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Quartic moveout coefficient: 3D description and application to tilted TI media

Andres Pech∗, Ilya Tsvankin∗, and Vladimir Grechka‡

ABSTRACT

Nonhyperbolic (long-spread) moveout provides es-
sential information for a number of seismic inversion/
processing applications, particularly for parameter esti-
mation in anisotropic media. Here, we present an ana-
lytic expression for the quartic moveout coefficient A4

that controls the magnitude of nonhyperbolic move-
out of pure (nonconverted) modes. Our result takes
into account reflection-point dispersal on irregular in-
terfaces and is valid for arbitrarily anisotropic, heteroge-
neous media. All quantities needed to compute A4 can
be evaluated during the tracing of the zero-offset ray,
so long-spread moveout can be modeled without time-
consuming multioffset, multiazimuth ray tracing.

The general equation for the quartic coefficient is then
used to study azimuthally varying nonhyperbolic move-
out of P-waves in a dipping transversely isotropic (TI)
layer with an arbitrary tilt ν of the symmetry axis. Assum-
ing that the symmetry axis is confined to the dip plane,
we employed the weak-anisotropy approximation to an-
alyze the dependence of A4 on the anisotropic param-
eters. The linearized expression for A4 is proportional

to the anellipticity coefficient η≈ ε− δ and does not de-
pend on the individual values of the Thomsen parame-
ters. Typically, the magnitude of nonhyperbolic moveout
in tilted TI media above a dipping reflector is highest
near the reflector strike, whereas deviations from hyper-
bolic moveout on the dip line are substantial only for
mild dips.

The azimuthal variation of the quartic coefficient is
governed by the tilt ν and reflector dip φ and has a much
more complicated character than the NMO–velocity el-
lipse. For example, if the symmetry axis is vertical (VTI
media, ν= 0) and the dip φ > 30◦, A4 goes to zero on
two lines with different azimuths where it changes sign.
If the symmetry axis is orthogonal to the reflector (this
model is typical for thrust-and-fold belts), the strike-line
quartic coefficient is defined by the well-known expres-
sion for a horizontal VTI layer (i.e., it is independent of
dip), while the dip-line A4 is proportional to cos4 φ and
rapidly decreases with dip. The high sensitivity of the
quartic moveout coefficient to the parameter η and the
tilt of the symmetry axis can be exploited in the inver-
sion of wide-azimuth, long-spread P-wave data for the
parameters of TI media.

INTRODUCTION

In conventional seismic data processing, reflection moveout
of pure (nonconverted) modes is typically assumed to be hyper-
bolic, at least for spread lengths not exceeding reflector depth.
However, the presence of heterogeneity (either lateral or verti-
cal) or anisotropy causes deviations from hyperbolic moveout
which sometimes cannot be ignored, even for offsets-to-depth
ratios close to unity (e.g., Al-Dajani and Tsvankin, 1998). Insuf-
ficient understanding of nonhyperbolic moveout and practical
difficulties in working with long-spread data often force seis-
mic processors to mute out the nonhyperbolic portion of the
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moveout curve. Long-spread moveout, however, has proved
useful in a number of applications, such as anisotropic pa-
rameter estimation, suppression of multiples, and large-angle
amplitude variation with offset (AVO) analysis.

A detailed overview of existing results on nonhyperbolic
moveout analysis in anisotropic media can be found in
Tsvankin (2001). Most earlier work on the contribution of
anisotropy to long-spread moveout (e.g., Hake et al., 1984;
Byun and Corrigan, 1990; Muir et al., 1993) is restricted to
transversely isotropic (TI) models with a vertical symmetry axis
(VTI). Tsvankin and Thomsen (1994) developed a general non-
hyperbolic moveout equation based on the normal-moveout
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(NMO) velocity Vnmo and the quartic moveout coefficient A4

of the t2(x2)–function. In contrast to the conventional Taylor
series, the Tsvankin-Thomsen equation converges at offsets
approaching infinity, which ensures its high accuracy in the in-
termediate offset range (i.e., for offsets two to three times the
reflector depth) important in reflection seismology. A partic-
ularly convenient form of this equation for P-waves in VTI
media was suggested by Alkhalifah and Tsvankin (1995) (also
see Grechka and Tsvankin, 1998a), who showed that P-wave
reflection moveout, as well as other time-domain signatures, is
controlled by just the NMO velocity and the anellipticity co-
efficient η defined as η≡ (ε− δ)/(1+ 2δ), where ε and δ are
Thomsen’s (1986) parameters. The equation of Alkhalifah and
Tsvankin (1995) has been widely used for estimating the pa-
rameter η from P-wave long-spread traveltimes and building
vertically heterogeneous VTI models in the time domain (e.g.,
Alkhalifah, 1997; Toldi et al., 1999).

The behavior of nonhyperbolic moveout becomes much
more complicated if the medium is azimuthally anisotropic.
Al-Dajani and Tsvankin (1998) derived the quartic coefficient
A4 for transversely isotropic media with a horizontal symmetry
axis (HTI) and extended the Tsvankin-Thomsen equation to
layer-cake HTI media. A different method based on spherical
harmonics was employed by Sayers and Ebrom (1997) to de-
scribe long-spread P-wave moveout in a horizontal azimuthally
anisotropic layer. It should be emphasized that all the papers
listed above treat models with a horizontal symmetry plane,
in which the derivation of the coefficient A4 for pure modes
is simplified by the absence of reflection-point dispersal on
common-midpoint (CMP) gathers. Fomel and Grechka (2001)
developed a more general approach to the analytic description
of nonhyperbolic moveout that accounts for reflection-point
dispersal at dipping or curved interfaces. They also applied
their methodology to P-wave moveout in heterogeneous VTI
media.

Here, we introduce a general 3D expression for the quar-
tic moveout coefficient and use it to describe nonhyperbolic
moveout of P-waves for TI media with an arbitrary tilt of the
symmetry axis. Models with the symmetry axis tilted away
from the vertical [tilted TI (TTI) media] are typical for sed-
iments near the flanks of salt domes and fold-and-thrust belts
such as the Canadian Foothills (Tsvankin, 1997, 2001; Isaac
and Lawton, 1999). A symmetry axis tilted at an oblique angle
creates an azimuthally anisotropic model without a horizontal
symmetry plane, where nonhyperbolic moveout is influenced
by reflection-point dispersal. We present analytic expressions
for the quartic moveout term for both horizontal and dipping
reflectors and study the azimuthal dependence of nonhyper-
bolic moveout as a function of reflector dip and symmetry-axis
orientation.

ANALYTIC DESCRIPTION OF NONHYPERBOLIC
MOVEOUT

Reflection moveout of pure (nonconverted) modes is con-
ventionally approximated by a Taylor series expansion of the
squared traveltime t2, which is often truncated after the quartic
term (Taner and Koehler, 1969):

t2 = A0 + A2 X2 + A4 X4, (1)

where X is the source-receiver offset and

A0 = t2
0 , A2 = d(t2)

d(X2)

∣∣∣∣
X=0

,

A4 = 1
2

d

d(X2)

[
d(t2)
d(X2)

]∣∣∣∣
X=0

. (2)

Here, t0= t(0) is the zero-offset traveltime, and A2 is related
to the NMO velocity as A2=V−2

nmo. The first two terms in equa-
tion (1) represent the hyperbolic part of the moveout curve,
whereas the quartic coefficient, A4, describes nonhyperbolic
moveout.

Although the three-term series given by equation (1) pro-
vides a better approximation for long-spread moveout than the
conventional hyperbolic equation based on just Vnmo, it loses
accuracy for offsets reaching 1.5–2 times the reflector depth.
Tsvankin and Thomsen (1994) modified equation (1) by adding
a denominator to the quartic moveout term to make t(X) con-
vergent at X→∞:

t2 = A0 + A2 X2 + A4 X4

1+ AX2
, (3)

where the additional coefficient A depends on the horizontal
group velocity Vhor:

A = A4

V−2
hor − V−2

nmo
. (4)

Equation (3) was originally derived for VTI media, but its
generic form makes it suitable for anisotropic media of any
symmetry. For example, Al-Dajani and Tsvankin (1998) ob-
tained the exact parameter A4 for a horizontal HTI layer
and used it to extend equation (3) to azimuthally dependent
P-wave moveout in HTI media. Although equation (3) may be
inadequate for pure (nonconverted) S-waves (Tsvankin and
Thomsen, 1994), it provides a simple and numerically efficient
way for modeling the reflection traveltimes of P-waves and,
for relatively simple models, converted PS-waves (Tsvankin,
2001).

For horizontally layered anisotropic media above the reflec-
tor, the azimuthally varying NMO velocity (or A2) can be de-
termined from the generalized Dix formula of Grechka et al.
(1999) that operates with interval NMO ellipses. Grechka and
Tsvankin (2002) extended this Dix-type averaging equation to
anisotropic media with arbitrarily heterogeneous overburden.
The velocity Vhor used in equation (4) to define the coefficient
A is found by averaging the interval horizontal velocities
(Tsvankin, 2001).

Therefore, the key issue in applying equation (3) to model-
ing and inversion of reflection moveout is to derive the cor-
responding quartic moveout coefficient A4. The dependence
of A4 on the medium parameters also yields valuable analytic
insight into the properties of nonhyperbolic moveout.

GENERAL EXPRESSION FOR THE QUARTIC MOVEOUT
COEFFICIENT A4

Here, we present an exact expression for the quartic move-
out coefficient in arbitrarily anisotropic, heterogeneous me-
dia (Figure 1). The derivation (see Appendix A) is based on
expanding the two-way traveltime in a Taylor series in half-
offset and applying the so-called normal-incidence-point (NIP)
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theorem (Chernjak and Gritsenko, 1979; Hubral and Krey,
1980; Fomel and Grechka, 2001) that helps to relate the Taylor
series coefficients to the spatial derivatives of the traveltime
between the common midpoint and the reflector. The quartic
moveout coefficient A4 in its most general form can be written
as (Appendix A)

A4(L)

= 1
16

[
∂2τ

∂yk∂yl

∂2τ

∂ym∂yn
+ τ0

3
∂4τ

∂yk∂yl ∂ym∂yn

− τ0
∂3τ

∂yk∂yl ∂xi

(
∂2τ

∂xi ∂xj

)−1
∂3τ

∂xj ∂ym∂yn

]
LkLl LmLn,

(5)

where L= [cosα, sinα, 0] is a unit vector parallel to the CMP
line SR (Figure 1), y defines the CMP location, τ is the one-way
traveltime between the CMP and point x on the reflector, and τ0

is the one-way zero-offset time. The traveltime derivatives are
evaluated at the zero-offset reflection point x(0) corresponding
to the CMP location y. Summation over repeated indices from
one to two is implied.

Equation (5) was obtained without making specific assump-
tions about the anisotropy or heterogeneity of the model; also,
it is generally valid for reflectors of irregular shape. However,
our derivation assumes that the traveltime can be differenti-
ated with respect to the spatial coordinates near the common
midpoint, which is not the case, for example, in shadow zones.
The Taylor series expansion for reflection traveltime may also
break down for models with strong lateral velocity variations
(Grechka and Tsvankin, 1998b) and in the vicinity of caustics.
Nonetheless, for sufficiently smooth subsurface models com-
monly used in seismology, equation (5) is expected to give an
accurate representation of the quartic moveout coefficient and
the magnitude of nonhyperbolic moveout.

The form of the azimuthal dependence of the coefficient A4

in equation (5) is governed by the derivatives of the traveltime

FIG. 1. Reflection traveltimes from an irregular interface be-
neath an arbitrarily anisotropic, heterogeneous medium are
recorded in a multiazimuth CMP gather. The quartic moveout
coefficient A4 varies with the azimuth α of the CMP line. The
derivation of A4 in Appendix A accounts for reflection-point
dispersal.

τ with respect to the coordinates of the common midpoint y and
point x on the reflector. For relatively simple models, τ can be
expressed explicitly as a function of y and x, and the deriva-
tives in equation (5) can be evaluated in closed form (e.g., see
Appendix B). However, if the medium is laterally heteroge-
neous and/or has a low anisotropic symmetry, it is convenient
to express equation (5) in terms of the horizontal slowness
component of the zero-offset ray (Cohen, 1998; Grechka et al.,
1999). Most importantly, all derivatives in equation (5) can be
evaluated using quantities computed during the tracing of the
zero-offset ray.

QUARTIC COEFFICIENT IN A HOMOGENEOUS TTI LAYER

Although equation (5) is completely general, the analysis
hereafter is restricted to a homogeneous TTI layer overlaying
a plane dipping reflector (Figure 2). Furthermore, we assume
that the symmetry axis is confined to the dip plane of the re-
flector, which is typical for dipping TI formations (e.g., shales)
in fold-and-thrust belts (Isaac and Lawton, 1999) or near salt
domes (Tsvankin, 1997).

Hyperbolic reflection moveout and the dependence of NMO
velocity on the anisotropic parameters for the tilted TI model
was discussed by Tsvankin (1997, 2001) and Grechka and
Tsvankin (2000). Following Tsvankin (1997), we parameterize
the medium by the symmetry-direction velocities of P-waves
(VP0) and S-waves (VS0), and Thomsen’s anisotropic coeffi-
cients ε, δ, and γ specified with respect to the symmetry axis.
In other words, the parameters are defined by the VTI expres-
sions in the rotated coordinate system whose x3-axis is aligned
with the axis of symmetry. The tilt ν of the symmetry axis is
considered positive if the axis points towards the reflector (i.e.,
if the symmetry axis and the reflector normal deviate from the
vertical in the same direction).

Since the dip plane of the reflector contains the symme-
try axis of the overburden, it represents a vertical symmetry

FIG. 2. Reflected wave is recorded above a homogeneous TI
layer with a plane dipping lower boundary. The symmetry axis
(vector c) is contained in the dip plane [x1, z] but may be tilted
away from the vertical at an arbitrary angle ν. The reflector dip
is denoted by φ.
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plane for the whole model. Therefore, the dip and strike di-
rections of the reflector determine “the principal axes” of the
azimuthally-varying quartic moveout coefficient A4. Below, we
use equation (5) to study the functional form of A4 in a TTI
layer and its dependence on reflector dip and anisotropic pa-
rameters. While the exact equation for the quartic coefficient
is suitable for computational purposes, it does not provide an-
alytic insight into the dependence of A4 on the model parame-
ters. As demonstrated in Appendix B, significant simplification
can be achieved by applying the weak-anisotropy approxima-
tion and linearizing equation (5) in the anisotropic parameters.

Although the discussion of the weak-anisotropy results be-
low is formally limited to P-waves, any kinematic signature
of SV-waves (i.e., of the mode polarized in the plane formed
by the slowness vector and the symmetry axis) for weak
transverse isotropy can be obtained from the correspond-
ing P-wave signature by making the following substitutions:
VP0→VS0, δ→ σ , and ε→ 0 (Tsvankin, 2001). The parameter
σ ≡ (VP0/VS0)2(ε− δ) is fully responsible for SV-wave velocity
variations in weakly anisotropic TI media.

The linearized P-wave quartic moveout coefficient in a TTI
layer is given by (Appendix B)

ATTI
4 = − 2η

t2
P0V4

P0

F(α, φ, ν), (6)

where the function F is defined in equation (B-14), tP0 is the
two-way zero-offset P-wave traveltime, α is the azimuth of the
CMP line measured from the dip plane, and φ is the reflector
dip.

Figure 3 shows that the linearized equation (6) is sufficiently
close to the exact quartic coefficient for relatively small values

FIG. 3. Accuracy of the linearized equation for the coefficient
A4 in a tilted TI layer. The diamonds mark the magnitude of A4
obtained for each azimuth (numbers on the perimeter) by fit-
ting a quartic polynomial to the ray-traced t2(x2)–curve on the
spreadlength Xmax= 1.2z, where z= 1 km is the reflector depth.
The solid line is the weak-anisotropy approximation (6). The
model parameters are VP0= 1 km/s, ε= 0.1, δ= 0.025, ν= 80◦,
and φ= 0◦.

of the anisotropic parameters. The diamonds in Figure 3 cor-
respond to the coefficient A4 obtained by least-squares fitting
of a quartic polynomial to reflection traveltimes generated by
anisotropic ray tracing. Evidently, equation (6) (solid curve)
provides a good approximation to the best-fit values of A4

for the full range of azimuths. As demonstrated by Tsvankin
and Thomsen (1994), the weak-anisotropy approximation may
rapidly lose its accuracy with increasing parameters ε and δ.
However, equation (6) can still be used to study the azimuthal
signature of nonhyperbolic moveout in tilted TI media.

ANALYSIS OF THE APPROXIMATE COEFFICIENT A4

IN A TTI LAYER

It is clear from equation (6) that regardless of the tilt of
the symmetry axis and reflector dip, nonhyperbolic moveout
of P-waves for weak transverse isotropy is controlled by the
anellipticity coefficient η, rather than by ε and δ individually.
If the medium is elliptical (η= 0), A4 vanishes, and reflection
moveout becomes purely hyperbolic. This is a general result
valid for an elliptically anisotropic layer with any strength of
the anisotropy (Uren et al., 1990).

Dip component

Equations (6) and (B-14) can be used to find the coefficients
A4 in the dip and strike directions. On the dip line (α= 0◦),

ATTI
4,dip(φ) = − 2η

t2
P0V4

P0

cos3 φ cos(4ν − 3φ). (7)

Note that the quartic coefficient is proportional to cos3 φ, and
the magnitude of nonhyperbolic moveout has a rapidly de-
creasing trend with dip [the influence of the term cos(4ν− 3φ)
is discussed below]. Equation (7), however, becomes less accu-
rate for near-vertical reflectors because when φ is close to 90◦,
several terms involving anisotropic coefficients can no longer
be treated as small. Evaluation of the exact equation (5) shows
that unless the symmetry axis is vertical or horizontal, A4 for a
vertical reflector (φ= 90◦) is relatively small but usually does
not go to zero. Also, note that for large dips and certain rel-
ative positions of the symmetry axis and the reflector normal
(typically, if the symmetry axis is tilted toward the reflector),
reflection events may not exist at the surface at all (Tsvankin,
1997, 2001).

According to equation (7), the dip-line quartic move-
out coefficient (and, therefore, nonhyperbolic moveout as
a whole) vanishes if cos(4ν− 3φ)= 0, or (4ν− 3φ)= nπ/2
(n=±1,±3,±5, . . .). In the special case of VTI media (ν= 0),
the dip line A4 goes to zero for a dip of 30◦ (see a more detailed
discussion of the VTI model below).

For a fixed reflector dip, cos(4ν− 3φ) goes to zero for two
different values of the tilt ν between 0◦ and 90◦, which is in
good agreement with the computations of analytic (NMO)
and finite-spread moveout velocity in Tsvankin (1995, 2001).
Hence, the absence or low magnitude of dip-line nonhyper-
bolic moveout in nonelliptical (η 6= 0) TTI media may be used
to constrain the relationship between the reflector dip and the
tilt of the symmetry axis.

Equation (7) is written in terms of reflector dip that can-
not be estimated from surface reflection data unless the ve-
locity model is known. Therefore, for purposes of anisotropic
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parameter estimation, it is more convenient to rewrite the
quartic coefficient as a function of the horizontal component p
of the slowness vector associated with the zero-offset ray (e.g.,
Alkhalifah and Tsvankin, 1995). The horizontal slowness com-
ponent, or the ray parameter, determines the slope of reflec-
tions on zero-offset (or stacked) sections and can be measured
directly from surface data.

Substituting the ray parameter p= sinφ/V(φ) [V(φ) is the
phase velocity at the dip angle] into equation (7) yields

ATTI
4,dip(p) = 8η(1− y)3

t2
P0

[
VTTI

nmo(0)
]4

[(
y− 1

4

)√
1− y cos 4ν

+
(

y− 3
4

)√
y sin 4ν

]
, (8)

where

y ≡ p2[VTTI
nmo(0)

]2
, (9)

and VTTI
nmo(0) is the NMO velocity from a horizontal reflec-

tor. Hence, ATTI
4,dip expressed as a function of p depends on

three parameters: VTTI
nmo(0), η, and ν [or VTTI

nmo(0), (η cos 4ν), and
(η sin 4ν)].

In anisotropic parameter estimation, nonhyperbolic move-
out is used in combination with the NMO velocity (e.g., Alkhal-
ifah, 1997; Grechka and Tsvankin, 1998a). The dip-line P-wave
NMO velocity for weakly anisotropic TTI media was given by
Tsvankin (1997, 2001) as a function of the dip φ. Rewriting his
result through the ray parameter p yields

VTTI
nmo(p) = VTTI

nmo(0)√
1− y

[1+ η f cos 4ν − ηg sin 4ν], (10)

where

f ≡ y

1− y
(6− 9y+ 4y2) (11)

and

g ≡
√

y

1− y
(3− 7y+ 4y2). (12)

For vertical transverse isotropy (ν= 0), equation (10) reduces
to the expression derived by Alkhalifah and Tsvankin (1995).

Evidently, both the dip-line NMO velocity and the quartic
moveout coefficient are fully governed by the same parameter
combinations: VTTI

nmo(0), (η cos 4ν), and (η sin 4ν). In principle, it
may be possible to estimate those three combinations if Vnmo

and A4 are measured on the dip line for two different dips. The
high level of structural complexity in overthrust areas or near
salt domes may be sufficient for performing this type of inver-
sion. However, as discussed by Grechka and Tsvankin (1998a),
the trade-off between Vnmo and A4 typically leads to a substan-
tial uncertainty in the quartic coefficient. Also, according to
Tsvankin (1997, 2001), the weak-anisotropy approximation for
NMO velocity loses accuracy for the anisotropic coefficients
reaching 0.15–0.2, and the exact Vnmo becomes dependent on
the individual values of ε and δ.

Strike component

The strike component of the quartic moveout coefficient can
be obtained by substituting α= 90◦ into equation (6):

ATTI
4,strike(φ) = − 2η

t2
P0V4

P0

cos4(φ − ν). (13)

Both the dip and strike components of A4 are proportional
to η, but their dependencies on the reflector dip φ and the
symmetry-axis tilt ν are different. Equation (13) shows that
ATTI

4,strike goes to zero only if the symmetry axis is perpendicular
to the reflector normal (i.e., the symmetry axis is confined to
the reflecting plane). For example, if the reflector is vertical
(φ= 90◦), the strike-line quartic coefficient vanishes for VTI
media (ν= 0◦). Indeed, for such a model, reflected rays are
confined to the horizontal (isotropy) plane where velocity is
independent of angle, which makes reflection moveout for any
azimuth (not just in the strike direction) purely hyperbolic.

In general, the fact that the dip and strike components of A4

vanish for different combinations of ν and φ is favorable for a
potential inversion procedure. The dip and strike components
for some special cases of TI media are discussed in detail below.

Azimuthal dependence

Unlike NMO velocity that typically has a simple elliptical
azimuthal dependence (Grechka and Tsvankin, 1998b), the
variation of the quartic moveout coefficient with azimuth has a
much more complicated character. The nonlinear relationship
between A4 and the angles ν, φ, and α [equation (6)] may lead
to multiple zeros of the function A4(α) whose positions strongly
depend on both tilt ν and dip φ.

Figure 4 displays a polar plot with a typical azimuthal signa-
ture of A4 in TTI media. Note that for the model considered

FIG. 4. Magnitude of the azimuthally-varying quartic moveout
coefficient A4 computed from equation (6). The tilt of the sym-
metry axis ν= 40◦, the reflector dip φ= 15◦; the other parame-
ters change only the scale of the plot (intentionally undefined
here). The azimuth is measured from the dip plane marked by
the arrow.
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here the quartic coefficient and the moveout signature as a
whole are repeated in each quadrant since A4(α) is symmetric
with respect to both α= 0◦ and α= 90◦. Clearly, the quartic co-
efficient exhibits much more variability compared to the NMO
ellipse, with zeros at azimuths of ±38◦. The sign of the coeffi-
cient A4 changes from positive near the dip direction (for η> 0)
to negative for the lobe centered at the strike direction.

These results indicate that the azimuthal signature of
the quartic coefficient can provide useful information for
anisotropic parameter estimation. In particular, the azimuthal
directions of CMP lines with vanishing A4 depend on certain
combinations of ν and φ [equation (6)] and can be used to con-
strain the orientation of the symmetry axis. The variation of
the sign of A4 with azimuth is also sensitive to both ν and φ.

Special cases

Symmetry axis orthogonal to the reflector.—Because of the
complicated structure of equation (6), here we focus on several
special cases of practical importance. Models with the sym-
metry axis orthogonal to the reflector (φ= ν) are of partic-
ular importance for fold-and-thrust belts (e.g., the Canadian
Foothills) where the anisotropy is caused by dipping TI shale
layers. If φ= ν, the zero-offset ray is orthogonal to the reflector
(as in isotropic media), and some isotropic relationships remain
valid. For example, Tsvankin (1995, 2001) demonstrated that
for φ= ν, the dip-line NMO velocity obeys the conventional
(isotropic) cosine-of-dip dependence.

To study the azimuthal dependence of A4, we substituteφ= ν
into equation (6):

ATTI
4 (φ = ν) = − 2η

t2
P0V4

P0

(1− sin2 φ cos2 α)2. (14)

According to equation (14), the quartic coefficient goes to zero
when

| cosα| = 1
sinφ

. (15)

Condition (15) can be satisfied only on the dip line (α= 0◦) of a
vertical reflector (φ= 90◦, which implies a horizontal symmetry
axis). Away from the dip line, the coefficient A4 for a vertical
reflector varies as

ATTI
4 (φ = ν = 90◦) = − 2η

t2
P0V4

P0

sin4 α. (16)

If φ= ν, equations (7) and (13) [or equation (14)] yield the
following expressions for the dip and strike components of A4:

ATTI
4,dip(φ = ν) = − 2η

t2
P0V4

P0

cos4 φ, (17)

ATTI
4,strike(φ = ν) = − 2η

t2
P0V4

P0

. (18)

Equation (18), which shows that the strike-line component
of A4 is independent of dip (or tilt), is well known for
weakly anisotropic VTI media and a horizontal reflector,
when φ= ν= 0 (Tsvankin and Thomsen, 1994; Alkhalifah and
Tsvankin, 1995). ATTI

4,strike has the same value for an HTI layer
(ν= 90◦) and a vertical reflector (φ= 90◦). Since the strike line
for this HTI model is perpendicular to the symmetry axis and

reflected rays are horizontal, reflection moveout in the strike
direction is identical to that for a VTI layer above a horizontal
reflector.

Whereas the strike-line component of A4 does not change
with dip, the dip-line component is proportional to cos4 φ

[equation (17)]. Therefore, nonhyperbolic moveout for dip-
ping reflectors rapidly decays away from the strike direction,
even if the dip is relatively mild.

Dipping reflector beneath a VTI layer.—Setting the tilt
ν of the symmetry axis in equation (6) to zero yields the
weak-anisotropy approximation for the quartic coefficient in
VTI media:

AVTI
4 = −2η cos4 φ

t2
P0V4

P0

(1− 4 sin2 φ cos2 α). (19)

For a vertical reflector (φ= 90◦), A4 vanishes regardless of the
azimuth of the CMP line because reflected rays are confined to
the horizontal isotropy plane where velocity is constant and
moveout is purely hyperbolic. If the reflector is horizontal
(φ= 0◦), the model as a whole is azimuthally isotropic, and the
approximate A4 is determined by equation (18). A discussion
of the exact (i.e., not limited to weak anisotropy) quartic move-
out coefficient of both P- and S-waves in horizontally layered
VTI media can be found in Tsvankin (2001).

For a dipping reflector, the coefficient A4 vanishes in
azimuthal directions satisfying

| cosα| = 1
2 sinφ

. (20)

If the dip is smaller than 30◦, equation (20) does not have a
solution, and A4 has the same sign for the whole range of
azimuthal directions (Figure 5). For a dip of 30◦, A4 goes to

FIG. 5. Magnitude of the azimuthally-varying coefficient A4 for
a VTI layer computed from equation (19). Reflector dip is 15◦;
the dip direction is marked by the arrow. The parameter η is
positive, and A4 < 0 for all azimuths.
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zero only for a single azimuth α= 0◦ that corresponds to the
dip plane (Figure 6). This analytic result is in good agree-
ment with the numerical study of NMO velocity in Tsvankin
(1995, 2001) who showed that the P-wave dip-line move-
out approaches a hyperbola for reflector dips relatively close
to 30◦.

For 30◦<φ< 90◦, equation (20) yields two azimuths ±α for
which A4= 0. If the dip is equal to 45◦, the quartic coefficient
vanishes for α=±45◦ (Figure 7). The sign of A4 for η> 0 is
positive near the dip plane (−45◦<α< 45◦) and negative near
the strike direction.

FIG. 6. Same as Figure 6, but the reflector dip is 30◦.

FIG. 7. Same as Figure 6, but the reflector dip is 45◦.

Horizontal HTI layer.—For a horizontal HTI layer (ν= 90◦

and φ= 0◦), equation (6) reduces to

AHTI
4 = − 2η

t2
P0V4

P0

cos4 α. (21)

Equation (21) has the same azimuthal dependence (cos4 α)
as the exact expression for A4 obtained by Al-Dajani and
Tsvankin (1998). In the expression of Al-Dajani and Tsvankin
(1998), however, the term multiplied with cos4 α corresponds
to the exact quartic coefficient in the plane that contains the
symmetry axis (α= 0◦). The quartic coefficient vanishes in
the isotropy plane orthogonal to the symmetry axis (α= 90◦),
where reflection moveout is purely hyperbolic.

DISCUSSION AND CONCLUSIONS

We have presented an exact expression for the quartic move-
out coefficient A4 valid for arbitrarily anisotropic, heteroge-
neous media. Unlike most existing methods, our approach does
not require the model to have a horizontal symmetry plane and
accounts for reflection-point dispersal on dipping or irregular
interfaces. Substitution of the quartic coefficient into the gen-
eral moveout equation of Tsvankin and Thomsen (1994) yields
a good approximation for nonhyperbolic moveout of P-waves
and, in some cases, mode-converted PS-waves in anisotropic
media with moderate structural complexity.

It should be emphasized that all quantities needed to cal-
culate the azimuthally-varying quartic coefficient can be ob-
tained by tracing a single (zero-offset) ray. Computing the
zero-offset ray is also sufficient to construct the NMO ellipse
(i.e., the azimuthally-varying NMO velocity) responsible for
short-spread moveout (Grechka et al., 1999; Grechka and
Tsvankin, 2002). Therefore, our results can be used to model
azimuthally dependent long-spread moveout in a computation-
ally efficient way, without multioffset, multiazimuth ray tracing.

The general equation for A4 was applied to study the prop-
erties of P-wave nonhyperbolic moveout in TI media with a
tilted symmetry axis. The analysis was restricted to a homoge-
neous TI layer above a plane horizontal or dipping reflector;
it was assumed that the symmetry axis is confined to the dip
plane. To gain insight into the dependence of the quartic move-
out coefficient on the model parameters, we simplified the ex-
act expression by linearizing it in the anisotropic parameters.
The derived weak-anisotropy approximation is proportional
to the “anellipticity” parameter η≈ ε− δ, so the magnitude of
nonhyperbolic moveout increases as the model deviates from
elliptical (ε= δ).

Although the azimuthally varying coefficient A4(α) is a
rather complicated function of the reflector dip φ and the tilt ν
of the symmetry axis, the expressions for A4 in the “principal”
(dip and strike) directions are relatively simple. In particular,
the strike component of A4 depends solely on the difference
between the dip and tilt rather than on their individual values.
The magnitude of the dip component is proportional to cos3 φ,
so it rapidly decreases with φ. For a fixed dip, the dip-line
quartic coefficient vanishes for two values of the tilt between 0◦

and 90◦.
The azimuthal signature of the quartic coefficient is quite

different from the elliptical variation of NMO velocity. Al-
though the function A4(α) in tilted TI media is repeated in each
quadrant, the quartic coefficient may vanish in one or more
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azimuthal directions. For weak anisotropy, the azimuthal posi-
tions of the zeros of the quartic coefficients and the signs of A4

in different azimuthal sectors are governed by the tilt ν and re-
flector dipφ (η plays the role of a scaling coefficient). In realistic
heterogeneous media, nonhyperbolic moveout is also caused
by vertical and lateral velocity gradients, but anisotropy usu-
ally makes the most prominent contribution to A4 (Alkhalifah,
1997). Therefore, the character of the azimuthal dependence
of nonhyperbolic moveout over a medium containing a tilted
TI layer should be well described by the equations given in this
paper.

In the important special case of the symmetry axis orthogo-
nal to the reflector (φ= ν), the strike-line A4 is independent of
dip (and tilt) and has the same value as in VTI media, while the
dip-line A4 decreases with dip as cos4 φ. Therefore, the magni-
tude of nonhyperbolic moveout for φ= ν is significant mostly
for azimuthal directions close to the reflector strike.

For weakly anisotropic VTI media with typical positive η and
mild reflector dips (φ < 30◦), A4 is negative for all azimuths, and
its magnitude increases away from the dip direction. If the dip
is equal to 30◦, nonhyperbolic moveout in VTI media vanishes
on the dip line, which agrees with existing numerical results
(Tsvankin, 1995, 2001). If the dip exceeds 30◦, A4 goes to zero
in two different azimuths that do not coincide with either dip
or strike directions.

For purposes of anisotropic parameter estimation, moveout
equations have to be rewritten in terms of the ray parame-
ter p that can be determined from reflection slopes on zero-
offset (or stacked) sections. The dip components of both A4

and NMO velocity expressed through p depend on the same
three parameter combinations involving η, ν, and the NMO
velocity from a horizontal reflector. This result and the high
sensitivity of the azimuthal signature of A4 to the symmetry-
axis orientation indicate that P-wave nonhyperbolic moveout
may provide valuable information for velocity analysis in TTI
media. Although the trade-off between Vnmo and A4 makes
quantitative estimates of the quartic coefficient relatively un-
stable (Grechka and Tsvankin, 1998a), the azimuthal variation
of the sign of A4 and the directions of vanishing or small non-
hyperbolic moveout should be detectable from wide-azimuth
reflection data.
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APPENDIX A

DERIVATION OF THE QUARTIC MOVEOUT COEFFICIENT

Here, we develop a general analytic expression for the quar-
tic moveout coefficient A4 by extending the approach em-
ployed by Grechka and Tsvankin (2002) in their analysis of
NMO-velocity surfaces. Suppose the traveltime t of a certain
pure (nonconverted) reflected wave is recorded on a CMP line
parallel to the unit vector L. The coordinates of the source
S and receiver R are defined by the vectors y− h and y+ h
(Figure A-1), where y corresponds to the midpoint, and the
half-offset vector h can be represented as

h = hL = h[L1, L2, 0]. (A-1)

To obtain the quartic moveout coefficient, we expand the
two-way traveltime in a Taylor series with respect to the half-
offset h in the vicinity of the CMP location (h= 0):

t(h,L) = t0 + dt

dh

∣∣∣∣
h=0

h+ d2t

dh2

∣∣∣∣
h=0

h2

2!

+ d3t

dh3

∣∣∣∣
h=0

h3

3!
+ d4t

dh4

∣∣∣∣
h=0

h4

4!
+ · · · , (A-2)

where t0 is the zero-offset traveltime.
For a pure (nonconverted) reflection mode, t is an even

function of h because the traveltime remains the same when
the source and receiver are interchanged. Therefore, the odd
derivatives of t can be dropped from equation (A-2), which
leads to

t(h,L) = t0 + d2t

dh2

∣∣∣∣
h=0

h2

2!
+ d4t

dh4

∣∣∣∣
h=0

h4

4!
+ · · · (A-3)

To find the derivatives in equation (A-3), it is convenient
to treat reflection traveltime for a fixed CMP location y as
a function of h and the coordinates [x1, x2, z(x1, x2)] of the
reflection point x. Since the specular reflection point is de-
termined by the source and receiver positions, t = t(h, x(h)).

FIG. A-1. CMP line over an arbitrarily anisotropic, het-
erogeneous medium. The derivation of the quartic coeffi-
cient is based on expanding the two-way traveltime in the
half-offset h.

Using this representation of traveltime and taking into account
equation (A-1) yields

dt

dh
= ∂t

∂hk
Lk + ∂t

∂xk

dxk

dh
, (k = 1, 2). (A-4)

Here and below, summation over repeated indices from one to
two is implied. According to Fermat’s principle, for the specular
ray

∂t

∂xk
= 0, (A-5)

and equation (A-4) takes the form

dt

dh
= ∂t

∂hk
Lk. (A-6)

Evaluating the derivative of equation (A-6), we obtain

d2t

dh2
= ∂2t

∂hk∂hm
LkLm + ∂2t

∂hk∂xm

dxm

dh
Lk, (A-7)

where k= 1, 2 and m= 1, 2.
Differentiating equation (A-7) twice gives the following

expression for the fourth derivative of t :

d4t

dh4
= ∂4t

∂hp∂hk∂hm∂hn
L pLkLmLn

+ 3
∂3t

∂xn∂hk∂hm

∂2xn

∂h2
LkLm

+ ∂4t

∂xp∂hk∂hm∂hn

∂xp

∂h
LkLmLn

+ 2
∂4t

∂h∂xn∂hk∂hm

∂xn

∂h
LkLm

+ ∂4t

∂h∂xn∂xm∂hk

∂xn

∂h

∂xm

∂h
Lk

+ ∂3t

∂xn∂xm∂hk

∂

∂h

(
∂xn

∂h

∂xm

∂h

)
Lk

+ ∂2t

∂xm∂hk

∂3xm

∂h3
Lk

+ ∂3t

∂xn∂xm∂hk

∂xn

∂h

∂2xm

∂h2
Lk. (A-8)

Since not only the traveltime, but also the ray trajectory stays
the same when the source and receiver are interchanged, the
vector x is an even function of h:

x(y, hL) = x(y,−hL), (A-9)

and
dx
dh

∣∣∣∣
h=0
= d3x

dh3

∣∣∣∣
h=0
= 0. (A-10)
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Taking equation (A-10) into account, the derivative d4t/dh4

[equation (A-8)] at the CMP location (h= 0) becomes

d4t

dh4

∣∣∣∣
h=0
= ∂4t

∂hp∂hk∂hm∂hn

∣∣∣∣
h=0

L pLkLmLn

+ 3
∂3t

∂xn∂hk∂hm

∣∣∣∣
h=0

∂2xn

∂h2

∣∣∣∣
h=0

LkLm. (A-11)

Introducing the offset X (X= 2h) and the one-way travel-
time τ from the surface to the reflector and using the results of
Fomel and Grechka (2001), equation (A-11) can be rewritten
as

d4t

d X4

∣∣∣∣
X=0
= 1

8

[
∂4τ

∂yp∂yk∂ym∂yn
L pLkLmLn

+ 3
∂3τ

∂xn∂yk∂ym

(
∂2xn

∂h2

∣∣∣∣
h=0

)
LkLm

]
, (A-12)

where the derivatives with respect to xi and yi are evaluated at
the zero-offset reflection point and the CMP location (i.e., for
the zero-offset ray).

To represent the derivatives (∂2xn/∂h2) in terms of the trav-
eltime, we use Fermat’s principle expressed in the following
form (Grechka and Tsvankin, 2002):

∂t

∂xn
= 0, (n = 1, 2). (A-13)

Differentiating equation (A-13) twice with respect to h yields

∂3t

∂hp∂hk∂xn
L pLk + ∂2t

∂xk∂xn

(
∂2xk

∂h2

∣∣∣∣
h=0

)
= 0 (A-14)

and

∂3τ

∂yp∂yk∂xn
L pLk + ∂2τ

∂xk∂xn

(
∂2xk

∂h2

∣∣∣∣
h=0

)
= 0. (A-15)

As before, all derivatives in equations (A-14) and (A-15)
are computed for the zero-offset ray. Two equations (A-15)
corresponding to n= 1, 2 can be solved for the derivatives
(∂2x1/∂h2) and (∂2x2/∂h2) at h= 0. Substituting the result into

equation (A-12), we find

d4t

d X4

∣∣∣∣
X=0
= 1

8

[
∂4τ

∂yp∂yk∂ym∂yn
L pLkLmLn

− 3
∂3τ

∂xi ∂yk∂ym

(
∂2τ

∂xi ∂xj

)−1
∂3τ

∂xj ∂yp∂yn
LkLmL pLn

]
.

(A-16)

After the fourth traveltime derivative has been obtained, the
quartic moveout coefficient can be determined from the Taylor
series (A-3). Introducing the offset X= 2h into equation (A-3)
and squaring the first three terms of the series leads to

t2(X,L) ≈
(

t0 + d2t

d X2

∣∣∣∣
X=0

X2

2!
+ d4t

d X4

∣∣∣∣
X=0

X4

4!

)2

.

(A-17)

Keeping only the quartic and lower-order terms in X trans-
forms equation (A-17) into

t2(X,L) ≈ A0 + A2 X2 + A4 X4, (A-18)

where A0= t2
0 = 4τ 2

0 denotes the squared two-way zero-offset
traveltime (τ0 is the one-way zero-offset time),

A2 = t0
d2t

d X2

∣∣∣∣
X=0
= τ0

∂2τ

∂yk∂ym
LkLm = 1

V2
nmo(L)

(A-19)

is the quantity reciprocal to the squared NMO velocity on the
CMP line L (Grechka and Tsvankin, 1998b), and

A4 = τ0

6
d4t

d X4

∣∣∣∣
X=0
+ 1

4

(
d2t

d X2

∣∣∣∣
X=0

)2

. (A-20)

Substituting the derivatives d4t/d X4 from equation (A-16) and
d2t/d X2 from equation (A-19) into equation (A-20) yields the
final expression for the quartic coefficient:

A4 = 1
16

[
∂2τ

∂yk∂yl

∂2τ

∂ym∂yn
+ τ0

3
∂4τ

∂yk∂yl ∂ym∂yn

− τ0
∂3τ

∂yk∂yl ∂xi

(
∂2τ

∂xi ∂xj

)−1
∂3τ

∂xj ∂ym∂yn

]
LkLl LmLn.

(A-21)

APPENDIX B

WEAK-ANISOTROPY APPROXIMATION FOR THE P-WAVE QUARTIC MOVEOUT COEFFICIENT IN TTI MEDIA

We consider a homogeneous TI layer above a plane dipping
reflector and assume that the symmetry axis (unit vector c) lies
in the dip plane (Figure 2). Then the zero-offset ray should be
confined to the dip plane that represents a vertical plane of
symmetry for the whole model. Without losing generality, the
x1-axis can be aligned with the dip direction, so that the vector
c is given by

c = [sin ν, 0, cos ν]. (B-1)

The one-way traveltime τ between the common-midpoint y
and the reflector in a homogeneous medium is simply

τ (y1, y2, x1, x2) =
√

(x1 − y1)2 + (x2 − y2)2 + z2(x1, x2)
VG(y1, y2, x1, x2)

.

(B-2)

Here z(x1, x2) defines the reflecting plane, and VG(y1, y2, x1, x2)
is the group velocity. Using the weak-anisotropy approxima-
tions for the P-wave group velocity and group angle in TI media
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(e.g., Tsvankin, 2001), VG can be found as

VG = VP0

4
{4+m[−δ − ε − η sin2 a sin2 b

− η cos 2ν (2 cos2 b sin2 a+ sin2 a sin2 b− 1)

+ η cos b sin 2a sin 2ν]}, (B-3)

where

sin a ≡
√

(y1 − x1)2 + (y2 − x2)2√
(y1 − x1)2 + (y2 − x2)2 + z2

, (B-4)

cos a ≡ z√
(y1 − x1)2 + (y2 − x2)2 + z2

, (B-5)

sin b ≡ (y2 − x2)√
(y1 − x1)2 + (y2 − x2)2

, (B-6)

cos b ≡ (y1 − x1)√
(y1 − x1)2 + (y2 − x2)2

, (B-7)

m ≡ −1− sin2 a sin2 b− cos 2ν (−1

+ 2 sin2 a cos2 b+ sin2 a sin2 b)

+ cos b sin 2a sin 2ν. (B-8)

The parameters used in equation (B-3) are introduced in the
main text. Since the zero-offset traveltime needs to satisfy Fer-
mat’s principle, the minimum value of τ corresponds to the co-
ordinates x(0)

1 and x(0)
2 of the zero-offset reflection point. This

implies that the derivatives of τ (y1, y2, x1, x2) with respect to
x1 and x2 should vanish at the point [x(0)

1 , x(0)
2 ]:

∂τ (y1, y2, x1, x2)
∂x1

∣∣∣∣[
x

(0)
1 , x

(0)
2

] = 0, (B-9)

∂τ (y1, y2, x1, x2)
∂x2

∣∣∣∣[
x

(0)
1 , x

(0)
2

] = 0. (B-10)

Equations (B-9) and (B-10) can be used to relate the CMP
coordinates y1 and y2 to x(0)

1 and x(0)
2 . Substituting equations

(B-2) and (B-3) into equations (B-9) and (B-10) and dropping

quadratic and higher-order terms in the anisotropic coefficients
yields

y1 = z [ε − η cos 2(φ − ν)]
sin 2(φ − ν)

cos2 φ

+ z tanφ + x(0)
1 , (B-11)

y2 = x(0)
2 . (B-12)

Equation (B-12) confirms the obvious fact that the zero-offset
ray is confined to the dip plane x2= constant; if the CMP lies
on the x1-axis (Figure 2), x(0)

2 = y2= 0.
Using equations (B-2), (B-11), and (B-12) to evaluate

the derivatives in equation (A-21), we obtain the follow-
ing linearized approximation for the P-wave quartic moveout
coefficient:

ATTI
4 = − 2η

t2
P0V4

P0

F(α, φ, ν), (B-13)

where

F(α, φ, ν) = 1
128

[18− 24 cos 2α + 6 cos 4α

+ 8 cos(6φ − 4ν)+ 4 cos 2(α − 2ν)

− 4 cos(4α − 2ν)+ 24 cos 2(φ − 2ν)

+ 12 cos 2(α + φ − 2ν)+ 8 cos 2(α

+ 2φ − 2ν)+ 4 cos 2(α + 3φ − 2ν)

+ cos 4(α − ν)+ 32 cos 2(φ − ν)

+ 32 cos 4(φ − ν)− 16 cos 2(α + φ − ν)

+ 8 cos 2ν + 6 cos 4ν

+ cos 4(α + ν)− 4 cos 2(2α + ν)

− 16 cos 2(α − φ + ν)+ 4 cos 2(α + 2ν)

+ 4 cos 2(α − 3φ + 2ν)+ 8 cos 2(α

− 2φ + 2ν)+ 12 cos 2(α − φ + 2ν)].

(B-14)


