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Geometrical spreading of P-waves in horizontally layered,
azimuthally anisotropic media

Xiaoxia Xu1, Ilya Tsvankin1, and Andrés Pech2

ABSTRACT

For processing and inverting reflection data, it is conve-
nient to represent geometrical spreading through the re-
flection traveltime measured at the earth’s surface. Such
expressions are particularly important for azimuthally
anisotropic models in which variations of geometrical
spreading with both offset and azimuth can significantly
distort the results of wide-azimuth amplitude-variation-
with-offset (AVO) analysis.

Here, we present an equation for relative geometrical
spreading in laterally homogeneous, arbitrarily anisotropic
media as a simple function of the spatial derivatives of re-
flection traveltimes. By employing the Tsvankin-Thomsen
nonhyperbolic moveout equation, the spreading is repre-
sented through the moveout coefficients, which can be es-
timated from surface seismic data. This formulation is then
applied to P-wave reflections in an orthorhombic layer
to evaluate the distortions of the geometrical spreading
caused by both polar and azimuthal anisotropy.

The relative geometrical spreading of P-waves in ho-
mogeneous orthorhombic media is controlled by five pa-
rameters that are also responsible for time processing.
The weak-anisotropy approximation, verified by numerical
tests, shows that azimuthal velocity variations contribute
significantly to geometrical spreading, and the existing
equations for transversely isotropic media with a vertical
symmetry axis (VTI) cannot be applied even in the verti-
cal symmetry planes. The shape of the azimuthally vary-
ing spreading factor is close to an ellipse for offsets smaller
than the reflector depth but becomes more complicated
for larger offset-to-depth ratios. The overall magnitude of
the azimuthal variation of the geometrical spreading for
the moderately anisotropic model used in the tests exceeds
25% for a wide range of offsets.

While the methodology developed here is helpful in
modeling and analyzing anisotropic geometrical spread-
ing, its main practical application is in correcting the wide-
azimuth AVO signature for the influence of the anisotropic
overburden.

INTRODUCTION

Inversion of prestack amplitude variation with offset and
azimuth (azimuthal AVO analysis) represents one of the most
effective tools for characterizing naturally fractured reser-
voirs. The presence of preferentially oriented fractures or hor-
izontal stresses makes the reservoir formation azimuthally
anisotropic, and wide-azimuth reflection amplitudes can be
used to estimate fracture orientation and, in some cases, to
map the lateral variation of the fracture density (Mallick et al.,
1998; Lynn et al., 1999; Bakulin et al., 2000; Rüger, 2001). The
main advantage of amplitude methods compared to traveltime
inversion is their high vertical resolution, which makes AVO
analysis applicable to relatively thin reservoir layers.
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The amplitude signature of reflected waves is controlled
by the radiation pattern of the source, geometrical spread-
ing, attenuation, the reflection/transmission coefficients along
the raypath, and the conversion coefficients at the receiver
(Martinez, 1993; Maultzsch et al., 2003). Since AVO analy-
sis operates with the reflection coefficient at the target hori-
zon, an essential element of AVO processing is removal of
the influence of all other factors from the measured ampli-
tude. If the medium is not strongly attenuative, geometrical
spreading typically makes the most significant contribution to
the amplitude distortion above the target horizon (Martinez,
1993; Ursin and Hokstad, 2003). In particular, if the overbur-
den is anisotropic (e.g., shales in a sand-shale sequence), it
acts as a 3D focusing lens that may significantly change the
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amplitude distribution along the wavefront of the reflected
wave (Tsvankin, 1995, 2001). Therefore, estimation of the
reflection coefficient for targets beneath anisotropic layers
may be strongly distorted without an accurate geometrical-
spreading correction.

The most straightforward way to compute anisotropic ge-
ometrical spreading is by performing dynamic ray tracing
(Gajewski and Pšenčı́k, 1990). For simple homogeneous mod-
els, it is possible to use analytic approximations of the Green’s
function, such as those presented by Tsvankin (1995, 2001) for
P- and SV-waves in a transversely isotropic (TI) layer. Mod-
eling methods, however, require accurate information about
the anisotropic velocity field for the whole overburden, which
is seldom available in practice.

An alternative approach, more suitable for AVO process-
ing, is based on relating geometrical spreading to the trav-
eltimes of reflection events recorded at the surface. For ex-
ample, Vanelle and Gajewski (2003) present an algorithm to
determine geometrical spreading from coarsely gridded trav-
eltime tables. Ursin and Hokstad (2003) express geometrical
spreading in stratified transversely isotropic media with a ver-
tical symmetry axis (VTI) in terms of the reflection traveltime
and the group angle in the subsurface layer. For horizontally
layered VTI models, P-wave traveltime can be described ac-
curately by a nonhyperbolic moveout equation parameterized
by just two moveout coefficients: the effective NMO velocity
Vnmo and the effective anellipticity parameter η (Alkhalifah
and Tsvankin, 1995). The best-fit parameters Vnmo and η can
be estimated, for example, by a 2D semblance scan (Grechka
and Tsvankin, 1998), which makes it possible to compute geo-
metrical spreading using surface reflection data solely (Ursin
and Hokstad, 2003). This approach can also be used to find
analytic expressions for geometrical spreading in VTI media
in terms of the parameters Vnmo and η.

The distortions caused by geometrical spreading in reflec-
tion amplitudes are even more pronounced for azimuthally
anisotropic media (Rüger and Tsvankin, 1997; Maultzsch
et al., 2003). Here, we use ray theory to obtain a simple
traveltime-based equation for the geometrical spreading of
pure (unconverted) reflected waves recorded over horizon-
tally layered arbitrarily anisotropic media. By combining this
result with the Tsvankin-Thomsen moveout equation for an
orthorhombic layer with a horizontal symmetry plane, we ex-
press the spreading as a function of the azimuthally vary-
ing moveout coefficients. Application of the weak-anisotropy
approximation helps to explain the dependence of relative
geometrical spreading on the anisotropic parameters of or-
thorhombic media both within and outside the vertical sym-
metry planes. Numerical tests verify the accuracy of the an-
alytic results and illustrate the character of the amplitude
distortions caused by the azimuthally varying geometrical
spreading.

RELATIVE GEOMETRICAL SPREADING AS A
FUNCTION OF REFLECTION TRAVELTIME

Geometrical spreading describes the amplitude decay of an
elastic wave caused by the expansion of its wavefront away
from the source. The relative geometrical spreading L(R, S)
between the source S and the receiver R is an essential part of
the ray-theory Green’s function Gin (Červený, 2001, equation

5.4.24):

Gin(R, t; S, t0) = gn(S)gi(R) exp[iT G(R, S)]
4π [ρ(S)ρ(R)V (S)V (R)]1/2L(R, S)

×RCδ[t − t0 − T (R, S)], (1)

where t and t0 are the recording and excitation times, respec-
tively; ρ(S) and V(S) are density and phase velocity at the
source; ρ(R) and V(R) are the same quantities at the receiver;
gn(S) and gi(R) are the polarization vectors at the source and
receiver; T G(R, S) is the complete phase shift; RC is the prod-
uct of the reflection/transmission coefficients normalized with
respect to the vertical energy flux at all interfaces crossed by
the ray; δ(t) is the delta function; and T(R, S) is the traveltime.

Throughout this paper, we address relative geometrical
spreading L(R, S) defined by equation 4.10.11 in Červený
(2001). The factor L(R, S) can be expressed through the spa-
tial derivatives of the traveltime T around a raypath (Červený,
2001, equation 4.10.50; Goldin, 1986):

L(R, S) =
√

cos φs cos φr

|det Mmix(R, S)| , (2)

where φs is the angle between the ray and the normal to the
surface at the source, φr is the ray angle at the receiver, and
the matrix Mmix is given by (Červený, 2001, equation 4.10.46)

Mmix =




∂2T (xr, xs)
∂xs

1∂xr
1

∂2T (xr, xs)
∂xs

1∂xr
2

∂2T (xr, xs)
∂xs

2∂xr
1

∂2T (xr, xs)
∂xs

2∂xr
2


 ; (3)

(xs
1, x

s
2) and (xr

1, x
r
2) are the local Cartesian coordinates of the

source and receiver.
For a reflected wave recorded at a horizontal surface, equa-

tion 2 can be reduced to the following function of the travel-
time T (see Appendix A):

L(R, S) = L(x, α) = (cos φs cos φr)1/2

×
[

∂2T

∂x2

∂T

∂x

1
x

+ ∂2T

∂x2

∂2T

∂α2

1
x2

−
(

∂T

∂α

)2 1
x4

]−1/2

,

(4)

where x is the source-receiver offset and α is the azimuth of
the source-receiver line. Equation 4 is valid for pure (uncon-
verted) modes in laterally homogeneous (but possible ver-
tically heterogeneous) media, regardless of the anisotropic
symmetry.

In addition to providing a concise representation of the
spreading L(R, S) factor in terms of the reflection traveltime
T(x, α), equation 4 helps to gain insight into the influence
of both polar and azimuthal velocity variations on geomet-
rical spreading. The first term in the brackets coincides with
the geometrical-spreading factor for horizontally layered VTI
media (Ursin and Hokstad, 2003), where the traveltime T is
independent of the azimuth α. Note, however, that even this
term is distorted by azimuthal anisotropy because the travel-
time derivatives with respect to offset vary with α. The second
and third terms appear only in azimuthally anisotropic media.
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GEOMETRICAL SPREADING IN HOMOGENEOUS
ORTHORHOMBIC MEDIA

Effective orthorhombic models resulting from one or two
fracture sets are considered typical for naturally fractured
reservoirs (Schoenberg and Helbig, 1997; Bakulin et al., 2000).
Here, we apply the general expression 4 to reflections from
the bottom of a single horizontal orthorhombic layer with a
horizontal symmetry plane (Figure 1). The incidence and re-
flection group angles for this model are equal to each other
(i.e., φs = φr = φ), and equation 4 becomes

L(x, α)

= cos φ

[
∂2T

∂x2

∂T

∂x

1
x

+ ∂2T

∂x2

∂2T

∂α2

1
x2

−
(

∂T

∂α

)2 1
x4

]−1/2

.

(5)

Orthorhombic media with a horizontal symmetry plane have
two mutually orthogonal vertical symmetry planes, in which
the first derivative ∂T /∂α goes to zero and equation 5 further
simplifies to

L(x) = cos φ

[
∂2T

∂x2

∂T

∂x

1
x

+ ∂2T

∂x2

∂2T

∂α2

1
x2

]−1/2

. (6)

Equation 6 confirms the conclusion of Tsvankin (1997, 2001)
that the kinematic equivalence between the symmetry planes
of orthorhombic and VTI media cannot be extended to ge-
ometrical spreading. The second derivative, ∂2T /∂α2, which
generally does not vanish in the symmetry planes, reflects the
influence of azimuthal velocity variations on symmetry-plane
amplitudes. This 3D character of geometrical spreading in the
symmetry planes is explained by the dependence of the wave-
front curvature on both in-plane and out-of-plane (azimuthal)
velocity variations. The spreading L(x, α) for source-receiver
lines outside the symmetry planes (equation 5) also depends
on the first derivative, ∂T /∂α.

Nonhyperbolic moveout equation
for an orthorhombic layer

Reflection moveout, as well as other signatures of reflected
waves in orthorhombic media, is conveniently described using
the notation suggested by Tsvankin (1997, 2001). Tsvankin’s
parameter definitions are based on the analogous form of the
Christoffel equation in the symmetry planes of orthorhombic

Figure 1. Reflected ray in a homogeneous horizontal or-
thorhombic layer with a horizontal symmetry plane. The ray
lies in the incidence plane, although the corresponding phase-
velocity vector may point out of plane.

(Figure 2) and VTI media. The anisotropic parameters ε(1),
δ(1), and γ (1) play the roles of Thomsen’s (1986) VTI coeffi-
cients ε, δ, and γ in the vertical symmetry plane [x2, x3] (the
superscript denotes the orthogonal axis x1). The similar set of
anisotropic coefficients in the [x1, x3] plane includes ε(2), δ(2),
and γ (2). One more anisotropic coefficient, δ(3), is defined in
the horizontal plane [x1, x2]. The parameter VP 0 denotes the
vertical P-wave velocity, and VS0 is the velocity of the verti-
cally propagating S-wave polarized in the x1-direction.

Although orthorhombic symmetry is described by nine in-
dependent parameters (for a fixed orientation of the sym-
metry planes), kinematic signatures of P-waves depend on
only five parameter combinations. As shown by Grechka and
Tsvankin (1999), P-wave reflection traveltime and the opera-
tors for dip-moveout (DMO) correction and time migration
in homogeneous orthorhombic media are controlled by the
NMO velocities from horizontal reflectors in the vertical sym-
metry planes, V

(1)
nmo and V

(2)
nmo, and three anellipticity coeffi-

cients defined as follows:

η(1) ≡ ε(1) − δ(1)

1 + 2δ(1)
≈ ε(1) − δ(1), (7)

η(2) ≡ ε(2) − δ(2)

1 + 2δ(2)
≈ ε(2) − δ(2), (8)

η(3) ≡ ε(1) − ε(2) − δ(3)[1 + 2ε(2)]
[1 + 2ε(2)][1 + 2δ(3)]

≈ ε(1) − ε(2) − δ(3).

(9)

The long-spread reflection traveltime for orthorhombic me-
dia can be described by the general Tsvankin-Thomsen (1994)
nonhyperbolic moveout equation with azimuthally varying
coefficients:

T 2(x, α) = A0 + A2(α)x2 + A4(α)x4

1 + A(α)x2
, (10)

where

A0 = T 2
0 , A2 = d(T 2)

d(x2)

∣∣∣∣
x=0

, and

A4 = 1
2

d

d(x2)

[
d(T 2)
d(x2)

]∣∣∣∣
x=0

.

Figure 2. Sketch of body-wave phase-velocity surfaces in or-
thorhombic media (after Grechka et al., 1999). Tsvankin’s
(1997) parameters are defined in the mutually orthogonal
symmetry planes, which coincide with the coordinate planes.
The letter A marks a point (conical) singularity where the
phase velocities of the two S-waves are equal to each other.
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Here, T0 is the zero-offset traveltime, A2 is related to the NMO
velocity as A2 = V −2

nmo, and A4 is the quartic coefficient respon-
sible for nonhyperbolic moveout. The parameter A in the de-
nominator depends on the horizontal group velocity Vhor and
is designed to make T(x) convergent at large offsets x → ∞
(Tsvankin and Thomsen, 1994):

A = A4

V −2
hor − V −2

nmo

. (11)

The hyperbolic coefficient A2 in equation 10 can be ob-
tained from the results of Grechka and Tsvankin (1999),
who use the fact that the azimuthal variation of NMO ve-
locity typically has a simple elliptical form even in arbi-
trarily anisotropic, heterogeneous media. For a horizontal
orthorhombic layer in which the vertical symmetry planes
coincide with the coordinate planes [x1, x3] and [x2, x3], the
axes of the NMO ellipse are aligned with the x1- and
x2-directions, which yields (for P-waves)

A2(α) = A
(1)
2 sin2 α + A

(2)
2 cos2 α, (12)

A
(1)
2 = 1(

V
(1)

nmo
)2 = 1

V 2
P 0(1 + 2δ(1))

, (13)

A
(2)
2 = 1(

V
(2)

nmo
)2 = 1

V 2
P 0(1 + 2δ(2))

. (14)

The azimuth α is computed with respect to the x1-axis.
The azimuthally dependent P-wave quartic moveout coeffi-

cient A4 in a horizontal orthorhombic layer has the form (Al-
Dajani et al., 1998)

A4(α) = A
(1)
4 sin4 α + A

(2)
4 cos4 α + A

(x)
4 sin2 α cos2 α,

(15)

A
(1)
4 = −2η(1)

T 2
0

(
V

(1)
nmo

)4 , (16)

A
(2)
4 = −2η(2)

T 2
0

(
V

(2)
nmo

)4 , (17)

A
(x)
4 = 2

T 2
0

(
V

(1)
nmo

)2(
V

(2)
nmo

)2

×

1−

√
(1 + 2η(1))(1 + 2η(2))

1 + 2η(3)


. (18)

Here, A
(1)
4 and A

(2)
4 are the symmetry-plane coefficients and

A
(x)
4 is a cross-term that contributes in off-symmetry direc-

tions. Al-Dajani et al. (1998) approximate Vhor in equation 11
by the horizontal phase velocity and demonstrate that equa-
tion 10 with the moveout coefficients given by equations 11,
12, and 15 is sufficiently accurate for P-wave moveout in mod-
els with substantial azimuthal anisotropy. The algorithm of
Al-Dajani et al. (1998) based on equation 10 is used below
in the numerical modeling of the geometrical spreading in an
orthorhombic layer.

A simplified version of equation 10 can be obtained by
exploring the approximate kinematic equivalence between
the vertical planes of orthorhombic and VTI media. In the

limit of weak anisotropy, out-of-plane phenomena in a hor-
izontal orthorhombic layer have no influence on kinematic
signatures, including reflection traveltimes (Tsvankin, 2001,
164). Also, the P-wave phase velocity in any vertical plane of
weakly anisotropic orthorhombic media can be described by
Thomsen’s (1986) VTI equation with azimuthally dependent
coefficients ε and δ [Tsvankin (2001), equation 1.107]. There-
fore, P-wave reflection moveout in a horizontal orthorhombic
layer can be approximated by the VTI equation of Alkhalifah
and Tsvankin (1995) with the appropriate parameters Vnmo

and η for each azimuth:

T 2(x, α) = T 2
0 + x2

V 2
nmo(α)

− 2η(α)x4

V 2
nmo(α)

{
T 2

0 V 2
nmo(α) + [1 + 2η(α)]x2

} .

(19)

The value Vnmo(α) in equation 19 is determined from equa-
tions 12–14,

V 2
nmo(α) = A−1

2 =
(
V

(1)
nmo

)2(
V

(2)
nmo

)2(
V

(1)
nmo

)2 cos2 α + (
V

(2)
nmo

)2 sin2 α
,

(20)
and the linearized azimuthally dependent parameter η is given
by (Pech and Tsvankin, 2004)

η(α) = η(1) sin2 α − η(3) sin2 α cos2 α + η(2) cos2 α.

(21)
The nonhyperbolic term in equation 19 can be derived from
equation 10 by using the VTI relationships

A4(α) = − 2η(α)
T 2

0 V 4
nmo(α)

, A(α) = 1 + 2η(α)
T 2

0 V 2
nmo(α)

. (22)

Although the linearization in the anisotropic parameters
implied by the weak-anisotropy approximation formally re-
quires dropping the coefficient η(α) from the denominator of
equation 19, the complete denominator of the original VTI
equation can be retained to increase the accuracy at large
source-receiver offsets. Here, equation 19 is used only to ob-
tain analytic expressions for the geometrical spreading in the
weak-anisotropy approximation.

Geometrical spreading as a function
of moveout coefficients

The derivatives of the traveltime with respect to offset
and azimuth needed to obtain the geometrical spreading
L(x, α) from equation 5 can be found using the nonhyperbolic
moveout equation 10. Explicit expressions for the traveltime
derivatives in terms of the azimuthally dependent parameters
A2(α), A4(α), and A(α) are given in Appendix B. Substitut-
ing equations 11, 12, and 15 yields L(x, α) as a function of
the medium parameters and the group angle. The group angle
φ for a single orthorhombic layer can be found in a straight-
forward way from the reflector depth (T0VP 0/2) and offset x,
cos φ = T0VP 0/

√
x2 + T 2

0 V 2
P 0.

While the derived equation is well suited for numerical
modeling, it does not provide insight into the dependence of
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geometrical spreading on the anisotropic parameters. There-
fore, we next apply the weak-anisotropy approximation based
on the generalized VTI equation 19. The traveltime deriva-
tives in equation 5 are obtained from equation 19 and then
linearized in the anellipticity parameters η(1,2,3). Further lin-
earization of equation 5 yields the weak-anisotropy approxi-
mation for the geometrical spreading discussed below.

Analysis of the weak-anisotropy approximation

Geometrical spreading in the symmetry planes

While the full linearized expression for geometrical spread-
ing is still rather long, it takes a much more concise form in
the vertical symmetry planes. For the symmetry plane [x1, x3],
we find the inverse relative spreading as

L−1(x) = cos−1 φ
A + Bx2 + Cx4

V
(1)

nmoV
(2)

nmo
[
T 2

0

(
V

(2)
nmo

)2 + x2
]3 , (23)

where

cos φ = T0VP 0√
x2 + T 2

0 V 2
P 0

, (24)

A = T 5
0

(
V (2)

nmo

)6
, (25)

B = T 3
0

(
V (2)

nmo

)2[2(1 − 4η(2))
(
V (2)

nmo

)2

+ (η(2) + η(3) − η(1))
(
V (1)

nmo

)2]
, (26)

C = T0
[
(1 + η(2))

(
V (2)

nmo

)2

+ (η(2) + η(3) − η(1))
(
V (1)

nmo

)2]
. (27)

At zero offset, the factor L−1 becomes 1/(T0V
(1)

nmoV
(2)

nmo),
which is an exact expression that can be obtained directly
from the wavefront curvatures for any strength of anisotropy.
As follows from equations 13 and 14 for the NMO veloci-
ties, geometrical spreading at vertical incidence is governed
by two anisotropic coefficients: δ(1) and δ(2). For VTI media,
V

(1)
nmo = V

(2)
nmo, and L−1 at zero offset reduces to 1/(T0V

2
nmo); this

result is obtained by Tsvankin (1995) and Ursin and Hokstad
(2003). If the medium is isotropic, L−1 further simplifies to the
familiar expression 1/(T0V

2
P 0) (Newman, 1973).

The factors B and C in equation 23 can be called the near-
offset and far-offset spreading coefficients, respectively. Note
that B and C include terms dependent on both in-plane and
out-of-plane traveltime (and, therefore, velocity) variations.
The P-wave reflection traveltime in the incidence plane is con-
trolled just by the NMO velocity V

(2)
nmo and the anisotropic pa-

rameter η(2) (Grechka and Tsvankin, 1999; Tsvankin, 2001).
Hence, the term (1 − 4η(2))(V (2)

nmo)2 in the coefficient B repre-
sents the in-plane contribution, which coincides with the cor-
responding (near-offset) spreading factor for VTI media. The
other term in the expression for B, [(η(2) + η(3) − η(1))(V (1)

nmo)2],
is entirely the result of azimuthal anisotropy (i.e., a nonzero
value of the second traveltime derivative with respect to
α). This term vanishes in VTI media where η(3) = 0 and
η(1) = η(2). Similarly, the far-offset coefficient C contains the

in-plane term [(1 + η(2))(V (2)
nmo)2] and exactly the same out-of-

plane term as that in the expression for B.
The inverse spreading L−1 in the symmetry plane [x2, x3]

can be obtained from equations 23–27 by switching the super-
scripts (1) and (2) in the NMO velocities and the coefficients η.
A more detailed comparison of geometrical spreading in the
symmetry planes of orthorhombic media with that in VTI me-
dia can be found in the numerical example in the next section.

Azimuthal variation of geometrical spreading

Since azimuthal AVO analysis often operates with prestack
amplitudes measured at a fixed offset, here we analyze the
azimuthally varying spreading factor L−1(α, x) when x is a
constant. Using equations 13 and 14 for the symmetry-plane
NMO velocities and linearizing both the x2 and x4 terms in
equation 19 in the anisotropic parameters yields

T 2(x, α) = T 2
0 + x2 1 − δ(1) − δ(2) + (δ(2) − δ(1)) cos 2α

V 2
P 0

− 2x4 η(2) cos2 α + η(1) sin2 α − η(3) cos2 α sin2 α

T 2
0 V 4

P 0

(
1 + x2/T 2

0 V 2
P 0

) .

(28)

Substituting moveout equation 28 into equation 5 and carry-
ing out further linearization in the anisotropic parameters, we
obtain the inverse geometrical spreading as

L−1(x, α) = D(x) + E(α)
[

x

T0VP 0

]2

+ F (α)
[

x

T0VP 0

]4

+ . . . . (29)

Here, D(x) is an azimuthally independent term that would
coincide with L−1 in VTI media (the model becomes VTI if
the anisotropic coefficients in the vertical symmetry planes are
identical and η(3) = 0). The azimuthally varying terms in equa-
tion 29 are expanded in x2, and powers of x higher than four
are neglected. The coefficients E and F are given by

E(α) = V 3
P 0T

4
0(

V 2
P 0T

2
0 + x2

)5/2 [3(η(1) − η(2))

− (δ(1) − δ(2))] cos 2α; (30)

F (α) = V 3
P 0T

4
0(

V 2
P 0T

2
0 + x2

)5/2

{[
3
2

(δ(1) − δ(2))

+ 9(η(1) − η(2))
]

cos 2α + 9
8
η(3) cos 4α

}
.

(31)

The coefficient E(α) is responsible for the azimuthal depen-
dence of the geometrical spreading at near offsets. Since E(α)
is proportional to cos 2α, for small x the function L−1(α) traces
out a curve close to an ellipse. In contrast, the far-offset coef-
ficient F(α) contains both cos 2α and cos 4α, and the form of
L−1(α) may substantially deviate from elliptical; this is illus-
trated by the numerical example in the next section.
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The magnitude of the azimuthal variation of geometri-
cal spreading is controlled by the differences (δ(1) − δ(2))
and (η(1) − η(2)) and, at far offsets, by the coefficient η(3). If
δ(1) = δ(2), η(1) = η(2), and η(3) = 0, P-wave velocity becomes
azimuthally independent; for purposes of computing P-wave
geometrical spreading, the orthorhombic medium becomes
equivalent to VTI.

Numerical example

This numerical example illustrates four properties of the in-
verse spreading L−1 in an orthorhombic layer:

1) the influence of azimuthal anisotropy on L−1 in the vertical
symmetry planes,

2) the azimuthal variation of L−1 at a fixed source-receiver
offset,

3) the spatial variation of L−1 expressed as a function of offset
and azimuth, and

Figure 3. Normalized inverse spreading L−1 as a function
of the offset-to-depth ratio in the symmetry planes (a)
[x1, x3] and (b) [x2, x3] of a horizontal orthorhombic layer.
The solid line is computed using equations 5 and 10, the
dashed line is the weak-anisotropy approximation, and the
dotted line is L−1 in the reference VTI model. The model
parameters are VP 0 = 2.437 km/s, ε(1) = 0.329, ε(2) = 0.258,
δ(1) = 0.083, δ(2) = −0.078, and δ(3) = −0.106. The corre-
sponding P-wave moveout parameters are V

(1)
nmo = 2.632 km/s,

V
(2)

nmo = 2.239 km/s, η(1) = 0.211, η(2) = 0.398, and η(3) = 0.193.
The inverse spreading L−1 is normalized by its value in the cor-
responding isotropic layer with the velocity VP 0 = 2.437 km/s.

4) the accuracy of the weak-anisotropy approximation for
L−1.

We use an orthorhombic model formed by parallel verti-
cal penny-shaped cracks embedded in a VTI background. The
stiffness coefficients for this model are given in Schoenberg
and Helbig (1997), and the corresponding anisotropic param-
eters, listed in the caption of Figure 3, are taken from Tsvankin
(1997). Although this model has a substantial azimuthal veloc-
ity variation, it is dominated by the VTI component, with both
ε coefficients close to 0.3.

As before, we assume that the coordinate planes coin-
cide with the symmetry planes of the orthorhombic layer.
The inverse spreading L−1 is found using the formulation
based on equations 5 and 10 without making any further ap-
proximations in computing the traveltime derivatives and the
spreading factor itself. For comparison, we also calculate the
weak-anisotropy approximation for L−1 by using the moveout
equation 19 and linearizing the spreading in the anisotropic
coefficients (see the previous section).

Figure 3 displays the inverse spreading L−1 (normalized by
L−1 in the corresponding isotropic model) in the vertical sym-
metry planes of the layer. Clearly, the influence of anisotropy
leads to significant distortions of geometrical spreading in a
wide range of offsets for both symmetry planes. As shown
by Tsvankin (1995, 2001) for VTI media, the influence of
anisotropy causes the amplitude (e.g., the inverse spreading)
to decrease with increasing offset if the difference ε − δ is pos-
itive (i.e., η > 0). Figure 3 confirms that this conclusion re-
mains valid for the symmetry planes of orthorhombic media
with moderate azimuthal anisotropy. Indeed, the η coefficients
in both vertical symmetry planes (η(1) and η(2)) are positive,
and the normalized factor L−1 decreases with offset at near-
vertical incidence.

Comparison with the spreading in the reference VTI
medium (dotted line, Figure 3) helps to quantify the influ-
ence of azimuthal anisotropy in both symmetry planes. It
is interesting that azimuthal anisotropy changes the spread-
ing factor even at vertical incidence, where for orthorhom-
bic media L−1 = 1/(T0V

(1)
nmoV

(2)
nmo), while for VTI media, L−1 =

1/(T0V
2

nmo). For example, if we substitute the NMO velocity in
the [x1, x3] symmetry plane into the VTI expression, we get a
value that is 18% larger than the actual L−1 (Figure 3a).

As follows from the weak-anisotropy approximation dis-
cussed in the previous section, the influence of azimuthal
velocity variations on the offset-dependent part of L−1 in
the [x1, x3] symmetry plane is controlled by the combination
(η(2) − η(1) + η(3)) of the anellipticity coefficients. Since for
our model this combination is positive and relatively large
(0.38), L−1 in the [x1, x3] plane initially decreases with offset
slower than in the corresponding VTI medium (Figure 3a).
For offset-to-depth ratios exceeding two, however, the fac-
tor L−1 almost coincides with the VTI value, which contra-
dicts the weak-anisotropy result. Overall, the influence of az-
imuthal anisotropy is so significant that it is not acceptable to
apply 2D amplitude analysis even in the symmetry planes of
azimuthally anisotropic media.

Similarly, the factor L−1 in the [x2, x3] symmetry plane con-
tains the out-of-plane term proportional to (η(1) − η(2) + η(3)).
For the model at hand, however, this term is close to zero
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(0.006), and the offset dependence of the geometrical spread-
ing in the [x2, x3] plane is close to that in the reference VTI
medium (Figure 3b).

Figure 3 also helps to evaluate the accuracy of the weak-
anisotropy approximation for a model that can be char-
acterized as moderately to strongly anisotropic in terms
of the magnitude of P-wave velocity variations. While the
weak-anisotropy solution is exact at x = 0 (because we did
not linearize the NMO velocities in the denominator of L−1),
it rapidly deviates from the exact factor L−1 with increasing
offset. Still, the approximation correctly predicts the general
character of the function L−1(x) and remains accurate for
offset-to-depth ratios of up to about one.

Figure 4. Azimuthal variation of the normalized spreading
L−1 for the model from Figure 3; the offset-to-depth ratio is
equal to (a) one and (b) two . The azimuth α (numbers on the
perimeter) is measured with respect to the x1-axis. The solid
line is computed using equations 5 and 10; the dashed line is
the weak-anisotropy approximation.

The azimuthal variation of the normalized spreading L−1

at two different offsets is plotted in Figure 4. Since the
geometrical spreading in our model is symmetric with respect
to both vertical coordinate planes, the signature of L−1 is re-
peated in each quadrant. For the offset equal to the reflector
depth, the azimuthal variation of L−1 is close to elliptical, as
predicted by the weak-anisotropy approximation (Figure 4a).
The fractional difference between the values of L−1 in the
symmetry planes, which determines the overall magnitude of
the azimuthal variation of the inverse geometrical spreading,
is about 30%. Hence, for this model the eccentricity of the
geometrical-spreading ellipse exceeds that of the NMO el-
lipse (18%). For larger offset-to-depth ratios, the shape of the
curve L−1(α) becomes more complicated and, in agreement
with the weak-anisotropy approximation 31 for the x4 term,
deviates from an ellipse (Figure 4).

A complete picture of the spatial variations of the spread-
ing factor in our model is given in Figure 5a, where L−1 is
computed as a function of both offset and azimuth. The com-
bined influence of polar and azimuthal anisotropy creates a
rather complicated pattern of the normalized factor L−1, with

Figure 5. Map of the normalized inverse spreading L−1 as a
function of offset and azimuth. (a) Computed for the model
from Figure 3; (b) the sign of the parameter δ(2) is changed
from negative to positive (i.e., δ(2) = 0.078). The offset-to-
depth ratio varies from zero to four.
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Table 1. Parameters of a four-layer model that includes two orthorhombic layers (layers 2 and 3) with aligned vertical
symmetry planes.

Layer Symmetry type
VP 0

(km/s)
Thickness

(km) ε(1) ε(2) δ(1) δ(2) δ(3)

1 Isotropic 1.5 0.2 0 0 0 0 0
2 Orthorhombic 2.437 0.9 0.329 0.258 0.083 −0.078 −0.106
3 Orthorhombic 3.0 0.9 0.25 0.15 0.05 −0.1 0.15
4 Isotropic 3.2 0.5 0 0 0 0 0

Figure 6. Comparison of the inverse relative spreading com-
puted by our method (dashed line) and ANRAY (solid) for
the model from Figure 3. The source-receiver line is oriented
(a) along the x1-axis, (b) at 45◦ with the x1-axis, and (c) along
the x2-axis.

substantial azimuthal variations and pronounced devia-
tions from the corresponding isotropic values. The largest
anisotropy-induced distortions of the geometrical spreading,
reaching 40%, are observed near the [x1, x3] plane for offset-
to-depth ratios of about 1.5.

The significant azimuthal variation of L−1 at near offsets
is partly caused by the opposite signs of the δ coefficients in
the vertical symmetry planes. In Figure 5b, we change the sign
of δ(2) (the other model parameters remain the same), which
reduces the differences between the symmetry-plane NMO
velocities (V (1)

nmo and V
(2)

nmo) and between the corresponding η

coefficients (η(1) and η(2)). Although the geometrical spread-
ing becomes much less dependent on azimuth at near offsets,
the azimuthal variation of L−1 at moderate and far offsets in
Figure 5b is still quite pronounced.

COMPARISON WITH DYNAMIC RAY TRACING

To verify the accuracy of our algorithm (equation 4) based
on the nonhyperbolic moveout equation 10, we compared
our results with the spreading computed by the dynamic ray-
tracing code ANRAY (Gajewski and Pšenčı́k, 1990). The
comparison was carried out for a single orthorhombic layer
with the parameters of the Schoenberg-Helbig model used
previously and a more complicated medium composed of two
orthorhombic and two isotropic layers (Table 1). To facilitate
the conversion from the relative spreading produced by our al-
gorithm to the absolute spreading computed by ANRAY, we
placed a thin, 10-m isotropic layer on top of the 1000-m-thick
orthorhombic layer. The moveout coefficients were found by
fitting equation 10 to ray-traced traveltimes using the least-
squares method. The group angle for the layered model was
estimated from the slope of the traveltime curve and the ve-
locity in the subsurface isotropic layer.

For both models, the geometrical spreading calculated by
our method is close to the results of dynamic ray tracing for
a wide range of offsets (Figures 6 and 7). Small deviations
from the ray-traced values can be explained by the approxi-
mate nature of the Tsvankin-Thomsen nonhyperbolic move-
out equation and, possibly, by numerical errors in ANRAY.
Since equation 4 includes second-order traveltime derivatives,
the spreading computed by our algorithm is sensitive to rela-
tively small correlated errors in the moveout function.

Still, Figure 7 demonstrates that equation 10 adequately de-
scribes P-wave moveout, not just for a single layer but also for
a stack of azimuthally anisotropic layers with aligned vertical
symmetry planes. For layered media, all moveout coefficients
become effective values that depend on the interval NMO ve-
locities and η parameters.
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Figure 7. Comparison of the inverse relative spreading com-
puted by our method (dashed line) and ANRAY (solid) for
the layered orthorhombic model from Table 1. (We used the
reflection from the bottom of the third layer.) The source-
receiver line is oriented (a) along the x1-axis, (b) at 45◦ with
the x1-axis, and (c) along the x2-axis.

DISCUSSION AND CONCLUSIONS

Although geometrical spreading of reflected waves is deter-
mined by the medium properties around the whole raypath, it
can be obtained from the reflection traveltime and the group
angles at the source and receiver locations. Using ray theory,
we showed that for pure (unconverted) modes recorded above
a horizontally layered medium, relative geometrical spreading
can be expressed as a simple function of the traveltime deriva-
tives with respect to offset and azimuth and the group angles
at the surface. Although this equation does not account for
lateral heterogeneity, it involves no restrictions on the num-
ber of layers above the reflector or the type of symmetry in
each layer.

To describe the geometrical spreading of P-waves in or-
thorhombic media, we combined our general result with the
Tsvankin-Thomsen nonhyperbolic moveout equation for a
homogeneous, horizontal orthorhombic layer. The P-wave re-
flection traveltime and, therefore, the geometrical spreading
for this model are governed by the NMO velocities V

(1)
nmo

and V
(2)

nmo in the vertical symmetry planes and the anelliptic-
ity coefficients η(1), η(2), and η(3). To explain the dependence
of inverse spreading L−1 on these parameters, we used the
weak-anisotropy approximation based on linearization in the
anisotropic coefficients. The analytic results were verified by
numerical tests for an orthorhombic model formed by vertical
penny-shaped cracks embedded in a VTI matrix.

Although the geometrical-spreading signature in an or-
thorhombic layer is repeated in each quadrant, the variation
of the factor L−1 with offset and azimuth has a rather com-
plicated character. For the model used here, the error of the
isotropic equation for geometrical spreading reaches a max-
imum of 40% in the intermediate offset range (i.e., for the
offset-to-depth ratio between one and two). The azimuthal
variation L−1(α) for a fixed offset is close to elliptical at rel-
atively small offset-to-depth ratios of up to one. For larger
offsets, L−1(α) deviates from an ellipse and may have inter-
mediate minima or maxima between the symmetry planes.

Both analytical and numerical results show that the spread-
ing factor L−1 is substantially influenced by azimuthal velocity
variations even in the vertical symmetry planes. At zero off-
set (vertical incidence), exact inverse geometrical spreading is
given by a simple equation that involves only the NMO ve-
locities in both symmetry planes: L−1 = 1/(T0V

(1)
nmoV

(2)
nmo). The

offset-dependent part of L−1 in the symmetry planes can be
separated (in the weak-anisotropy approximation) into the in-
plane term, identical to the factor L−1 in the corresponding
VTI medium, and the out-of-plane term associated with az-
imuthal anisotropy. In the [x1, x3] plane, the contribution of
azimuthal velocity variation is proportional to the combina-
tion (η(2) − η(1) + η(3)), and in the [x2, x3] plane it is propor-
tional to (η(1) − η(2) + η(3)).

The large magnitude of the anisotropy-induced distortions
of the factor L−1 means that reliable interpretation of the
wide-azimuth AVO response for media with azimuthally
anisotropic overburden is impossible without properly cor-
recting for geometrical spreading. The estimation and removal
of geometrical spreading can be accomplished by applying
equation 4 with the best-fit traveltime function. Analytic rep-
resentations of reflection moveout can facilitate the spreading
correction by providing a smooth, accurate approximation for
the measured traveltimes.

In practice, however, complications may arise from the high
sensitivity of the geometrical spreading to lateral heterogene-
ity, small errors in the best-fit traveltimes, or distortions in
the group (ray) angles. For example, it is difficult to estimate
the group angles at the source and receiver locations using
just the acquisition geometry and traveltime data unless the
subsurface layer is isotropic. Even for the homogeneous or-
thorhombic model studied here, the group angle φs = φr can
be found in a straightforward way only if the layer thickness is
known. Practical issues involved in the geometrical-spreading
correction for layered azimuthally anisotropic media are yet
to be investigated.
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APPENDIX A

RELATIVE GEOMETRICAL SPREADING AS A
FUNCTION OF REFLECTION TRAVELTIME

As discussed in the main text, the relative geometrical
spreading L(R, S) can be obtained in terms of the mixed
second-order traveltime derivatives with respect to the source
and receiver coordinates using equations 2 and 3. Here, we ex-
press L(R, S) through the multiazimuth reflection traveltimes
of a pure (unconverted) mode recorded over a laterally homo-
geneous medium.

The spreading factor L(R, S) can be found from the
traveltime-derivative matrix Mmix given in equation 3:

Mmix =




∂2T (xr, xs)
∂xs

1∂xr
1

∂2T (xr, xs)
∂xs

1∂xr
2

∂2T (xr, xs)
∂xs

2∂xr
1

∂2T (xr, xs)
∂xs

2∂xr
2


 , (A-1)

where xs
1 and xs

2 are the horizontal Cartesian coordinates of
the source and where xr

1 and xr
2 are the coordinates of the

receiver. In general, Mmix is a function of four independent
variables, x

s,r

1 and x
s,r
2 . For laterally homogeneous media con-

sidered in this paper, however, the number of independent
variables of Mmix reduces from four to two. Indeed, in the
absence of lateral heterogeneity, the traveltime T of a pure
mode on a horizontal surface depends only on the distance x
between the source and the receiver and the azimuth α of the
source-receiver line with respect to the x1-axis:

x =
√(

xr
1 − xs

1

)2 + (
xr

2 − xs
2

)2
, (A-2)

α = tan−1
[
xr

2 − xs
2

xr
1 − xs

1

]
. (A-3)

If the traveltime T is expressed as a function of x and α, the
elements of the matrix Mmix become

∂2T

∂xs
1∂xr

1
= ∂2T

∂x2

∂x

∂xs
1

∂x

∂xr
1

+ ∂T

∂x

∂2x

∂xs
1∂xr

1
+ ∂2T

∂α2

∂α

∂xs
1

∂α

∂xr
1

+ ∂T

∂α

∂2α

∂xs
1∂xr

1
, (A-4)

∂2T

∂xs
1∂xr

2
= ∂2T

∂x2

∂x

∂xs
1

∂x

∂xr
2

+ ∂T

∂x

∂2x

∂xs
1∂xr

2
+ ∂2T

∂α2

∂α

∂xs
1

∂α

∂xr
2

+ ∂T

∂α

∂2α

∂xs
1∂xr

2
, (A-5)

∂2T

∂xs
2∂xr

1
= ∂2T

∂xs
1∂xr

2
, (A-6)

∂2T

∂xs
2∂xr

2
= ∂2T

∂x2

∂x

∂xs
2

∂x

∂xr
2

+ ∂T

∂x

∂2x

∂xs
2∂xr

2
+ ∂2T

∂α2

∂α

∂xs
2

∂α

∂xr
2

+ ∂T

∂α

∂2α

∂xs
2∂xr

2
. (A-7)

The derivatives of x and α with respect to the source and
receiver coordinates can be obtained from equations A-2 and
A-3:

∂x

∂xs
i

= xs
i − xr

i

x
,

∂x

∂xr
i

= xr
i − xs

i

x
(i = 1, 2), (A-8)

∂α

∂xs
1

= xr
2 − xs

2

x2
,

∂α

∂xs
2

= xs
1 − xr

1

x2
, (A-9)

∂α

∂xr
1

= xs
2 − xr

2

x2
,

∂α

∂xr
2

= xr
1 − xs

1

x2
, (A-10)

∂2x

∂xs
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1
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2 − xs

2

)2

x3
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2
=

(
xr
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1

)(
xr
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2

)
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, (A-12)

∂2x
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xr
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1

)2

x3
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∂2α
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1
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(
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)(
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)
x4

, (A-14)
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2
= 2
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1

)(
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2

)
x4
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Substituting equations A-8 through A-16 into equations A-4
through A-7 yields
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∂α2

(
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The determinant of the matrix Mmix is then found as

det Mmix = ∂2T

∂x2
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1
x
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∂x2

∂2T

∂α2
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x2

−
(

∂T
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)2 1
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(A-21)
Finally, using equation A-21, the relative geometrical

spreading (equation 2) can be expressed through the travel-
time derivatives with respect to the offset x and azimuth α:

L(R, S) = L(x, α) = (cos φs cos φr)1/2
[
∂2T

∂x2

∂T

∂x

1
x

+ ∂2T

∂x2

∂2T

∂α2

1
x2

−
(

∂T

∂α

)2 1
x4

]−1/2

. (A-22)

APPENDIX B

TRAVELTIME DERIVATIVES FROM THE
NONHYPERBOLIC MOVEOUT EQUATION

The P-wave nonhyperbolic (long-spread) reflection travel-
time can be described by the Tsvankin-Thomsen (1994) move-
out equation:

T 2(x, α) = T 2
0 + A2(α)x2 + A4(α)x4

1 + A(α)x2
, (B-1)

where the moveout coefficients A2, A4, and A generally vary
with the azimuth α.

The derivatives of the traveltime with respect to the offset x
are given by

∂T
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= 1
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[
A2 x + 2A4x

3
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5
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]
(B-2)

and
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(
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)2 ]
; (B-3)

f (x) ≡ A2 + 6A4x
2

1 + Ax2
− 9AA4x

4
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+ 4A4A

2x6

(1 + Ax2)3
. (B-4)

Differentiating equation B-1 with respect to azimuth yields
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and
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Here, A′
2, A′

4, A′, A′′
2, A′′

4, and A′′ are the first and second deriva-
tives of the moveout coefficients with respect to α. For the
model of a single orthorhombic layer, these derivatives can be
found from the explicit expressions for A2, A4, and A given in
the main text.
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