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ABSTRACT

Although it is believed that natural fracture sets predominantly have near-vertical

orientation, oblique stresses and some other mechanisms may tilt fractures away from

the vertical. Here, we examine an effective medium produced by a single system of

obliquely dipping rotationally invariant fractures embedded in a VTI (transversely

isotropic with a vertical symmetry axis) background rock. This model is monoclinic

with a vertical symmetry plane that coincides with the dip plane of the fractures.

Multicomponent seismic data acquired over such a medium possess several distinct

features that make it possible to estimate the fracture orientation. For example, the

vertically propagating fast shear wave (and the fast converted PS-wave) is typically

polarized in the direction of the fracture strike. The normal-moveout (NMO) ellipses

of horizontal reflection events are co-oriented with the dip and strike directions of the

fractures, which provides an independent estimate of the fracture azimuth. However,

the polarization vector of the slow shear wave at vertical incidence does not lie in the

horizontal plane – an unusual phenomenon that can be used to evaluate fracture dip.

Also, for oblique fractures the shear-wave splitting coefficient at vertical incidence

becomes dependent on fracture infill (saturation).

A complete medium-characterization procedure includes estimating the fracture

compliances and orientation (dip and azimuth), as well as the Thomsen parameters

of the VTI background. We demonstrate that both the fracture and background pa-

rameters can be obtained from multicomponent wide-azimuth data using the vertical

velocities and NMO ellipses of PP-waves and two split SS-waves (or the traveltimes

of PS-waves) reflected from horizontal interfaces. Numerical tests corroborate the

accuracy and stability of the inversion algorithm based on the exact expressions for

the vertical and NMO velocities.

Keywords.—fracture characterization, azimuthal anisotropy, multicomponent

seismic, wide-azimuth acquisition, moveout inversion.
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INTRODUCTION

Characterization of naturally fractured reservoirs using seismic data is a topic

of significant importance to both exploration and reservoir development. Although

there exists an extensive list of papers discussing various aspects of fracture detection

[many relevant references can be found in the special section of Geophysics edited by

Tsvankin and Lynn (1999)], very few of them address quantitative inversion of seismic

data for fracture parameters. An attempt to fill this gap for several common fracture

models was made by Bakulin, Grechka and Tsvankin (2000a,b,c; 2002), who devel-

oped fracture-characterization methods based on such reflection seismic signatures as

normal-moveout (NMO) ellipses and azimuthally varying AVO (amplitude variation

with offset) response of PP- and PS-waves. They showed that while seismic data

are generally insufficient to constrain microstructural parameters (the fracture shape,

density and the type of infill, equant background porosity, etc.), in many cases they

can be used to estimate the orientation and excess compliances of vertical fractures.

If additional information about the physical properties of the medium (in particular,

about the fluid flow between the fractures and background pores) is available, the

compliances can be further inverted for the fracture density and saturation.

While the papers listed above treat vertical fracture sets, there is growing evi-

dence that obliquely dipping fractures are not uncommon. For example, Angerer et

al. (2002) identified dipping fractures in the Emilio field (Adriatic Sea) and used the

asymmetry of the traveltimes of mode-converted PS-waves to estimate the fracture

parameters. Although the combination of fracture dip and background anisotropy

(e.g., transverse isotropy) may create rather complicated, low-symmetry anisotropic

models, Grechka and Tsvankin (2003) showed that the inversion of seismic data for the

fracture compliances and orientations actually becomes better posed if the fractures

are rotated away from the vertical.

Here, we generalize the results of Bakulin, Grechka and Tsvankin (2000b), who
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studied a set of vertical fractures in a VTI background rock (their model 1), by al-

lowing the fractures to be obliquely dipping. As in our previous work, the linear-slip

theory of Schoenberg (1980, 1983) is applied to build a link between the fracture prop-

erties and seismic signatures. Note that some deterministic models of penny-shaped

cracks/contacts (e.g., Hudson, Liu and Crampin 1996; Liu, Hudson and Pointer 2000)

were found to produce an effective medium identical to that of linear slip.

In contrast to the orthorhombic model of Bakulin, Grechka and Tsvankin (2000b),

dipping fractures in a VTI background lead to a lower (monoclinic) symmetry of the

fractured formation. We study seismic signatures for a wide range of fracture dips

and devise a fracture-characterization procedure that uses the vertical velocities and

NMO ellipses of reflections from a horizontal interface.

EFFECTIVE MEDIUM AND ANALYSIS OF SEISMIC SIGNATURES

Effective stiffness matrix

Let us consider a set of rotationally invariant dipping fractures with the strike

in the x2-direction embedded in a matrix of VTI symmetry (Figure 1). According

to the linear-slip theory (Schoenberg 1980, 1983; Schoenberg and Sayers 1995), the

effective compliance matrix s of a fractured medium can be found as the sum of the

background compliance sb and the fracture compliance sf :

s = sb + sf = c−1
b + sf , (1)

where s, sb and sf are 6× 6 symmetric non-negative-definite matrices, and cb is the

stiffness matrix of the VTI background.

The excess compliance matrix sx1
f of a set of vertical rotationally invariant frac-

tures orthogonal to the x1-direction can be found in Schoenberg and Sayers (1995)

or Bakulin, Grechka and Tsvankin [2000a, equation (6)]. The matrix sx1
f contains

3



just two independent elements – the normal fracture compliance KN and the tangen-

tial (shear) compliance KT . To obtain the compliance matrix for dipping fractures,

we apply the so-called Bond transformation to rotate the matrix sx1
f by the angle θ

around the x2-axis (i.e., around the strike direction):

sf ≡ sθf = N(θ) sx1
f N

T (θ) . (2)

N is a 6× 6 matrix is explicitly written in Winterstein (1990), and N T denotes the

transposed matrix.

Substituting equation (2) and the well-known expression for the VTI stiffness

matrix cb into equation (1) yields the stiffness matrix of the effective medium in the

following form:

c ≡ s−1 =




c11 c12 c13 0 c15 0

c12 c22 c23 0 c25 0

c13 c23 c33 0 c35 0

0 0 0 c44 0 c46

c15 c25 c35 0 c55 0

0 0 0 c46 0 c66




. (3)

The matrix c describes a monoclinic medium with a vertical symmetry plane that

coincides with the dip plane of the fracture set. This type of symmetry of the effective

medium can be predicted from the fact that the dip plane is the only vertical symmetry

plane of the fracture set while the VTI background is azimuthally isotropic.

Although the exact expressions for the stiffness coefficients (3) are lengthy, they

can be simplified by assuming small background anisotropy and fracture compliances.

If the VTI background is weakly anisotropic, the Thomsen (1986) anisotropic coeffi-

cients satisfy the inequalities

| εb | � 1 , | δb | � 1 and | γb | � 1 . (4)

It is convenient to replace the fracture compliances with dimensionless quantities
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called the normal (∆N) and tangential (∆T ) weaknesses (Schoenberg and Helbig

1997):

∆N ≡
KN c11b

1 +KN c11b

and ∆T ≡
KT c44b

1 + KT c44b

. (5)

If the density of fractures is small, the fracture weaknesses are much smaller than

unity:

∆N � 1 and ∆T � 1 . (6)

Concise approximations for cij, obtained by linearizing the exact equations in εb,

δb, γb, ∆N and ∆T , are given in Appendix A. They explicitly show, for example, that

the effective medium becomes orthorhombic [this model was examined by Schoenberg

and Helbig (1997) and Bakulin, Grechka and Tsvankin (2000b)] when the fractures are

vertical (i.e., when the rotation angle θ = 0, which leads to c15 = c25 = c35 = c46 = 0).

It is important to note that for the fracture azimuth fixed in the x1-direction,

the thirteen elements of the effective stiffness matrix c [equation (3)] depend on just

eight independent quantities (two fracture weaknesses, fracture dip and five VTI

background parameters). Thus, only eight stiffnesses are independent, and there

should be five relationships (constraints) between the elements of c. Although those

relationships are not apparent even in the limit of weak anisotropy and small frac-

ture weaknesses [equations (A-1)–(A-13)], the fact of their existence is important for

identifying the seismic signatures needed for unique fracture characterization.

Phase velocities and polarizations for vertical propagation

Phase velocities and plane-wave polarizations can be determined from the

Christoffel matrix Gik (e.g., Helbig 1994; Tsvankin 2001):

Gik = cijkl nj nl − ρ V 2 δik , (7)
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where cijkl are the components of the stiffness tensor corresponding to the matrix (3),

n is a unit vector normal to the wavefront (i.e., n is parallel to the phase-velocity

vector), ρ is the density, V is the phase velocity, and δil is Kronecker’s symbolic delta.

Summation over repeated indices from 1 to 3 is implied.

Using equation (3) for the effective stiffness tensor, the Christoffel matrix for

vertically propagating waves (n = [0, 0, 1]) can be written as

G =




c55 − ρ V 2 0 c35

0 c44 − ρ V 2 0

c35 0 c33 − ρ V 2



. (8)

According to equation (8), one of the vertically traveling S-waves is polarized in

the direction [0, 1, 0], which is parallel to the fracture strike. Since the polarization

and phase directions for this wave (we denote it S‖) are orthogonal, it is a pure shear

mode. The phase velocity of the S‖-wave is

VS‖ =

√
c44

ρ
. (9)

Equation (9) and the conclusion about the polarization direction of the S‖-wave are

valid for any strength of the anisotropy because they are derived from the exact

stiffness matrix rather than from the linearized expressions for its elements given in

Appendix A.

Using approximation (A-10) for the stiffness c44, the velocity VS‖ can be expressed

through the tangential fracture weakness ∆T and the deviation angle θ as

VS‖ = VS0b

(
1− ∆T

2
sin2 θ

)
, (10)

where VS0b is the shear-wave vertical velocity in the VTI background medium.

The phase velocities of the other two vertically propagating waves (P and S⊥) can

be found by solving the quadratic equation

det



c55 − ρ V 2 c35

c35 c33 − ρ V 2


 = 0 , (11)
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which follows directly from the Christoffel equation (8). Although both the P- and

S⊥-waves are polarized in the [x1, x3]-plane, the presence of the coefficient c35 causes a

rotation of their polarization vectors away from the vertical and horizontal directions,

respectively. This rotation, which does not exist for vertical fractures, depends on

the deviation angle θ and both weaknesses, ∆N and ∆T [equation (A-9)]. Hence, the

only pure mode (in terms of polarization) traveling in the vertical direction is S‖.

It is clear from equation (A-9) for c35 that in the linearized weak-anisotropy ap-

proximation the term c2
35 in equation (11) can be neglected, and the phase velocities

VP and VS⊥ can be obtained directly from equations (A-8) and (A-12):

VP =

√
c33

ρ
= VP0b

[
1− ∆N

2

(
1− 2 gb +

3 g2
b

2

)
−∆T

gb
4

+ ∆N gb (gb − 1) cos 2θ + (∆T − gb ∆N )
gb
4

cos 4θ

]
; (12)

VS⊥ =

√
c55

ρ
= VS0b

[
1− 1

4
(gb ∆N + ∆T ) +

1

4
(gb ∆N −∆T ) cos 4θ

]
. (13)

Here, VP0b is the P-wave vertical velocity in the VTI background medium, and

gb ≡
V 2
S0b

V 2
P0b

. (14)

In the special case of vertical fractures (θ = 0), equations (10) and (13) for the ve-

locities VS‖ and VS⊥ reduce to the expressions given by Bakulin, Grechka and Tsvankin

(2000b):

VS‖

∣∣∣
θ=0
≡ VS1 = VS0b , (15)

VS⊥|θ=0 ≡ VS2 = VS0b

(
1− ∆T

2

)
. (16)

Since 0 ≤ ∆T ≤ 1, equations (15) and (16) show that the velocity of the S-wave

polarized parallel to the fractures is higher than that of the S-wave polarized perpen-

dicular to the fractures (Bakulin, Grechka and Tsvankin 2000b). This fact explains
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the notation VS1 and VS2, where S1 and S2 denote the fast and slow shear waves,

respectively:

VS1 ≥ VS2 . (17)

Equations (10) and (13) can be used to determine if the inequality

VS‖ ≥ VS⊥ (18)

holds for non-vertical fractures (θ 6= 0). It is clear that inequality (18) is satisfied

within a certain range θ ≥ 0. To get an estimate of the maximum fracture deviation

angle θ for which VS‖ ≥ VS⊥, we substitute equations (10) and (13) into equation (18)

and rewrite it in the form

∆T

(
4 sin4 θ − 5 sin2 θ + 1

)
≥ − gb ∆N sin2 2θ . (19)

The right-hand side of inequality (19) is always non-positive. If the fractures are

fluid-filled and ∆N = 0 (Schoenberg and Sayers 1995), the right-hand side vanishes

for all angles θ. The left-hand side of inequality (19) goes to zero for

θ = 30◦ . (20)

Hence, for fluid-filled fractures VS‖ ≥ VS⊥ for the wide range 0◦ ≤ θ ≤ 30◦.

If the fractures are dry, the Schoenberg-Sayers (1995) criterion KN = KT yields

∆T ≈ gb ∆N [see equations (5) and (14)]. In this case, any θ from 0◦ to 90◦ satisfies

inequality (19), and VS‖ ≥ VS⊥ for the whole range of fracture dips.

Since the above comparisons between the shear-wave vertical velocities are based

on the assumption of weak background anisotropy and small fracture weaknesses, it

is useful to verify them using the exact equations. The shear-wave velocities in Fig. 2

are computed for a moderately anisotropic VTI background and a substantial value

of the crack density e ≈ ∆T/2 = 0.1. Evidently, approximation (20) for fluid-filled

fractures is quite accurate, and VS‖ > VS⊥ until the angle θ reaches a value close to 30◦
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(Fig. 2a). However, the weak-anisotropy prediction that for dry fractures VS‖ > VS⊥

does not hold for near-horizontal fracture orientation (Fig. 2b).

Comparison of Figs. 2a and 2b proves that, in agreement with approximation (10),

the exact velocity VS‖ depends just on the tangential weakness and is insensitive to

the fracture infill. In contrast, for obliquely dipping fractures the velocity of the

wave S⊥ [equation (13)] and the splitting coefficient at vertical incidence also depend

on the normal compliance ∆N that varies with fluid saturation (Figure 2). Note

that the exact splitting coefficient for oblique fractures should be computed from the

vertical group velocities, which are somewhat different from the corresponding phase

velocities.

NMO velocities from a horizontal reflector

To estimate the VTI background parameters and fracture weaknesses, the veloc-

ities and polarization directions of the vertically propagating waves can be supple-

mented by the NMO velocities of P- and S-waves from a horizontal interface. The

NMO velocity of any pure (non-converted) reflection mode can be expressed as the

following function of the azimuth α (Grechka and Tsvankin 1998; Tsvankin 2001):

V −2
nmo(α) = W11 cos2 α + 2W12 sinα cosα +W22 sin2 α . (21)

The elements of the 2× 2 symmetric matrix W can be expressed through the deriva-

tives of the horizontal components p1 and p2 of the slowness vector with respect

to the source or receiver coordinates. If reflection traveltime in common-midpoint

(CMP) geometry increases with offset for all azimuthal directions (the usual case),

the eigenvalues of W are positive, and equation (21) describes an ellipse.

For a homogeneous medium above the reflector, the matrix W takes the form

(Grechka, Tsvankin and Cohen 1999)
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W =
p1q,1 + p2q,2 − q
q,11q,22 − q2

,12




q,22 −q,12

−q,12 q,11


 , (22)

where q(p1, p2) is the vertical slowness, q,i ≡ ∂q/∂pi and q,ij ≡ ∂2q/∂pi∂pj. The

slowness components and their derivatives in equation (22) are evaluated for the

zero-offset ray.

If the reflector is horizontal, the zero-offset slowness vector is vertical (p1 = p2 = 0)

and equation (22) reduces to

W =
−q

q,11q,22 − q2
,12




q,22 −q,12

−q,12 q,11


 . (23)

For the effective monoclinic medium treated here, the dip plane of the fractures

represents a vertical symmetry plane of the model. (Note that there is only one

symmetry plane in monoclinic media.) Therefore, the axes of all three pure-mode

NMO ellipses should be parallel to the dip and strike directions of the fracture set

(Grechka and Tsvankin 1998). Indeed, since the x1-axis is aligned with the fracture

dip and the vertical symmetry plane, the derivative q,12 vanishes, and the matrix (23)

becomes diagonal:

W =



−q/q,11 0

0 −q/q,22


 . (24)

From equation (24) it follows that the NMO velocities in the dip and strike directions

are given by

V dip
nmo =

√
−q,11

q
and V str

nmo =

√
−q,22

q
. (25)

Next, we assume weak background anisotropy and small fracture weaknesses

[equations (4) and (6)] and derive linearized expressions for V dip
nmo and V str

nmo similar

to those obtained above for the phase velocities.

V dip
nmo,P = VP0b

[
1 + δb + ∆N

(
gb −

1

2
− 3 g2

b

4

)
− gb

4
∆T

10



−∆N gb (1− gb) cos 2θ − 7 gb
4

(∆T − gb ∆N ) cos 4θ

]
, (26)

V str
nmo,P = VP0b

[
1 + δb + ∆N

(
2 gb −

1

2
− 5 g2

b

4

)
− 3 gb

4
∆T

+gb (∆T − gb ∆N ) cos 2θ − gb
4

(∆T − gb ∆N ) cos 4θ

]
, (27)

V dip
nmo,S‖ = VS0b

(
1 + γb +

∆T

2
cos2 θ

)
, (28)

V str
nmo,S‖ = VS0b

(
1 +

εb − δb
gb

)
, (29)

V dip
nmo,S⊥ = VS0b

[
1 +

εb − δb
gb

− 1

4
(∆T + gb ∆N ) +

7

4
(∆T − gb ∆N) cos 4θ

]
, (30)

V str
nmo,S⊥ = VS0b

[
1 + γb +

1

4
(∆T − 3 gb ∆N )

−(∆T − gb ∆N) cos 2θ +
1

4
(∆T − gb ∆N) cos 4θ

]
. (31)

Equations (26) and (27) show that in the linear approximation the azimuthal

variation of the P-wave NMO velocity is independent of the background anisotropic

coefficients. Also, it is possible to combine the dip and strike components of the

shear-wave NMO ellipses [equations (28)–(31)] in such a way that the result depends

just on the fracture parameters and the background vertical velocities. Next, we

introduce the anisotropic coefficients χ
P

, χ̃
S

and χ̂
S

responsible for the influence of

azimuthal anisotropy on the NMO ellipses.

χ
P
≡ V dip

P,nmo − V str
P,nmo

= 2 gb VP0b cos2 θ [ 2 ∆T −∆N (1 + gb)− 3 (∆T − gb ∆N ) cos 2θ ] , (32)
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χ̃
S
≡ V dip

S‖, nmo − V str
S⊥,nmo = VS0b sin2 θ

[
gb ∆N −

∆T

2
+ (∆T − gb ∆N ) cos 2θ

]
, (33)

χ̂
S
≡ V dip

S⊥,nmo − V str
S‖,nmo = VS0b [−∆T − gb ∆N + 7 (∆T − gb ∆N ) cos 4θ ] . (34)

The structure of equations (32)–(34) is a direct consequence of the “addition rule”

for the background and fracture-related anisotropic coefficients described by Bakulin,

Grechka and Tsvankin (2000b). Since the NMO ellipses of pure-mode horizontal

events degenerate into circles in VTI media, the contribution of the background ani-

sotropy can be eliminated by subtracting the NMO velocities measured at different

azimuths.

According to equation (32), the semi-major axis of the P-wave NMO ellipse points

in the strike direction if the fractures do not strongly deviate from the vertical. Indeed,

χ
P

is always negative for dry fractures (∆T ≈ gb ∆N ), while for fluid-filled fractures

(∆N = 0) χ
P
< 0 if θ < 24◦. Thus, the azimuth of the semi-major axis of the

P-wave NMO ellipse can be used (in addition to the fast shear-wave polarization at

vertical incidence) to estimate the strike azimuth.

The vertical velocities [equations (10), (12), (13)] and the NMO coefficients χ
P

,

χ̃
S

and χ̂
S

[equations (32)–(34)] yield six equations which contain five unknowns:

the weaknesses ∆N and ∆T , the fracture deviation angle θ, and the background

velocities VP0b and VS0b. It is possible to prove that all five parameters can be resolved

individually from the linearized equations. The background anisotropic coefficients

εb, δb and γb can then be obtained from the semi-axes of the NMO ellipses of P-waves

and one of the S-waves. Below we study the stability of parameter estimation using

the exact expressions for the vertical velocities and NMO ellipses.
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FRACTURE CHARACTERIZATION

Here, we discuss the inversion of seismic data for the fracture and background

parameters of a horizontal fractured layer. The fast and slow shear waves at small

and moderate incidence angles can be separated, both in vertical seismic profiling

(VSP) and reflection surveys, using Alford (1986) rotation. If the vertical component

of the polarization vector of the slow S-wave at near-vertical incidence cannot be

neglected, the rotation has to be performed in three dimensions (i.e., using all three

displacement components). As demonstrated above, the polarization vector of the

fast shear wave at vertical incidence points in the direction of the fracture strike,

while the deviation of the slow S-wave polarization from the horizontal plane serves

as an indicator of obliquely dipping fractures.

If shear waves are not excited, they can be replaced in polarization analysis by

mode-converted (PS) waves using the algorithms described by Thomsen (1988) and

Thomsen, Tsvankin and Mueller (1999). The shear-wave traveltimes and, therefore,

NMO ellipses can also be obtained from mode conversions using 3-D multi-azimuth

PP and PS (PS1 and PS2) reflection data. This can be accomplished by applying the

methodology of Grechka and Tsvankin (2002) designed to reconstruct the traveltimes

of the pure SS-waves from PP and PS data prior to anisotropic velocity analysis.

Note that the absence of a horizontal symmetry plane makes converted-wave re-

flection traveltimes asymmetric with respect to zero offset; such asymmetry is usually

observed for dipping reflectors (e.g., Tsvankin and Grechka 2000). Fig. 3 displays a

typical traveltime curve of the PS⊥-wave (or PS2-wave) calculated along a line in the

dip direction of dry fractures. Since for this line the PS⊥-wave is polarized within

the incidence plane, it is a PSV-type mode. Although the reflector is horizontal, the

moveout in Fig. 3 is asymmetric with respect to zero offset because interchanging

the source and receiver yields a different converted-wave traveltime. This moveout

asymmetry of mode conversions was used by Angerer et al. (2002) to characterize
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dipping fractures. The algorithm of Grechka and Tsvankin (2002) generates the pure

SS-wave traveltimes, which are symmetric (i.e., reciprocal with respect to the source

and receiver positions) in common-midpoint geometry but still contain information

about the dip of the fracture set.

The pure-mode NMO ellipses (Fig. 4) can then be reconstructed by means of

3-D (azimuthal) velocity analysis of the PP and SS data (Grechka and Tsvankin

1999). After building the “effective” NMO ellipses for the reflections from the top

and bottom of the fractured layer, one can compute the interval NMO ellipses using

the generalized Dix equation (Grechka, Tsvankin and Cohen 1999). To constrain both

the fracture and background parameters for the model at hand, the NMO ellipses of

the PP-wave and two split SS-waves have to be supplemented with their vertical

velocities, which are assumed to be measured in a borehole.

The results in Fig. 5 are obtained for a set of dry fractures by applying nonlinear

inversion based on the exact equations for the vertical velocities and NMO ellipses

of all three pure modes. To verify the stability of the inversion algorithm, we added

Gaussian noise with the standard deviations of 0.5% and 2% to the vertical and NMO

velocities, respectively. The inversion was repeated 100 times for different realizations

of the noise to find the standard deviation of each parameter. The confidence intervals

for the background anisotropic coefficients and the tangential weakness ∆T are close

to 0.02, which indicates that the inversion is sufficiently stable.

For the normal weakness ∆N , however, the confidence interval is much more broad

(it reaches 0.06). The reason for the lower accuracy in estimating ∆N can be ex-

plained by the weak-anisotropy approximations discussed in the previous section.

Equations (10), (12), (13) and (26)–(31) show that most terms containing the weak-

ness ∆N have the multiplier gb, which is relatively small (close to 0.2 in our model).

As a result, the sensitivity of the velocities to ∆N is lower compared to that with

respect to other anisotropic parameters, and the errors in ∆N are greater.

Similar inversion results with somewhat smaller error bars were obtained for fluid-
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filled fractures (Fig. 6). Note that the confidence interval for the normal weakness

∆N includes a range of negative values, although ∆N is supposed to be positive. The

inversion produces those nonphysical values of ∆N when random errors added to the

data lead to velocities that do not correspond to any effective fractured medium.

DISCUSSION AND CONCLUSIONS

Literature on seismic fracture detection is largely devoted to characterization of

vertical fracture sets. Seismic data were proved to be sufficient for estimating the

orientations and compliances of vertical fractures for several typical effective aniso-

tropic models with symmetries ranging from HTI to monoclinic to triclinic (Bakulin,

Grechka and Tsvankin 2000a,b,c, 2002; Grechka, Bakulin and Tsvankin 2003). Sub-

surface fractures, however, may be rotated away from the vertical by strong oblique

stresses and other factors (Angerer et al. 2002). Here, we discussed the parameter-

estimation problem for an obliquely dipping set of rotationally invariant fractures

embedded in a VTI background rock. Such a medium is monoclinic and has a verti-

cal symmetry plane parallel to the dip direction of the fractures.

Seismic signatures for this model have some similarities with those for the higher-

symmetry (orthorhombic and HTI) media produced by vertical fractures in a VTI or

isotropic background (Bakulin, Grechka and Tsvankin 2000a,b). In particular, if the

fractures do not deviate far from the vertical (up to 25–30◦), both the polarization

vector of the vertically propagating fast S-wave and the semi-major axis of the P-wave

NMO ellipse for horizontal reflectors point in the direction of the fracture strike.

However, for obliquely dipping fractures the vertically traveling P-wave and slow

S-wave are not polarized in the vertical direction and horizontal plane, respectively.

Their polarization vectors are rotated within the dip plane of the fractures around the

fracture strike by an angle dependent on the fracture dip and weaknesses. Therefore,

a substantial vertical displacement component of the slow S-wave (or a horizontal
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component of the P-wave) at near-vertical incidence serves as a strong indicator of

oblique fractures. Also, as the fractures deviate from the vertical, the velocity of

the slow S-wave and the shear-wave splitting coefficient at vertical incidence become

sensitive to fracture infill (i.e., to fluid saturation).

Although the effective medium is monoclinic, it is described by just nine (rather

than 13) independent quantities: the VTI background parameters VP0b, VS0b, εb, δb,

and γb, the normal and tangential fracture weaknesses ∆N and ∆T , the fracture

azimuth, and the fracture deviation angle θ. This reduction in the number of in-

dependent medium parameters facilitates fracture characterization and evaluation of

the background anisotropy using seismic data. We showed that all independent pa-

rameters listed above can be estimated from the vertical velocities of P-waves and

two split S-waves and their NMO ellipses for horizontal reflectors. The method of

Grechka and Tsvankin (2002) can be applied prior to the anisotropic inversion to

replace the pure shear modes in the fracture-characterization procedure by the split

converted (PS) waves.

The feasibility of the parameter estimation was demonstrated using the

weak-anisotropy approximation and confirmed by numerical inversion of noise-

contaminated data based on the exact equations. Although the normal weakness

∆N is estimated with a somewhat lower accuracy than the rest of the anisotropic pa-

rameters, but the overall performance of the inversion algorithm is quite satisfactory.

The model treated here includes a single set of fractures, but the results of Grechka

and Tsvankin (2003) indicate that it may be possible to invert seismic data for the

parameters of up to four dipping, rotationally invariant fracture sets in a VTI back-

ground.
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APPENDIX A–WEAK-ANISOTROPY APPROXIMATION FOR THE

EFFECTIVE STIFFNESS COEFFICIENTS

Here we give simplified expressions for the elements of the effective stiffness ma-

trix (3) derived for models with weak background anisotropy [equation (4)] and small

fracture weaknesses [equation (6)]. Assuming that the background anisotropic co-

efficients and fracture weaknesses are of the same order, equations (1) and (2) can

be linearized in those quantities to obtain the following approximate stiffness coeffi-

cients (3):

c11 = ρ V 2
P0b

[
1 + 2 εb −∆N

(
1− 2 gb +

3 g2
b

2

)
− gb

2
∆T

+ 2 ∆N gb (1− gb) cos 2θ +
gb
2

(∆T − gb ∆N) cos 4θ

]
, (A-1)

c12 = ρ V 2
P0b

[
1− 2 gb + 2 εb − 4 gb γb −∆N

(
1− 3 gb + 2 g2

b

)

+ ∆N gb (2 gb − 1) cos 2θ

]
, (A-2)

c13 = ρ V 2
P0b

[
1− 2 gb + δb −∆N

(
1− 2 gb +

g2
b

2

)
+
gb
2

∆T

+
gb
2

(gb ∆N −∆T ) cos 4θ

]
, (A-3)

c15 = ρ V 2
S0b [ ∆N (1− gb) + (gb ∆N −∆T ) cos 2θ ] sin 2θ, (A-4)

c22 = ρ V 2
P0b

[
1 + 2 εb −∆N (1− 2 gb)

2
]
, (A-5)

c23 = ρ V 2
P0b [ 1− 2 gb + δb −∆N (1− 2 gb) (1− gb) + ∆N gb (1− 2 gb) cos 2θ ] , (A-6)

c25 = ρ V 2
S0b ∆N (1− 2 gb) sin 2θ, (A-7)
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c33 = ρ V 2
P0b

[
1−∆N

(
1− 2 gb +

3 g2
b

2

)
− gb

2
∆T

+ 2 ∆N gb (gb − 1) cos 2θ +
gb
2

(∆T − gb ∆N) cos 4θ

]
, (A-8)

c35 = ρ V 2
S0b [ ∆N (gb − 1) + (∆T − gb ∆N) cos 2θ ] sin 2θ, (A-9)

c44 = ρ V 2
S0b

(
1−∆T sin2 θ

)
, (A-10)

c46 = ρ V 2
S0b ∆T sin θ cos θ , (A-11)

c55 = ρ V 2
S0b

[
1− 1

2
(gb ∆N + ∆T ) +

1

2
(gb ∆N −∆T ) cos 4θ

]
, (A-12)

c66 = ρ V 2
S0b

(
1 + 2 γb −∆T cos2 θ

)
. (A-13)

The elements of the stiffness matrix cij not listed here are equal to zero. All quantities

used in equations (A-1)–(A-13) are defined in the main text.
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FIGURES

FIG. 1. Orientation of a fracture set is described by the dip θ and azimuth φ of

the vector n orthogonal to the fracture plane. Since the background is azimuthally

isotropic, we assume that the fracture strike is parallel to the x2-axis, and φ = 0.

FIG. 2. Exact vertical phase velocities of the shear waves polarized in the dip plane

(circles) and strike direction (triangles) of a fracture set tilted away from the vertical

by the angle θ. The background parameters are VP0b = 2 km/s, VS0b = 1 km/s,

εb = 0.3, δb = 0.2 and γb = 0.4. The fracture weaknesses are (a) ∆T = 0.2, ∆N = 0

(fluid-saturated cracks) and (b) ∆T = 0.2, ∆N = 0.8 (dry cracks).

FIG. 3. Traveltime of the reflected PS2(PS⊥)-wave computed in the dip direction

of a fracture set. The reflector is horizontal at a depth of 1 km. The background

parameters and fracture weaknesses are VP0b = 2.0 km/s, VS0b = 0.9 km/s, εb = 0.15,

δb = 0.05, γb = 0.05, ∆T = 0.1, ∆N = 0.4 (corresponds to dry fractures); the fractures

are tilted by θ = 25◦ from the vertical.

FIG. 4. Pure-mode NMO ellipses in a horizontal fractured layer with the param-

eters given in Fig. 3. The thin outer circle corresponds to a velocity of 2 km/s.

FIG. 5. Fracture and background parameters of the model with dry fractures from

Fig. 3 obtained by nonlinear inversion using the exact equations for the NMO ellipses

and vertical velocities. The dots mark the correct values; the error bars correspond

to the 95% confidence intervals. The confidence intervals for the parameters VP0b,

VS0b and θ (not shown) are 2.8%, 0.5% and 3.6◦, respectively.

FIG. 6. Same as Fig. 5 but for fluid-filled fractures (∆N = 0). The 95% confi-

dence intervals for the parameters VP0b, VS0b and θ (not shown) are 2.0%, 0.5% and
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1.7◦, respectively.
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FIG. 1. Orientation of a fracture set is described by the dip θ and azimuth φ of the

vector n orthogonal to the fracture plane. Since the background is azimuthally isotropic,

we assume that the fracture strike is parallel to the x2-axis, and φ = 0.
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FIG. 2. Exact vertical phase velocities of the shear waves polarized in the dip plane

(circles) and strike direction (triangles) of a fracture set tilted away from the vertical by the

angle θ. The background parameters are VP0b = 2 km/s, VS0b = 1 km/s, εb = 0.3, δb = 0.2

and γb = 0.4. The fracture weaknesses are (a) ∆T = 0.2, ∆N = 0 (fluid-saturated cracks)

and (b) ∆T = 0.2, ∆N = 0.8 (dry cracks).
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FIG. 3. Traveltime of the reflected PS2(PS⊥)-wave computed in the dip direction of a

fracture set. The reflector is horizontal at a depth of 1 km. The background parameters and

fracture weaknesses are VP0b = 2.0 km/s, VS0b = 0.9 km/s, εb = 0.15, δb = 0.05, γb = 0.05,

∆T = 0.1, ∆N = 0.4 (corresponds to dry fractures); the fractures are tilted by θ = 25◦ from

the vertical.

27



30

210

60

240

90

270

120

300

150

330

180 0

azimuth α

2S
S1

P

strike
fracture

plane

fracture
dip plane

FIG. 4. Pure-mode NMO ellipses in a horizontal fractured layer with the parameters

given in Fig. 3. The thin outer circle corresponds to a velocity of 2 km/s.
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FIG. 5. Fracture and background parameters of the model with dry fractures from

Fig. 3 obtained by nonlinear inversion using the exact equations for the NMO ellipses and

vertical velocities. The dots mark the correct values; the error bars correspond to the 95%

confidence intervals. The confidence intervals for the parameters VP0b, VS0b and θ (not

shown) are 2.8%, 0.5% and 3.6◦, respectively.
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FIG. 6. Same as Fig. 5 but for fluid-filled fractures (∆N = 0). The 95% confidence

intervals for the parameters VP0b, VS0b and θ (not shown) are 2.0%, 0.5% and 1.7◦, respec-

tively.
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