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ABSTRACT

Fluid flow in many hydrocarbon reservoirs is controlled by aligned fractures which

make the medium anisotropic on the scale of seismic wavelength. Applying the linear-

slip theory, we investigate seismic signatures of the effective medium produced by a

single set of “general” vertical fractures embedded in a purely isotropic host rock.

The generality of our fracture model means the allowance for coupling between the

normal (to the fracture plane) stress and the tangential jump in displacement (and

vice versa). Despite its low (triclinic) symmetry, the medium is described by just nine

independent effective parameters and possesses several distinct features which help

to identify the physical model and estimate the fracture compliances and background

velocities. For example, the polarization vector of the vertically propagating fast shear

wave S1 and the semi-major axis of the S1-wave normal-moveout (NMO) ellipse from

a horizontal reflector always point in the direction of the fracture strike. Moreover,

for the S1-wave both the vertical velocity and the NMO velocity along the fractures

are equal to the shear-wave velocity in the host rock.

Analysis of seismic signatures in the limit of small fracture weaknesses allows us to

select the input data needed for unambiguous fracture characterization. The fracture

and background parameters can be estimated using the NMO ellipses from horizontal

reflectors and vertical velocities of P -waves and two split S-waves, combined with

a portion of the P -wave slowness surface reconstructed from multi-azimuth walka-

way VSP (vertical seismic profiling) data. The stability of the parameter-estimation

procedure is verified by performing nonlinear inversion based on the exact equations.

Keywords.—fracture characterization, azimuthal anisotropy, wide-azimuth data,

moveout inversion, walkaway VSP.
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INTRODUCTION

The problem of fracture characterization using seismic data can be divided into

two main parts. First, it is necessary to obtain the so-called effective model formed

by fractures with given micro-structural parameters embedded in a specified host

(unfractured) rock. Second, one has to identify the seismic signatures which are

sufficiently sensitive to the fracture parameters to ensure a stable inversion procedure.

Effective anisotropic models of fractured formations are usually constructed un-

der the assumption that seismic wavelength is much larger than the fracture openings

and the distances between fractures. The existing effective medium theories, treat

fractures as surfaces of weakness inside a solid background rock (e.g., Schoenberg

1980, 1983, Hudson 1980, 1981, 1988, Thomsen 1995). Since fractures are small com-

pared to the typical seismic wavelength, it is not surprising that seismic signatures

are influenced by certain combinations of various micro-structural fracture parame-

ters rather than by their individual values. Those combinations, called the excess

fracture compliances, represent the inherent parameters of the linear-slip theory of

Schoenberg (1980, 1983). The compliances effectively absorb such properties of frac-

tures as their shape, interaction, fluid saturation, and the possible presence of pore

space hydraulically connected to the fractures (Schoenberg and Douma 1988, Bakulin

et al. 2000a). Only the compliances can be unambiguously determined from seismic

data unless additional information about the microstructural parameters is available.

The linear-slip formalism was shown to be equivalent to several theories which de-

scribe fractures in a more deterministic way, as well as to representation of fractures

as thin layers of weak anisotropic material (Schoenberg, 1980; Molotkov and Bakulin,

1997). In particular, various models of penny-shaped cracks/contacts (Schoenberg

and Douma, 1988; Thomsen 1995; Hudson et al. 1996; Liu et al. 2000) were found

to produce an effective medium identical to that of linear slip. Such models were

extensively used by Bakulin et al. (2000a) to study the influence of various frac-
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ture parameters on seismic signatures. This more deterministic approach, however,

requires a priori selection of the most suitable fracture model and is currently re-

stricted to a single set of rotationally invariant cracks in a purely isotropic matrix,

i.e., to the simplest HTI (transversely isotropic with a horizontal symmetry axis)

symmetry. Therefore, treatment of fractures with a more complicated rheology (the

topic of this paper) requires application of the general linear-slip theory (Schoenberg

and Douma 1988; Schoenberg and Sayers 1995).

Recent advances in the modeling and inversion of wide-azimuth multi-component

seismic data helped to make significant progress in solving the second part of the

fracture-characterization problem – inverting seismic signatures for the fracture pa-

rameters (e.g., Rüger 1997, Rüger and Tsvankin 1997, Tsvankin 1997a, Sayers and

Rickett 1997, Contreras et al. 1999). In a series of three publications, Bakulin et al.

(2000a,b,c) described seismic signatures and devised fracture-characterization algo-

rithms for several typical fractured models, from HTI to orthorhombic to monoclinic.

Still, it should be mentioned that while the number of parameters describing the

microstructure and microgeometry of fractures can be arbitrarily large (especially,

in the presence of multiple fracture sets), the number of the effective stiffness or

compliance coefficients is limited to 21 for the most general triclinic anisotropy. Thus,

it is clear that only a limited subset of fractured models is uniquely constrained by

seismic data. A simple example of ambiguity in fracture characterization is presented

by Bakulin et al. (2002), who show that the compliances of two vertical orthogonal

fracture sets embedded in a VTI (transversely isotropic with a vertical symmetry

axis) background cannot be resolved from the effective stiffnesses.

Here, we examine the effective medium produced by the most general (in terms

of the linear-slip theory) parallel vertical fractures in a purely isotropic host rock. In

contrast to the conventional treatment of fractures in effective medium theory, our

model accounts for coupling between the normal (to the fracture plane) stress and

tangential jump in displacement (and vice versa). This coupling may be caused by
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at least two different physical mechanisms – micro-corrugation of fracture faces or

misalignment between the fracture strike and the principal axes of stress. The first

mechanism, proposed by Schoenberg and Douma (1988), was employed by Bakulin

et al. (2000c) to study fluid-dependent shear-wave splitting observed on field data

by Guest et al. (1998). The existence of the second mechanism was confirmed by

physical experiments of Nakagawa et al. (2000), who investigated reflections from

fractures subjected to stresses which principal directions deviated from the fracture

strike.

Although the model produced by the “general” fracture set has the lowest possible

symmetry (triclinic), it is described by the fracture orientation and only eight inde-

pendent parameters, which facilitates the development of fracture-characterization

methods based on seismic data. To study the influence of fractures on the kine-

matics of P - and S-waves, we derive weak-anisotropy approximations linearized in

the fracture weaknesses. The analytic results also help to devise a stable fracture-

characterization algorithm based on the combination of reflection and VSP (vertical

seismic profiling) data.

EFFECTIVE MODEL OF A GENERAL FRACTURE SET

We consider a single system of parallel vertical fractures embedded in an otherwise

isotropic host rock. According to the linear-slip theory of Schoenberg (1980, 1983),

the effective compliance s of such a medium in the low-frequency limit is simply the

sum of the background compliance sb and the excess fracture compliance sf :

s = sb + sf , (1)

where s, sb, and sf are 6× 6 symmetric, non-negative definite matrices.

Excess fracture compliance

For a single set of vertical fractures with the normals parallel to the x1-axis, the

excess compliance sf is given by (Schoenberg 1980)
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sf =




KN 0 0 0 KNV KNH

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

KNV 0 0 0 KV KV H

KNH 0 0 0 KV H KH




. (2)

The compliances KN , KV , KH , KNV , KNH and KV H appear in the boundary con-

ditions of the so-called linear slip which relate the jumps in displacement (or slips)

[u] = {[u1], [u2], [u3]}T across the fracture plane to the traction (stress) components

T = {σ11, σ12, σ13}T (Schoenberg 1980, Molotkov and Bakulin 1997):

[u] = hKT . (3)

Here h is the average distance (spacing) between the fractures, and

K ≡




KN KNV KNH

KNV KV KV H

KNH KV H KH



. (4)

Note that while the linear-slip theory assumes the traction to be continuous across

the fractures, some theoretical models (not considered here) lead to a discontinuity

in traction (Tod and Hudson 2001).

The physical meaning of the compliances in equations (3) and (4) is discussed in

detail in the literature (e.g., Schoenberg and Douma 1988, Berg et al. 1991, Schoen-

berg and Sayers 1995, Schoenberg and Helbig 1997, Bakulin et al. 2000a,c). Usually

fractures are assumed to be rotationally invariant with the compliances satisfying the

conditions of Schoenberg and Sayers (1995):

KV = KH , (5)

KNV = KNH = KV H = 0 . (6)
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Several publications (e.g., Schoenberg and Helbig 1997, Bakulin et al. 2000b)

treat fractures which are not invariant with respect to rotation but are still described

by a diagonal compliance matrix [i.e., they obey the constraint (6), but KV 6= KH ].

It is clear from equation (3) that the off-diagonal elements KNV , KNH , KV H of

the matrix (4) are responsible for the coupling between the traction normal to the

fracture plane and tangential slip (and vice versa); the mechanisms responsible for

such coupling are discussed in the introduction.

Dry and fluid-filled fractures

Here it is appropriate to discuss the criteria needed to distinguish between dry

and fluid-filled fractures. Schoenberg and Sayers (1995) established such criteria for

rotationally invariant fractures which satisfy the conditions (5) and (6). Based on the

experiments of Hsu and Schoenberg (1993) and Pyrak-Nolte et al. (1990a,b), they

suggested to use the ratio KN/KV as an indicator of fluid content. According to

Schoenberg and Sayers (1995),

KN

KV
≈ 1 or KN ≈ KV (7)

for dry fractures, and

KN

KV
≈ 0 or KN ≈ 0 (8)

for fractures saturated with fluid. As shown by Bakulin et al. (2000a), equations (7)

and (8) can also be derived from Hudson’s (1980) theory for isolated penny-shaped

cracks.

Bakulin et al. (2000c) extended the criteria (7) and (8) to micro-corrugated frac-

tures, for which KNV 6= 0, but

KNH = KV H = 0 . (9)

They considered the eigenvalues Λ̃1 and Λ̃2 of the 2× 2 submatrix
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K̃ =



KN KNV

KNV KV


 (10)

of matrix (4) and stated that in their model Λ̃1 and Λ̃2 play the role of KN and KV .

Therefore, for dry fractures

Λ̃1 ≈ Λ̃2 , (11)

and for fluid-filled fractures

min (Λ̃1, Λ̃2) ≈ 0 . (12)

Here, we further generalize the criteria (11) and (12) for fractures with non-zero

compliances KNH , KV H and KNV using the eigenvalues Λ1, Λ2, and Λ3 of the full

compliance matrix K [equation (4)]. By analogy with equations (11) and (12), dry

fractures are supposed to be approximately equally compliant in all three principal

directions, which means that

Λ1 ≈ Λ2 ≈ Λ3 . (13)

In contrast, isolated fluid-filled fractures should be much less compliant in the direc-

tion which corresponds to squeezing the fluid. Hence,

min (Λ1, Λ2, Λ3) ≈ 0. (14)

The criteria (13) and (14) are used in the discussion of numerical examples below.

Properties of the stiffness matrix

To obtain the compliance matrix s of the effective medium, we substitute equa-

tion (2) and the compliance of the isotropic background [e.g., equation (2) of Bakulin

et al. (2000c)] into equation (1):
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s =




λ+ µ

µ(3λ+ 2µ)
+KN

−λ
2µ(3λ+ 2µ)

−λ
2µ(3λ+ 2µ)

0 KNV KNH

−λ
2µ(3λ+ 2µ)

λ+ µ

µ(3λ+ 2µ)

−λ
2µ(3λ+ 2µ)

0 0 0

−λ
2µ(3λ+ 2µ)

−λ
2µ(3λ+ 2µ )

λ+ µ

µ(3λ+ 2µ)
0 0 0

0 0 0
1

µ
0 0

KNV 0 0 0
1

µ
+KV KV H

KNH 0 0 0 KV H
1

µ
+KH




, (15)

where λ and µ are the Lamé constants of the background. Then, the effective stiffness

matrix c = s−1 takes the form

c =




c11 χ c11 χ c11 0 c15 c16

χ c11 c22 c23 0 χ c15 χ c16

χ c11 c23 c22 0 χ c15 χ c16

0 0 0 c44 0 0

c15 χ c15 χ c15 0 c55 c56

c16 χ c16 χ c16 0 c56 c66




; (16)

χ ≡ λ

λ+ 2µ
. (17)

Although this matrix formally corresponds to the lowest possible symmetry (triclinic),

it describes a special type of triclinic media defined by less than 21 independent

stiffness elements. Indeed, five components of the matrix (16) are equal to zero, while

other stiffnesses satisfy the following relationships:

c12 = c13 = χ c11 , c22 = c33 , c25 = c35 = χ c15 and c26 = c36 = χ c16 . (18)

In addition, there are two more constraints on the effective stiffnesses:

c22 = χ c12 + 2 (1 + χ) c44 (19)

and
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c22 = c23 + 2 c44 . (20)

Equation (20), rewritten as

c13 (c22 + c12) = c23 (c11 + c12) , (21)

coincides with a constraint obtained by Schoenberg and Helbig (1997) for fracture-

induced orthorhombic anisotropy.

Equations (18)–(20) indicate that only eight combinations of the sixteen nonzero

stiffness coefficients in equation (16) are independent. The same conclusion follows

from the fact that the matrix c is constructed from two parameters of the isotropic

host rock (λ and µ) and six excess fracture compliances (KN , KV , KH , KNV , KNH

and KV H). Thus, the effective model of the most general vertical fracture set is

defined by the fracture orientation and eight independent elastic parameters.

Note that the compliance and stiffness matrices can be divided into several blocks

marked by the solid lines in equation (16). In particular, the only non-zero element

of the block that includes the elements of the fourth column and the fourth row is c44

for c and s44 for s. Since s44 = 1/µ, the inversion of the compliance matrix yields

c44 = s−1
44 = µ . (22)

As discussed below, equation (22) has important implications for fracture-

characterization algorithms operating with seismic data.

Effective stiffness coefficients in the weak-anisotropy limit

Definition of weaknesses.—It is convenient to replace the fracture compliances

by the dimensionless weaknesses defined for the diagonal elements of the compliance

matrix as (Hsu and Schoenberg 1993, Bakulin et al. 2000a)

∆N ≡
(λ+ 2µ)KN

1 + (λ+ 2µ)KN
, (23)
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∆V ≡
µKV

1 + µKV

, (24)

∆H ≡
µKH

1 + µKH
. (25)

Similarly, for the off-diagonal compliances we can introduce the weaknesses in the

following way:

∆NV ≡
√
µ (λ+ 2µ)KNV

1 +
√
µ (λ+ 2µ)KNV

, (26)

∆NH ≡
√
µ (λ+ 2µ)KNH

1 +
√
µ (λ+ 2µ)KNH

, (27)

∆V H ≡
√
µ (λ+ 2µ)KV H

1 +
√
µ (λ+ 2µ)KV H

. (28)

Note that for the special case of penny-shaped cracks, the weaknesses are pro-

portional to the crack density defined as the number of cracks per unit volume mul-

tiplied with their cubed largest semi-axis (Schoenberg and Douma 1988, Bakulin et

al. 2000a). Since the matrix (4) of the excess compliances is non-negative definite,

the weaknesses ∆N , ∆V and ∆H vary from zero to unity. The vanishing weaknesses

imply the absence of fractures, while the values ∆N = 1, ∆V = 1 or ∆H = 1 are

indicative of an extreme degree of fracturing, with the velocities of P - or S-waves

across the fractures going to zero. In addition, the stability condition that requires

the matrix (4) to be non-negative definite leads to the following inequalities (written

for the leading-order terms in the weaknesses)

∆2
NV ≤ ∆N ∆V , ∆2

NH ≤ ∆N ∆H , and ∆2
V H ≤ ∆V ∆H . (29)

Linearized expressions for the stiffnesses.—To gain insight into the influence

of the fractures on the effective stiffnesses, it is convenient to expand the matrix c

in the weaknesses and truncate the expansion after the linear terms. The resulting

linearized expressions are valid for weaknesses much smaller than unity (i.e., for a

weakly anisotropic effective medium):
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∆N � 1 , ∆V � 1 , ∆H � 1 ,

|∆NV | � 1 , |∆NH | � 1 , |∆V H | � 1 . (30)

To derive the approximate stiffness matrix, we express the fracture compliances

through the weaknesses using equations (23)–(28) and substitute them into the effec-

tive compliance matrix s [equation (15)]. Then the stiffness coefficients are found by

inverting s and dropping all quadratic and higher-order terms in the weaknesses:

c11≈ (λ+ 2µ) (1−∆N) , (31)

c12 = c13 ≈ λ (1−∆N) , (32)

c15≈ −∆NV

√
µ (λ+ 2µ) , (33)

c16≈ −∆NH

√
µ (λ+ 2µ) , (34)

c22 = c33 ≈ (λ+ 2µ)
[
1−∆N χ

2
]
, (35)

c23≈ λ (1−∆N χ) , (36)

c25 = c35 ≈ −∆NV

√
λµχ , (37)

c26 = c36 ≈ −∆NH

√
λµχ , (38)

c44 = µ , (39)

c55≈ µ (1−∆V ) , (40)

c56≈ −∆V H µ

√
µ

λ + 2µ
, (41)

c66≈ µ (1−∆H) , (42)

where χ is given by equation (17). Equations (31)–(42) provide the basis for devel-

oping linearized expressions for seismic signatures in the next section.

Special cases.—If the weaknesses ∆NH and ∆V H vanish, the effective medium

becomes monoclinic with the symmetry plane [x1, x3]. Bakulin et al. (2000c) showed

that this result, which follows from equations (34), (38), and (41), is exact (i.e., it is

not limited to small weaknesses).
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If the excess compliance matrix (4) is diagonal [see equation (6)] and

∆NV = ∆NH = ∆V H = 0 , (43)

the symmetry becomes orthorhombic. A more complicated model of this type com-

posed of parallel vertical fracture set in an anisotropic (VTI) background was exam-

ined by Schoenberg and Helbig (1997) and Bakulin et al. (2000b).

If, in addition to equation (43), we assume equal tangential compliances,

KV = KH or ∆V = ∆H , (44)

the fractures become rotationally invariant (Schoenberg and Sayers 1995). In this

case, the medium is transversely isotropic with the symmetry axis pointing in the

x1-direction (HTI). Seismic fracture-characterization methods for HTI media are dis-

cussed in Bakulin et al. (2000a).

Contribution of the off-diagonal weakness elements.—Equations (31)–(42)

clearly indicate that the weaknesses ∆NV , ∆NH and ∆V H have a first-order influ-

ence only on the off-diagonal stiffness components cij with either i or j equal to 5

or 6. According to the results of Grechka et al. (2000), this implies that the vertical

velocities and semi-major axes of pure-mode NMO ellipses from horizontal reflectors

should be close to those in orthorhombic media described by a diagonal compliance

matrix [equations (43)]. The non-zero weaknesses ∆NV , ∆NH , and ∆V H , however,

should cause a rotation of the NMO ellipses of different modes with respect to each

other, similar to that discussed by Grechka et al. (2000) for monoclinic media with

a horizontal symmetry plane. Below, we give analytic description of the velocities,

NMO ellipses and slowness surfaces for the fracture-induced triclinic medium.

SEISMIC VELOCITIES AND SLOWNESSES FOR GENERAL

FRACTURES

Here, we present linearized expressions for the vertical velocities and NMO ellipses

of P -, S1- and S2-waves and for the slowness surface of P -waves. The goal of employing
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approximations is to identify the seismic signatures needed to constrain different

fracture weaknesses. The closed-form expressions given here also yield the Frechét

derivatives of the seismic signatures with respect to the fracture parameters, which

can be used to guide nonlinear inversion based on the exact equations.

Phase velocities of P - and S-waves in the fracture plane [x2, x3]

First, we derive the phase velocities VP , VS1, and VS2 of P - and two split S-

waves for propagation in the vertical plane [x2, x3]. The phase velocity V of a plane

wave traveling in the direction n = [ 0, n2, n3 ] can be obtained from the Christoffel

equation,

det(cijkl nj nk − ρ V 2 δil) = 0 . (45)

Here cijkl is the stiffness tensor represented in matrix form in equation (16), and δil is

Kronecker’s symbolic delta. Summation from 1 to 3 over repeated indices is implied.

Taking into account the constraints (18)–(20), equation (45) in the [x2, x3]-plane

becomes

[
c44 − ρ V 2

] [(
c33 − ρ V 2

) (
c55 n

2
3 + 2 c56 n2 n3 + c66 n

2
2 − ρ V 2

)
−

−
(
c2

26 n
2
2 + 2 c25 c26 n2 n3 + c2

25 n
2
3

)]
= 0 . (46)

Hence, the equation for phase velocity reduces to the product of two terms. The first

term describes a pure SV -wave with the polarization vector ASV = [0, −n3, n2] that

lies in the [x2, x3]-plane perpendicular to the propagation vector n = [ 0, n2, n3 ].

The velocity of the SV -wave is independent of angle and equal to the shear-wave

velocity in the background:

VSV =

√
c44

ρ
=

√
µ

ρ
= VSb . (47)

Below we show that the velocity of the second shear wave in the [x2, x3]-plane is always

smaller than VSb, so the SV -wave represents the faster shear mode S1. The “isotropic”
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behavior of the S1-wave in the fracture plane follows from the constraints (18)–(20) on

the stiffness elements. In particular, the equalities c22 = c33 and c22 = c23+2 c44 would

imply vanishing anisotropic coefficients ε and δ in VTI media and in the symmetry

plane [x2, x3] of orthorhombic media (Tsvankin 1997b, 2001).

The velocities of the P -wave and second S-wave will be derived in the limit of

small weaknesses [see the inequalities (30)]. Using the approximations for the relevant

stiffness coefficients [equations (31)–(42)] in equation (46) and ignoring the terms

containing c2
25, c2

26, and c25 c26 (they are quadratic with respect to the weaknesses)

yields

VP ≈
√
c33

ρ
≈ VP b

(
1− ∆N

2
χ2
)
, (48)

VS2 ≈
√√√√c55 n

2
3 + 2 c56 n2 n3 + c66 n

2
2

ρ

≈ VSb

[
1− 1

2

(
∆H n

2
2 + 2

VSb
VP b

∆V H n2 n3 + ∆V n
2
3

)]
. (49)

Equation (48) shows that the P -wave velocity for small weaknesses does not change

with angle, but is different from the background velocity. The velocity variation (49)

of the second shear wave S2 resembles that of the SH-wave in transversely isotropic

media (the slowness surface of the SH-wave is elliptical). Since the weaknesses ∆V

and ∆H are non-negative and ∆2
V H ≤ ∆V ∆H [equation (29)], it can inferred from

equation (49) that VS2 ≤ VSb, or VS2 ≤ VSV . Therefore, the SV -wave is indeed the

faster shear mode in the [x2, x3]-plane:

VSV ≡ VS1 ≥ VS2 . (50)

The velocities of S1- and S2-waves at vertical incidence n = [0, 0, 1] are

VS1,0 = VSb (51)

and
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VS2,0 ≈ VSb

(
1− ∆V

2

)
. (52)

The approximate vertical velocities of P - and S2-waves depend on just two weaknesses

– ∆N and ∆V . As a result, all three vertical velocities have exactly the same form as

those for rotationally invariant fractures in an isotropic background (Schoenberg and

Sayers 1995, Bakulin et al. 2000a).

Equations (51) and (52) allow us to obtain the shear-wave splitting coefficient at

vertical incidence:

γ(S) ≡ V 2
S1,0 − V 2

S2, 0

2V 2
S2,0

≈ ∆V

2
, (53)

Again, the linearized expression (53) for the splitting coefficient coincides with that

for less general fracture sets (e.g., Schoenberg and Sayers 1995, Schoenberg and Helbig

1997, Bakulin et al. 2000a,b). A more accurate approximation for γ(S) (containing

quadratic terms in the weaknesses) reveals that the shear-wave splitting coefficient

depends on the off-diagonal weaknesses and, therefore, is influenced by the type of

fracture infill (Bakulin et al. 2000c). Note that for rotationally invariant penny-

shaped cracks with ∆NV = ∆NH = ∆V H = 0, γ(S) is approximately equal to the

crack density (e.g., Schoenberg and Douma 1988, Tsvankin 1997a).

It should be emphasized that while equations (52), (53), and inequality (50) were

derived under the assumption of small weaknesses, the above results for the fast mode

S1 (SV ) are exact. For any magnitude of the weaknesses, the polarization vector of

the S1-wave is confined to the fracture plane, and the velocity VS1 coincides with that

of the host rock. The same results were obtained by Bakulin et al. (2000a,b,c) for

models containing one set of rotationally invariant vertical fractures.

NMO ellipses from a horizontal reflector

Azimuthally varying normal-moveout (NMO) velocity of any pure-mode reflected

wave is described by a simple quadratic form (Grechka and Tsvankin 1998),
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V −2
nmo(α) = W11 cos2 α + 2W12 sinα cosα +W22 sin2 α , (54)

where α is the azimuth measured with respect to the x1-axis. Equation (54) can be

applied for arbitrarily anisotropic, heterogeneous media, provided reflection move-

out on conventional-spread common-midpoint (CMP) gathers is sufficiently close to

hyperbolic. If the CMP traveltime increases with offset for all azimuthal directions

(which is usually the case), Vnmo(α) traces out an ellipse in the horizontal plane.

For a homogeneous horizontal layer, the matrix W has the following form

(Grechka, Tsvankin and Cohen 1999):

W =
q

q2
,12 − q,11q,22




q,22 −q,12

−q,12 q,11


 , (55)

where q is the vertical component of the slowness vector p = [ p1, p2, q ] of the zero-

offset ray, and q,ij ≡ ∂2q(p1, p2)/(∂pi∂pj); the derivatives should be evaluated for

the zero-offset ray. For a horizontal reflector, the slowness vector of the zero-offset

reflection is vertical, i.e., p = [ 0, 0, q ].

The vertical slowness q and its derivatives with respect to the horizontal slow-

nesses can be found from the Christoffel equation (45) which allows us to express

the matrices W from equation (55) through the stiffness coefficients. [An approxi-

mate expression for the vertical slowness of P -waves is given in equation (65) below.]

Then the linearized stiffnesses from equations (31)–(42), along with the vertical slow-

nesses reciprocal to the vertical velocities (48), (51), and (52), are substituted into

equation (55). Further linearization of the matrices W in the fracture weaknesses

gives

W P ≈ 1

V 2
P b




1 + ∆N (1− 4 g2
b ) + 4 ∆V gb 2 ∆NH (1− 2 gb)

√
gb

2 ∆NH (1− 2 gb)
√
gb 1 + ∆N (1− 2 gb)

2



, (56)
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W S1 ≈ 1

V 2
S b




1 + ∆H −
∆2
V H

∆V

gb 0

0 1


 , (57)

W S2 ≈ 1

V 2
S b




1− 3 ∆V + 4 gb ∆N +
∆2
V H

∆V
gb 2 ∆NH

√
gb

2 ∆NH
√
gb 1 + ∆H


 ; (58)

gb ≡
(
VSb
VP b

)2

. (59)

The approximations for the vertical velocities and NMO ellipses of reflected waves

help to evaluate the feasibility of estimating the fracture weaknesses and the back-

ground parameters from seismic data. Several observations of particular importance

to the inversion procedure are listed below.

1. None of the linearized equations (48), (51), (52), (56)–(58) contains the weak-

ness ∆NV . Hence, the vertical and NMO velocities are not sensitive enough to

∆NV and cannot be used to estimate this parameter.

2. The weakness ∆V H appears only in the expressions for W S1
11 and W S2

11 as part of

the combination gb ∆2
V H/∆V . [This combination does not become infinite when

∆V → 0 because, according to the third inequality (29), ∆2
V H/∆V < ∆H .]

Even though the ratio ∆2
V H/∆V can be considered linear in the weakness ∆V H ,

the weighting factor gb is too small for ∆V H to be tightly constrained by the

shear-wave NMO ellipses.

3. The weighting factors for the weaknesses ∆N , ∆V , ∆H , and ∆NH in equa-

tions (56)–(58) range from 2
√
gb (2

√
gb ≈ 1 for a common vertical-velocity

ratio of 0.5) to 3. This suggests that the inversion of the vertical velocities and

NMO ellipses for those four weaknesses should be sufficiently stable. Below, we

support this conclusion by numerical tests.
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4. Although the matrix W S1 [equation (57)] was derived in the limit of small

weaknesses, the expressions for its elements W S1
12 and W S1

22 are exact:

W S1
12 = W S1

21 = 0 , (60)

and

W S1
22 =

1

V 2
Sb

=
1

V 2
S1

. (61)

This result follows from the fact that the velocity of the S1-wave does not

change with angle within the fracture plane [x2, x3]. The physical meaning of

equations (60) and (61) is clear: irrespective of the magnitude of the fracture

weaknesses, the semi-major axis of the S1-wave NMO ellipse is parallel to the

fracture strike, and the NMO velocity in the fracture plane is equal to the

vertical velocity of the S1-wave. Thus, if we can measure both the vertical

velocity VS1 and the NMO ellipse W S1 of the fast S-wave, equation (61) can

be used to verify whether or not the underlying physical model (i.e., a single

set of vertical fractures in an isotropic background) is correct. The presence of

either anisotropy in the background or a second fracture system will cause a

difference between the NMO velocity of the S1-wave in the fracture direction

and the vertical velocity VS1.

An example of the pure-mode NMO ellipses in a horizontal layer with fractures

which can be considered as “almost” dry [Λ1 = 0.12, Λ2 = 0.15, and Λ3 = 0.18,

see equation (13)] is given in Fig. 1. As predicted by the analytic results above,

the NMO ellipse of the S1-wave (thick solid line) is co-oriented with the fractures,

and its semi-major axis is parallel to the fracture strike (the azimuth α = 90◦).

While the semi-major axis of the P -wave NMO ellipse points approximately in the

same direction (α = 89◦), for the slow S2-wave the azimuth of the semi-major axis

α = −11◦, which is close to the normal to the fractures.
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The misalignment of the NMO ellipses proved its usefulness for anisotropic pa-

rameter estimation in monoclinic media (Grechka et al. 2000), and we expect it to

give information about the weakness ∆NH [equations (56) and (58)]. Note that the

NMO velocity of the slow (S2) shear wave in Fig. 1 is greater than that of the fast (S1)

wave for a wide range of azimuths (−30◦ < α < 30◦). Such a behavior of shear-wave

NMO ellipses is not necessarily indicative of a low anisotropic symmetry because it

was observed by Grechka, Theophanis and Tsvankin (1999) in a physical-modeling

experiment for the higher-symmetry orthorhombic (phenolic) material.

P -wave slowness surface

According to the above results, the vertical and NMO velocities of the three

pure-mode reflections do not constrain the weaknesses ∆NV and ∆V H . A potentially

useful source of information about ∆NV and ∆V H is multi-azimuth walkaway VSP

data which can be used to reconstruct a portion of the P -wave slowness surface

q ≡ q(p1, p2) ; (62)

q, as before, is the vertical slowness component, and p1 and p2 are the horizontal

slownesses. Our goal here is to examine the function q(p1, p2) and study the possibility

of inverting it for ∆NV and ∆V H .

If the fracture weaknesses [x2, x3]-plane are small, the differences

c∆ = c− cb (63)

between the effective and background stiffness coefficients [equations (16), (31)–(42)]

also become small quantities of the same order. A general approximation for q in

arbitrary anisotropic media, linearized in the perturbations of the stiffness elements,

has the form

q ≈ qb−
1

ρ

{
1

2 qb

(
p4

1 c
∆
11 + p4

2 c
∆
22 + q4

b c
∆
33

)
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+
1

qb

[
p2

1 p
2
2

(
c∆

12 + 2 c∆
66

)
+ p2

1 q
2
b

(
c∆

13 + 2 c∆
55

)
+ p2

2 q
2
b

(
c∆

23 + 2 c∆
44

) ]

+2 p1 p2

[
p1

(
c∆

14 + 2 c∆
56

)
+ p2

(
c∆

25 + 2 c∆
46

)
+ qb

(
c∆

36 + 2 c∆
45

) ]
(64)

+2 p1

(
p2

1 c
∆
15 + q2

b c
∆
35

)
+ 2 p2

(
p2

2 c
∆
24 + q2

b c
∆
34

)
+ 2

p1 p2

qb

(
p2

1 c
∆
16 + p2

2 c
∆
26

)}
.

Taking into account that for the model at hand c∆
14 = c∆

24 = c∆
34 = c∆

45 = c∆
46 = 0 and

using the linearized expressions (31)–(42) for the stiffnesses, we find

q ≈ qb +
1

qb

[
(ν − 2 gb)

2

2V 2
P b

∆N + 2 p2
1 V

2
S b

(
p2

2 ∆H + q2
b ∆V

) ]

(65)

+2 p1
√
gb

[
(ν − 2 gb)

(
∆NV +

p2

qb
∆NH

)
+ 2 p1 p2 V

2
S b ∆V H

]
.

Here

qb =

√
1

V 2
P b

− p2
1 − p2

2 (66)

is the vertical slowness in the isotropic host rock, and

ν ≡ 1− 2 p2
1 V

2
S b . (67)

Equation (65) explains the structure of the matrix W P (i.e., the P -wave NMO

ellipse) [equation (56)] that depends on the vertical slowness and its second derivatives

with respect to the horizontal slownesses p1 and p2 for p1 = p2 = 0. In particular,

note that the weaknesses ∆NV and ∆V H in equation (65) are multiplied with odd

powers of pi and, therefore, do not contribute to the matrix W P .

Clearly, the presence of ∆NV and ∆V H makes the P -wave slowness surface q(p1, p2)

asymmetric with respect to the vertical slowness direction p1 = p2 = 0 and also with

respect to the horizontal plane q = 0. This asymmetry, however, has no influence

on pure-mode reflection traveltimes, as long as the reflector is horizontal. Therefore,
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not only the NMO ellipse, but also long-spread P -wave moveout from horizontal

interfaces is independent of the weaknesses ∆NV and ∆V H . In contrast, multi-azimuth

walkaway VSP data can be used to reconstruct the slowness surface for both positive

and negative pi and possibly estimate ∆NV and ∆V H .

Figures 2 and 3 confirm that the slowness surface q(p1, p2) is not an even function

of p1 and p2. As follows from equation (65), the asymmetry with respect to the

slowness component p1 (governed by the weakness ∆NV ) is more pronounced than

that with respect to p2, especially for small horizontal slownesses. The shift of the

maximum of the curve q(p1) toward positive p1 in Fig. 3 is correctly predicted by the

linearized approximation (65).

FRACTURE CHARACTERIZATION

The analytic results above, obtained in the limit of small fracture weaknesses,

suggest that the vertical velocities and NMO ellipses of P -, S1- and S2-waves from a

horizontal reflector constrain all background and fracture parameters except for the

weaknesses ∆NV and ∆V H . Adding P -wave multi-azimuth walkaway VSP data can

help to estimate ∆NV and ∆V H using a near-vertical portion of the P -wave slowness

surface. Those preliminary conclusions are supported below by the actual nonlinear

inversion for the fracture and background parameters.

Inversion of the vertical velocities and NMO ellipses

Suppose the fractured layer is horizontal and sufficiently thick for measuring the

interval NMO ellipses of P -, S1- and S2-waves with acceptable accuracy. If pure

shear-wave reflections are not excited, their traveltimes can be reconstructed from

3-D multi-azimuth P -wave and converted-wave (PS1 and PS2) reflection data using

the methodology of Grechka and Tsvankin (2002). Application of 3-D semblance

velocity analysis (Grechka and Tsvankin 1999) then produces the NMO ellipses of

the pure modes S1 and S2.
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Velocity analysis of split shear waves should be preceded by Alford (1986) rotation

designed to identify the S-wave polarization directions and separate the fast and slow

modes. Since the fracture azimuth coincides with the polarization vector of the fast

wave S1, it can be found prior to the inversion procedure. We can refine the estimate

of the fracture direction and check the validity of our model after obtaining the S1-

wave NMO ellipse, whose semi-major axis should be aligned with the fractures. In

the tests below it is assumed that the fracture orientation has already been found,

and the velocity information should be inverted for the background parameters and

fracture weaknesses.

Figure 4 shows the inversion results for the model used in Figs. 1 and 2. The

input data include the vertical velocities of P -, S1- and S2-waves and their NMO

ellipses (i.e., the matrices W ) from a horizontal reflector. The error bars in Fig. 4

are caused by Gaussian noise added to the vertical velocities (with the standard

deviation 0.5%) and the matrices W (with the standard deviation 2%). The results

give a clear confirmation of our analytic predictions based on the assumption of small

weaknesses.1 The confidence intervals for the VS/VP ratio in the background and the

weaknesses ∆N , ∆V , ∆H and ∆NH do not exceed 0.03, which is not much higher

than the relative magnitude of the noise added to the NMO ellipses. In contrast,

the error bars for ∆NV and ∆V H reach ±0.2; evidently, those weaknesses are poorly

constrained by the data.

The above conclusions remain practically unchanged for an effective medium

formed by fluid-filled fractures (Fig. 5). The estimates of gb, ∆N , ∆V , ∆H and

∆NH are quite stable with respect to errors in the input data, while the inversion for

∆NV and ∆V H requires additional information.

1Note that the fracture weaknesses in this model are not small. Estimating the crack

density from the shear-wave splitting coefficient [equation (53)], as is usually done for penny-

shaped cracks, gives a value of 12.5%.
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Inversion of the P -wave slowness surface

Next, we examine whether or not the P -wave slowness surface provides sufficient

information for constraining the weaknesses ∆NV and ∆V H . The results shown in

Fig. 6 are obtained for the model from Fig. 4 by inverting for ∆NV and ∆V H the por-

tion of the P -wave slowness surface displayed in Fig. 2. The parameters gb, ∆N , ∆V ,

∆H and ∆NH are fixed at the values estimated from the vertical velocities and NMO

ellipses. The error bars for the weaknesses ∆NV and ∆V H in Fig. 6 are associated

with both the errors in the other model parameters (taken from Fig. 4) and Gaussian

noise with the standard deviation 2% added to the P -wave vertical slowness q(p1, p2).

Comparison of Figs. 6 and 4 shows that including the P -wave slowness surface

makes the inversion for ∆NV and ∆V H much more stable. Still, while the confidence

interval for ∆NV is similar to that for the diagonal weaknesses, the error bar for

∆V H is about twice as large. This result is not surprising because the near-vertical

segment of the P -wave slowness surface is more sensitive to ∆NV than it is to ∆V H

[see equation (65]. A similar reduction in the error bars for ∆NV and ∆V H after the

inversion of the P -wave slowness surface is observed for fluid-filled fractures (compare

Figs. 7 and 5).

It seems that the vertical and NMO velocities may not be needed at all for esti-

mating the fracture parameters because the P -wave slowness surface alone depends

on all six weaknesses [equation (65)]. Numerical tests indicate, however, that such

an inversion produces less stable results than those in Figs. 6 and 7, most likely be-

cause of the trade-offs between the model parameters and the limited range of the

horizontal slownesses p1 and p2 available in VSP surveys.

DISCUSSION AND CONCLUSIONS

A set of parallel vertical fractures of the most general (in terms of the linear-slip

theory) type embedded in otherwise isotropic host rock produces an effective medium

of triclinic symmetry. Whereas triclinic media depend on up to 21 stiffness coeffi-
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cients, such a model is fully defined by the fracture azimuth and just eight indepen-

dent parameters – the background coefficients λ and µ and six fracture compliances

(or weaknesses). The relative simplicity of this fracture-induced triclinic anisotropy

[see the stiffness matrix (16)] suggests that the background and fracture parameters

can be found from the effective stiffness elements. The two key issues in fracture char-

acterization, however, are how to establish the symmetry of the model and develop a

stable and efficient methodology for recovering the stiffnesses from seismic data.

Our analysis reveals several distinctive signatures of the effective medium which

may help to identify the underlying physical model. First, both the polarization

vector of the vertically traveling fast shear wave S1 and the semi-major axis of the

S1-wave NMO ellipse from a horizontal reflector are parallel to the fractures, while

the NMO ellipses of the P - and S2-waves have different orientations. Second, the

vertical velocity of the S1-wave and its NMO velocity in the fracture plane are equal

to each other and to the shear-wave velocity in the host rock. The S1-wave does

not have such properties in models with multiple fracture sets or anisotropy in the

background rock (Bakulin et al. 2000b,c).

To study the influence of fractures on seismic signatures, we expressed the ve-

locities, slownesses and NMO ellipses of P -waves and split S-waves directly through

the fracture weaknesses using the weak-anisotropy approximation (i.e., in the limit

of small weaknesses). The analytic results show that the fracture orientation, the

weaknesses ∆N , ∆V , ∆H and ∆NH , and the background velocities VP b and VSb can

be estimated from the vertical velocities of P -, S1- and S2-waves and their NMO

ellipses from a horizontal reflector. It should be emphasized that it is possible to

reconstruct the NMO ellipses of pure shear reflections from P - and PS-wave 3-D

multi-azimuth reflection data, so shear-wave excitation is not necessary (Grechka and

Tsvankin 2002). The two remaining weaknesses, ∆NV and ∆V H , can be obtained

by inverting the P -wave slowness surface measured in multi-azimuth walkaway VSP

surveys.
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The analytic results served as a guide to the inversion procedure based on the exact

equations. Numerical tests confirm that the combination of three different types of

seismic data (the vertical velocities and NMO ellipses of pure-mode reflections and the

P -wave slowness surface measured by VSP) constrains the fracture weaknesses needed

for a robust solution of the fracture-characterization problem. The uncertainties in

five inverted weaknesses (all except for ∆V H) are close to the errors introduced in

the input data. It is likely that a more accurate estimate of ∆V H can be obtained by

increasing the range of incidence angles (horizontal slownesses) used for computing

the P -wave slowness surface.

Given the importance of fracture networks for fluid flow in hydrocarbon reservoirs,

the methodology described here should find a number of applications in reservoir char-

acterization. We demonstrated that the inversion of multicomponent wide-azimuth

seismic data can be used to find the orientation and weaknesses (or compliances)

of vertical fractures with general rheology embedded in an isotropic host rock. The

six-element weakness matrix can be used to map “sweet spots” of intense fracturing

and to discriminate between dry and fluid-filled fracture systems.
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FIGURES

Figure 1. Pure-mode NMO ellipses computed from the exact equations (54) and (55)

for a homogeneous horizontal layer containing a vertical fracture system. The back-

ground parameters and fracture weaknesses are VP b = 2 km/s, VSb = 1 km/s,

ρ = 2 g/cm3, ∆N = 0.50, ∆V = ∆H = 0.25, ∆NV = ∆NH = ∆V H = 0.05. The

thin outside circle corresponds to a velocity of 2 km/s. The numbers around the

circle indicate the azimuth α (in degrees) with respect to the fracture normal (i.e.,

the azimuth of the fracture strike is α = 90◦).

Figure 2. Contours of the exact P -wave slowness surface q(p1, p2) for the fractured

model specified in Fig. 1.

Figure 3. Intersection of the slowness surface q(p1, p2) in Fig. 2 with the vertical

plane p2 = 0.

Figure 4. Inversion of the vertical velocities and NMO ellipses of P -, S1- and S2-

waves for the fracture and background parameters. The dots mark the correct values

(see the caption of Fig. 1), the error bars correspond to the 95% confidence intervals

in the estimated quantities. The relative error in the background P - and S-wave

velocities (not shown) is smaller than that in gb.

Figure 5. Same as Fig. 4 but for a model with the parameters VP b = 2 km/s,

VSb = 1 km/s, ρ = 2 g/cm3, ∆N = ∆NV = ∆V H = 0.03, ∆V = ∆H = 0.40, and

∆NH = 0.07. The eigenvalues Λ1 = 0.0, Λ2 = 0.33 and Λ3 = 0.34 of the compliance

matrix (4) correspond to fluid-filled fractures.

Figure 6. Inversion of the P -wave slowness surface (the range of the horizontal

slownesses is given in Fig. 2) for the weaknesses ∆NV and ∆V H . The other model
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parameters are fixed at the values shown in Fig. 4.

Figure 7. Same as Fig. 6 but for the model with fluid-filled fractures from Fig. 5.
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Figure 1. Pure-mode NMO ellipses computed from the exact equations (54) and (55)

for a homogeneous horizontal layer containing a vertical fracture system. The background

parameters and fracture weaknesses are VP b = 2 km/s, VSb = 1 km/s, ρ = 2 g/cm3,

∆N = 0.50, ∆V = ∆H = 0.25, ∆NV = ∆NH = ∆V H = 0.05. The thin outside circle

corresponds to a velocity of 2 km/s. The numbers around the circle indicate the azimuth

α (in degrees) with respect to the fracture normal (i.e., the azimuth of the fracture strike

is α = 90◦).
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Figure 2. Contours of the exact P -wave slowness surface q(p1, p2) for the fractured

model specified in Fig. 1.
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Figure 3. Intersection of the slowness surface q(p1, p2) in Fig. 2 with the vertical plane

p2 = 0.
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Figure 4. Inversion of the vertical velocities and NMO ellipses of P -, S1- and S2-waves

for the fracture and background parameters. The dots mark the correct values (see the

caption of Fig. 1), the error bars correspond to the 95% confidence intervals in the estimated

quantities. The relative error in the background P - and S-wave velocities (not shown) is

smaller than that in gb.
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Figure 5. Same as Fig. 4 but for a model with the parameters VP b = 2 km/s,

VSb = 1 km/s, ρ = 2 g/cm3, ∆N = ∆NV = ∆V H = 0.03, ∆V = ∆H = 0.40, and

∆NH = 0.07. The eigenvalues Λ1 = 0.0, Λ2 = 0.33 and Λ3 = 0.34 of the compliance

matrix (4) correspond to fluid-filled fractures.
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Figure 6. Inversion of the P -wave slowness surface (the range of the horizontal slow-

nesses is given in Fig. 2) for the weaknesses ∆NV and ∆V H . The other model parameters

are fixed at the values shown in Fig. 4.
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Figure 7. Same as Fig. 6 but for the model with fluid-filled fractures from Fig. 5.
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