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NMO-velocity surfaces and Dix-type formulas in anisotropic

heterogeneous media

Vladimir Grechka* and llya Tsvankin?

ABSTRACT

Reflection moveout of pure modes recorded on
conventional-length spreads is described by a normal-
moveout (NMO) velocity that depends on the orien-
tation of the common-midpoint (CMP) line. Here, we
introduce the concept of NMO-velocity surfaces, which
are obtained by plotting the NMO velocity as the radius-
vector along all possible directions in 3-D space, and use
it to develop Dix-type averaging and differentiation al-
gorithms in anisotropic heterogeneous media.

The intersection of the NMO-velocity surface with
the horizontal plane represents the NMO ellipse that
can be estimated from wide-azimuth reflection data. We
demonstrate that the NMO ellipse and conventional-
spread moveout as a whole can be modeled by Dix-
type averaging of specifically oriented cross-sections of
the NMO-velocity surfaces along the zero-offset reflec-

tion raypath. This formalism is particularly simple to
implement for a stack of homogeneous anisotropic lay-
ers separated by plane dipping boundaries. Since our
method involves computing just a single (zero-offset)
ray for a given reflection event, it can be efficiently used
in anisotropic stacking-velocity tomography.

Application of the Dix-type averaging to layered
transversely isotropic media with a vertical symmetry
axis (VTI) shows that the presence of dipping interfaces
above the reflector makes the P-wave NMO ellipse de-
pendent on the vertical velocity and anisotropic coef-
ficients € and §. In contrast, P-wave moveout in VTI
models with a horizontally layered overburden is fully
controlled by the NMO velocity of horizontal events and
the Alkhalifah-Tsvankin coefficient n~e¢ —§. Hence,
in some laterally heterogeneous, layered VT models
P-wave reflection data may provide enough information
for anisotropic depth processing.

INTRODUCTION

Normal-moveout (NMO) velocity estimated from reflection
traveltimes recorded in common-midpoint (CMP) geometry
provides valuable information about the velocity field and
anisotropic parameters of the subsurface (Tsvankin, 2001). Al-
though the relationship between the measured moveout veloc-
ity and elastic parameters becomes rather complicated if the
model is heterogeneous and anisotropic, the azimuthal depen-
dence of NMO velocity has a simple explicit form. Grechka and
Tsvankin (1998) examined pure-mode reflection traveltimes
recorded at a fixed CMP location along different azimuths « in
the horizontal plane and showed that the NMO velocity typi-
cally varies as an ellipse in the horizontal plane. [Vymo (o) may
have a different form only if CMP traveltime decreases (i.c.,
reverse moveout) with offset in one or more directions.] In the

special case of a homogeneous isotropic layer, the NMO ellipse
was first obtained by Levin (1971).

The orientation and semi-axes of the NMO ellipse depend
on the spatial derivatives of the slowness vector at the CMP
location. The simplicity and generality of this result arise be-
cause NMO velocity governs the wavefront curvature at zero
offset (Shah, 1973); therefore, its azimuthal variation has to
be a quadratic function in the spatial coordinates. Grechka,
Theophanis, and Tsvankin (1999) extended the equation of the
NMO ellipse to mode-converted waves in horizontally layered
anisotropic models with a horizontal symmetry plane in each
layer.

The elliptical azimuthal dependence of the NMO-velocity
function was used to develop efficient algorithms for azimuthal
stacking-velocity analysis and moveout correction in wide-
azimuth 3-D surveys (e.g., Corrigan et al., 1996; Grechka and
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Tsvankin, 1999b). Even more importantly, the equation of the
NMO ellipse provides a foundation for moveout inversion in
arbitrary anisotropic media. For models with a horizontally lay-
ered overburden above a dipping reflector, the NMO ellipse at
the surface represents a Dix-type average of the interval NMO
ellipses (Grechka, Tsvankin, and Cohen, 1999). This equation,
which generalizes the classical Dix (1955) result and its ex-
tensions for isotropic media (Shah, 1973; Hubral and Krey,
1980), can be used to reconstruct interval NMO ellipses from
surface data and then invert them for the anisotropic param-
eters. The parameter-estimation methodology based on this
approach was successfully implemented for several common
anisotropic models including orthorhombic media (Grechka
and Tsvankin, 1999a) and transverse isotropy with a vertical
(Grechka and Tsvankin, 1998), horizontal (Contreras et al.,
1999) and tilted (Grechka and Tsvankin, 2000) symmetry axis.

The papers on parameter estimation listed above, however,
consider only laterally homogeneous models above the reflec-
tor. Although Grechka, Tsvankin, and Cohen (1999) outlined
an approach for computing NMO ellipses in arbitrary hetero-
geneous media, their algorithm is purely numerical and is dif-
ficult to apply in interval parameter estimation. The correction
of NMO ellipses for lateral velocity variation introduced by
Grechka and Tsvankin (1999b) is restricted to horizontal lay-
ers with a horizontal symmetry plane.

Here, we relax the assumption of Grechka and Tsvankin
(1998) that the CMP line belongs to the horizontal plane and
examine the NMO velocity measured along an arbitrary direc-
tion £ in 3-D space. (One can imagine, for instance, recording
reflection arrivals along an oblique or vertical borehole.) If the
vectors Vymo (L) are plotted from the CMP location, their ends
form the NMO-velocity surface, and the NMO ellipse is the
intersection of this surface with the horizontal plane.

Even though under normal circumstances we cannot count
on measuring Vymo along many different directions in space,
this new theory naturally leads to a concise Dix-type represen-
tation of NMO ellipses in heterogeneous anisotropic media.
As an example, we construct Dix-type formulas for a stack of
homogeneous anisotropic layers separated by plane dipping in-
terfaces. In the practically important case of non-elliptical VTI
(traversely isotropic with a vertical symmetry axis) media, the
influence of dipping interfaces above the reflector may make
the P-wave NMO ellipses measured at the surface dependent
on the interval vertical velocities and Thomsen’s coefficients
€ and §, thus affording opportunities for reconstructing the
model in depth using P-wave moveout data.

NMO-VELOCITY SURFACES IN HETEROGENEOUS
ANISOTROPIC MEDIA

General formulation

We consider the NMO velocity of a pure-mode reflected
wave that was recorded along an arbitrary oriented CMP line
L in heterogeneous anisotropic media. It is assumed that the
traveltime of the selected reflection event is uniquely defined
for each (moderate compared to the reflector depth) source-
receiver offset. If the traveltime becomes multivalued, as in
the vicinity of shear-wave cusps, the moveout function usually
requires a more elaborate approximation than the hyperbolic
equation parameterized by NMO velocity.

The exact function Vy,0(£) is derived in Appendix A as [see
equation (A-16)]

Vimo(£) = LU LT, (1)

where £ =[L1, £, £3]is a unit row vector, £ is a unit column
vector, and U is a 3 x 3 symmetric matrix with the elements

9% (x) IpK(x)
=T
IXedxXm " IXm

Ukm =10 , (kkm=1,2,3). (2)
Here 1y is the one-way traveltime from the zero-offset reflec-
tion point to the CMP location, and py(x) are the compo-
nents of the slowness vector p(x)=[p;(x), p2(x), p3(x)] cor-
responding to rays excited at the zero-offset reflection point
and recorded at location x. The derivatives in equation (2) are
evaluated at the common midpoint.

Azimuthally dependent NMO velocity in the horizontal
plane (usually an ellipse) described by Grechka and Tsvankin
(1998) can be viewed as the intersection of the NMO-velocity
surface U with the horizontal plane. Substituting a horizon-
tal unit vector £"" =[cosa, sine, 0] into the general expres-
sion (1) yields the NMO ellipse as a function of the azimuth «:

Vn_n%o(a) = Uy cos? a + 2U, sin @ cos a + Uy, sin® a. 3)

The 2 x2 matrix W introduced by Grechka and Tsvankin
(1998) to define the NMO ellipse (3) coincides with the upper
left submatrix of U:

api(x
Wi = 1 pi (x)

= Ui,
3Xj 4

(i.j=12). 4)

Possible shapes of NMO-velocity surfaces

Equation (1) indicates that the function Vyme(L) defines a
centered quadratic surface in 3-D space. The shape of this sur-
face is determined by the eigenvalues of the matrix U, which
have to be real because U is real and symmetric. Using equa-
tion (4), U can be written in the form

Wi Wi U
U=|Wp_ Wy Ux]|. )]
Uiz Uxs Uz

Equation (5) allows us to use the known properties of the ma-
trix W (Grechka and Tsvankin, 1998; Grechka, Tsvankin, and
Cohen, 1999) to make several important observations about
the matrix U. First, if the NMO ellipse W has been found from
moveout data, we need to determine only three quantities Uys
to reconstruct the whole NMO-velocity surface U. Below, we
show that the elements Uy; can be computed by differentiating
the Christoffel equation at the CMP location. Second, since
for homogeneous anisotropic media the elements W; were
obtained in an explicit form [Grechka, Tsvankin, and Cohen,
1999, their equations (7) and (8)], the matrix U as a whole
can be found explicitly as well. Third, the cross-section of the
NMO-velocity surface U along the horizontal plane is ellipti-
cal because the matrix W typically represents an ellipse in the
horizontal plane (Grechka and Tsvankin, 1998).

There are only three distinct types of quadratic surfaces
which have elliptical cross-sections symmetric with respect to
the CMP: ellipsoids, elliptical cylinders, and one-sheeted hy-
perboloids (Figure 1). (Note that a hyperboloid and a cylin-
der may also have a nonelliptical intersection with the hor-
izontal plane, as illustrated below.) Since the NMO-velocity
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surface is quadratic, it may have other shapes, such as those of a
two-sheeted hyperboloid, an imaginary elliptical cylinder, a hy-
perbolic cylinder, etc. However, this may happen only if the
matrix U has at least two nonpositive eigenvalues and reflec-
tion traveltime does not increase with offset in two or more
directions in space. Although such cases are not prohibited by
the theory, their occurrence is expected to be rare.

Note that if the NMO-velocity surface has the form of a
cylinder, the NMO velocity along the axis of the cylinder is in-
finite, which implies that the traveltime in this direction does
not change with offset. A numerical example below shows that
both elliptical cylinders and one-sheeted hyperboloids can be
encountered in realistic subsurface models; a more compre-
hensive discussion of cylindrical NMO-velocity surfaces is pre-
sented below.

Example of NMO-velocity surfaces

To investigate the shape of NMO-velocity surfaces for typ-
ical seismological models, we computed the matrix U for an
isotropic medium with a constant vertical-velocity gradient
[the velocity function is defined as V(X3) = Vj + vXs]. For this
model, the one-way traveltime 7 (x) from the origin of the coor-
dinate system to point x =[X;, X, X3] can be found analytically
(Slotnick, 1959):

2Vo(Vo + vX3)

2(x2 4 %2 4 %2
T(x) = lcosh_l |:1 + w] (6)
v

Using equations (2) and (6), we derived explicit expressions
for the matrix U in terms of V;, v, and the depth and dip of the
reflector.

Figure 1 displays the NMO surfaces, along with computed ray
trajectories (circular arcs), for reflectors beneath this constant-
gradient isotropic medium. Depending on reflector dip, the

60° dip

90° dip
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NMO-velocity surface can take any of the three shapes dis-
cussed above (an ellipsoid, a cylinder, and a hyperboloid).
Numerical tests for other isotropic models, where velocity
monotonically increases with depth, indicate that NMO-
velocity ellipsoids correspond to reflector dips below 90°,
cylinders to vertical reflectors, and hyperboloids to dips ex-
ceeding 90° (overhangs).

COMPUTATION OF NMO-VELOCITY SURFACES
Heterogeneous arbitrary anisotropic media

The matrix U contains six quantities [e.g., equation (5)] in-
cluding three components of the matrix W responsible for the
NMO ellipse. Computation of W was described by Grechka,
Tsvankin, and Cohen (1999) and is further discussed below. The
remaining elements Ujy of the matrix U depend on the spatial
derivatives of the vertical slowness component ps;, which can be
obtained by combining Wij with the solution of the Christoffel
equation at the common midpoint. Indeed, the slownesses
at each spatial location x are related to each other by the
Christoffel equation, which can be written as

F(p.x) =0, (7
where p is the slowness vector at the spatial location x (e.g.,
Grechka, Tsvankin, and Cohen, 1999). Equation (7) contains
a separate contribution of the coordinates x because of the
spatial dependence of the stiffness coefficients ¢;; in heteroge-
neous media. At a fixed location x, equation (7) allows us to
express the vertical slowness p; through the horizontal slow-
nesses p; and p,. Since the elements Uz depend on ps, they can
be found as functions of the derivatives dp;/dXx and dp,/9Xk
that determine the NMO ellipse W. A complete derivation
given in Appendix B leads to the following expression for the
matrix U [equation (B-9)]:

120° dip

Vnmo(x, ) Vnmo(x,)

Depth x, (km)

3

Xy (km)

FIG. 1. NMO-velocity surfaces (a)—(c) and trajectories of the zero-offset rays (d) in an isotropic medium with a constant verti-
cal-velocity gradient. Reflector dip is (a) 60°, (b) 90°, and (c) 120°. The zero-offset reflection point D is located at a depth of 1 km;
the parameters of the velocity function V (x;) = Vg + vX; are Vo =2.0 km/s and v =0.6 s~
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Wi Wiz
U=]| ¢ Wy
[ ] [ ]

Here, g= p; is the vertical component of the slowness vec-
tor, q; =0q/0p = — Fp, /Fy, Fp, =09F/0p, Fq=0F/9q, and
Fyx, = 0F/dx«. The matrix (8) is symmetric, so the bullets are
used to denote the elements Uy; = Uy, Uz = U3, and Usp = Ups.

The derivatives with respect to the spatial coordinates in
equation (8) (i.e., Fy ) depend on the medium properties (i.e.,
heterogeneity and anisotropy) near the CMP location. There-
fore the NMO-velocity surface as a whole can be reconstructed
from the NMO ellipse W(x) if we know the slowness vector of
the zero-offset ray and local values of the elastic constants G (x)
near the common midpoint.

Homogeneous media

Here, we show that the NMO-velocity surface in homo-
geneous anisotropic media always represents a cylinder with
the axis parallel to the zero-offset ray. The matrix U that de-
scribes this cylinder can be obtained in closed form using the
Christoffel equation expressed in terms of the slowness
components.

If the medium is homogeneous, the spatial derivatives Fy,
vanish, and the matrix U from equation (8) simplifies to

Wi Wi, 1 Wi +9.Wi2
Urm =1 o Wy 0,1 Wiz + 0, W
o o giWii+20102Wi2+a5Wn

€
To find the shape of the corresponding NMO-velocity surface,

note that the third column of the matrix U™ is a linear com-
bination of the first two columns:

QU™ 4 UM = ylom, (k=1,2,3). (10)

As follows from equation (10),
det UPO™ = 0. (11)

Since the first and the second columns are generally indepen-
dent, the matrix U'™ has one zero eigenvalue, so the surface
defined by UM™ has to be a cylinder. For models in which
the matrix W describes an ellipse in the horizontal plane, the
NMO-velocity surface is an elliptical cylinder. This conclusion
is valid for any pure-mode reflections in homogeneous arbi-
trary anisotropic media.

The axis of the NMO-velocity cylinder is parallel to the
eigenvector e = [e, &, &] corresponding to the zero eigenvalue
of the matrix U™, Substituting the eigenvector e into the first
two rows of the matrix (9) yields

€ &
Wi — + W — = —q 1 Wi — qoWis,
& &

(12)
€ &
Wiz — +Whr— = —q 1 W2 — q2Wo.
(53] €3
Therefore,
S .
é = —q,, (I = 1, 2). (13)

0.1 Wit + g2 Wiz — 10Fy, / Fq
0.1 Wiz + g2 Way — 10Fy, / Fq . (8)
93 Wit + 20,102 Wiz + 03Was — 70(q,1 Fx, + A2 Fx, + Fx.) /Fy

The meaning of equation (13) can be explained using the
expression for the components of the group-velocity vector g
obtained by Grechka, Tsvankin, and Cohen (1999) [their equa-
tion (B-3)]:

8 _ —q;,

O
Comparison of equations (13) and (14) shows that e is paral-
lel to the vector g at the CMP location. In other words, the
axis of the cylinder in homogeneous media of any symmetry
points in the direction of the zero-offset ray. According to the
geometrical meaning of the NMO-velocity surface, this result
implies that the NMO velocity on the CMP line parallel to the
zero-offset ray is infinite. Indeed, if sources and receivers are
placed on the (straight) zero-offset ray, the reflected rays travel
along the acquisition line; consequently, the two-way reflection
traveltime in CMP geometry has to be independent of offset
(i-e., Vamo goes to infinity).

The exact equation of the NMO ellipse W in anisotropic ho-
mogeneous media is given by Grechka, Tsvankin, and Cohen
[1999, equation (7)] in terms of the slowness components:

W= P91+ pzqzz— d{d» —dn ’ (15)
011922 —q7, —Q1r qu

(i=1,2). (14)

where
Foipj + ForaQ.j + Fpjadi + FyaQidj
Fq

Fop; = 9*F/0piop;, Fpq=0"F/0pidg, and Fyq=0>F/0q>
Since all quantities in equation (15) can be obtained explicitly
from the Christoffel equation, equations (9) and (15) indicate
that the whole NMO-velocity cylinder can also be constructed
analytically for a given slowness vector p=[p;, pz, q] of the
zero-offset ray.

q,|]=_ ) (I’le’z)v

P-wave NMO cylinder in a weakly anisotropic VTI layer

According to equation (9), if the NMO-velocity cylinder
U™ has been reconstructed from seismic data, it should be
possible to find the derivatives q; in addition to the NMO
ellipse W. Since for some models ¢; may depend on medium
parameters not constrained by the NMO ellipse, the NMO-
velocity surface may provide valuable information for
anisotropic inversion. This point is illustrated here for the
P-wave NMO-velocity cylinder UY™ from a plane dipping re-
flector beneath a homogeneous VTI layer.

To simplify the derivation of the matrix UY™, we assume
that the anisotropy is weak, and the NMO velocity can be lin-
earized in Thomsen’s (1986) anisotropic coefficients ¢ and §.
The P-wave NMO ellipse [i.e., the elements W;; in equation (9)
expressed through the horizontal slowness components p; and
p.] in VTI media is fully controlled by the NMO velocity from
a horizontal reflector

Vnmo,P = VPOV 1+28 (16)
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and the “anellipticity” coefficient n defined as
€—34§

—_— 17
1428’ (17)

where Vpy is the P-wave vertical velocity (Alkhalifah and
Tsvankin, 1995; Grechka and Tsvankin, 1998). Hence, it is in-
structive to express our results in terms of Vyme p, 7, and one of
the generic Thomsen parameters (e.g., §) instead of the more
conventional parameter set [Vpo, €, §].

Selecting the coordinate frame in which the reflector normal
lies in the vertical plane [x;, X3], so that the zero-offset slowness
component p, =0 (Figure 2a), we use equations (9) and (15)
to obtain

n=

upt=wim= —— Ve — pi[1+2n(4y* -9y +6)], (18)
nmo, P
Uy =wy'=0, (19)
gt =Wl = o — 2np}2 — ), (20)
nmo, P
1-— 21
Thu _Pi/l-y 1+8—ny8y S5y+8 L@
Vnmo,P 1- y
uytt=o0, (22)
U™ = pi[1 +28 — 4ny(1 — 2y)]. (23)

where y= pIV2Z o

Equations (18)—(20) describe the NMO ellipse WY with
axes pointing in the dip and strike directions of the reflector.
The dip component of the P-wave NMO velocity [Alkhalifah
and Tsvankin, 1995, their equation (7)] is defined by W™ in
equation (18), whereas equation (20) for Wy,! gives the strike
component [Grechka and Tsvankin, 1998, their equation (11)].
Clearly, the NMO ellipse WY as a whole is governed by Voo, p
and n, with no dependence on §; this conclusion holds for strong
anisotropy as well (Grechka and Tsvankin, 1998).

Equations (21)—(23), which specify the additional compo-
nents of UV needed to build the NMO-velocity cylinder,
indicate that the Vo in nonhorizontal directions depends on
all three parameters (Vymo.p, 0, and §). This result also follows
from the equation of the NMO ellipse in transversely isotropic

/
zero-offset )
ray

reflector a

(TI) media with a horizontal symmetry axis (HTI) given by
Contreras et al. (1999). Note that the vertical symmetry axis
a in Figure 2a becomes horizontal after rotating the whole
plot by 90° around the coordinate axis X,. Hence, this rotation
transforms the VTI model in Figure 2a into the HTI model in
Figure 2b. The quantities U, and U™ determine the NMO
ellipses in both the vert1cal [Xz, x3]-plane of the original VTI
model and the horizontal [x,, %3]-plane of the new HTT model.
The results of Contreras et al. (1999) show that the HTI ellipse
WHTL is a function of § as well as of Vo p and 7.

Although the discussion of NMO velocities measured out-
side the horizontal plane may seem purely academic (unless
vertical or oblique boreholes are available), intersections of
the NMO-velocity surface with nonhorizontal planes play an
important role in Dix-type averaging of NMO velocities in het-
erogeneous anisotropic media. As we demonstrate below, the
information contained in the matrix elements U,z can be ex-
tracted from the surface NMO ellipse in the presence of lateral
heterogeneity above the reflector (such as intermediate dip-
ping interfaces). It is known, though, that this is not possible
for media with elliptical anisotropy, where n = 0 (Dellinger and
Muir, 1988).

DIX-TYPE FORMULAS IN HETEROGENEOUS
ANISOTROPIC MEDIA

The NMO-velocity surfaces U(x) can be called “effective”
because, just as for effective NMO velocities, they incorpo-
rate the influence of the medium properties along the whole
ray path between the zero-offset reflection point and the CMP
location. Here, we devise Dix-type formulas for building the ef-
fective NMO-velocity surfaces from interval (or local) surfaces
in heterogeneous anisotropic media.

General considerations

Let us assume that the projection of the slowness vector p
onto a certain plane P is preserved along the segment L of
the zero-offset ray. That will be the case, for example, if the
ray crosses homogeneous layers separated by plane parallel
interfaces P. For simplicity, suppose that this segment starts
at the zero-offset reflection point. To find the NMO-velocity
surface U at the end of the segment L, it is convenient to rewrite
equation (2) in the vector form,

X1l X5
a X3

~
~
~

~

zero-offset
ray

FIG. 2. Dipping reflectors beneath VTI (a) and HTI (b) media. The HTI model is obtained by rotating the symmetry axis a of the
VTI model by 90° around the strike direction X;.
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U= —. (24)

Constructing the intersection of the surface U with the plane
P, we obtain the NMO ellipse W” = U NP, which satisfies

axP

A ap |,p
P

(25)

The superscript “P” in x” and p” emphasizes that the
derivatives of the ray coordinates x are taken in the plane
P (x”=x € P) with respect to the projection of the slowness
vector p onto this plane (Grechka, Tsvankin, and Cohen, 1999).

Next, we divide the segment L into a number of smaller
intervals ¢ and define the interval zero-offset traveltimes 7,
and NMO ellipses W7 . The interval NMO ellipses correspond
to nonexistent reflectors orthogonal to the slowness vector of
the zero-offset ray. Applying equation (25) to each interval
yields

ox)

0, [WP] " = 7 (26)

pP

Summing up equation (26) over the segment L and taking into
account that x¥ = £,x} and 7o = £,79, we find

WIS e = o [WP] 27)
V4 4

Equation (27) is identical to the generalized Dix formula of
Grechka, Tsvankin, and Cohen (1999) derived for horizontally
layered media (i.e., for a horizontal plane P) above a dipping
reflector. Note, however, that the plane P in equation (27) can
have arbitrary orientation.

The derivation above can be repeated for the segment L
located anywhere on the zero-offset ray. To obtain the inter-
section of the NMO-velocity surface U with the plane P at the
end of L we have to compute 7,[W?]~! at the beginning of
the segment and add it to the right-hand side of equation (27).
Therefore, if the projection of the slowness vector p” onto the
plane P is preserved along the segment L, the contribution of
this segment to the intersection of the effective NMO-velocity
surface with P can be obtained using Dix-type averaging of the
corresponding intersections W/ of the interval NMO-velocity
surfaces U,.

Below, we demonstrate how the effective NMO velocity in
heterogeneous anisotropic media can be obtained by integrat-
ing the interval NMO ellipses along the zero-offset ray.

Heterogeneous anisotropic media

Suppose the medium is heterogeneous, and all components
of the slowness vector vary in some fashion along the zero-
offset ray. The description of rays in heterogeneous anisotropic
media is given by the following system of differential equations
(e.g., Cerveny et al., 1977):

dx _9H (28)
dro p
and
10H
o _ 1M 2s)

d‘[()_ 28X’

where 7j is the traveltime along the ray, and H =H(p, x) is
the Hamiltonian of some particular form, which does not need
to be specified here. Equation (29) indicates that the slow-
ness p changes in the direction dp/dt, as we move along the
ray. Hence, the projection of the slowness vector onto the tan-
gent plane P(7p) L dp/dr (i.e., the plane P(1p) is orthogonal
to the vector dp/d1) is locally preserved (Figure 3). [The case
of curved interfaces requires a separate treatment and is dis-
cussed by Grechka et al. (2000b).] Therefore, equation (27)
can be applied to the NMO ellipse W) (z3) = U(zy) NP (o)
at the infinitesimal ray segment corresponding to the interval
traveltime At to produce the ellipse W”(®) (g + Az).

To account for the fact that P(rp+ Aty) generally differs
from P(1y) (Figure 3), we reconstruct the whole NMO surface
U(t + A1) [using the Christoffel equation] and find its inter-
section with the plane P(7p + A1) (see Appendices C and D):

WP(roJrAfo)(TO + ATO) — U(TO + AT()) N P(T() —+ A‘L’()).

The resulting NMO ellipse W7+ 4%)(7; 4+ A1y) can be con-
tinued along the next time interval, starting at 7+ At.
Using this formalism, the NMO surface can be built by inte-
grating the local NMO ellipses while solving the ray-tracing
equations in heterogeneous anisotropic media. A more de-
tailed mathematical description of this procedure is given in
Appendices C and D. On the whole, the results above show
that it is possible to model NMO ellipses in heterogeneous
anisotropic media by tracing a single (zero-offset) ray.

Homogeneous layers separated by plane dipping interfaces

The theory of the Dix-type averaging of NMO-velocity sur-
faces yields relatively simple results for the practically impor-
tant special case of piecewise homogeneous media composed
of anisotropic layers (or blocks) separated by plane dipping
interfaces. In such a medium, the projection of the zero-offset
slowness vector onto each interface is preserved due to Snell’s
law (i.e., pe X Z; =Pe41 X Z, at the £th interface with the nor-
mal z,; see Figure 4). Therefore, the layer boundaries play the
role of the planes P that determine the intersections W” to be

P(10+ ATy)

dp(Ty)
dTO To+ ATO

zero-offset
ray

P (To)

dp(Tp)
dto |,

FIG. 3. If the projection of the slowness vector p(zy) onto the
plane P(to) [P(7p) is orthogonal to dp/dt] is locally preserved,
the intersection of the NMO-velocity surface with P(zy) at the
end of the ray segment corresponding to At can be found from
the Dix-type equation (27).
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averaged by the Dix-type equation. Note that, as shown in 3) Compute the interval cylinder U,;; (dashed lines in
equation (9), NMO-velocity surfaces in piecewise homoge- Figure 4b) using equations (9) and (15) for the slow-
neous media always have a cylindrical shape. ness vector py.1. Find the intersection W, (gray line in
Figure 4 schematically illustrates the 3-D process of con- Figure 4b) of the cylinder U, ; with the £th interface.
structing the NMO-velocity cylinders in layered media with 4) Obtain the cross-section W(¢ + 1) of the effective cylin-
dipping interfaces. Assuming that the slownesses p, and trav- der U(¢ +1) at the top of the ¢ + 1th layer (gray line in
eltimes 1o, have already been obtained from ray tracing, the Figure 4c) from the Dix-type formula (27):
Dix-type averaging can be performed as follows:
S o@OWEOTT + w1 [Wen] ™!
1) Usingequations (9) and (15), compute the NMO-velocity (WE+D] = ]
: X : ) (¢ +1)
cylinder U; in the layer £ =1 immediately above the (30)
reflector; the slowness vector p; is parallel to the re-
flector normal. The interval cylinder U; is equal to where 7y(¢) = Elerg’ B
the “effective” cylinder U(1) in the first layer. If the 5) Reconstruct the cylinder U(¢+1) (dashed lines in
layer number ¢ > 1, the cylinder U(¢) (dashed lines in Figure 4d) using equations (D-12) and (9).
Figure 4a) is obtained from the continuation procedure 6) Repeat step 2 for the next layer.
described here.
2) Apply equation (D-7) to determine the intersection W(¢) The sequence described above makes it possible to compute

(gray line in Figure 4a) of the cylinder U(¢) with the ¢th NMO ellipses for layered media with plane dipping interfaces
interface that has the normal z,. without multi-azimuth, multi-offset ray tracing. Our Dix-type

r interface £+1 f
z l !
zero-offset e+l
ray layer ¢+1 .'l
interface ¢ interface ¢ :

interface ¢-1

W(E+1)

interface £+1 interface £+1

layer £+1 layer {+1

FiG. 4. Dix-type averaging of the NMO-velocity cylinders over a stack of homogeneous anisotropic layers separated by plane
dipping interfaces. The cross-section W(¢) (a) of the effective cylinder U(¢) at the top of the £th layer and the interval cross-section
W1 (b) in the £+ 1th layer are averaged using equation (30) to produce the cross-section W(¢ 4+ 1) (c) of the effective cylinder
U(£+1) (d) at the surface. Note that W(¢ + 1) is the intersection of U(¢ + 1) with a plane parallel to the £th interface. The vector

z, is orthogonal to the ¢th interface.
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averaging procedure was used by Grechka et al. (2000a, b)
to devise an efficient algorithm for P-wave stacking-velocity
tomography in piecewise homogeneous VTI media.

Numerical example

To verify the accuracy of Dix-type averaging in layered me-
dia with dipping interfaces, we computed the NMO ellipses at
the horizontal surface for a model composed of three TI lay-
ers with a tilted symmetry axis (Table 1). Figure 5 displays the
NMO ellipses for the reflection from the bottom of the model
determined from the Dix-type averaging procedure (solid) and
3-D anisotropic ray tracing (dotted). The ellipses almost co-
incide, thus confirming that the Dix-type equations give an
adequate description of reflection moveout on conventional-
length spreads. The small difference of up to 1.6% between the
theoretical and ray-traced ellipses in Figure 5 can be attributed
to the influence of nonhyperbolic moveout, which is not taken
into account by our NMO-velocity equations. However, the

Table 1. Relevant parameters of the layered TI model with
a tilted symmetry axis used in the numerical test. Parameters
v and (3 are the tilt and azimuth of the symmetry axis, respec-
tively; ¢; and ¢, are the dip and azimuth of the reflector (all
in degrees), respectively.

Reflector

depth Vpo

(km) (km/s) € 8 v B ol (033
1.0 0.5 0.20 0.10 10.0 60.0 20.0 20.0
2.0 1.0 0.10 0.07 20.0 50.0 40.0 60.0
3.0 2.0 0.15 0.10 30.0 40.0 30.0 0.0

270

FIG.5. NMO ellipses computed for the P-wave reflection from
the deepest interface in the TTI model from Table 1. Solid line
is the ellipse calculated from the Dix-type formulas; dotted line
is the ellipse reconstructed from the best-fit moveout velocities
obtained using ray-traced traveltimes in six azimuths separated
by 30°. The maximum offset X =3 km is equal to the distance
between the CMP and the reflector.

errors due to nonhyperbolic moveout are small (at least, for
P-waves) when the maximum offset does not exceed roughly
the distance between the CMP and the reflector. This conclu-
sion holds for P-wave data in a wide variety of anisotropic
models of different complexity (e.g., Tsvankin and Thomsen,
1994; Grechka and Tsvankin, 1999a; Tsvankin, 2001).

DISCUSSION
General results

This work introduces the concept of NMO-velocity surfaces
in anisotropic heterogeneous media and applies the new theory
to devise Dix-type averaging procedures for effective NMO
velocity. Since the NMO-velocity surface is quadratic, it de-
pends on six generally independent elements of a symmetric
matrix Uyy,, which include both effective quantities averaged
between the reflector and CMP location, and local quantities
defined at the common midpoint. If the medium near the CMP
ishomogeneous, the NMO-velocity surface always represents a
cylinder, irrespective of the complexity of the model as a whole.
Other shapes that may be encountered even in isotropic media
are an ellipsoid and a one-sheeted hyperboloid.

The surfaces U provide the most general description of
conventional-spread normal moveout because they can be used
to determine NMO velocity in any direction in 3-D space. One
important practical example is the NMO ellipse formed by
NMO velocities plotted in all possible azimuths within a cer-
tain plane. Since the NMO ellipse can be viewed as a cross-
section of the NMO-velocity surface U, all properties of NMO
ellipses examined by Grechka and Tsvankin (1998) can be de-
rived from the general expressions of U given here. Analysis
of NMO-velocity surfaces also helps to reveal new properties
of NMO velocity, which are hidden at a less general level.

Application of these concepts leads to Dix-type formulas
for effective normal-moveout velocity that involve averaging
of specific cross-sections of the NMO-velocity surface along the
zero-offset ray in heterogeneous anisotropic media. To imple-
ment this Dix-type formalism, we derived analytic expressions
for computing the NMO-velocity surface and its cross-sections,
as well as reconstructing the surface from a single cross-section.
It should be emphasized that our averaging procedure does not
require any of the slowness components of the zero-offset ray
to be preserved between the reflector and the surface. (It is
assumed, however, that surfaces of constant slowness, such as
boundaries between layers, are locally plane at each point of
the ray trajectory.)

Although there exists an alternative way of building the
NMO ellipses in heterogeneous media using dynamic ray-
tracing equations (Grechka, Tsvankin, and Cohen, 1999), the
methodology developed here is much more suitable for obtain-
ing closed-form analytic solutions for NMO velocity (it also
lends itself to geometrical interpretation). For instance, the
Dix-type averaging becomes a purely analytic procedure for
the important model composed of homogeneous anisotropic
layers separated by plane arbitrary dipping interfaces.

Implications for anisotropic parameter estimation

The main results of our Dix-type formulation which have
important implications in the estimation of anisotropic para-
meters from reflection data can be summarized as follows:
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1) The Dix-type equations operate with the intersections
WP of the NMO surfaces U with generally nonhorizontal
planes P determined by either dipping interfaces along
the ray (Figure 4) or the derivative of the slowness vector
dp/dz, (Figure 3).

2) The intersections W”=UNP can depend on the
anisotropic parameters that are not constrained by the
NMO ellipses in the horizontal plane.

Thus, certain types of lateral heterogeneity may actually help
in anisotropic inversion by tilting the planes P encountered by
the zero-offset ray. For example, nonhorizontal cross-sections
of the P-wave NMO-velocity surface in VTI media depend
on the individual values of the vertical velocity Vpy and the
anisotropic parameters € and §, whereas the NMO ellipse in
the horizontal plane is controlled by just their combinations
Vamo,p and n [equations (18)—(23)]. As a result, the vertical ve-
locity, which determines the depth scale of the model, may be
obtained from surface-reflection P-wave data acquired over a
certain class of laterally heterogeneous VT models. An exam-
ple corroborating this conclusion for a two-layer model con-
taining a VTI layer separated by a dipping interface from an
isotropic layer was presented by Le Stunff et al. (2001).

Grechka et al. (2000a, b) used the Dix-type equations pre-
sented here to develop algorithms for P-wave stacking-velocity
tomography in piecewise-homogeneous VTI media. Their re-
sults show that the presence of irregular interfaces may also
aid anisotropic parameter estimation in depth (e.g., using re-
flection tomography) by increasing the angle coverage of re-
flected rays. A complex subsurface structure, on the other hand,
may produce trade-offs between the anisotropic velocity field
and the shape of the reflector and intermediate interfaces. Un-
derstanding of the properties of NMO-velocity surfaces should
help in analyzing these trade-offs and searching for practical
ways to overcome them.

CONCLUSIONS

1) The pure-mode NMO velocity Voo, treated as a func-
tion of the direction £ in 3-D space, forms a quadratic
surface that usually is an ellipsoid, an elliptical cylinder,
or a one sheeted hyperboloid. If the medium near the
common midpoint is homogeneous, the NMO-velocity
surface there always has the shape of a cylinder.

2) The NMO ellipse examined by Grechka and Tsvankin
(1998) is the intersection of the NMO-velocity surface
with the horizontal plane.

3) The effective NMO ellipse at the surface can be ob-
tained by Dix-type averaging of specifically oriented
cross-sections of the NMO-velocity surfaces along the
zero-offset ray. This formalism can be applied to any (P
or S) pure-mode reflection event.

4) The NMO-velocity surface in each anisotropic layer or
block encountered by the ray usually depends on more
anisotropic parameters than does the intersection of this
surface with a horizontal plane (i.e., the NMO ellipse). If
the subsurface contains dipping interfaces above the re-
flector or other types of lateral heterogeneity, these ad-
ditional parameters contribute to reflection traveltimes
measured at the surface and, in some cases, can be esti-
mated using the Dix-type formulas given here (Grechka
et al., 2000a, b; Grechka et al., 2001; Le Stunff et al.,
2001). This conclusion is valid for arbitrary anisotropy in

each layer, although the parameter-estimation procedure
becomes more complicated for lower symmetries.
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APPENDIX A
DERIVATION OF THE NMO-VELOCITY SURFACE

Here, we generalize the work of Grechka and Tsvankin
(1998) on the NMO ellipse by developing a small-offset ap-
proximation for the squared reflection traveltime t? recorded
on a straight CMP line parallel to an arbitrary unit vector L.
The derivation is based on expanding the traveltime in a Taylor
series in half-offset h near the CMP location (h =0). The trav-
eltime field is assumed to be smooth enough for all needed
derivatives to exist at zero offset.

If the coordinate of the common midpoint O is denoted
by y (Figure A-1), the coordinates of the source Sand receiver
R are y —x and y + x, where

X = [Xl,Xz,Xg] =hl = h[ﬁl,ﬁz,ﬁﬂ. (A-l)

The pure-mode two-way reflection traveltime t depends on
the positions of the source and receiver and on the coordinate
r=r(y, x) of the reflection point. Summing up the one-way
traveltimes 7 corresponding to the downgoing and upgoing
rays yields

t(y,x,r) =1(y—x,r) + t(y + x,1). (A-2)

Since reflection-point dispersal (i.e., the deviation of r from
1y in Figure A-1 for |x| #0) does not change NMO velocity
(e.g., Hubral and Krey, 1980; Goldin, 1986), we assume that
nonzero-offset rays are reflected at point r:

t(y,x,r) =t(y, x,r0) = t(y — x, 19) + 7(y + X, 1p).

Hence, for a given reflection event and a fixed CMP location
(constant y and 1), t is a function of the one-way traveltime
from the zero-offset reflection point:

t(x) = 7(—x) + 7(x). (A-3)

Taking into account equation (A-1), the first derivative of
the traveltime with respect to the half-offset h is given by

CMP line

Fic. A-1. Reflected rays recorded on a CMP line in 3-D space.
Point ry is the reflection point of the zero-offset ray originated
at the CMP location O. The ray excited at S and emerging
at Ris reflected at a different point r, but the reflection-point
dispersal has no influence on NMO velocity.

dt < ot
— = — L. A-4
dh k; ox (A-4)
Using equation (A-3), we find the derivative (A-4) at zero off-
set as
dt

3
at ot
ﬁ = |:— — + i|£k =0. (A-S)

h=0 k=1 an 8 Xk

Differentiating equation (A-4) again yields
d’t 9%
— = —— Ly L. A-6
dh? &= 9%dXm k&m (A-6)

Therefore, at zero offset

d’t 2 9%t
> = LyLm
AP [yoho ey 9%K9%m In=o
3 2
d
= " Lilm (AT
Kot XK dXm |p—o

To obtain the equation for NMO velocity along the CMP
line £, we expand the traveltime t(h) in a Taylor series,

d’t| h?

h+ — =

h=0 dh? h=0 2

t(h, L) =ty + 3

dh +"'7 (A_S)

where t) = 21 is the two-way zero-offset traveltime. Substitut-
ing equations (A-5) and (A-7) into equation (A-8) leads to

3 2
0T
t(h, £) =ty + h? Lilm+ . (A9
( )=t + k;laxwxm o klm + ( )

Squaring equation (A-9) and keeping quadratic and lower-
order terms with respect to h yields

3 2
0°T
t2(h, £) = t? + 2tyh? Lxlm. (A-10
(h, L) =ty +2t k’EmZI o M (A-10)

Introducing the source-receiver offset

X =2h, (A-11)
we rewrite equation (A-10) in its final form
t2(X, £) =t7 + (LU LT)X?. (A-12)

Here the superscript T denotes transposition; the 3 x 3 sym-
metric matrix U is defined as

92 9
Um=t———| =z | (km=1,23),
0Xk0Xm |n—o 0Xm |h—o
(A-13)
and
9
= (k=1,2,3) (A-14)
Xk

are the components of the slowness vector p=[pi, P2, ps]-



Dix Formulas in Anisotropic Media 949

Comparing equation (A-12) with the conventional definition
of the NMO velocity Vymo(£) on the CMP line L,

t2(X, L) =t3 + Xiz
Viino(£)

nmo

(A-15)

we conclude that

1
———=LUL".

V2 (©) (A-16)

APPENDIX B
CONSTRUCTING THE NMO-VELOCITY SURFACE FROM THE NMO ELLIPSE

Let us assume that the NMO ellipse (matrix W) in the
[X1, X;]-plane has been reconstructed from three or more
moveout-velocity measurements in different azimuthal direc-
tions. To build the NMO-velocity surface U from W using equa-
tion (5), we need to obtain the matrix elements Uys. This can
be done by using the Christoffel equation,

F(p.x) =0, (B-1)

where p =p(x) is the slowness vector of rays generated at the
zero-offset reflection point, and F explicitly depends on the
spatial coordinates x because in heterogeneous media the elas-
tic stiffness coefficients ¢; vary in space.

Differentiating equation (B-1) with respect to x; and X,
yields

3 8pk .

Y Fan-+Fg =0 (i=12) (B-2)
=1 3XJ'

where Fp =dF/0px and ij = dF/0x;. The partial derivatives

of the horizontal slowness components and the zero-offset trav-
eltime 7y define the NMO ellipse W [see equations (2) and (4)]:

op W o
—_— = — =1,2). B-
=L Gi=12. (B

Substituting equation (B-3) into equation (B-2) and solving
for aps;/9x;, we find

s Fo,Wij + Fp,Woj + ‘L'()FXJ.
Us=t__—=- .

8Xj Fp
(j=1,2). (B-4)

3

Wi Wiz
U= o Wy

where bullets in the low left-hand corner of the matrix denote
the elements Uz] = U12, U3] = U13, and U32 = U23.

Differentiating the Christoffel equation (B-1) with respect to
X3 and taking into account that dp;/dX; = dps/dX; because of
the symmetry of U [equations (2) and (5)] lead to the following
expression for Us;:

0 Fo U FoU F
Us; = Toﬁ _ _FpYis + Fp,U2z + 10 X (B5)

At a fixed spatial location x, the Christoffel equation can be
treated as a relationship between the vertical slowness compo-
nent p; =( and the horizontal slownesses p; and p,. Implicit
differentiation of the Christoffel equation then gives (Grechka,
Tsvankin, and Cohen, 1999)

= (=12, (B-6)

where ¢ =90/9p; =0p;/9p; and Fy=09F/9q=0F/ap;. Us-
ing equation (B-6), we rewrite equations (B-4) and (B-5) in
the form

Fy. |
Ujs = q1Wij +02Woj — toF—’, (j=1,2) (B-7)
q
and
Fy,
Uss = q1Ui3 +d2Us — 9= (B-8)

Fq

Substituting equation (B-7) into (B-8), we obtain the final
expression for Us; and the NMO-velocity surface as a whole:

0.1 Wi + 02 Wiz — 1oFy, /Ry
0.1 Wiz 4 g2 Wa — 10Fy, / Fq , (B-9)
Q3 Wi + 20,192 Wiz + 95Was — 70(q.1 Fx, + d2Fx, + Fx,) /Fy

APPENDIX C
DIX-TYPE AVERAGING IN HETEROGENEOUS ANISOTROPIC MEDIA

Here, we give a detailed description of the Dix-type proce-
dure for building the NMO-velocity surfaces in heterogeneous
anisotropic media. Suppose we would like to use a known sur-
face U(1) at the zero-offset traveltime 7, to construct the sur-
face U(ty + A1) at the time 79 + A1y, where At is an infinites-
imal interval. We assume that the projection of the slowness
vector p(ty) onto the plane P(1y) L dp/d1 is locally preserved

over the ray segment corresponding to Az, (Figure 3). If we
find the intersection of the NMO-velocity surface U(zy) with
the plane P(1),

WP (79) = U(r) N P(1o),

the intersection at the time 7y + Aty is given by the Dix-type
equation (27):
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[WPG) (7g + Aro)]71

_ ‘L'O[VV’P(TO)(?,'())]_1 + ATO[WP(%)}[To,fo-‘rAfo]]_] (C 1)
- T+ A1 ' i

Here,

WP(w) |[TO’ ;NP (w)

0tAT] T U|[fo,ro+Aro

is the intersection of the local NMO-velocity surface Ul(z, z,+ 1]
with the plane P(y). The local surface U], +,+a<] can be com-
puted using equations (8) and (15).

The plane P(1o+ A1) Ldp/dtol,+a,, at the traveltime
70 + Aty generally differs from the plane P(zj), as shown in
Figure 3. In order to account for the rotation of the plane P
along the ray, we reconstruct the NMO surface U(zy+ A1)
from its cross-section W7 (75 + A1) using equations (D-9)
and (D-12) (see Appendix D), and find the intersection of
U(t + Atg) with the plane P(zp + At):

Wp(r°+Ar°)(‘L'0 + A1) = U(rg + At) NP (10 + ATp).

Since the slowness components are locally preserved in
the plane P(7p + Aty), we can continue the cross-section
WP +A0)(7) 4+ Ary) along the next ray segment using equa-
tion (C-1) applied to the time interval [ty + ATy, 79 + 2A7].
Thus, NMO-velocity surfaces in heterogeneous anisotropic
media can be computed simultaneously with integrating ray
equations (28).

In summary, continuation of the NMO-velocity surface along
the zero-offset ray involves the following steps:

1) Construct the intersection W”(®)(z,) [equation (D-7)] of
the given NMO-velocity surface U(zy) with the plane
P(70) orthogonal to the vector dp/dz, which is specified
by the second equation (28).

2) Continue the cross-section of the NMO-velocity sur-
face over the time interval Ary; that is, compute
WP (15 + A1) from WP(®)(7,) using equation (C-1).

3) Reconstruct the surface U(t+ Aty) [equations (D-9)
and (D-12)] from its cross-section W”(™) (g + A1).

4) Repeat step 1 for the surface U(zy + A1).

APPENDIX D
OPERATIONS WITH CROSS-SECTIONS OF NMO-VELOCITY SURFACES

In this appendix, we show how to compute the intersection
W? of the NMO-velocity surface U with an arbitrary plane
P and how to reconstruct the matrix U from its given cross-
section W”. Let us denote by z the unit vector in the direction
dp/dz, [see equation (28)] normal to the plane P. The vector z
can be specified by two spherical angles ¢; and ¢,:

z = [sin ¢ cos ¢, sin ¢y sin ¢, cos ¢ ]. (D-1)
It is straightforward to verify that the unit vectors
bV = [cos ¢ cos ¢, COS ¢ sin ¢y, —sin ¢y | (D-2)
and
b® = [—sin ¢y, cos ¢, 0] (D-3)

are both orthogonal to z and, therefore, lie in the plane P L z.
Thus, any vector b in P is given by

b =b® cosa +b?Psina, (D-4)
where « is the azimuth (within P) with respect to b(.
The NMO velocity [equation (1)] within the plane P,

1

—— =bUb", (D-5)
Vimo (b)

can be viewed as the intersection of the NMO surface U with
the plane P. Substituting equations (D-2)-(D-4) into equation
(D-5) yields

1
| = W/} cos? o + 2W], sina cos a + W), sin’ a,
Van(Ol) P
(D-6)
where
3
WP = > BimijUkm. (i, j=1.2), (D-7)

k,m=1

and

1, i)uoi D .

Bumij = E(b,((')bgp +bb®), G, j=1,2; k,m=1,2,3).
(D-8)
Equations (D-1)-(D-3), (D-7), and (D-8) define the matrix W”
that describes the intersection (i.e., the NMO ellipse) of the
NMO surface U with the plane P defined by the unit normal z.
Next, we show how to reconstruct the whole NMO surface U
from its cross-section W”. This procedure is based on equation

(B-9), which can be written in the form

Wi Wi a1 Wit + oWz + A
U=| ¢ Wy 01 Wiz + oW + Ay ,
o o giWii+20102 Wi +a5Wa + Ay

(D-9)

where W is the NMO ellipse in the horizontal plane [x, X;],
and the quantities A are given by

A= (i=1,2)
| — 0 Fq 3 — 4 )
A Q,l Fxl + Q,z sz + I:x3
3 = —Tp .
Fq

The derivatives of F [equation (B-1)], which also determine
the derivatives ¢; and q;; of the vertical slowness component
with respect to the horizontal slownesses [equation (B-6) and
the second equation (15)], are evaluated at point x of the zero-
offset ray specified by the one-way traveltime t,.

It is evident from equation (D-9) that in order to compute
U we need to know the matrix W because all other quantities
are obtained by differentiating the Christoffel equation (B-1).
Substituting equation (D-9) into (D-7) leads to three linear
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equations relating the matrices W and W”:
2
WP =Cj+ Y DijrjWoj. (] =1.2). (D-10)
i”,j/=1
Here,
Cij =2A1Bu3ij +2A0Basij + AsBssjjj

and

Di/j’,ij = Bi/j’,ij +qi’Bj/3,ij +q,j’Bi/3,ij +qi’qj’B33,ija
ai,j.i,j=12).

To emphasize the fact that equations (D-10) represent a system
of linear equations for the unknown elements W/, we replace
the pairs of indices {ij} and {i’j’} by a single index using the
following convention: {11} — 1, {12} — 2, and {22} — 3. Then,

equations (D-10) can be rewritten in a more conventional form,

3
Y EWe =W —C.  (k=1,2,3),
k/=1

(D-11)

where Ey are the elements of the 3 x 3 matrix

Diiir 2Di2i1 Daai
E=|Di112 2Di212 D2
Di122 2D1222 Duox

The linear system (D-11) can be solved for the matrix W using
standard techniques:

W =E"(W” - Q). (D-12)

Thus, equations (D-9) and (D-12), supplemented with the
Christoffel equation (B-1), make it possible to reconstruct
the NMO-velocity surface U from its intersection W” with
the plane P.



