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Quartic moveout coefficient for a dipping azimuthally anisotropic layer

Andrés Pech∗ and Ilya Tsvankin‡

ABSTRACT

Interpretation and inversion of azimuthally varying non-
hyperbolic reflection moveout requires accounting for both
velocity anisotropy and subsurface structure. Here, our pre-
viously derived exact expression for the quartic moveout co-
efficient A4 is applied to P-wave reflections from a dipping
interface overlaid by a medium of orthorhombic symmetry.

The weak-anisotropy approximaton for the coefficient A4

in a homogeneous orthorhombic layer is controlled by the
anellipticity parameters η(1), η(2), and η(3), which are respon-
sible for time processing of P-wave data. If the dip plane
of the reflector coincides with the vertical symmetry plane
[x1, x3], A4 on the dip line is proportional to the in-plane
anellipticity parameter η(2) and always changes sign for a
dip of 30◦. The quartic coefficient on the strike line is a
function of all three η–parameters, but for mild dips it is
mostly governed by η(1)—the parameter defined in the in-
cidence plane [x2, x3]. Whereas the magnitude of the dip

line A4 typically becomes small for dips exceeding 45◦, the
nonhyperbolic moveout on the strike line may remain sig-
nificant even for subvertical reflectors. The character of the
azimuthal variation of A4 depends on reflector dip and is
quite sensitive to the signs and relative magnitudes of η(1),
η(2), and η(3). The analytic results and numerical modeling
show that the azimuthal pattern of the quartic coefficient
can contain multiple lobes, with one or two azimuths of
vanishing A4 between the dip and strike directions.

The strong influence of the anellipticity parameters on
the azimuthally varying coefficient A4 suggests that non-
hyperbolic moveout recorded in wide-azimuth surveys can
help to constrain the anisotropic velocity field. Since for
typical orthorhombic models that describe naturally frac-
tured reservoirs the parameters η(1,2,3) are closely related to
the fracture density and infill, the results of azimuthal non-
hyperbolic moveout analysis can also be used in reservoir
characterization.

INTRODUCTION

Although most seismic processing algorithms are limited to
analysis of hyperbolic moveout on moderate-length spreads,
acquisition of long-offset data becomes more and more com-
mon. In particular, the technology of ocean-bottom cable is
well suited for recording reflected waves for a wide range of
offsets and source–receiver azimuths. The azimuthal depen-
dence of nonhyperbolic reflection moveout at large offsets is
strongly influenced by elastic anisotropy (Sayers and Ebrom,
1997; Al-Dajani and Tsvankin, 1998) and, therefore, can help
in estimating the anisotropic parameters.

In velocity analysis of pure (unconverted) waves, nonhyper-
bolic moveout is conventionally described using the quartic
moveout coefficient A4. Tsvankin and Thomsen (1994) com-
bined the coefficient A4 with the NMO velocity Vnmo in a
nonhyperbolic moveout equation that proved to be accurate
for P-waves and converted PS-waves in horizontally layered
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anisotropic models (Tsvankin, 2001; Al-Dajani and Tsvankin,
1998). However, while the formalism for modeling NMO veloc-
ity in arbitrarily anisotropic, heterogeneous media has been de-
veloped by Grechka and Tsvankin (1998b, 2002) and Grechka,
Tsvankin, and Cohen (1999), derivation of the quartic move-
out coefficient proved to be much more involved because A4

depends on reflection-point dispersal.
In our previous paper (Pech et al., 2003; hereafter referred

to as Paper I), we presented a general equation for the co-
efficient A4 of pure (unconverted) modes that takes into ac-
count reflection-point dispersal on irregular (but sufficiently
smooth) interfaces and is valid for arbitrary anisotropy and
heterogeneity. It should be emphasized that this result can be
used to model long-spread moveout without time-consuming
multioffset, multiazimuth ray tracing because all needed quan-
titites can be computed during the tracing of the zero-offset ray.
Note, however, that A4 depends on fourth-order derivatives of
traveltime, which implies that the smoothness of the model
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700 Pech and Tsvankin

should be higher than that required in conventional second-
order dynamic ray tracing.

For horizontally layered transversely isotropic (TI) models
with a vertical (VTI) and horizontal (HTI) symmetry axis, the
equation for A4 from Paper I reduces to the known expressions
given in Tsvankin (2001) and Al-Dajani and Tsvankin (1998).
To evaluate the influence of anisotropy on the quartic moveout
coefficient for models with reflection-point dispersal, in Paper I
we study the behavior of A4 in a dipping TI layer with a tilted
symmetry axis. For weak anisotropy, the coefficient A4 and the
magnitude of nonhyperbolic moveout for P-waves in TI media
are proportional to the anellipticity parameter η, defined as
(Alkhalifah and Tsvankin, 1995)

η ≡ ε − δ
1+ 2δ

. (1)

Paper I shows that the azimuthal variation of A4 is highly sen-
sitive to the tilt of the symmetry axis and reflector dip.

Here, we use the expression for the coefficient A4 given in
Paper I to analyze nonhyperbolic moveout from dipping reflec-
tors for the more complicated azimuthally anisotropic models
with orthorhombic symmetry often used to describe naturally
fractured reservoirs (e.g., Bakulin et al., 2000). For the special
case of a horizontal orthorhombic layer, our results are in good
agreement with those of Al-Dajani et al. (1998). Valuable in-
sight is provided by the weak-anisotropy approximation that
expresses A4 as a function of the three anellipticity parameters
(η(1),η(2), andη(3)) defined in the symmetry planes of the model.
Numerical examples illustrate the complicated multilobe shape
of the azimuthally varying coefficient A4 and its dependence
on the parameters η(1,2,3) and reflector dip.

NONHYPERBOLIC MOVEOUT AND THE QUARTIC
MOVEOUT COEFFICIENT

A detailed analytic description of nonhyperbolic moveout
in anisotropic media can be found in Tsvankin (2001). The
nonhyperbolic portion of the moveout curve is governed by
the quartic moveout coefficient A4 defined by expanding the
squared reflection traveltime t2 in a Taylor series in the squared
source–receiver offset X2:

A4 = 1
2

d

d(X2)

[
d(t2)
d(X2)

]∣∣∣∣
X=0

. (2)

Long-spread moveout of P-waves (and, for some models, PS-
waves) in both isotropic and anisotropic media can be well
approximated by the following equation suggested by Tsvankin
and Thomsen (1994):

t2 = t2
0 +

X2

V2
nmo
+ A4 X4

1+ AX2
, (3)

where t0 is the zero-offset time, Vnmo is the NMO velocity, and
the denominator of the nonhyperbolic term is designed to make
the equation convergent at infinitely large offsets. The coeffi-
cient A is expressed through Vnmo, A4, and the horizontal group
velocity Vhor as

A = A4

V−2
hor − V−2

nmo
. (4)

The NMO velocity for anisotropic, heterogeneous media can
be found from the Dix-type averaging equations developed

by Grechka, Tsvankin, and Cohen (1999) and Grechka and
Tsvankin (2002). An analytic expression for the quartic coeffi-
cient A4 that has the same level of generality is introduced in
Paper I. Since both Vnmo and A4 can be computed by tracing
only one (zero-offset) ray, equation (3) can serve as a compu-
tationally efficient replacement for full-scale anisotropic ray
tracing in modeling and inversion algorithms.

Paper I shows that the quartic moveout coefficient A4 is a
function of the spatial derivatives of the one-way traveltime τ
between the common midpoint y and point x on the reflector
(Figure 1):

A4(L) = 1
16

[
∂2τ

∂yk∂yl

∂2τ

∂ym∂yn
+ τ0

3
∂4τ

∂yk∂yl ∂ym∂yn

− τ0
∂3τ

∂yk∂yl ∂xi

(
∂2τ

∂xi ∂xj

)−1
∂3τ

∂xj ∂ym∂yn

]
LkLl LmLn. (5)

Here, L= [cosα, sinα, 0] is a unit vector parallel to the CMP
line with the azimuth α and τ0 is the one-way zero-offset trav-
eltime; summation over repeated indices from one to two is
implied. All derivatives of τ are evaluated for the zero-offset
reflection ray at the CMP location y. Equation (5) is valid for
arbitrarily anisotropic, heterogeneous media and irregular (but
sufficiently smooth) reflectors, as long as reflection traveltime
can be expanded in a Taylor series near the common midpoint.

Simplifying the spatial derivatives of τ in equation (5) under
the assumption of weak anisotropy provides insight into the
influence of the medium parameters on A4 and nonhyperbolic
moveout as a whole. Below, we obtain the weak-anisotropy
approximation for A4 in an orthorhombic layer and discuss its
dependence on the anisotropic parameters and reflector dip.

BRIEF DESCRIPTION OF ORTHORHOMBIC MEDIA

Models with orthorhombic symmetry are often used to de-
scribe naturally fractured reservoirs that contain, for example,
two orthogonal fracture systems or a single system of penny-
shaped cracks embedded in a VTI matrix (e.g., Bakulin et al.,

Figure 1. Reflection traveltimes from an irregular interface be-
neath an arbitrarily anisotropic, heterogeneous medium are
recorded in a multiazimuth CMP gather. The quartic move-
out coefficient A4, which depends on reflection-point dispersal,
varies with the azimuth α of the CMP line (after Paper I).
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2000; Tsvankin, 2001). Orthorhombic media have three mutu-
ally orthogonal planes of mirror symmetry, one of which we
assume to be horizontal.

Apart from the wavefront distortions near point shear-wave
singularities (such as point A in Figure 2), velocities and trav-
eltimes in the symmetry planes of orthorhombic media can
be described by the corresponding VTI equations. That is one
of the reasons why reflection moveout and other seismic sig-
natures in orthorhombic media are particularly convenient to
represent using the notation of Tsvankin (1997, 2001) based on
the analogy with Thomsen’s (1986) VTI parameters. Tsvankin’s
(1997, 2001) notation includes the anisotropic coefficients ε(1,2),
δ(1,2,3), and γ (1,2) and the vertical velocities of the P-wave (VP0)
and the S-wave polarized in the x1-direction (VS0). The param-
eters ε(1), δ(1), and γ (1) are introduced in the vertical symmetry
plane [x2, x3] using the definitions of Thomsen’s (1986) coeffi-
cients ε, δ, and γ for VTI media (Figure 2). Similarly, ε(2), δ(2),
and γ (2) are defined in the [x1, x3]-plane, and δ(3) is defined in
the horizontal plane [x1, x2].

An important role in the analysis of the quartic moveout
coefficient below is played by the parameters η(1), η(2), and
η(3), which quantify deviations from the elliptically anisotropic
model in the symmetry planes (Grechka and Tsvankin, 1999):

η(1) ≡ ε(1) − δ(1)

1+ 2δ(1)
≈ ε(1) − δ(1), (6)

η(2) ≡ ε(2) − δ(2)

1+ 2δ(2)
≈ ε(2) − δ(2), (7)

η(3) ≡ ε(1)− ε(2)− δ(3)
(
1+ 2ε(2)

)(
1+ 2ε(2)

)(
1+ 2δ(3)

) ≈ ε(1)− ε(2)− δ(3). (8)

The approximate expressions forη(1,2,3) in equations (6)–(8) are
obtained by linearizing the exact equations in the anisotropic

Figure 2. Sketch of body-wave phase-velocity surfaces in or-
thorhombic media (after Grechka, Theophanis, and Tsvankin,
1999). The fast shear wave represents an SH mode in the
[x1, x3]-plane and an SV (in-plane polarized) mode in the
[x2, x3]-plane. Point Amarks a conical (point) singularity where
the phase velocities of the two shear waves coincide with each
other.

parameters. In the definition of η(3), the axis x1 plays the role
of the symmetry axis of the equivalent TI medium.

P-WAVE QUARTIC COEFFICIENT IN A DIPPING
ORTHORHOMBIC LAYER

Our model consists of a homogeneous orthorhombic layer
with a horizontal symmetry plane above a plane dipping re-
flector (Figure 3). The other two symmetry planes of the layer
are vertical and coincide with the coordinate planes [x1, x3] and
[x2, x3]. For simplicity, we assume that the plane [x1, x3] is also
parallel to the dip plane of the reflector, which makes [x1, x3]
the only symmetry plane for the model as a whole. Therefore,
as in isotropic or VTI media, the zero-offset reflected ray has
to be confined to the dip plane (Figure 3), which would not
be the case for arbitrary orientation of the vertical symmetry
planes.

Weak-anisotropy approximation

The weak-anisotropy approximation for the P-wave quartic
coefficient A4 in this model is derived in Appendix A by lin-
earizing the exact equation (5) in the anisotropic parameters:

A4 = − 1
2t2

P0V4
P0

{
η(2) cos2 φ[2 cos 2φ (1+ cos 2α cos 2φ)

+ cos 4φ − 1]+ 4η(1) cos2 φ sin2 α

− 2η(3) sin2 α (cos 2α + cos 2φ)
}
, (9)

where tP0 is the two-way zero-offset P-wave traveltime, φ is
the reflector dip, α is the azimuth with respect to the dip plane
[x1, x3], and η(1), η(2), and η(3) are the anellipticity parameters
defined in equations (6)–(8). Equation (9) shows that the az-
imuthal variation A4(α) is controlled just by the parameters
η(1,2,3) and dip φ. This result is not surprising because the pa-
rameters η(1,2,3), in combination with the NMO velocities from
a horizontal reflector in the vertical symmetry planes, fully de-
scribe P-wave time-domain signatures for homogeneous or-
thorhombic media (Grechka and Tsvankin, 1999).

Figure 3. A reflected wave is recorded above a homogeneous
orthorhombic layer with a dipping lower boundary. The vertical
symmetry plane [x1, x3] coincides with the dip plane of the
reflector (the dip is denoted by φ).
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Note that the quartic coefficient is symmetric not only with
respect to the dip direction of the reflector (the dip planeα= 0◦

is a symmetry plane for the whole model) but also with re-
spect to the reflector strike. Indeed, since A4(α)= A4(−α) and
A4(α)= A4(α ± π), it follows that A4(α)= A4(π −α), which
means that the quartic coefficient is symmetric with respect to
the strike direction α=±π/2.

Figure 4 confirms that equation (9) is suitable for a qualita-
tive description of the azimuthal signature of the quartic move-
out coefficient for small and moderate values of the anisotropic
parameters. Note that the magnitude of the η parameters in
Figure 4 is quite substantial for fracture-induced orthorhombic
media (Bakulin et al., 2000). Application of the quartic coeffi-
cient in velocity analysis, however, should not be based on the
weak-anisotropy approximation, as is shown by Tsvankin and
Thomsen (1994) for the simpler VTI model.

Special cases

If the reflector is horizontal (φ= 0◦), equation (9) yields the
linearized version of the exact solution for A4 in a horizontal
orthorhombic layer given by Al-Dajani et al. (1998):

A4(φ = 0◦) = − 2
t2
P0V4

P0

(
η(2) cos2 α − η(3) cos2 α sin2 α

+ η(1) sin2 α
)
. (10)

Figure 4. Accuracy of the weak-anisotropy approximation for
the coefficient A4 in an orthorhombic layer with the lower
boundary dipping atφ= 15◦. The circles mark the magnitude of
A4 obtained for each azimuth (the numbers on the perimeter;
zero azimuth corresponds to the dip plane) by fitting a quartic
polynomial to the ray-traced t2(x2)-curve on the spread length
Xmax= 1.5 km; the reflector depth beneath the CMP is 1 km.
The white circles mark positive values of A4; the black circles
mark negative A4. The solid line is the weak-anisotropy ap-
proximation (9); the pluses and minuses indicate the signs of
A4 in the corresponding lobes. Both the ray-tracing and weak-
anisotropy results are normalized by their respective maximum
values of |A4|. The anellipticity parameters are η(1)=−0.2,
η(2)= 0.2, and η(3) = 0.2.

Although equation (10) is an approximation valid for small
values of the anisotropic coefficients, our analysis shows that
it accurately reproduces the azimuthal variation of the quartic
coefficient. For a horizontal layer, A4 in both symmetry-plane
directions (α = 0◦ and 90◦) depends just on the correspond-
ing in-plane η-parameter (η(2) in the [x1, x3]-plane and η(1) in
the [x2, x3]-plane). The coefficient η(3) contributes only to the
crossterm that reaches its maximum at the azimuth α= 45◦.

Another special case is that of a dipping VTI layer since
TI models can be treated as a subset of the more general or-
thorhombic media. The quartic coefficient in VTI media, which
is derived and analyzed in Paper I, can be found from equa-
tion (9) by setting η(1)= η(2)= η and η(3)= 0 (Tsvankin, 1997):

AVTI
4 = − 2η

t2
P0V4

P0

cos4 φ (1− 4 sin2 φ cos2 α). (11)

The dip-line (α= 0◦) and strike-line (α= 90◦) coefficients A4

for VTI media, which we will need below for comparison with
the expressions for orthorhombic media, are

AVTI
4,dip = −

2η
t2
P0V4

P0

cos4 φ (1− 4 sin2 φ) (12)

and

AVTI
4,strike = −

2η
t2
P0V4

P0

cos4 φ. (13)

Dip-line and strike-line expressions

As discussed above, the azimuthally varying quartic coeffi-
cient in our model is symmetric with respect to the dip and
strike directions of the reflector. On the dip line (α= 0◦), the
coefficient A4 from equation (9) takes the form

A4,dip = − 2η(2)

t2
P0V4

P0

cos4 φ (1− 4 sin2 φ). (14)

Equation (14) becomes identical to the corresponding VTI
equation (12) if the parameter η(2) is replaced with η. Indeed,
reflected rays (and their phase-velocity vectors) on the dip line
are confined to the symmetry plane [x1, x3] where the kinemat-
ics of wave propagation are the same as those in the VTI model
with the vertical velocities VP0 and VS0 and the anisotropic pa-
rameters ε= ε(2), δ= δ(2) (so η= η(2)), and γ = γ (2) (Tsvankin,
1997, 2001).

The combined influence of the factors cos4 φ and
(1− 4 sin2

φ) in equation (14) leads to a rapid decrease of the
magnitude of the dip-line quartic coefficient withφ at mild dips,
and A4,dip= 0 for φ= 30◦. If η(2) > 0, the coefficient A4,dip is neg-
ative for φ < 30◦ and becomes positive for φ > 30◦, as discussed
in Paper I for VTI media (also, see the related numerical re-
sults in Tsvankin, 1995, 2001). Unless the magnitude of η(2) is
uncommonly large, the factor cos4 φ makes A4,dip almost neg-
ligible for dips exceeding 45◦.

Substitution ofα= 90◦ into equation (9) yields the strike-line
quartic coefficient:

A4,strike = − 2
t2
P0V4

P0

(
η(1) cos2 φ − η(2) cos2 φ sin2 φ

+ η(3) sin2 φ
)
. (15)
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It is interesting that the functional dependence of A4,strike on
the dip φ is similar to that of the quartic coefficient in a hor-
izontal layer on the azimuth α [equation (10)]. In contrast to
the coefficient A4,dip, A4,strike depends on all three parameters
η(1,2,3) because reflected rays recorded on the strike line x2 de-
viate from the vertical symmetry plane [x2, x3]. For the same
reason, A4,strike differs from the strike-line coefficient in VTI
media [equation (13)] with η= η(1) (the parameter η(1) is de-
fined in the [x2, x3]-plane). However, equation (15) indicates
that η(1) does control the quartic coefficient for mild reflector
dips φ.

Unlike the quartic coefficient on the dip line, A4,strike does
not always decrease by absolute value with reflector dip. The
function A4,strike(φ) is governed by the relative magnitudes of
the three anellipticity coefficients and becomes largely depen-
dent on η(3) for steep dips. If the interface is vertical (φ= 90◦),
reflected rays travel in the horizontal symmetry plane, and the
strike-line quartic coefficient reduces to

A4,strike(φ = 90◦) = − 2η(3)

t2
P0V4

P0

. (16)

Equation (16) coincides with the weak-anisotropy approxima-
tion for A4 in a horizontal VTI layer with η= η(3). Therefore,
if |η(3)|> |η(1)|, the magnitude of A4,strike for a vertical reflector
is higher than that for a horizontal reflector.

Azimuthal signature

The azimuthal variation of the quartic coefficient from equa-
tion (9) strongly depends on reflector dip as well as the magni-
tudes and signs of the anellipticity parameters η(1,2,3). For mild
dips, A4(α) is largely controlled by the parameters η(1) (near the
[x2, x3]-plane) and η(2) (near the [x1, x3]-plane), with the influ-
ence of η(3) typically being relatively weak [see equation (10)].
As illustrated by Figure 5, if both η(1) and η(2) are positive and
much greater by absolute value than η(3), A4 typically stays
negative for dips smaller than 30◦; the same result is obtained
in Paper I for a dipping VTI layer [see equation (11)]. Also,
as in VTI media, for a dip of 30◦ A4 goes to zero only in the
single (dip) direction (Figure 6), although it remains small for
|α|< 30◦.

For the η parameters used in Figures 5 and 6 and dips be-
tween 30◦ and 90◦, equation (9) yields two azimuths ±α for
which A4= 0. If the dip φ= 45◦ (Figure 7), the quartic coeffi-
cient is positive near the dip plane, vanishes at α≈±60◦, and
becomes negative close to the strike direction. Although typ-
ically we expect the quartic coefficient for dips φ > 45◦ to be
larger in the strike direction than in the dip plane, for the model
in Figure 7 the strike line A4 is small because the terms involv-
ing η(1) and η(2) in equation (15) almost cancel each other.

The azimuthal variation of the quartic coefficient has a differ-
ent character if η(1) and η(2) have opposite signs. In this case, for
mild dips A4 changes sign between the dip and strike directions
[see equations (14) and (15)], with the azimuthal direction of
vanishing A4 dependent on dip and the relative magnitudes of
η(1) and η(2) (Figure 8). Since the quartic coefficient decreases
with the dip φ more rapidly in the dip plane than in the strike
direction, the direction where A4 = 0 rotates toward the dip
plane as φ increases. For a dip of 15◦ (Figure 8), A4 goes to
zero at the angle α≈ ± 35◦ from the dip plane. When the dip
reaches 30◦ (Figure 9), the quartic coefficient goes to zero in

the dip direction and the azimuthal variation of A4 is similar
to that in Figure 6. However, the sign of A4 away from the
dip plane in Figure 9 is positive because η(1) < 0. Finally, for
dips larger than 30◦, the quartic coefficient is positive for all
azimuths (Figure 10).

Figure 5. Magnitude of the azimuthally varying quartic move-
out coefficient A4 for a dipping orthorhombic layer computed
from equation (9). The dip plane of the reflector is at zero
azimuth (the azimuth is marked on the perimeter). The anel-
lipticity parameters are η(1) = 0.05, η(2) = 0.1, and η(3) = 0.03;
the reflector dip φ = 15◦. The other parameters (tP0 and VP0)
change only the scale of the plot (intentionally undefined here).
For this model, A4 < 0 for all azimuthal directions.

Figure 6. Same as Figure 5, but the reflector dip is 30◦. The
minus signs inside the lobes indicate negative values of A4.
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To analyze the influence of the parameter η(3) on the quartic
coefficient, in the next two examples (Figures 11 and 12) we
set η(1) and η(2) to zero. Clearly, the term involving η(3) creates
a rather complicated azimuthal signature of A4. Since the dip-
line coefficient A4,dip [equation (14)] is proportional to η(2), it
vanishes for all dips when η(2)= 0. In addition, A4 goes to zero
for another azimuth near the strike direction, even for a dip of
just 15◦ (Figure 11). The azimuthal variation of A4 for φ = 30◦

Figure 7. Same as Figure 5, but the reflector dip is 45◦.

Figure 8. Magnitude of the quartic moveout coefficient A4 for
an orthorhombic layer computed from equation (9). The anel-
lipticity parameters are η(1) = −0.1, η(2) = 0.1, and η(3) = 0.03;
the reflector dip φ = 15◦.

has a similar general character but with completely different
relative magnitudes of the lobes (Figure 12).

For nonzero values of η(1) and η(2), the contribution of the
term proportional to η(3) generally increases with reflector dip
(Figures 13–15). While the dip-line coefficient A4 depends just
on η(2), A4,strike is significantly influenced by η(3), in particular
for dips exceeding 30◦. If η(3) is larger by absolute value than
η(1) and η(2), the quartic coefficient typically goes to zero in at
least one off-symmetry direction for a wide range of dips. For
example, if φ = 30◦, the influence of η(3) produces an addi-
tional direction of vanishing A4 near the reflector strike, and

Figure 9. Same as Figure 8, but the reflector dip is 30◦.

Figure 10. Same as Figure 8, but the reflector dip is 45◦.
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the azimuthal variation of the quartic coefficient is described
by six lobes1 with alternating signs from one lobe to the next
(Figure 14).

1Only three lobes are independent because A4(α) = A4(α ± π).

Figure 11. Magnitude of the quartic moveout coefficient A4
for an orthorhombic layer computed from equation (9). The
anellipticity parameters are η(1) = η(2) = 0 and η(3) = 0.1; the
reflector dip φ = 15◦.

Figure 12. Same as Figure 11, but the reflector dip is 30◦.

DISCUSSION AND CONCLUSIONS

The general expression for the quartic moveout coefficient
A4 derived by Pech et al. (2003; Paper I) was used here to
study P-wave nonhyperbolic moveout in a dipping orthorhom-
bic layer. Similar to the NMO ellipse, the coefficient A4 can
be computed by tracing a single (zero-offset) ray and then
used in the nonhyperbolic moveout equation of Tsvankin and

Figure 13. Magnitude of the quartic moveout coefficient A4 for
an orthorhombic layer computed from equation (9). The anel-
lipticity parameters are η(1)=−0.025, η(2)= 0.1, and η(3)= 0.2;
the reflector dip φ= 15◦.

Figure 14. Same as Figure 13, but the reflector dip is 30◦.
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Thomsen (1994) to model reflection traveltimes without time-
consuming ray tracing for each source–receiver pair. Note that
the model has to be sufficiently smooth to allow for stable eval-
uation of the fourth-order spatial traveltime derivatives needed
to obtain A4.

The main emphasis of this paper, however, is on analysis of
the azimuthal variation of the P-wave quartic moveout coef-
ficient. The model consisted of a homogeneous orthorhombic
layer with a horizontal symmetry plane and a dipping lower
boundary (reflector). It was assumed that the dip plane of
the reflector coincides with a vertical symmetry plane of the
layer and, therefore, represents a symmetry plane for the whole
model. Another symmetry direction for reflection moveout in
this model is that of reflector strike, so the azimuthal signature
of the quartic coefficient A4 is repeated in each quadrant.

The weak-anisotropy approximation for A4 linearized in
Tsvankin’s (1997) anisotropic parameters shows that the az-
imuthal dependence of the quartic coefficient is controlled by
reflector dip and three anellipticity parameters η(1,2,3). It should
be mentioned that the η-parameters, in combination with the
two symmetry-direction NMO velocities, are responsible for all
P-wave time-processing steps in homogeneous orthorhombic
media, including NMO correction, DMO removal, and time
migration.

The dip-line quartic coefficient A4,dip is described by the same
equation as in VTI media and depends on a single (in-plane)
anellipticity parameter− η(2). The coefficient A4,dip vanishes
for the dip φ= 30◦ and a vertical reflector (dip φ= 90◦); the
sign of A4,dip for φ < 30◦ is opposite to that of η(2). Unless the
magnitude of η(2) is uncommonly large, A4,dip becomes almost
negligible for φ > 45◦.

The analytic expression for the strike-line coefficient A4,strike

contains all three η parameters, but for mild dips it is largely
governed by η(1). Hence, if η(1) and η(2) have opposite signs, A4

for mildly dipping reflectors changes sign between the dip and

Figure 15. Same as Figure 13, but the reflector dip is 45◦.

strike directions. The influence of η(3) generally increases with
dip and may create a rather complicated azimuthal signature
of the quartic coefficient, sometimes with two azimuths of van-
ishing A4 in each quadrant. In contrast to the dip-line quartic
coefficient, A4,strike does not necessarily decrease by absolute
value with dip.

The high variability of the azimuthal signature of the quartic
coefficient and its sensitivity to the time-processing parame-
ters η(1,2,3) can be exploited in the inversion of P-wave data for
orthorhombic media. Despite the known instability in estimat-
ing the quartic moveout coefficient (Grechka and Tsvankin,
1998a), we expect that wide-azimuth long-offset reflection data
of sufficient quality may be used to determine the sign of A4

and the azimuthal directions of its minimum values. This infor-
mation can help in constraining the parameters η(1,2,3), which
are not only needed in velocity analysis but can also be used
in fracture characterization. For example, if the effective or-
thorhombic anisotropy is caused by two orthogonal systems of
penny-shaped cracks embedded in isotropic host rock, all three
η coefficients vanish for dry (gas-filled) cracks and are positive
for cracks filled with fluid (Bakulin et al., 2000).

The exact equation for the quartic moveout coefficient from
Paper I can be applied to model nonhyperbolic moveout in
more complicated layered orthorhombic media. This work can
provide useful insight into the behavior of A4 in layered media
because, for mild dips and moderate azimuthal anisotropy, the
effective quartic coefficient at the surface can be computed
from the interval values of A4 for the same azimuth using
the VTI averaging equations (Al-Dajani and Tsvankin, 1998;
Al-Dajani et al., 1998).
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APPENDIX A

WEAK-ANISOTROPY APPROXIMATION
FOR THE QUARTIC MOVEOUT COEFFICIENT

IN ORTHORHOMBIC MEDIA

Here we apply the approach discussed in Paper I to obtain
a linearized approximation for the P-wave quartic coefficient
A4 in a homogeneous orthorhombic layer above a plane dip-
ping reflector (Figure 3). It is assumed that the dip plane of
the reflector coincides with the [x1, x3] symmetry plane of the
overburden; the other symmetry planes are [x1, x2] and [x2, x3].

The one-way traveltime between the CMP y and the plane
reflector z(x1, x2) is

τ =
√

(x1 − y1)2 + (x2 − y2)2 + z2(x1, x2)
VG

, (A-1)
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where VG is the group velocity. The orientation of the ray that
connects the CMP with the reflector can be characterized by
the polar angle a and the azimuthal angle b:

sin a ≡
√

(y1 − x1)2 + (y2 − x2)2√
(y1 − x1)2 + (y2 − x2)2 + z2

, (A-2)

cos a ≡ z√
(y1 − x1)2 + (y2 − x2)2 + z2

, (A-3)

sin b ≡ (y2 − x2)√
(y1 − x1)2 + (y2 − x2)2

, (A-4)

cos b ≡ (y1 − x1)√
(y1 − x1)2 + (y2 − x2)2

. (A-5)

The P-wave group velocity VG linearized in the anisotropic
parameters can be determined from the weak-anisotropy ap-
proximation for the phase velocity given in Tsvankin (1997,
2001):

VG = VP0
{
1+ (ε(2)− δ(2))(sin a cos b)4+ δ(1)(sin a sin b)2

+ (ε(1) − δ(1))(sin a sin b)4+ cos2 b
[
δ(2) sin2 a

− (δ(1)+ δ(2) − δ(3) − 2ε(2)) sin4 a sin2 b
]}; (A-6)

the angles a and b are defined in equations (A-2)–(A-5).
Next, equation (A-1) with the velocity VG from

equation (A-6) is substituted into the general equation (5) to
evaluate the spatial derivatives of the traveltime, which yields
the quartic coefficient A4 as a function of the coordinates
of the CMP and the zero-offset reflection point. Since the
zero-offset ray is confined to the dip plane [x1, x3] where all
kinematic signatures are described by the corresponding VTI
equations, we can relate the CMP coordinates y1 and y2 to the
horizontal coordinates x(0)

1 and x(0)
2 of the zero-offset reflection

point by adapting the results of Paper I. Setting to zero the tilt
ν of the symmetry axis in equations (B-11) and (B-12) from
Paper I and replacing ε with ε(2) and η with η(2) yields

y1 = 2z(0) tanφ
[
0.5+ ε(2) − (ε(2) − δ(2)) cos 2φ

]+ x(0)
1 ,

(A-7)

y2 = x(0)
2 ; (A-8)

z(0) is the depth of the zero-offset reflection point.
Using equations (A-7) and (A-8) and applying further

linearization in the anisotropic parameters with the help of

Mathematica symbolic software, we obtain the following ap-
proximation for the P-wave quartic moveout coefficient in or-
thorhombic media:

A4 = − 1
2t2

P0V4
P0

{
η(2) cos2 φ [2 cos 2φ(1+ cos 2α cos 2φ)

+ cos 4φ − 1]+ 4η(1) cos2 φ sin2 α

− 2η(3) sin2 α (cos 2α + cos 2φ)
}
, (A-9)

where tP0 is the two-way zero-offset traveltime and η(1,2,3) are
the linearized versions of the anellipticity parameters defined
in equations (6)–(8).
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