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Processing-induced anisotropy

Vladimir Grechka∗ and Ilya Tsvankin‡

ABSTRACT

Processing of seismic data is often performed un-
der the assumption that the velocity distribution in
the subsurface can be approximated by a macromodel
composed of isotropic homogeneous layers or blocks.
Despite being physically unrealistic, such models are be-
lieved to be sufficient for describing the kinematics of
reflection arrivals.

In this paper, we examine the distortions in normal-
moveout (NMO) velocities caused by the intralayer
vertical heterogeneity unaccounted for in velocity anal-
ysis. To match P-wave moveout measurements from
a horizontal or a dipping reflector overlaid by a ver-
tically heterogeneous isotropic medium, the effective
homogeneous overburden has to be anisotropic. This
apparent anisotropy is caused not only by velocity mono-
tonically increasing with depth, but also by random

velocity variations similar to those routinely observed in
well logs.

Assuming that the effective homogeneous medium
is transversely isotropic with a vertical symmetry axis
(VTI), we express the VTI parameters through the ac-
tual depth-dependent isotropic velocity function. If the
reflector is horizontal, combining the NMO and ver-
tical velocities always results in nonnegative values of
Thomsen’s coefficient δ. For a dipping reflector, the in-
version of the P-wave NMO ellipse yields a nonneg-
ative Alkhalifah-Tsvankin coefficient η that increases
with dip. The values of η obtained by two other methods
(2-D dip-moveout inversion and nonhyperbolic move-
out analysis) are also nonnegative but generally dif-
fer from that needed to fit the NMO ellipse. For truly
anisotropic (VTI) media, the influence of vertical het-
erogeneity above the reflector can lead to a bias toward
positive δ and η estimates in velocity analysis.

INTRODUCTION

Rapid progress in the development of anisotropic velocity-
analysis methods has made transverse isotropy with a vertical
symmetry axis (VTI) a common model in time and depth pro-
cessing of P-wave data (e.g., Alkhalifah et al., 1996; Williamson
et al., 1997; Toldi et al., 1999). P-wave depth imaging in VTI
media requires estimates of the P-wave vertical velocity V0 and
Thomsen’s (1986) anisotropic coefficients ε and δ, whereas time
imaging for models with a laterally homogeneous overburden
is controlled by the normal-moveout (NMO) velocity for hori-
zontal reflectors Vnmo and the anellipticity coefficient η, defined
as (Alkhalifah and Tsvankin, 1995)

η ≡ ε − δ
1+ 2δ

. (1)

Both time-imaging parameters can be obtained from P-
wave reflection traveltimes using either dip-dependent P-wave
NMO velocity or nonhyperbolic moveout from horizontal

Manuscript received by the Editor May 11, 2001; revised manuscript received February 26, 2002.
∗Formerly Colorado School of Mines, Center for Wave Phenomena, Golden, Colorado 80401-1887; presently Shell International Exploration and
Production Inc., Bellaire Technology Center, 3737 Bellaire Blvd., Houston, Texas 77001-0481. E-mail: Vladimir.grechka@shell.com.
‡Colorado School of Mines, Center for Wave Phenomena, Department of Geophysics, Golden, Colorado 80401-1887. E-mail: ilya@dix.mines.edu.
c© 2002 Society of Exploration Geophysicists. All rights reserved.

interfaces (e.g., Alkhalifah and Tsvankin, 1995; Grechka and
Tsvankin, 1998a; Toldi et al., 1999; for a detailed overview, see
Tsvankin, 2001).

In contrast, estimation of the parameters V0, ε, and δ from
surface P-wave data is possible for only a certain class of mod-
els with dipping intermediate interfaces or some other types of
lateral heterogeneity in the overburden (Grechka et al., 2002).
Therefore, values of δ are often determined at borehole lo-
cations by combining the NMO (stacking) velocity Vnmo mea-
sured from surface seismic data and the vertical velocity V0

derived from check shots or well logs (e.g., Tsvankin, 2001).
For a single homogeneous VTI layer, the two velocities are
related by (Thomsen, 1986)

Vnmo = V0

√
1+ 2δ. (2)

If the medium is horizontally layered, the interval NMO veloc-
ity can be found from the conventional Dix formula and used
to obtain the interval parameter δ from equation (2). After
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estimating both δ and η, it is possible to find the remaining
parameter ε using equation (1).

In addition to their key role in anisotropic processing, the
parameters ε, δ, and η contain useful information about the
petrophysical and lithologic properties of the subsurface for-
mations. Hence, it becomes increasingly important to un-
derstand the physical origin of the anisotropic coefficients
and their relationship to lithology. Transverse isotropy in
sedimentary basins is believed to be caused by two main
factors. One of them is the intrinsic anisotropy of shales re-
sulting from preferential orientation of clay particles aligned
by gravity (Sayers, 1994). The second factor is the interbed-
ding of thin (compared to the predominant seismic wave-
length) isotropic layers that creates an effective TI medium
in the long-wavelength limit. The anisotropic parameters
of this effective model can be found from either Backus
(1962) averaging or the more general procedure of Schoen-
berg and Muir (1989). In both cases, the properties of
seismic waves propagating through the medium are indistin-
guishable from those observed in a homogeneous VTI model.

In this paper, we discuss a different reason for effective
transverse isotropy: the assumption of homogeneity com-
monly used in seismic processing. High-quality reflection
events are recorded from only a limited number of interfaces,
and it is often assumed that the medium between the inter-
preted reflectors is homogeneous. If vertical heterogeneity in
isotropic media is not properly accounted for, description of P-
wave reflection traveltimes requires making the velocity field
anisotropic. We show that estimation of the parameters of
this “apparent” (or effective) VTI model using the anisotropic
velocity-analysis methods discussed above leads to always non-
negative values of δ (for a horizontal reflector) and η (for a
dipping or a horizontal reflector).

EFFECTIVE NMO VELOCITY FROM A
HORIZONTAL REFLECTOR

Figure 1 shows the vertical (zero-offset) and nonzero-offset
rays for the simple model of a horizontal reflector beneath a

FIG. 1. Zero-offset ray ORO and ray ALARLB B at offset
x= AB for the reflection from an interface beneath a verti-
cally heterogeneous isotropic medium.

stack of homogeneous isotropic layers. If the reflector depth D
is known, the zero-offset (vertical) traveltime T0 can be used
to compute the average vertical velocity V0:

V0 = 2D

T0
. (3)

Since the model is vertically heterogeneous, V0 becomes an
effective quantity that averages the interval (or local) velocities
v(z). If the interfaces in the overburden are not strong enough
to generate detectable reflection events, it is natural to treat
the whole section above the reflector as homogeneous. Such
an assumption, which clearly contradicts the actual model in
Figure 1, is the consequence of our inability to reconstruct the
vertically varying velocity v(z) using the reflection traveltimes
from the bottom of the layer. Note that any permutation of
layers in Figure 1 produces exactly the same reflection travel-
time T(x) at any offset x; this phenomenon is called the “O-
equivalence” of velocity functions (Goldin, 1986). Thus, for
processing purposes it is necessary to assume a certain velocity
distribution v(z) above the reflector.

If the composite layer in Figure 1 is treated as homogeneous
and isotropic in accordance with the usual practice of velocity
analysis, the reflection traveltime is supposed to be a hyperbola
parameterized by the vertical velocity V0:

T̂2(x) = T2
0 +

x2

V2
0

. (4)

The traveltime T̂ from equation (4) corresponds to the straight
ray ARB(Figure 1), which does not satisfy Fermat’s principle in
the actual heterogeneous model. According to Fermat’s prin-
ciple, the reflection time T(x) along the actual ray ALA RLB B
(e.g., Taner and Koehler, 1969) is smaller than that predicted
by equation (4). As a result, the NMO velocity Vnmo for the
model in Figure 1 is always greater than the vertical velocity
V0, and the data cannot be explained in terms of a homoge-
neous isotropic, model. Also, vertical heterogeneity makes the
moveout nonhyperbolic, and equation (4) should be treated as
the first two terms of the Taylor series expansion in x2 of the
squared reflection traveltime.

Next, we express the ratio Vnmo/V0 through the interval-
velocity function v(z). The effective vertical velocity V0 is given
by

V0 =
[

T0

2D

]−1

=
[

1
D

∫ D

0

dz

v(z)

]−1

, (5)

while the effective Vnmo is obtained from the Dix (1955)
equation:

V2
nmo =

1
T0

∫ T0

0
v2(t) dt = 2

T0

∫ D

0
v(z) dz. (6)

Using equations (5) and (6), we find

V2
nmo

V2
0

= T0

2D2

∫ D

0
v(z) dz=

[
1
D

∫ D

0
v(z) dz

]
[

1
D

∫ D

0

dz

v(z)

]−1
. (7)

Equation (7) implies that V2
nmo/V2

0 can be interpreted as the
ratio of the arithmetic and harmonic averages of the interval



1922 Grechka and Tsvankin

velocities; it is well known that this ratio cannot be smaller
than unity. The same result can be rigorously obtained from
the integral version of the Cauchy-Schwartz inequality (e.g.,
Abramovitz and Stegun, 1965):∫ D

0
v(z) dz

∫ D

0

dz

v(z)
≥
[ ∫ D

0
dz

]2

, or[
1
D

∫ D

0
v(z) dz

][
1
D

∫ D

0

dz

v(z)

]
≥ 1. (8)

From equations (7) and (8), it follows that

Vnmo

V0
≥ 1. (9)

The obtained relationship (9) between Vnmo and V0 is typi-
cal for transversely isotropic media with a positive value of δ
[see equation (2)]. In terms of the interval velocity v(z), the
parameter δ of the effective VTI model is given by

δ = 1
2

[
V2

nmo

V2
0

− 1

]

= 1
2

{[
1
D

∫ D

0
v(z) dz

][
1
D

∫ D

0

dz

v(z)

]
− 1

}
≥ 0. (10)

Equation (10) might also explain a certain bias toward posi-
tive δ values derived from stacking (NMO) and vertical veloc-
ities for purposes of anisotropic parameter estimation. Note
that such a bias can also be caused by the influence of non-
hyperbolic moveout on P-wave stacking velocity, particularly
for spreadlength-to-depth ratios substantially higher than unity
(Tsvankin and Thomsen, 1994).

EFFECTIVE NMO ELLIPSE FROM A DIPPING REFLECTOR

Next, consider P-wave reflection moveout from a plane dip-
ping reflector beneath a vertically heterogeneous isotropic
medium (Figure 2). The azimuthally dependent P-wave NMO
velocity for this model is described by the NMO ellipse with
axes in the dip and strike directions of the reflector (Grechka
and Tsvankin, 1998b). Since the dip plane of the reflector rep-
resents a plane of symmetry for the whole model, the Dix-type
averaging of the interval NMO ellipses (Grechka et al., 1999)
reduces to the conventional Dix (1955) formula for the NMO
velocities in the dip (Vnmo,dip) and strike (Vnmo,str) directions:

V2
nmo,dip =

1
T

∫ T

0
v2

nmo,dip(t) dt, (11)

V2
nmo,str =

1
T

∫ T

0
v2

nmo,str(t) dt. (12)

Here, T is the two-way zero-offset traveltime, and vnmo,dip and
vnmo,str are the interval (local) dip-line and strike-line NMO
velocities computed along the zero-offset ray (Figure 2), as de-
scribed in Grechka et al. (1999). Since the medium is isotropic,
the values of the interval NMO velocities can be adapted from
Levin (1971):

vnmo,dip(t) = 1
q(t)

, (13)

vnmo,str(t) = v(t), (14)

where v(t) is the interval (isotropic) velocity and

q(t) =
√

1
v2(t)

− p2 (15)

is the vertical component of the slowness vector; p= sin θ/v(t)
is the horizontal slowness component (ray parameter).

Note that the ray parameter p is preserved along any ray
propagating in vertically heterogeneous media in accordance
with Snell’s law. Since we are not interested in treating inho-
mogeneous (evanescent) waves, q(t) is taken to be real and
positive for any t , which means that p satisfies the inequality

p2v2(t) < 1. (16)

Substituting equations (13)–(15) into equations (11) and (12)
yields

V2
nmo,dip =

1
T

∫ T

0

v2 dt

1− p2 v2
, (17)

V2
nmo,str =

1
T

∫ T

0
v2 dt. (18)

If the medium above the reflector were homogeneous, the
dip and strike components of the NMO velocity would satisfy
the well-known cosine-of-dip relationship that follows from
equations (13) and (14):

V2
nmo,dip

(
1− p2V2

nmo,str

) = V2
nmo,str. (19)

FIG. 2. P-wave NMO ellipse from a dipping reflector overlaid
by a vertically heterogeneous isotropic medium.
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Denoting the left-hand side of equation (19) by Ṽ2
nmo,dip and

using equations (17) and (18), we prove in Appendix A that

Ṽ2
nmo,dip ≡ V2

nmo,dip

(
1− p2V2

nmo,str

) ≥ V2
nmo,str (20)

for any interval-velocity function v(t). The equality Ṽnmo,dip=
Vnmo,str is reached only in the special cases of a hori-
zontal reflector (p= 0) or homogeneous media [v(t)= const].

Figure 3 shows the two-way zero-offset traveltime T and
the velocities Ṽnmo,dip and Vnmo,str computed for a model that
contains a plane dipping reflector z= 1+Y tanφ (φ is the dip)
beneath an isotropic medium with a constant vertical-velocity
gradient (Figure 3a). The common-midpoint (CMP) locations
Y in Figure 3 record reflections from the segment of the inter-
face within the depth range 1 km≤ z≤ 2 km. Note that the zero-
offset time T (Figure 3b) varies with Y because of the combined
influence of the reflector dip and vertical heterogeneity. The
gradual decrease of the reflection slope p(Y)= (1/2) (dT/dY)
in Figure 3b and the corresponding increase of the velocities
in Figure 3c may lead to the conclusion that the subsurface is
laterally heterogeneous.

Also, since Ṽnmo,dip 6= Vnmo,str at any CMP location, the
medium above the reflector may be mistakenly identified as
anisotropic. It is natural to assume that such a model is trans-
versely isotropic with a vertical symmetry axis, because the
actual heterogeneous isotropic medium does not produce any
effective azimuthal anisotropy. Below, we invert the dip- and
strike-components of the NMO velocity for the effective anel-
lipticity coefficient η under the assumption that the model is
homogeneous and has VTI symmetry.

ESTIMATION OF THE EFFECTIVE VNMO AND η

Clearly, the subsurface parameters obtained from the trav-
eltimes and velocities in Figures 3b and 3c will depend on the
selected model of the overburden. If the model is assumed
(correctly) to be vertically heterogeneous and isotropic, the
reflection data can be used to estimate the actual function v(z)
within the depth range 1 km≤ z≤ 2 km covered by the reflec-
tion points (Goldin, 1986). Still, the velocity v(z) cannot be

FIG. 3. Normal moveout for a dipping reflector beneath a vertically heterogeneous isotropic medium. (a) Linear
velocity function v(z)= 1+ 0.6z; (b) two-way zero-offset traveltime T as a function of the CMP coordinate Y in
the dip plane of the reflector (the dip φ= 40◦); (c) quantity Ṽnmo,dip (crosses) defined by equation (20) and the
strike-line NMO velocity Vnmo,str (triangles).

found uniquely for depths z< 1 km because the data do not
include reflections from the shallow segment of the interface.

Therefore, for practical purposes of velocity model-building,
it may be more attractive to adopt a model that is vertically
homogeneous but changes laterally. Then, it is possible to
compute medium parameters uniquely for the whole overbur-
den, although the inverted model cannot be isotropic (indeed,
Ṽnmo,dip >Vnmo,str). If we ignore the contribution of lateral het-
erogeneity to the NMO-velocity measurements on the scale
of a single CMP gather, as is usually done in practice, the ve-
locities Vnmo,dip(Y) and Vnmo,str(Y) can be inverted for the VTI
parameters at each CMP location. Then, the dependence of
the obtained parameters on Y can be interpreted in terms of
lateral heterogeneity.

Since the reflection traveltimes are symmetric with respect to
the dip plane, it is natural to use the azimuthally isotropic VTI
model for the inversion. We applied the algorithm of Grechka
and Tsvankin (1998b) based on the exact equation of the NMO
ellipse to estimate the zero-dip NMO velocity Vnmo(Y) and the
anellipticity coefficientη(Y) of the effective VTI medium. Both
Vnmo and η vary with the CMP coordinate Y (Figure 4), which
creates an apparent lateral heterogeneity.

As illustrated by the example in Figure 4, the effective pa-
rameter η for our model is always non-negative. This is a gen-
eral result that follows directly from inequality (20) in the limit
of weak anisotropy (the proof is given in Appendix B); η van-
ishes only for the trivial special case of a homogeneous medium.
Thus, vertical heterogeneity unaccounted for in velocity anal-
ysis yields an effective VTI medium with the same (positive)
sign of the coefficients δ and η. It is interesting that the effec-
tive η estimated from the long-spread (nonhyperbolic) move-
out of P-waves in vertically heterogeneous isotropic media is
also nonnegative (Fomel and Grechka, 2001).

The value of η is controlled not only by the magnitude of
vertical heterogeneity, but also by reflector dip. To study the
dependence of the effective parameters η and Vnmo on dip, it
is convenient to express the difference Ṽ2

nmo,dip−V2
nmo,str as a

function of the horizontal slowness p of the zero-offset ray.
Combining equations (20), (A-2), and (A-5), we find
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Ṽ2
nmo,dip − V2

nmo,str =
1
T

∞∑
i=1

p2 i

[ ∫ T

0
v2(i+1) dt

− 1
T

∫ T

0
v2 dt

∫ T

0
v2 i dt

]
. (21)

On the other hand, in the limit of weak anisotropy of the effec-
tive medium the same difference can be represented as [using
equations (20) and (B-1)–(B-3)]

Ṽ2
nmo,dip − V2

nmo,str = 8p2ηV4
nmo

(
1− p2V2

nmo

)
= 8p2ηV4

nmo − 8p4ηV6
nmo. (22)

Clearly, for a horizontal reflector (p= 0), the NMO ellipse
degenerates into a circle, and the effective η is undefined.
For p→ 0, however, η can be found by matching the coffi-
cients of the p2-term in equations (21) and (22). According
to the Chebyshev inequality (A-6), the term in the brack-
ets in equation (21) is nonnegative for any value of i , and
goes to zero only for a homogeneous medium (v= const).
Therefore, for subhorizontal reflectors beneath a vertically
heterogeneous isotropic medium, the effective η is always
positive (see also Appendix B).

Furthermore, analysis of the expansion coefficients in equa-
tions (21) and (22) suggests that the effective η increases with p
(i.e., with dip) for mild dips. In contrast, the effective NMO ve-
locity Vnmo should become slightly smaller with increasing dip.
Figure 5 demonstrates that the variation of the effective Vnmo

andηwith dip is qualitatively predicted by the weak-anisotropy
approximation (22). Both Vnmo and η are plotted in Figure 5
as functions of the depth z of reflection points because the ef-
fective velocities Ṽnmo,dip and Vnmo,str in equations (21) and (22)
refer to a fixed value of z.

It might be thought that the nonnegligible values of η for
the model from Figure 3 are associated with the monotonic
increase in velocity with depth. However, since the apparent

FIG. 4. Effective zero-dip NMO velocity Vnmo (a) and the anel-
lipticity coefficient η (b) estimated from the NMO velocities
shown in Figure 3c under the assumption of a vertically homo-
geneous VTI model.

anisotropy is caused only by the different types of averaging
applied to the vertically varying velocity to obtain the measured
(effective) quantities, the phenomena discussed above can be
observed in any v(z) media. For example, Figure 6 shows the
inverted effective Vnmo and η for the isotropic velocity v(z)
specified as a random Gaussian function (the mean is 1 km/s,
the standard deviation is 0.1 km/s). Similar to the model from
Figure 3, the velocities Vnmo are smaller than the mean of v(z)
(Figure 6b), and the coefficients η are positive (Figure 6c). Note
that to treat this model as layered and apply the equations
for the effective NMO velocities given above, the wavelength
should be sufficiently small (i.e., the frequency should reach
about 100 Hz).

As illustrated by Figure 7, for more pronounced random ve-
locity variations the effective η can reach 0.1–0.2, values that
can cause serious distortions in isotropic imaging. Although it
might seem that the model in Figure 7 exaggerates the mag-
nitude of velocity variations observed in typical well logs, this
conclusion is supported by the real-data example in Figure 8.
The velocity function in Figure 8 was taken from a well log
recorded in a borehole on the U.S. Gulf Coast (Dvorkin et al.,
2002). For a wide range of CMP coordinates, the values of η
estimated for a reflector dip of 60◦ are higher than 0.05 and ex-
ceed 0.1 for Y≈ 0.2. In agreement with the synthetic examples,
the effectiveη becomes much smaller when the dip decreases to
30–40◦. However, note that the log in Figure 8 is quite short, and
we had to make the heterogeneous layer under the midpoint
Y= 0 only about 0.1 km thick. Increasing the layer thickness
to 0.3–0.4 km would yield larger η values for the same reflec-
tor dip. Evidently, small-scale layering may have a substantial
influence on the effective anisotropic coefficients.

DISCUSSION AND CONCLUSIONS

Complicated, spatially varying isotropic velocity fields
are sometimes kinematically equivalent to simpler effec-
tive anisotropic models, which poses a serious challenge
for anisotropic velocity analysis. Here, we examined one of

FIG. 5. Effective Vnmo (a) and η (b) estimated for reflectors with
the dips φ= 30◦ (dashes), φ= 40◦ (dots), and φ= 50◦ (solid)
overlaid by a heterogeneous isotropic medium with the ve-
locity function v(z)= 1+ 0.6 z. The depths of the zero-offset
reflection points (the horizontal axis) range from 1 to 2 km.



Processing-induced Anisotropy 1925

the consequences of approximate treatment of vertical het-
erogeneity in estimating the subsurface velocity field. If a
heterogeneous medium between reflectors is treated as a ho-
mogeneous layer, the traveltime measurements cannot be fit
without introducing apparent (nonexistent) anisotropy.

The apparent (or effective) VTI model, equivalent to a ver-
tically heterogeneous isotropic medium above a horizontal
reflector, has a nonnegative coefficient δ. If the reflector is
dipping, the relationship between the semi-axes of the P-wave
NMO ellipse yields a nonnegative effective anellipticity coeffi-
cient η≡ (ε− δ)/(1+ 2δ). Therefore, Thomsen (1986) param-
eters of the effective VTI model always satisfy the inequality
ε≥ δ≥ 0.

It is interesting to note that although the inequality η≥ 0
was obtained from 3-D (azimuthal) moveout inversion using
the dip- and strike-components of the P-wave NMO ellipse
(Vnmo,dip and Vnmo,str), it can be shown that the same result
would follow from the 2-D dip-moveout (DMO) method of

FIG. 6. Isotropic velocity model (a) and the inverted effective Vnmo (b) and η (c). The mean of the velocity function
is 1 km/s, the standard deviation is 0.1 km/s, the reflector dip φ= 40◦, and the depths of the reflection points range
from 1 to 2 km (Y increases in the downdip direction).

FIG. 7. Isotropic velocity model (a) and the inverted effective Vnmo (b) and η (c). The mean of the velocity function
is 1 km/s, the standard deviation is 0.15 km/s, the reflector dip φ= 45◦, and the depths of the reflection points
range from 1 to 2 km.

Alkhalifah and Tsvankin (1995), which operates with Vnmo,dip

and the NMO velocity from a horizontal reflector Vnmo. The
values of η obtained by the Alkhalifah–Tsvankin method,
however, would not necessarily be the same as those deter-
mined from the NMO ellipse because the relationship between
Vnmo, Vdip, and Vnmo,str in our model differs from that in ho-
mogeneous VTI media. To fit all three velocities (Vnmo, Vdip,
and Vnmo,str) using a homogeneous anisotropic medium, it is
necessary to assume orthorhombic (Grechka and Tsvankin,
1999) or even lower symmetry. Note that the effective η

needed to describe nonhyperbolic reflection moveout of P-
waves over a heterogeneous isotropic medium is also nonneg-
ative (Alkhalifah, 1997; Fomel and Grechka, 2001; Tsvankin,
2001).

Positive values of the effective anisotropic coefficients stem
from the common physical origin—Fermat’s principle, which
requires that reflected rays bend in such a way that the travel-
times for all source-receiver pairs reach their minimum values.
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As discussed above, Fermat’s principle directly explains non-
negative effective δ values for reflections from horizontal in-
terfaces. When the reflector is dipping, we observe a similar
phenomenon: because of ray bending, the reflection traveltime
increases with offset slower than that in a reference homoge-
neous medium, and the corresponding NMO velocity is higher.
Since the influence of ray bending is more pronounced in the
dip plane, the vertical heterogeneity increases the difference
between the dip-line and strike-line NMO velocities, which
translates into positive values of η of the effective homoge-
neous VTI model.

The analysis of the effective anisotropic coefficients of the
apparent VTI model also provides insight into potential bi-
ases in anisotropic moveout inversion. For example, ignoring
the vertical velocity gradient between reflectors in VTI me-
dia should lead to overestimating the parameters η and δ.
This may partially explain the discrepancy between predom-
inantly positive δ values obtained from reflection data (e.g.,
Alkhalifah et al., 1996; Williamson et al., 1997) and some-
times negative values of δ derived from core measurements
and VSP surveys (e.g., Thomsen, 1986; Vernik and Liu, 1997;
Jakobsen and Johansen, 2000). Another possible reason for
overstated values of δ inferred from reflection traveltimes is
the increase in stacking (moveout) velocity with spreadlength
caused by nonhyperbolic moveout. To remove or mitigate this
distortion, it is necessary to apply a nonhyperbolic equation
t2(x2) in moveout velocity analysis (Tsvankin and Thomsen,
1994; Alkhalifah and Tsvankin, 1995). Note that if vertical
transverse isotropy is caused by fine isotropic layering on a
scale small compared to the predominant wavelength (see
Backus, 1962), the parameters η and ε are positive, while δ
can be either positive or negative (Berryman, 1979; Berryman
et al., 1999).

Seismic processors are certainly aware of the influence of
vertical heterogeneity on reflection moveout and typically try
to incorporate velocity gradients into their models. However,
a fundamental problem in velocity analysis of reflection data
is that one always has to rely on some kind of interpolation

FIG. 8. Portion of a well log from the U.S. Gulf Coast (a) and the inverted effective Vnmo (b) and η (c). The
effective Vnmo and η were estimated for a reflector with the dip φ= 60◦ located at the depth z= 0.1 km under the
CMP Y= 0. Prior to the inversion, the log was smoothed by applying a 40-m-wide running window (the width is
based on an average velocity of 3 km/s taken from the log and a frequency of 75 Hz).

when building velocity functions between reflecting interfaces.
In the absence of direct information (e.g., from well logs)
about intralayer vertical heterogeneity, the vertical velocity
variation within the layer has to be assumed since there is
an infinite number of different intralayer velocity functions
that can produce the same moveout velocity from the under-
lying reflector. In our paper, we analyzed the consequences
of making the simplest assumption that the layer is homoge-
neous. If the processor introduces, for example, an inaccurate
value of the velocity gradient, the moveout still cannot be de-
scribed by this (distorted) isotropic model, but the values of
the corresponding effective anisotropic coefficients will be dif-
ferent. However, it is beyond the scope of this paper to discuss
all possible erroneous assumptions about intralayer vertical
heterogeneity.

Problems of the type considered here are typical for seismic
velocity analysis and inversion. Since the available data usu-
ally cannot constrain all components of the parameter vector
m, the actual velocity distribution v(m, x) is often replaced by
a certain model v̂(m̂, x) with fewer unknowns, so that all model
parameters m̂ can be resolved uniquely. For that reason, some
anisotropy-related components of the vector m̂ may be invoked
in traveltime inversion for complex spatially varying isotropic
velocity fields. Improved understanding of various types of in-
terplay between anisotropy and heterogeneity remains one of
the key problems in anisotropic velocity analysis.
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APPENDIX A

RELATIONSHIP BETWEEN THE SEMI-AXES OF THE NMO ELLIPSE

Here, we prove inequality (20), which involves the semi-axes
of the P-wave NMO ellipse (Vnmo,dip and Vnmo,str) measured
above a vertically heterogeneous isotropic medium:

Ṽ2
nmo,dip ≡ V2

nmo,dip

(
1− p2 V2

nmo,str

) ≥ V2
nmo,str , (A-1)

where p is the horizontal component of the slowness vec-
tor of the zero-offset ray. After substituting equations (17)
and (18) and multiplying by T2, inequality (A-1) takes the
form( ∫ T

0

v2 dt

1− p2 v2

)(
T − p2

∫ T

0
v2 dt

)
≥ T

∫ T

0
v2 dt .

(A-2)
Using inequality (16), the denominator of the first inte-
gral in equation (A-2) can be replaced by the converging
series

1
1− p2 v2

=
∞∑

i=0

p2 i v2 i . (A-3)

Since p is independent of t , the left-hand side of inequality
(A-2) can be rewritten as

F ≡
( ∫ T

0

v2 dt

1− p2 v2

)(
T − p2

∫ T

0
v2 dt

)

=
( ∞∑

i=0

p2 i
∫ T

0
v2 (i+1) dt

)(
T − p2

∫ T

0
v2 dt

)

= T
∞∑

i=0

p2 i
∫ T

0
v2 (i+1) dt

−
∞∑

i=0

p2 (i+1)
∫ T

0
v2 dt

∫ T

0
v2 (i+1) dt

= T
∫ T

0
v2 dt + T

∞∑
i=1

p2 i
∫ T

0
v2 (i+1) dt

−
∞∑

i=1

p2 i
∫ T

0
v2 dt

∫ T

0
v2 i dt . (A-4)

Therefore,

F = T
∫ T

0
v2 dt +

∞∑
i=1

p2 i

[
T
∫ T

0
v2 (i+1) dt

−
∫ T

0
v2 dt

∫ T

0
v2 i dt

]
. (A-5)

Note that the first integral in equation (A-5) coincides with the
right-hand side of inequality (A-2). The terms in the brack-
ets of equation (A-5) are always nonnegative, which follows
from the Chebyshev inequality [Abramovitz and Stegun, 1965,
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equation (3.2.7)]:

T
∫ T

0
v2 (i+1) dt ≥

∫ T

0
v2 dt

∫ T

0
v2 i dt. (A-6)

The equality is reached only if v(t)= const. Also, note that for
i = 1, inequality (A-6) takes the well-known Cauchy-Schwartz
form

T
∫ T

0
v4 dt ≥

( ∫ T

0
v2 dt

)2

. (A-7)

Thus, from equation (A-5), we conclude that
F = T

∫ T

0
v2 dt if v(t) = const or p = 0 and

F > T
∫ T

0
v2 dt otherwise ,

(A-8)
which proves inequality (A-2).

APPENDIX B

INEQUALITY FOR THE EFFECTIVE PARAMETER η

In this appendix, we show that the parameter η determined
from the NMO ellipse for the effective VTI model is always
nonnegative. The P-wave NMO velocities in the dip (Vnmo,dip)
and strike (Vnmo,str) directions satisfy inequality (A-1) proved
in Appendix A. Assuming that the anisotropy is weak and
| η | ¿ 1, we can use the following linearized approxima-
tions for Vnmo,dip and Vnmo,str (Alkhalifah and Tsvankin, 1995;
Grechka and Tsvankin, 1998b):

V2
nmo,dip(p) = V2

nmo

1− ξ
[

1+ 2ηξ
1− ξ (6− 9ξ + 4ξ 2)

]
, (B-1)

V2
nmo,str(p) = V2

nmo[1+ 2ηξ(2− ξ)]; (B-2)

ξ ≡ p2V2
nmo. (B-3)

Equations (B-1) and (B-2) are derived under the assumption
that

ξ < 1, (B-4)

which effectively removes from consideration large dips close
to 90◦.

Substituting equations (B-1) and (B-2) into inequality (A-1)
leads to

1
1− ξ

[
1+ 2ηξ

1− ξ (6− 9ξ + 4ξ 2)
]

[1− ξ − 2ηξ 2(2− ξ)]

≥ 1+ 2ηξ(2− ξ). (B-5)

Further linearization in η yields

1
1− ξ [1− ξ − 2ηξ 2(2− ξ)+ 2ηξ(6− 9ξ + 4ξ 2)]

≥ 1+ 2ηξ(2− ξ), (B-6)

or

8ηξ(1− ξ) ≥ 0. (B-7)

Since 0 ≤ ξ < 1 [see inequality (B-4)],

η ≥ 0. (B-8)

As discussed in Appendix A, except for the special cases
p= ξ = 0 (horizontal reflector) and v(z)= const (homoge-
neous isotropic medium), inequality (A-1) becomes

V2
nmo,dip

(
1− p2V2

nmo,str

)
> V2

nmo,str, (B-9)

and

8ηξ(1− ξ) > 0. (B-10)

Therefore, for dipping reflectors (ξ 6= 0) beneath a heteroge-
neous isotropic medium, the effective η computed from the P-
wave NMO ellipse is strictly positive. Clearly, for v(z)= const
the effective η vanishes because the medium is isotropic and
homogeneous.


