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Feasibility of seismic characterization of multiple fracture sets

Vladimir Grechka∗ and Ilya Tsvankin‡

ABSTRACT

Estimation of parameters of multiple fracture sets is
often required for successful exploration and develop-
ment of naturally fractured reservoirs. The goal of this
paper is to determine the maximum number of fracture
sets of a certain rheological type which, in principle,
can be resolved from seismic data. The main underly-
ing assumption is that an estimate of the complete ef-
fective stiffness tensor has been obtained, for example,
from multiazimuth, multicomponent surface seismic and
vertical seismic profiling (VSP) data. Although typically
only a subset of the stiffness elements (or some of their
combinations) may be available, this study helps to estab-
lish the limits of seismic fracture-detection algorithms.

The number of uniquely resolvable fracture systems
depends on the anisotropy of the host rock and the rhe-
ology and orientation of the fractures. Somewhat surpris-
ingly, it is possible to characterize fewer vertical fracture
sets than dipping ones, even though in the latter case
the fracture dip has to be found from the data. For the
simplest, rotationally invariant fractures embedded in
either isotropic or transversely isotropic with a vertical
symmetry axis (VTI) host rock, the stiffness tensor can
be inverted for up to two vertical or four dipping frac-
ture sets. In contrast, only one fracture set of the most
general (microcorrugated) type, regardless of its orien-
tation, is constrained by the effective stiffnesses. These
results can be used to guide the development of seismic
fracture-characterization algorithms that should address
important practical issues of data acquisition, processing,
and inversion for particular fracture models.

INTRODUCTION

Seismic fracture characterization is critically important in
exploration and development of naturally fractured reservoirs
which often contain multiple, differently oriented fracture net-
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works (Grimm et al., 1999; Lynn et al., 1999; Pérez et al., 1999).
As an example, Figure 1 shows three open fracture sets de-
tected by a borehole imager at Weyburn field in Canada. Since
all three sets may play a significant role in the fluid flow through
the reservoir, it is essential to be able to resolve them using seis-
mic methods.

According to the linear-slip theory originally suggested by
Schoenberg (1980, 1983), fractures can be treated as displace-
ment discontinuities with the jump in displacement propor-
tional to the traction and excess fracture compliances. The com-
pliance matrix of the effective anisotropic medium containing
one or more systems of aligned fractures can be obtained by
adding the compliances of each fracture set to the background
compliances. Despite several limitations of the linear-slip the-
ory (such as neglecting the interaction between fracture sets),
its simplicity and generality make it particularly attractive for
seismic inversion.

Since fractured reservoirs are azimuthally anisotropic, their
comprehensive characterization requires acquisition of wide-
azimuth, multicomponent seismic data. Processing of reflected
waves produces such signatures as the NMO ellipses of differ-
ent modes, amplitude variation with offset and azimuth, and
shear-wave polarizations and splitting coefficients. Addition-
ally, walkaway vertical seismic profiling (VSP) data can be used
to estimate slowness surfaces and polarization vectors at re-
ceiver locations in boreholes. Available combinations of those
signatures can be inverted for the effective stiffness (or compli-
ance) coefficients of fractured rock. Then the linear-slip theory
can be employed to infer the fracture compliances and orien-
tations for a certain fracture model from the obtained stiff-
ness (compliance) matrix. This approach is discussed in detail
by Bakulin et al. (2000a,b,c, 2002), who develop practical seis-
mic fracture-characterization algorithms for typical anisotropic
models with one or two vertical fracture sets.

Estimation of fracture parameters from seismic data, how-
ever, cannot always be accomplished in a unique fashion. As
noted by Bakulin et al. (2000a), it is clear that the number of
fracture parameters for multiple fracture sets and low sym-
metries of the background rock can be much larger than 21,
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the maximum possible number of independent stiffness coef-
ficients describing wave propagation in the effective fractured
medium. Hence, there exists a finite subset of fractured models
(with a relatively small number of fracture sets) which can be
unambiguously characterized based on seismic data. In fact,
the class of such resolvable fractured models is limited not
just by the number of unknown fracture parameters. Elabo-
rate analysis of the stiffness tensor shows that certain com-
pliances of differently oriented fracture sets may contribute
to the same effective stiffness coefficient (e.g., Bakulin et al.,
2002). As a result, it is possible to resolve only particular com-
binations of those compliances rather than their individual
values.

The goal of this paper is to identify fracture sets whose
compliances and orientations can be determined (in princi-
ple) from seismic data. We examine three different rheological
types of fractures—rotationally invariant, diagonal [called or-
thotropic by Schoenberg and Helbig (1997)], and completely
general (Grechka et al., 2003; a description of all three types is
given below). The fractures are embedded in either isotropic
or transversely isotropic with a vertical symmetry axis (VTI)
host rock, with each fracture set arbitrarily oriented in 3D
space. Throughout the paper, we assume an ideal scenario
when all 21 stiffness coefficients have been estimated, for ex-
ample, from multiazimuth walkaway P- and S-wave VSP data
or from a combination of surface and VSP data (e.g., Bakulin
et al., 2000d; Horne and Leaney, 2000; Grechka et al., 2001;
Dewangan and Grechka, 2002). By computing the Frechèt
derivatives of the effective stiffness coefficients with respect
to the fracture and background parameters, we determine
how many different fracture sets of a certain type (along with
the unknown background parameters) are constrained by the
stiffness matrix. This analysis reveals the dependence of the
maximum number of resolvable fracture sets on the rheology

FIG. 1. Rose diagram of open-fracture azimuths obtained by a
borehole imager at Weyburn field (Canada). The plot is cour-
tesy of the Reservoir Characterization Project at Colorado
School of Mines.

and orientation of the fractures, as well as on the presence of
anisotropy in the background.

EFFECTIVE STIFFNESS OF FRACTURED ROCK

General relationships

According to the linear-slip theory (Schoenberg, 1980, 1983;
Nichols et al., 1989; Schoenberg and Muir, 1989; Schoenberg
and Sayers, 1995), the effective compliance matrix s of a
medium containing N sets of aligned fractures is given by

s = sb +
N∑

i=1

s(i )
f , (1)

where sb and s(i )
f are the 6× 6 symmetric compliance matri-

ces of the unfractured background and the i th fracture set,
respectively. By definition, the effective stiffness matrix c is the
inverse of the compliance matrix:

c = s−1 =
(

sb +
N∑

i=1

s(i )
f

)−1

=
(

c−1
b +

N∑
i=1

s(i )
f

)−1

; (2)

cb is the stiffness matrix of the host (background) rock. Note
that all inverse matrices used here exist because the back-
ground matrices cb and sb are positive definite and the com-
pliance matrices s(i )

f are nonnegative definite.
Here, we examine two types of the host rock: isotropic (de-

noted as ISO) and VTI. Using the Lamé parameters λ and µ,
the isotropic stiffness matrix can be written as

cISO
b =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


. (3)

For VTI media, the stiffness matrix has the form

cVTI
b =



c11b c12b c13b 0 0 0

c12b c11b c13b 0 0 0

c13b c13b c33b 0 0 0

0 0 0 c44b 0 0

0 0 0 0 c44b 0

0 0 0 0 0 c66b


, (4)

where c12b= c11b− 2c66b.
The matrices cISO

b and cVTI
b are written in a certain global

Cartesian coordinate frame {x1, x2, x3} used to describe both
the background and the embedded fractures. Whereas the ori-
entation of this frame can be arbitrary for isotropic host rock,
in the case of the VTI background the x3-axis is taken parallel
to the symmetry axis of the medium.

Excess fracture compliance

The excess compliance of a fracture set of the most general
rheological type with the normal in the x1-direction is described
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by the following 6× 6 symmetric matrix (Schoenberg, 1980;
Bakulin et al., 2000c; Grechka et al., 2001):

s
GN,x1
f =



KN 0 0 0 KN V KN H

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

KN V 0 0 0 KV KV H

KN H 0 0 0 KV H KH


. (5)

The diagonal elements of the matrix sGN,x1
f are responsible for

the normal (KN) and tagential (KV and KH ) compliances of
the fracture. The nonzero off-diagonal elements (KN V, KN H ,
and KV H) imply the existence of coupling between the nor-
mal (to the fracture plane) traction and the tangential jump in
displacement (displacement discontinuity is often called slip).
Likewise, tangential traction components for general fractures
are coupled to normal slips. This coupling may be caused by mi-
crocorrugation of fracture surfaces (Schoenberg and Douma,
1988; Grechka et al., 2001) or misalignment of the fracture
strike and the principal axes of stress (Nakagawa et al., 2000).

It can be shown (Berg et al., 1991) that any rotation of the
fracture plane around the x1-axis does not change the form
of the matrix sGN,x1

f . However, if the fracture normal deviates
from the x1-axis, the excess fracture compliance matrix sGN,n

f

may no longer contain any vanishing elements. We describe the
fracture normal n by its azimuth α and dip (or tilt) β (Figure 2):

n = {cosα cosβ, sinα cosβ,−sinβ}. (6)

Exact expressions for the elements of the matrix s f ≡ sGN,n
f

in terms of the angles α and β are given in Appendix A
[equations (A-4)–(A-24)]. Those equations are essential for
the problem at hand because they represent the most general
excess fracture compliance matrix allowed by the linear-slip
theory. The compliance matrices for fracture sets with any par-

FIG. 2. Orientation of a fracture set is defined by the azimuth α
and dip β of the unit vector n orthogonal to the fracture plane.

ticular rheology or orientation can be obtained as special cases
of the matrix s f . For instance, equations (2) of Schoenberg
et al. (1999) for vertical fractures with a diagonal compliance
matrix follow from equations (A-4)–(A-24) by simply setting
KN V = KN H = KV H = 0 and β = 0.

For fractures with a less complicated rheology, normal trac-
tions are decoupled from tangential slips, and tangential trac-
tions are decoupled from normal slips. Then, in a certain coordi-
nate frame the excess fracture compliance matrix (5) becomes
diagonal. Therefore, we call fractures of this type diagonal and
denote them with the superscript DI. It should be noted, how-
ever, that the compliance matrix sDI,x1

f of diagonal fractures ac-
quires a nonzero off-diagonal element sDI, x1

56 f after an arbitrary
rotation around the fracture normal (i.e., the x1-axis). Thus, the
compliance matrix of diagonal fractures is given by

s
DI,x1
f =



KN 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 KV KV H

0 0 0 0 KV H KH


. (7)

To make the matrix sDI, x1
f diagonal, the coordinate frame has

to be rotated by the angle ν = (1/2) tan−1 [2 KV H/(KV − KH ) ]
around the x1-axis. Equations (A-4)–(A-24) of Appendix A
yield the compliance matrix of diagonal fractures orthogonal
to the vector n [equation (6)] if one substitutes

KN V = KN H = 0. (8)

The simplest type of fractures, called rotationally invariant
(RI in our notation) by Schoenberg and Sayers (1995), corre-
sponds to diagonal fractures with equal tangential compliances
KV = KH (then KV H = 0):

s
RI,x1
f =



KN 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 KV 0

0 0 0 0 0 KV


. (9)

Any rotation around the fracture normal (i.e., around the x1-
axis) does not change the form of the matrix (9). Hence, the
compliance sRI,n

f of a rotationally invariant fracture set with
the normal n can be found from equations (A-4)–(A-24) after
the following substitutions:

KN V = KN H = KV H = 0 and KH = KV . (10)

Table 1 lists the number of independent physical model pa-
rameters for the two types of host rock (background) and three
types of fracture systems considered above. The dimension
of the composite parameter space for the effective model is
equal to the sum of the dimensions of the individual parameter
spaces. For example, the medium formed by two rotationally
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invariant fracture sets embedded in a purely isotropic back-
ground is described by a total of (2× 4)+ 2= 10 independent
parameters.

Since fracture characterization can be unique only if there
are no more than 21 physical parameters (the number of
stiffness coefficients for the most general, triclinic symme-
try), Table 1 helps to identify fractured models that cannot
(even in principle) be constrained by seismic data. For in-
stance, it is impossible to estimate the parameters of three
arbitrarily oriented diagonal fracture sets in a VTI host rock
because the total number of parameters in this case is (3× 6)+
5= 23 which is greater than 21.

FRECHÈT DERIVATIVES OF THE EFFECTIVE STIFFNESS
MATRIX

Although Table 1 provides useful insight into the fracture-
characterization problem, it only shows that for a certain class
of models the number of constraints is smaller than the num-
ber of unknowns, so the fracture and background parameters
cannot be resolved. However, even if the number of effec-
tive stiffness coefficients is larger than the number of unknown
physical parameters, the inversion for a particular parameter
can still be ambiguous.

To study the uniqueness of this nonlinear inverse problem,
we apply the singular value decomposition (SVD) to the matrix
of Frechèt derivatives of the effective stiffnesses c with respect
to the model parameters. The model parameter vector m can
be represented as

m ≡ b ∪ f (1) ∪ . . . ∪ f (N). (11)

Here, the vector b contains the independent background stiff-
ness coefficients cb; for instance, b = [b1, b2] = [λ,µ] when the
host rock is isotropic. Similarly, the vectors f (1), . . . , f (N) are
composed of the independent excess fracture compliances s f

[equations (5), (7), or (9)] and the orientation angles of each
fracture set. Note that even though the elements of cb and s f

are conventionally written in the form of 6× 6 matrices, we
include them in the single vector m to calculate the Frechèt
derivatives.

As discussed above, the necessary prerequisite for a unique
inversion is

dim m = dim b+
N∑

i=1

dim f (i ) ≤ 21, (12)

where dim v denotes the dimension of each vector v. The ma-
trix of Frechèt derivatives can be obtained by differentiating

Table 1. Number of independent parameters needed to de-
scribe isotropic (ISO) and VTI background media, as well as
rotationally invariant (RI), diagonal (DI), and general (GN)
fractures. The numbers for each fracture set include the inde-
pendent compliances and orientation angles αα and ββ.

Host rock Fracture set

ISO VTI RI DI GN
2 5 4 6 8

equation (2):

F ≡ ∂c
∂m
= ∂

∂m

(c−1
b +

N∑
i=1

s(i )
f

)−1


= −
(

c−1
b +

N∑
i=1

s(i )
f

)−1 (
−c−1

b

∂cb

∂m
c−1

b +
N∑

i=1

∂s(i )
f

∂m

)

×
(

c−1
b +

N∑
i=1

s(i )
f

)−1

. (13)

Applying equation (2) again yields

F = c

(
c−1

b

∂cb

∂m
c−1

b −
N∑

i=1

∂s(i )
f

∂m

)
c

= c

(
sb
∂cb

∂m
sb −

N∑
i=1

∂s(i )
f

∂m

)
c. (14)

Note that all derivatives in equation (14) are easy to find
in explicit form because the stiffness matrix cb is differenti-
ated only with respect to the stiffness coefficients of the host
rock [i.e., to the portion b of the vector m; see equation (11)],
while the compliance matrices s(i )

f are differentiated only with
respect to the fracture compliances and orientations (i.e., to
the portions f (i ) of m). Indeed, cb is independent of s(i )

f , so
the corresponding derivative ∂cb/∂f (i ) = 0 for any i ; likewise,
∂s(i )

f /∂b = 0 and, if i 6= j , ∂s(i )
f /∂f ( j ) = 0. Clearly, the Frechèt

matrix F , which has the dimension 21 × dim m, is sparse be-
cause so many derivatives in equation (14) vanish.

ANALYSIS OF THE FRECHÈT MATRIX

To answer the question whether it is possible to estimate the
parameter vector m from the measured stiffness coefficients c,
we perform SVD of the matrix F . According to the standard
SVD criterion, if the condition number κ (defined as the ratio
of the greatest singular value to the smallest one) ofF is finite,

κ ≡ condF <∞, (15)

the inversion for m is theoretically unique (for noise-free data).
Estimation of m becomes ambiguous (nonunique) if

κ = ∞. (16)

To identify the maximum possible number of fracture sets
which can be resolved using the effective stiffness coefficients,
we use the following simple approach. After choosing the sym-
metry of the host rock (isotropic or VTI), we keep adding frac-
ture sets of a certain type to the model until the condition
number becomes infinite. In the tests below, κ is considered in-
finite if it exceeds the numerical limit set in the Matlab software
(2210 ≈ 1.8× 10308).

Arbitrarily oriented (dipping) fractures

The analysis of the condition number for fracture sets with
arbitrary dip and azimuth is summarized in Table 2. The re-
sults show an intuitively obvious trend: the more complicated
the rheology of the fracture systems, the fewer such systems can
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be uniquely estimated from the effective stiffnesses. It is inter-
esting that for rotationally invariant and diagonal fractures, it
should be possible to invert for as many fracture sets as allowed
by the dimensionality constraint (12). In contrast, the stiffness
matrix can be inverted for the parameters of only one gen-
eral fracture set, even for the simplest isotropic background
rock.

Obviously, a finite value of the condition number indicates
the possibility of inverting a complete, 21-element stiffness ma-
trix for the medium parameters. Estimating the stiffness matrix
itself is a highly challenging problem that typically requires
acquisition and processing of multicomponent, multiazimuth
data. Despite a significant progress recently achieved in the in-
version for transversely isotropic (e.g., Bakulin et al., 2000a;
Horne and Leaney, 2000; Tsvankin and Grechka, 2000a,b;
Tsvankin, 2001; Grechka et al., 2002), orthorhombic (Grechka
et al., 1999; Bakulin et al., 2000b), monoclinic (Bakulin et al.,
2000c; Grechka et al., 2000) and even triclinic (Grechka et al.,
2003; Dewangan and Grechka, 2002) media, parameter esti-
mation for lower anisotropic symmetries requires further de-
velopment.

In particular, seismic signatures needed for characterization
of dipping fractures have seldom been discussed in the litera-
ture. An interesting possibility explored in the work of Angerer
et al. (2002) is to use reflection traveltimes of mode-converted
PS-waves in the detection of fracture dip. The presence of dip-
ping fractures in an otherwise laterally homogeneous, isotropic
background medium makes PS traveltime asymmetric with re-
spect to the source and receiver locations (i.e., the traveltime
does not remain the same if one interchanges the source and
receiver). Angerer et al. (2002) introduce a measure of this
traveltime asymmetry that can be inverted for the fracture dip
and apply their methodology to 3D multicomponent data from
the Emilio field in the Adriatic Sea.

A relatively simple model with a single set of dipping ro-
tationally invariant fractures in a VTI host rock (marked by
a diamond in Table 2) is analyzed by Grechka and Tsvankin
(2003). The effective medium in this case has monoclinic sym-
metry with a vertical symmetry plane that coincides with the
dip plane of the fractures. Grechka and Tsvankin (2003) show
that all fracture and background parameters can be obtained
from the vertical velocities and NMO ellipses of PP-waves and
two split SS-waves (SS traveltimes can be obtained from PP
and PS data; see Grechka and Tsvankin, 2002) reflected from
horizontal interfaces.

The analysis of the Frechèt derivatives indicates that it is
possible to resolve a total of four systems of rotationally in-
variant fractures in a VTI background. Such a model has the
maximum possible number of independent physical parame-
ters (21), all of which can be estimated from the stiffness matrix
of the effective triclinic medium.

Table 2. Maximum number of dipping fracture sets that can
be uniquely resolved from the error-free stiffness matrix. The
diamond marks the model studied by Grechka and Tsvankin
(2003).

RI DI GN

ISO 4 3 1
VTI 4¦ 2 1

Figure 3 shows a typical example of the relationship between
the condition number κ and the dip β of the fracture normal
(i.e.,β is the fracture tilt away from the vertical; see Figure 2) for
a model that includes three rotationally invariant fracture sets.
For a wide range of dips, the curve is almost flat with finite val-
ues of κ , which indicates that the inverse problem is well posed
(according to our criterion). Although the condition number
for the flat part of the curve is relatively large (102 <κ < 103),
our previous results (Bakulin et al., 2000a,b,c) indicate that pa-
rameter estimation for some models with κ of such magnitude
is not only theoretically possible but also sufficiently stable in
the presence of errors in the data.

Only for values of β extremely close to 0◦ (near-vertical frac-
tures) and 90◦ (near-horizontal fractures) does the condition
number rapidly go to infinity. The parameter-estimation prob-
lem for vertical fractures is discussed in detail in the next sec-
tion. Horizontal fractures are not typical for naturally fractured
reservoirs and will not be analyzed further.

Vertical fractures

Most existing papers on fracture characterization treat ver-
tical fracture networks, which are believed to be common for
naturally fractured reservoirs. To establish the maximum num-
ber of vertical fracture sets that can be characterized by seismic
data, we set the fracture tiltβ (Figure 2) to zero and assume that
it is known a priori. Although it seems that making the frac-
tures vertical should help in fracture detection because each set
is described by one fewer parameter, Table 3 proves this ex-
pectation to be wrong. For instance, for rotationally invariant
fractures in both isotropic and VTI background, the maximum
number of resolvable vertical sets is just two compared to four
dipping sets in Table 2.

FIG. 3. The influence of the dip β of the fracture normal on the
condition number κ of the Frechèt matrix. The model includes
three rotationally invariant fracture sets with the same β em-
bedded in isotropic rock with VP/VS= 2 (β = 0◦ corresponds
to vertical fractures). For the first set, K (1)

N = 0.11 (all compli-
ances are density normalized and given in s2/km2), K (1)

V = 0.18,
and α(1)= 0◦ (α is the azimuth of the fracture normal); for
the second set, K (2)

N = 0.15, K (2)
V = 0.13, and α(2) = 60◦; for the

third set, K (3)
N = 0.16, K (3)

V = 0.19, and α(3) = 120◦.
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To explain this puzzling result, note that making the frac-
tures vertical (β = 0) removes one degree of freedom in the
description of each fracture set. As a consequence, certain ex-
cess compliances of different fracture systems can map into the
same element of the effective stiffness matrix, which makes
estimation of these individual compliances impossible. An ex-
ample of this type of ambiguity is discussed by Bakulin et al.
(2002) for two orthogonal vertical fracture sets in a VTI host
rock (see below).

The simplest fractured model is that of vertical rotationally
invariant fractures in an otherwise isotropic host rock (one star
in Table 3). For a single fracture set, the effective medium is
transversely isotropic with a horizontal symmetry axis (e.g.,
Schoenberg and Sayers, 1995; Bakulin et al., 2000a). Fracture-
characterization algorithms for this model (see Bakulin et al.,
2000a) can be based entirely on surface reflection data. Two ver-
tical fracture systems making an arbitrary angle with each other
lower the effective medium symmetry to monoclinic (the only
symmetry plane of this model is horizontal). In the special cases
of orthogonal or identical fracture sets, the effective model is
orthorhombic. For both orthorhombic and monoclinic models
with two vertical fracture sets, the fracture and background
parameters can be estimated using the vertical velocities and
NMO ellipses of PP- and two split SS-waves (or converted PS-
waves) from horizontal interfaces (Bakulin et al., 2000b,c).

Two vertical, rotationally invariant fracture sets in a VTI
background (two stars in Table 3) also yield an effective mono-
clinic medium with a horizontal symmetry plane. Bakulin et al.
(2002) show that if the fracture sets are orthogonal (then the ef-
fective medium is orthorhombic), the fracture and background
parameters cannot be estimated in a unique fashion. Although
the number of the physical parameters in this model is equal
to the number of nonzero effective stiffnesses (nine), there
is an additional relation (constraint) between the stiffnesses
or Tsvankin’s (1997) anisotropic coefficients that causes the
ambiguity.

While this conclusion is correct, our study reveals that the
orthogonal orientation of the fracture systems is the only spe-
cial case for this model when the Frechèt matrixF degenerates.
As illustrated by Figure 4, the condition number κ rapidly in-
creases only when the angle 1α between the fractures is in a
narrow vicinity of 0◦ (parallel sets) or 90◦ (orthogonal sets).
Even if 1α deviates by just a few degrees from 90◦, the in-
version should be feasible, and the stiffnesses of the effective
monoclinic medium (this model is similar to the one described
by Bakulin et al., 2000c) can be used to constrain the fracture
and background parameters.

A single system of vertical diagonal fractures [equation (7)]
with KV H = 0 in a VTI host rock (one dagger in Table 3)
creates an effective orthorhombic medium (Schoenberg and
Helbig, 1997). Bakulin et al. (2000b) show that the fracture
compliances and orientations for this model can be estimated

Table 3. Maximum number of vertical fracture sets that can
be uniquely resolved from the error-free stiffness matrix. The
stars and daggers mark models studied in the literature (see
the main text).

RI DI GN

ISO 2? 2 1†

VTI 2?? 2† 1

from multiazimuth PP and PS (or SS) reflection data, although
one of the tangential compliances (KH ) remains unconstrained
if dipping events are not available. The inversion for the VTI
background parameters also requires knowledge of the verti-
cal velocities or reflector depth. Moreover, Table 3 indicates
that the parameter estimation is still possible for two sets of
diagonal fractures in both isotropic and VTI background. The
compliances of two fracture sets, however, cannot be deter-
mined without using multiazimuth VSP data.

Characterization of vertical fractures of the most general
type embedded in a purely isotropic host rock (dagger in
Table 3) has been studied by Grechka et al. (2003). Despite
the lowest possible (triclinic) symmetry of the effective model,
Grechka et al. (2003) prove that the fracture and background
parameters can be determined from a combination of reflec-
tion and borehole data that includes the vertical velocities and
NMO ellipses of PP- and SS-waves supplemented with P-wave
multiazimuth walkaway VSP data. According to Table 3, the
addition of another general fracture system makes the inver-
sion ambiguous, although the number of independent physical
parameters for either (isotropic or VTI) background still does
not exceed 21.

DISCUSSION AND CONCLUSIONS

Seismic estimation of the parameters of multiple fracture
sets embedded in otherwise isotropic or VTI background
(host) rock is an important practical issue in characteriza-
tion and development of naturally fractured reservoirs. Al-
though our approach can be applied to other types of host
rock (i.e., orthorhombic or monoclinic), such low background
symmetries can be caused only by the intrinsic anisotropy of
the rock-forming crystals. Since crystal anisotropy is known to
be atypical for relatively shallow strata important in seismic
exploration, we decided to exclude those more complicated
background models from consideration.

FIG. 4. The condition number κ for the model of two verti-
cal, rotationally invariant fracture sets in VTI host rock. 1α
denotes the difference between the fracture azimuths. The
compliances are K (1)

N = 0.15, K (1)
V = 0.14, K (2)

N = 0.13, and
K (2)

V = 0.12. The density-normalized background stiffnesses
(in km2/s2) are c11 = 3.90, c33 = 4.00, c44 = 1.00, c66 = 1.19,
and c13 = 1.71.
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The key assumption in our study was that all elements of
the effective stiffness matrix ci j can be recovered from seis-
mic data. By expressing the stiffnesses through the fracture
and background parameters and analyzing the condition num-
ber of the corresponding Frechèt matrix, we determined the
maximum number of fracture sets with a given rheology which
can be uniquely resolved under those ideal conditions. If the
fracture sets are tilted away from the vertical (i.e., the frac-
tures are dipping), it may be possible to characterize up to
four rotationally invariant fracture sets in either isotropic or
VTI background. Surprisingly, parameter estimation becomes
more ambiguous for vertical fractures which create simpler
(i.e., higher-symmetry) effective anisotropic models. Because
of the trade-offs between different fracture parameters which
contribute to the effective stiffnesses only in certain combina-
tions, no more than two vertical fracture sets can be resolved
from the matrix ci j . Even a small fracture dip, however, is suf-
ficient to sharply reduce the condition number and make the
inverse problem much better posed.

In practice, estimation of fracture parameters has to be based
on available (incomplete) data which usually cannot constrain
all stiffness coefficients individually. This is particularly true for
lower anisotropic symmetries (such as triclinic) described by
up to 21 independent stiffnesses. Inversion of field data may
yield only combinations of some stiffness elements, while in-
formation about other stiffnesses may be missing entirely. Such
an incomplete stiffness matrix may constrain fewer fracture
sets than indicated by our analysis (if any), so it may become
necessary to impose restrictions on the fracture rheology (e.g.,
assume rotationally invariant fractures) and orientation, or ig-
nore the background anisotropy. In principle, a feasibility study
similar to the one described here can be carried out for any
given set of available seismic data or effective stiffness coeffi-
cients.

Another reason for our results to be overly optimistic is that
we deem the inversion to be nonunique only when the condi-
tion number of the Frechèt matrix goes to infinity. Therefore,
the entries in Tables 2 and 3 formulated in a yes/no fashion
should be regarded with caution. For the vast transitional set
of models with relatively large condition numbers, the feasi-
bility of inversion depends on the magnitude of errors in the
data. As an example, according to the view taken in our paper,
two fracture sets making a small angle with each other may
still be resolvable if the corresponding condition number is fi-
nite (see Figure 4). However, this is not necessarily the case in
practice, when the effective stiffness coefficients are estimated
with an error. It is clear from both the physics and mathe-
matics of the linear-slip theory that if the angle between two
fracture sets is smaller than a certain value (which depends on
errors in ci j ), they appear as a single set with the total excess
compliance equal to the sum of the corresponding individual
compliances. This issue can be accounted for in our study by
using a more conservative condition (condF >M , where M is
a positive number that depends on data uncertainty) to define
nonuniqueness.

The main significance of this work, however, is in establishing
the limits of seismic fracture-characterization algorithms and
identifying the class of fractured models which merits further
investigation. Therefore, our results can provide a road map
for future applications of seismic methodologies to naturally
fractured reservoirs.
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APPENDIX A

COMPLIANCE MATRIX OF A GENERAL, ARBITRARILY ORIENTED FRACTURE SET

Here, we give exact expressions for the compliance matrix s f

of a set of general (e.g., microcorrugated) fractures with arbi-
trary orientation. The fracture planes are orthogonal to the unit
vector n defined by the azimuth α and dip β in the Cartesian
coordinate frame {x1, x2, x3} (Figure 2):

n = {cosα cosβ, sinα cosβ,−sinβ}. (A-1)

To obtain s f , we apply an appropriate rotation to the com-
pliance matrix sGN,x1

f [equation (5)] of a general fracture set
orthogonal to the x1-axis (nx1 = {1, 0, 0}). This operation in-
cludes two steps—the rotation Aβ by the angle β around the
x2-axis and another rotation Aα by the angle α around the x3-
axis—and is described by the matrix

A = AαAβ

=

cosα −sinα 0

sinα cosα 0

0 0 1


 cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ



=

cosα cosβ − sinα cosα sinβ

sinα cosβ cosα sinα sinβ

− sinβ 0 cosβ

 . (A-2)

The corresponding transformation of the compliance matrix
sGN,x1

f (known as the Bond transformation) has the form

s f = B s
GN,x1
f BT . (A-3)

An explicit expression for the 6× 6 matrix B in terms of the
elements of the matrix A is given in Winterstein (1990); BT de-
notes the transposed matrix. Evaluating equation (A-3) yields
the following 6× 6 symmetric matrix s f :

s11 f = cos2 α cos2 β
[
KH sin2 α − sin 2α(KN H cosβ

+ KV H sinβ)+ cos2 α
(
KN cos2 β

+ 2KN V sin 2β + KV sin2 β
)]
, (A-4)

s12 f = cosα cos2 β sinα
[

cos 2α(KN H cosβ

+ KV H sinβ)+ cosα sinα
(
KN cos2 β

+ 2KN V sin 2β + KV sin2 β − KH
)]
, (A-5)

s13 f = cosα cosβ sinβ
{

sinα(KV H cosβ − KN H sinβ)

− cosα [KN V cos 2β + (KV − KN) sinβ cosβ]
}
,

(A-6)

s14 f = cosα cosβ
{− cos2 α sinβ(KN H cosβ

+ KV H sinβ)+ sinα cosα[KN V cos 3β

+ sinβ(KH − KN + (KV − KN) cos 2β)]

+ sin2 α(KN H sin 2β − KV H cos 2β)
}
, (A-7)

s15 f = cosα cosβ
{

cosα cosβ sinα(3KN H sinβ

− KV H cosβ)+ cos2 α[KN V cos 3β

− sinβ(KN + (KN − KV ) cos 2β)]

+ sinβ
(
KV H sin 2α sinβ − KH sin2 α

)}
, (A-8)

s16 f = cosα cos2 β
[
KH sin3 α + cosα(1− 4 sin2 α)

× (KN H cosβ + KV H sinβ)+ cos2 α sinα

× (2KN cos2 β + 2KN V sin 2β + 2KV sin2 β− KH
)]
,

(A-9)

s22 f = cos2 β sin2 α
(
KH cos2 α + KN cos2 β sin2 α

+ KN H cosβ sin 2α + KV H sin 2α sinβ

+ KV sin2 α sin2 β + KN V sin2 α sin 2β
)
, (A-10)

s23 f = cosβ sinα sinβ
{

cosα(KN H sinβ − KV H cosβ)

− sinα[KN V cos 2β + (KV − KN) sinβ cosβ]
}
,

(A-11)

s24 f = cosβ sinα
4

{
4KN V cos 3β sin2 α− 4 sinβ

× [KH cos2 α + KN sin2 α + (KN − KV )

× sin2 α cos 2β
]+ sin 2α(3KV H cos 2β

− 3KN H sin 2β − KV H)
}
, (A-12)

s25 f = cosβ sinα
{

sinα sinβ[KH cosα + (KN H cosβ

+ KV H sinβ) sinα]− 2 cosα cosβ sinβ

× [KN H cosα + (KN cosβ + KN V sinβ) sinα]

+ cosα cos 2β[KV H cosα + (KN V cosβ

+ KV sinβ) sinα]
}
, (A-13)

s26 f = cos2 β sinα
{

sinα(4 cos2 α − 1)(KN H cosβ

+ KV H sinβ)− cosα sin2 α[KH − KN − KV

+ (KV − KN) cos 2β − 2KN V sin 2β]+ KH cos3 α
}
,

(A-14)
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s33 f = sin2 β
(
KV cos2 β − KN V sin 2β + KN sin2 β

)
,

(A-15)

s34 f = − sinβ
{
KV cos3 β sinα − 3KN V cos2 β sinα sinβ

+ sin2 β(KN H cosα + KN V sinα sinβ)

− cosβ sinβ[KV H cosα + (KV − 2KN)

× sinα sinβ]
}
, (A-16)

s35 f = − sinβ
{

sinα sinβ(KV H cosβ − KN H sinβ)

+ cosα
2

[(KV + KN) cosβ + (KV − KN) cos 3β

− 2KN V sin 3β]
}
, (A-17)

s36 f = sinβ cosβ{cos 2α(KN H sinβ − KV H cosβ)

− sin 2α[KN V cos 2β + (KV − KN) sinβ cosβ]},
(A-18)

s44 f = KV cos4 β sin2 α − 4KN V cos3 β sin2 α sinβ

+ 4 cosβ sinα sin2 β(KN H cosα− KN V sinα sinβ)

− 2 cos2 β sinα sinβ[KV H cosα + (KV − 2KN)

× sinα sinβ]+ sin2 β
[
KH cos2 α

+ (KV H sin 2α + KV sin2 α sinβ
)

sinβ
]
, (A-19)

s45 f = − cos 2α sinβ(KV H cos 2β − KN H sin 2β)

− sin 2α
4

[
KV + KN + (KV − KN) cos 4β

− 2KH sin2 β − 2KN V sin 4β
]
, (A-20)

s46 f = cosβ
{

cos 2α
[
KV H cos2 β sinα

− 2KN H cosβ sinα sinβ − sinβ(KH cosα

+ KV H sinα sinβ)
]− 2 cosα sinα

[
(2KN − KV )

× cos2 β sinα sinβ − KN V cos3 β sinα

+ cosβ sinβ(KN H cosα + 3KN V sinα sinβ)

+ sin2 β(KV H cosα + KV sinα sinβ)
]}
, (A-21)

s55 f = − sin 2α sin2 β(2KN H cosβ + KV H sinβ)

+ sinβ
(
KV H cos2 β sin 2α + KH sin2 α sinβ

)
+ cos2 α

2
[KV + KN + (KV − KN) cos 4β

− 2KN V sin 4β], (A-22)

s56 f = cosβ
{
KH cos 2α sinα sinβ + cos2 α sinα

× [2KN V cos 3β − 2(KN + (KN − KV ) cos 2β)

× sinβ]+ cosα
[
2 sin2 α sinβ(KN H cosβ

+ KV H sinβ)+ cos 2α(KV H cos 2β

− KN H sin 2β)
]}
, (A-23)

s66 f = cos2 β
{
KH (cos4 α + sin4 α)+ 2 sin 2α(KN H cosβ

+ KV H sinβ)− sin2 2α
2

[KH − KN − KV

+ (KV − KN) cos 2β − 2KN V sin 2β]
}
. (A-24)

Equations (A-4)–(A-24) are derived for the most general
fracture rheology described by six independent excess fracture
compliances. The matrices s f for diagonal [equation (7)] or ro-
tationally invariant [equation (9)] fractures can be obtained by
substituting the corresponding constraints (8) and (10).


