z(3) = 2 km. (a,b) – the results for layer 1; (c,d) – layer

2; (e,f) – layer 3.
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FIG. 7. Traveltimes of the reflected PS-wave plotted as a function of the source coordi-

nate on a multi-azimuth CMP gather. The traveltime surface was approximated by a 2-D

quartic polynomial and distorted by Gaussian noise with a standard deviation of 1%. The

model includes a homogeneous VTI medium with the parameters VP0 = 2 km/s, VS0 = 1

km/s, ε = 0.3 and δ = 0.1 above a plane dipping reflector. The azimuth of the dip plane

coincides with the x-axis, the depth under the CMP is 1 km, the dip is 15◦.
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