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ABSTRACT

Conventional fracture-characterization techniques operate with the idealized model of

penny-shaped (rotationally invariant) cracks and ignore the roughness (microcorruga-

tion) of fracture surfaces. Here, we develop analytic solutions based on the linear-slip

theory to examine wave propagation through an effective anisotropic medium that

contains two microcorrugated, vertical, orthogonal fracture sets in isotropic back-

ground rock.

The off-diagonal elements of the compliance matrix associated with the corruga-

tion cause the deviation of the polarization vectors of the vertically traveling S-waves

from the horizontal plane. Also, the shear-wave splitting coefficient at vertical in-

cidence becomes sensitive to fluid saturation, especially for tight, low-porosity host

rock. In contrast to the model with two orthogonal sets of penny-shaped cracks, the

NMO (normal-moveout) ellipses of all three reflection modes (P, S1, S2) are rotated
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with respect to the fracture strike directions. Another unusual property of the fast

shear wave S1, which can help to distinguish between models with one and two mi-

crocorrugated fracture sets, is the misalignment of its polarization vector at vertical

incidence and the semi-major axis of the NMO ellipse.

The model analyzed here may adequately describe the orthogonal fracture sets at

Weyburn Field in Canada, where the axes of the P-wave NMO ellipse deviate from

the S1-wave polarization direction. Our results can be used to identify the underlying

physical model and, potentially, to estimate the combinations of fracture parameters

constrained by multicomponent, multiazimuth seismic data.
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INTRODUCTION

A key element in reservoir characterization is identification of fluid pathways that

control the production of hydrocarbons. Since such pathways are often formed by

fracture networks and joints, detection and analysis of fractures using seismic data is

an important area of reservoir geophysics (e.g., Lynn et al., 1995; Pérez et al., 1999;

Mallick et al., 1998; DeVault et al., 2002). In a series of three papers, Bakulin et al.

(2000a,b,c) outlined several practical approaches to estimating fracture parameters

from surface seismic and VSP (vertical seismic profiling) data. Using the linear-

slip theory described by Schoenberg (1980) and Schoenberg and Sayers (1995), they

expressed the equations describing the NMO (normal-moveout) ellipses and AVO

(amplitude-variation-with-offset) gradients of reflected waves in terms of the frac-

ture compliances and orientations. These analytic expressions helped Bakulin et al.

(2000a,b,c) to devise fracture-characterization methods based on the inversion of mul-

ticomponent, mutliazimuth reflection data.

The work of Bakulin et al. (2000a,b,c) was largely focused on the idealized model

of rotationally invariant fractures (i.e., oblate spheroids), which have perfectly smooth

surfaces and are often called “penny-shaped cracks.” Grechka et al. (2003) extended

the results of Bakulin et al. (2000a) by considering a single set of the most general

vertical fractures allowed by the linear-slip formalism. Physically, such “general”

fractures have rough (microcorrugated) surfaces and are described by a compliance

matrix that has nonzero off-diagonal elements. The results of Grechka et al. (2003)

show that fracture rheology has a strong impact on the velocities and reflection move-
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out of pure modes, as well as on the shear-wave splitting coefficient. For instance, if

the fractures are rotationally invariant, the axes of the NMO ellipses from horizontal

reflectors are always parallel and perpendicular to the fracture strike. By contrast,

for a set of general fractures only the NMO ellipse of the fast shear wave S1 maintains

its alignment with the fractures, while the ellipses of the P- and S2-waves may have

different orientations.

While the methodology of Grechka et al. (2003) helps to treat realistic fracture

rheologies, their results are limited to effective media that include only one general

fracture set. Many naturally fractured reservoirs, however, contain two (or even more)

systems of fractures, which are often orthogonal to each other (Schoenberg and Sayers,

1995; Grechka and Tsvankin, 2003). Here, we study an effective anisotropic medium

formed by two vertical, orthogonal, microcorrugated fracture sets embedded in isotropic

background rock.

Our motivation for investigating this model comes from analysis of multiazimuth

P- and S-wave reflection data acquired at Weyburn Field in Canada, where borehole

imaging and geological information reveal the presence of three open vertical fracture

sets (Cardona, 2002). Over most of the field two of these sets, which have relatively

close orientations, seem to act as a single effective fracture set orthogonal to the

dominant NE-SW fracture trend. If these two orthogonal sets are rotationally invari-

ant, the effective medium should have orthorhombic symmetry, which is confirmed by

analysis of seismic data (Cardona, 2002). In the southern part of the field, however,

the orthorhombic model fails to explain the misalignment of the P-wave NMO ellipse
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and the fast S-wave polarization direction. As shown by Cardona (2002), even the

introduction of a third set of penny-shaped cracks is insufficient to fit the seismic

signatures in that area. Making the fractures microcorrugated can help to develop an

effective model with two orthogonal fracture sets that fully accounts for the observed

anomaly.

The objective of this paper is to analyze the influence of two orthogonal sets

of microcorrugated fractures on the NMO ellipses and AVO gradients of reflected

waves, as well as on the shear-wave splitting coefficient. Applying the weak-anisotropy

approximation, we derive closed-form analytic expressions for these common seismic

signatures in terms of the fracture compliances. Although the feasibility study by

Grechka and Tsvankin (2003) indicates that the individual compliances of two general

fracture sets cannot be resolved even from the complete effective stiffness tensor, our

results can assist in retrieving certain combinations of the compliances and identifying

the presence of two fracture sets.

EFFECTIVE MEDIUM

The model considered here includes two orthogonal sets of vertical fractures of the

most general rheology embedded in a purely isotropic background (Figure 1). To

compute the elastic stiffnesses for the fractured model, we employ the linear-slip the-

ory introduced by Schoenberg (1980) and further discussed by Schoenberg and Sayers

(1995) and others (see Appendix A). According to the linear-slip formalism, fractures

can be described as non-welded interfaces that cause discontinuities in the displace-
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ment field (i.e., slips). The slips are taken to be proportional to the product of the

(continuous) tractions that act across the fractures and the excess fracture compli-

ances.

The most general mathematical description of a fracture set in the linear-slip

theory is a 3 × 3 symmetric matrix of the excess compliances (Grechka et al., 2003):

K =

















KN KNH KNV

KNH KH KV H

KNV KV H KV

















, (1)

where KN is the normal compliance that relates the normal traction (stress) across

the fracture surface to the normal slip, and KV and KH are the tangential compli-

ances relating the shear stresses to the tangential slips. The off-diagonal compliances

incorporate the mechanical effects of irregularities and asperities on the fracture sur-

faces (Figure 2) by coupling the normal slips to the shear stresses and vice versa

(Schoenberg and Douma, 1988). Due to lack of experimental data on this coupling

mechanism (with the exception of Nakagawa et al., 2000), it is unclear what scale

of microcorrugations is needed to produce measurable off-diagonal compliances. As

follows from the theoretical analysis of Kachanov and Sevostianov (2005), microcor-

rugations should be mismatched and should provide contact points between the two

fracture surfaces to ensure significant coupling.

Fractures are usually classified in accordance with the structure of their compli-

ance matrix K (equation 1). If at least one of the off-diagonal elements does not van-

ish, the fractures are sometimes called “monoclinic” (Schoenberg and Douma, 1988).
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Fractures described by a diagonal matrix K are called “orthotropic” or simply “di-

agonal;” rotationally invariant fractures are a special subset of diagonal fractures

corresponding to equal tangential compliances KV = KH .

In the linear-slip theory, the compliance matrix of the effective model is obtained

by adding the compliance matrices of the two corrugated fracture sets to that of the

isotropic background (Appendix A). The effective stiffness elements cij, obtained by

inverting the compliance matrix, can be simplified by linearizing the exact values

in the normalized compliances called fracture weaknesses (Schoenberg and Douma,

1988; Bakulin et al., 2000a). The weaknesses vary from zero for unfractured medium

to unity for intensely fractured rock in which the body-wave velocities go to zero

in a certain direction. Since the weaknesses for typical fractured formations are

much smaller than unity, they can be conveniently used in developing closed-form

approximations for seismic signatures. The fracture weaknesses ∆N , ∆V , ∆H , ∆NV ,

∆NH , and ∆V H for our model are defined in equations B-1–B-6.

The effective stiffness matrix linearized in the weaknesses of both fracture sets can

be represented as (see Appendix B)

c =









































c11 c12 c13 χc24 c15 c16

c12 c22 c23 c24 χc15 c26

c13 c23 c33 χc24 χc15 c36

χc24 c24 χc24 c44 0 c46

c15 χc15 χc15 0 c55 c56

c16 c26 c36 c46 c56 c66









































, (2)
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where

χ ≡ λ

(λ + 2µ)
.

The linearized stiffnesses cij are given in equations B-10–B-30. According to equa-

tion 2, the effective model has the most general, triclinic symmetry (i.e., it does not

have symmetry planes or axes of rotational symmetry), with only one vanishing elastic

constant, c45 = c54. This is not surprising since even a single set of microcorrugated

fractures creates an effective triclinic medium. Nonetheless, only 14 out of the 20

elastic constants are independent because the effective model is constructed using the

two Lamé parameters of the isotropic background (λ and µ) and 12 fracture compli-

ances (six for each fracture set). Note that if the fracture azimuth is unknown, it is

also necessary to introduce an orientation angle that defines the azimuth of one of

the sets in a specified coordinate frame.

By dividing the matrix c into 3× 3 submatrices ci, it can be represented in block

form:

c =









c
1

c
2

cT
2

c
3









; (3)

the superscript “T” denotes transposition. The influence of the complex fracture

rheology in our model on the structure of the stiffness matrix can be understood by

comparing the matrix 3 with that for an effective orthorhombic medium due to two

orthogonal sets of rotationally invariant fractures (Bakulin et al., 2000b):

corth =









corth
1

0

0 corth
3









. (4)
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Clearly, the block c
2

vanishes if the fractures are rotationally invariant. Note that the

matrix corth
3

in equation 4 is diagonal, and c66 contained in corth
3

is a linear combination

of c44 and c55.

VERTICAL WAVE PROPAGATION

Approximate velocities and polarizations

The phase velocities and polarization vectors of vertically propagating plane waves

can be obtained by solving the Christoffel equation for the effective medium de-

scribed by the stiffness matrix 2. Applying the first-order perturbation theory (e.g.,

Jech and Pšenčik, 1989; Pšenčik and Vavryčuk, 2002) and linearizing the vertical ve-

locities of the P-, S1-, and S2-waves in the weaknesses yields

VP = VPb

[

1 − 1

2
(∆N1

+ ∆N2
) χ2

]

, (5)

VS1 = VSb

(

1 − ∆V2

2

)

, (6)

VS2 = VSb

(

1 − ∆V1

2

)

, (7)

where VPb and VSb are the P- and S-wave velocities in the isotropic background,

whereas ∆Ni
and ∆Vi

denote the normal and vertical weaknesses of fracture sets

1 and 2, as indicated by the subscript i. It is assumed that the first set has a

larger weakness ∆V than the second set; otherwise, equation 6 for VS1 would give the

vertical velocity of the slow S-wave. Although the vertical velocities are influenced by

the presence of fractures, equations 5–7 do not contain off-diagonal weaknesses and,
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therefore, coincide with the linearized velocities for rotationally invariant fractures

(Bakulin et al., 2000b).

In contrast, the polarization vectors (U) of the vertically traveling waves contain

first-order contributions of the off-diagonal compliances ∆NVi
:

UP ≈ (a ∆NV1
, a ∆NV2

, 1)T , (8)

US1 ≈ (0, 1, −a ∆NV2
)T , (9)

US2 ≈ (1, 0, −a ∆NV1
)T , (10)

where

a ≡ (1 − 2gb)

(1 − gb)

√
gb , gb ≡

(

VSb

VPb

)2

.

Because of the corrugation of fracture surfaces, the P-wave polarization vector de-

viates from the vertical, and the vertically propagating shear waves are no longer

polarized in the horizontal plane. Equations 9 and 10, however, show that the shear-

wave polarization vectors are still confined to the planes of the two fracture sets.1

Therefore, Alford-style rotation of the horizontal displacement components of

near-offset S-wave reflections can be used to estimate the fracture azimuths. To

measure the vertical components of the shear-wave polarization vectors, which are

indicative of the presence of microcorrugated fractures, it is necessary to apply 3D

polarization analysis.

1Due to the limitations of the first-order perturbation theory, the shear-wave polarization vectors

are no longer orthogonal, despite being perpendicular to the P-wave polarization vector. Also, the

perturbed polarization vectors were not normalized; still, to the first order in the fracture weaknesses,

the magnitude of the vectors UP , US1 and US2 is equal to unity.
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Shear-wave splitting

The shear-wave splitting coefficient (γS) at vertical incidence is defined as (Thomsen,

1988; Tsvankin, 2001)

γS ≡ V 2
S1 − V 2

S2

2V 2
S2

, (11)

where VS1 is the velocity of the fast shear wave. Applying the second-order pertur-

bation theory (Farra, 2001) and retaining terms quadratic in the fracture weaknesses,

we find

γS =
1

2

{

(∆V1
− ∆V2

) (1 + ∆V1
− ∆V2

)

− gb

[

(

∆2
V H1

− ∆2
V H2

)

+
(

∆2
NV1

− ∆2
NV2

) (3 − 4gb)

1 − gb

]

}

.

(12)

As expected, γS at vertical incidence vanishes when the two fracture sets have identical

weaknesses. If the terms quadratic in the weaknesses are dropped from equation 12,

the splitting coefficient reduces to the difference between the diagonal tangential

weaknesses ∆V1
and ∆V2

(see equations 6 and 7). Therefore, to the first order γS

coincides with the splitting coefficient for rotationally invariant fractures, which is

controlled by the difference between the fracture densities of the two sets (Thomsen,

1988; Bakulin et al., 2000a,b).

However, if the second-order terms are substantial, γS is also influenced by the

off-diagonal weaknesses ∆V Hi
and ∆NVi

. Note that the weakness ∆NVi
depends on

saturation and takes different values for fractures filled with compressible gas, brine,

11



or oil (Bakulin et al., 2000c).2 Therefore, the vertical-incidence splitting coefficient

for microcorrugated fractures with relatively large off-diagonal weaknesses may serve

as an indicator of fluid saturation.

As illustrated by Figure 3, the exact coefficient γS can vary by as much as 50%

over the entire range of plausible values of ∆NV1
(∆NV2

was fixed). We would like to

emphasize that the exact γS (as well as the exact NMO ellipses below) is computed

from the exact (not linearized) stiffness matrix for our model obtained using the

linear-slip theory (see Appendix A). For a tight (non-porous) host rock, ∆NV1
= 0

corresponds to fractures filled with incompressible fluid such as brine, whereas nonzero

values of ∆NV1
describe fractures at least partially saturated with gas (Bakulin et al.,

2000c). Although the weak-anisotropy approximation 12 correctly reproduces the

overall character of the curve γS(∆NV1
), it understimates the sensitivity of the shear

splitting to the weakness ∆NV1
.

If the saturation of both both fracture sets changes simultaneously and ∆NV2
varies

similarly to ∆NV1
, the splitting coefficient becomes less sensitive to fluid content.

Also, when the host rock has pore space hydraulically connected to the fractures, the

weaknesses ∆NVi
do not necessarily vanish even for incompressible saturating fluids

(Cardona, 2002; Gurevich, 2003). As a consequence, for porous rocks the variation of

γS with saturation may be less pronounced than that suggested by Figure 3. Finally,

γS becomes less sensitive to the off-diagonal compliances and saturation for softer

2Equation 12 is more accurate than equation (30) of Bakulin et al. (2000c) because it includes

all terms quadratic in the weaknesses.
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rocks (e.g., marine sediments) with smaller values of the ratio gb , i.e., higher VP /VS

ratios.

NMO ELLIPSES FROM HORIZONTAL REFLECTORS

Important information for fracture detection is provided by azimuthally varying trav-

eltimes (moveout) of reflected waves, in particular by their normal-moveout (NMO)

ellipses. For a horizontal, homogeneous layer of arbitrary anisotropic symmetry, the

NMO velocity of pure (non-converted) reflection modes as a function of the azimuth

α is given by (Grechka et al., 1999):

V −2
nmo = W11 cos2 α + 2W12 sin α cos α + W22 sin2 α , (13)

where W is a symmetric 2 × 2 matrix,

W =
q

q2
,12 − q,11q,22









q,22 −q,12

−q,12 q,11









. (14)

Here, q is the vertical component of the slowness vector p = [p1, p2, q] of the zero-offset

ray and q,ij denote the following partial derivatives evaluated at zero offset:

q,ij ≡
∂2q(p1, p2)

∂pi∂pj

. (15)

The vertical slowness and its derivatives can be obtained from the Christoffel

equation, as discussed by Grechka et al. (1999). If the eigenvalues of the matrix W

are positive (the most typical case), equation 13 describes an ellipse in the horizontal

plane.
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To analyze the dependence of the NMO ellipses on the medium parameters, it is

convenient to linearize equation 14 in the fracture weaknesses (equations B-1–B-6).

For P-waves, the linearized matrix W takes the form

WP =
1

V 2
Pb









W P
11 W P

12

W P
12 W P

22









, (16)

where

W P
11 = 1 + ∆N1

(

1 − 4g2
b

)

+ ∆N2
(1 − 2gb)

2 + 4gb ∆V1
, (17)

W P
12 = 2 (∆NH1 + ∆NH2

) (1 − 2gb)
√

gb , (18)

W P
22 = 1 + ∆N2

(

1 − 4g2
b

)

+ ∆N1
(1 − 2gb)

2 + 4gb ∆V2
. (19)

The structure of equations 17–19 can be understood from the “addition rule” formu-

lated by Bakulin et al. (2000b). To find the linearized weak-anisotropy approximation

for most seismic signatures (one exception is discussed below), the anisotropic terms

due to each fracture set can be simply added together taking into account the frac-

ture orientation. This recipe can be used to obtain equations 17–19 from the P-wave

NMO ellipse for a single set of microcorrugated fractures given in equation (56) of

Grechka et al. (2003).

For the fast shear wave S1 the matrix W becomes

WS1 =
1

V 2
Sb









W S1
11 W S1

12

W S1
12 W S1

22









, (20)

14



with

W S1
11 = 1 + ∆H1

+ ∆H2
−A , (21)

W S1
12 =

√
gb (2∆NH2

− C) , (22)

W S1
22 = 1 − 3∆V2

+ 4gb ∆N2
− B . (23)

Here,

A ≡ D∆2
V H1

, (24)

B ≡ D∆2
V H2

, (25)

C ≡ D∆V H1
∆V H2

, (26)

and

D ≡ gb

(∆V1
− ∆V2

)
. (27)

Although the factors A, B, and C are proportional to products of the weaknesses

∆V Hi
, their denominator contains the difference in the tangential weaknesses ∆Vi

(see

equation 27). For that reason, A, B, and C have to be retained in the linearized ap-

proximation for the NMO ellipse WS1. In such a case, the addition rule discussed

above is not valid, and the approximate NMO ellipse of the S1-wave cannot be ob-

tained as the sum of the contributions of each fracture set.

The linearized matrix W for the S2-wave is given by

WS2 =
1

V 2
Sb









W S2
11 W S2

12

W S2
12 W S2

22









, (28)
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where

W S2
11 = 1 − 3∆V1

+ 4gb ∆N1
+ A , (29)

W S2
12 =

√
gb (2∆NH1

+ C) , (30)

W S2
22 = 1 + ∆H1

+ ∆H2
+ B . (31)

Equations 16–31 show that only the presence of the off-diagonal weaknesses can

explain the misalignment of the NMO ellipses with the fracture planes. If both frac-

ture sets were rotationally invariant, the matrices W for all three modes (equations 16,

20, and 28) would be diagonal, and the axes of the NMO ellipses would be parallel

to the fracture strike directions. In an effective orthorhombic medium due to two

orthogonal sets of rotationally invariant fractures, the semi-major axes of the NMO

ellipses of the P- and S1-waves (Figure 4) are aligned with the strike of the dominant

fracture set (Bakulin et al., 2000b).

By contrast, when both fracture sets are microcorrugated, all three NMO ellipses

generally have different orientations, and none of them is aligned with the fracture

azimuths (Figure 5). The deviation of the semi-major axis of the NMO ellipse from

the azimuth of the dominant fracture set reaches 30◦ for the P-wave and 20◦ for

the S1-wave. The weak-anisotropy approximations for the NMO ellipses are close

to the exact solutions for the full range of azimuths (Figure 6). The error of the

approximate solution, caused primarily by the misalignment of the axes of the exact

and approximate NMO ellipses, is noticeable only for the slow shear wave S2. The

higher accuracy of the approximation for the S1-wave compared to that for the S2-
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wave is not surprising since equations 22 and 23 for the matrix elements W S1
12 and

W S1
22 become exact for one set of fractures (Grechka et al., 2003).

The orientation of the NMO ellipse of the fast wave S1 can help to distinguish

between the models with one or two microcorrugated fracture sets. If the second

set does not exist, then ∆NH2
= ∆V H2

= 0, and the element W12 for the S1-wave

vanishes (equations 22 and 26). In this case, the matrix WS1 (equation 20) becomes

diagonal, and the semi-major axis of the NMO ellipse of the S1-wave is parallel to

both the fast shear-wave polarization direction (equation 9) and the fracture strike.

Moreover, for the model with one set of microcorrugated fractures, both the S1-wave

vertical velocity and the NMO velocity in the fracture-strike direction coincide with

the background velocity VSb. This result, discussed by Grechka et al. (2003), follows

from equations 6, 20, and 23.

Grechka et al. (2000) defined the Thomsen-style parameters ζ (i) (i = 1, 2, 3) re-

sponsible for the orientations of the NMO ellipses of pure modes in a horizontal

monoclinic layer with a horizontal symmetry plane. Equations 16–31 can be used to

generalize their result for our triclinic model because the elements W12 include the

parameters ζ (i) and, for the shear waves, additional correction terms. Using equa-

tions B-21 and B-24, the element W P
12 (equation 18) responsible for the rotation of

the P-wave NMO ellipse with respect to the x1-axis can be represented as

W P
12 = −2

c36

c33

= −2ζ (3) , (32)

which coincides with the expression for W P
12 in Grechka et al. (2000). For our model,

the parameter ζ (3) is proportional to the sum of the weaknesses ∆NH1
and ∆NH2

.
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Similarly, the off-diagonal elements W S1
12 and W S2

12 for the S-waves (equations 22

and 30) can be expressed through the parameters ζ (1) and ζ (2):

W S1
12 = −2

c16 − c36

2V 2
Pb gb

+ C = −2
ζ(1)

gb

+ C , (33)

W S2
12 = −2

c26 − c36

2V 2
Pb gb

− C = −2
ζ(2)

gb

− C , (34)

where C (equation 26) is an additional correction factor needed to account for the

nonzero stiffnesses c46 and c56 in the triclinic model (equation 3). The parameters

ζ(1) and ζ (2) depend on the weaknesses ∆NH2
and ∆NH1

, respectively.

Our approximations for the NMO ellipses of both S-waves break down when tan-

gential weaknesses ∆V1
and ∆V2

are identical and the weaknesses ∆V Hi
6= 0. In this

case, the parameter D (equation 27) goes to infinity, which reflects the fact that a

point shear-wave singularity develops in a close vicinity of the zero-offset ray. Analy-

sis of the influence of singularities on normal moveout for models with two orthogonal

sets of penny-shaped cracks can be found in Bakulin et al. (2000b).

P-WAVE REFLECTION COEFFICIENT

Another seismic signature that can be effectively used in fracture detection is the

azimuthally varying reflection coefficient, in particular the AVO (amplitude variation

with offset) gradient responsible for small- and moderate-offset reflection amplitudes.

Here, we present a linearized expression for the P-wave AVO response in our model

and discuss its dependence on the fracture weaknesses.

We consider an isotropic incidence halfspace separated by a plane boundary from
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the triclinic medium described by equation 2 and assume a weak contrast in the elas-

tic properties across the interface and weak anisotropy in the reflecting halfspace (i.e.,

the triclinic medium is treated as a perturbation of the incidence isotropic medium

caused by small fracture weaknesses). The weak-contrast, weak-anisotropy approxi-

mation for the P-wave reflection coefficient in arbitrary anisotropic media is derived

in Vavryčuk and Pšenčik (1998). By combining their general result with the lin-

earized stiffness coefficients for our model (equations B-10–B-30), we find the P-wave

reflection coefficient R
PP

as a function of the phase incidence angle θ:

R
PP

= A + B sin2 θ + C sin2 θ tan2 θ

= Aiso + Aani + (Biso + Bani) sin2 θ + (Ciso + Cani) sin2 θ tan2 θ . (35)

Here, A is the normal-incidence reflection coefficient (“AVO intercept”), B is

the AVO gradient, and C is the so-called “curvature” (large-angle) term. In the

weak-contrast, weak-anisotropy approximation, each term can be separated into the

isotropic (subscript “iso”) and anisotropic (subscript “ani”) part. Since the isotropic

part of the linearized reflection coefficient is well known (it is expressed through the

background velocities and densities), we will discuss only the additional anisotropic

terms. The anisotropic component of the AVO intercept A is formed by the contribu-

tion of the normal fracture weaknesses to the P-wave vertical velocity in the fractured

layer:

Aani = − (∆N1
+ ∆N2

) χ2

4
. (36)
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The anisotropic part of the AVO gradient is given by

Bani(φ) = Aani + B1 cos2 φ + B2 sin 2φ + B3 sin2 φ , (37)

where φ is the azimuthal phase angle measured from the x1-axis, and

B1 = gb

(

∆V1
− ∆N1

χ
)

, (38)

B2 = −χ
√

gb

2
(∆NH1

+ ∆NH2
) , (39)

B3 = gb

(

∆V2
− ∆N2

χ
)

. (40)

The anisotropic curvature term is obtained as

Cani(φ) = Aani + C1 cos4 φ + C2 sin4 φ

+
(

C3 cos2 φ + C4 sin 2φ + C5 sin2 φ
)

sin 2φ ,

(41)

with

C1 = gb (1 − gb) ∆N1
, (42)

C2 = gb (1 − gb) ∆N2
, (43)

C3 =

√
gb

2

(

∆NH1
+ ∆NH2

χ
)

, (44)

C4 =

√
gb

4

[

∆H1
+ ∆H2

+ (∆N1
+ ∆N2

) χ
]

, (45)

C5 =

√
gb

2

(

∆NH1
χ + ∆NH2

)

. (46)

There are interesting similarities between equations 37–46 and equations 16–19 for

the P-wave NMO ellipse. First, if the sign of the AVO gradient does not change with

azimuth, |Bani(φ)| plotted as the radius-vector traces out a curve close to an ellipse

in the horizontal plane, with B−2
ani(φ) being exactly elliptical. (Note that the shape of
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the azimuthally varying curvature term is more complicated and is not represented

by a quadratic function in the horizontal coordinates.) Second, the only off-diagonal

weaknesses appearing in the linearized equations for both the reflection coefficient

and NMO ellipse are ∆NH1
and ∆NH2

. Third, the “principal directions” of the curve

|Bani(φ)| are are rotated with respect to the horizontal coordinate axes (i.e., with

respect to the fracture azimuths) only when ∆NH1
6= 0 or ∆NH2

6= 0. Furthermore, the

rotation angle of both the NMO ellipse (equation 18) and AVO gradient (equation 39)

is controlled by the sum ∆NH1
+ ∆NH2

. As shown above, the rotation angle can be

also expressed through the anisotropy coefficient ζ (3) (equation 32).

The example in Figure 7 illustrates the orientation and shape of the magnitude

of the azimuthally varying AVO gradient from equation 37. The curve |Bani(φ)|

(Bani < 0) is close to an ellipse with the semi-major axis deviating by about 55◦ from

the strike of the dominant fracture set. If the weaknesses ∆NH1
and ∆NH2

are set to

zero, the direction of the largest (by absolute value) AVO gradient is perpendicular

to the dominant fracture set.

Despite the small value of ∆NH1
= 0.05, the contribution of the off-diagonal

weaknesses is sufficient for rotating this direction by about 35◦. This high sensitivity

of the orientation of the AVO-gradient curve to the off-diagonal terms is explained

by equations 38–40. While the element B2 is a weighted average of the weaknesses

∆NHj
(j = 1, 2), the coefficients B1 and B3 are proportional to the difference ∆Vi

−

∆Ni
χ. Since for our model this difference is small, it does not take large off-diagonal

weaknesses to cause a significant rotation of the AVO gradient.
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DISCUSSION AND CONCLUSIONS

We studied seismic signatures of an effective medium formed by two sets of vertical,

orthogonal fractures with microcorrugated surfaces embedded in isotropic host rock.

Each fracture set is described by the most general compliance matrix allowed within

the framework of the linear-slip theory, with the off-diagonal compliance elements

responsible for the character and degree of corrugation. The effective model is triclinic

and has no symmetry planes, although only 15 stiffness elements are independent.

By applying expansions in the fracture weaknesses (normalized compliances), we

derived closed-form analytic expressions for shear-wave splitting, the NMO ellipses

of horizontal reflection events, and the P-wave reflection coefficient. These weak-

anisotropy approximations provide valuable insight into the influence of the fracture

rheology on seismic signatures commonly used in reservoir characterization. For in-

stance, the presence of the off-diagonal weaknesses makes the shear-wave splitting

coefficient γS at vertical incidence sensitive (to the second order) to fluid satura-

tion. The variation of γS with saturation may be substantial in tight, high-velocity

formations where fluids cannot easily move from the fractures into pore space.

The fracture weaknesses also control the orientation and eccentricity of the NMO

ellipses of the reflected P-, S1, and S2-waves. In particular, the contributions of the

off-diagonal weaknesses ∆NHi
and ∆V Hi

(i = 1, 2) lead to the rotation of the NMO

ellipses with respect to the fracture strike directions. In contrast to the effective

orthorhombic medium formed by two orthogonal sets of penny-shaped cracks, all
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three NMO ellipses in our model have different orientations. Extending existing

results for monoclinic models, we expressed the rotation angles of the NMO ellipses

in triclinic media through the anisotropy parameters ζ (1), ζ(2), and ζ (3).

Analysis of the NMO ellipse of the fast shear wave S1 suggests a simple way to

distinguish between models with one and two microcorrugated fracture sets. For

a single set of fractures, the semi-major axis of the S1-wave NMO ellipse and the

polarization vector of the S1-wave at vertical incidence are parallel to each other and

to the fracture strike. This is no longer the case for the model with two fracture sets

where the angle between the polarization vector and the semi-major axis of the NMO

ellipse for the S1-wave can reach 20-30◦.

For P-waves, the principal azimuthal directions of both the NMO ellipse and AVO

gradient depend on the sum of the off-diagonal weaknesses ∆NH1
and ∆NH2

. If both

∆NH1
and ∆NH2

vanish, then the NMO ellipse and AVO gradient are aligned with

the fracture strike directions, as is always the case for penny-shaped cracks. Whereas

the azimuthally varying P-wave AVO gradient traces out a quasi-elliptical curve (if

it does not change sign with azimuth), the large-angle AVO term has a much more

complicated azimuthal dependence.

The results of this work can be instrumental in developing inversion algorithms

for estimating the fracture parameters from multicomponent seismic data. Unfortu-

nately, it has been shown that the inversion for all 15 independent parameters of this

model is ill-posed. Even if all 21 elastic constants of the triclinic medium are recovered

with high accuracy, it is impossible to resolve the fracture weaknesses individually.
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The equations presented here, however, can help to estimate certain parameter com-

binations and verify whether the underlying physical model is appropriate. Lack of

data on the magnitude of the off-diagonal weaknesses for natural fracture networks

makes such experimental studies particularly important.

As discussed above, comparison of the NMO ellipse and polarization direction of

the S1-wave makes it possible to discriminate between the effective models with one

and two sets of microcorrugated fractures. Our results also indicate that it may be

possible to invert seismic data for the velocity ratio gb and the differences between

the diagonal weaknesses ∆Ni
, ∆Vi

and ∆Hi
of the two sets, if the vertical velocities

are available. Also, the P-wave ellipses and AVO gradient can potentially constrain

the sum of the off-diagonal weaknesses ∆NHi
.

The weaknesses ∆NVi
do not appear in the linearized equations for any of the NMO

ellipses or for the P-wave AVO gradient and contribute only to the second-order term

in the shear-wave splitting coefficient. The only quantities that contain first-order

contributions of ∆NVi
are the vertical components of the S-wave polarization vectors,

which may be difficult to measure on field data. Likewise, the weaknesses ∆V Hi
are

contained only in relatively small terms in the equations for the shear-wave NMO

ellipses and for the splitting coefficient γS. Therefore, estimation of the weaknesses

∆V Hi
and ∆NVi

is likely to be unstable. For a single microcorrugated fracture set,

both ∆V H and ∆NV can be determined from VSP data using the slowness surface of

P-waves. It is not clear, however, if such an algorithm can be extended to the more

complicated model treated here.
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APPENDIX A

ELEMENTS OF THE LINEAR-SLIP THEORY

The linear-slip theory (Schoenberg, 1980; Schoenberg and Sayers, 1995) is designed to

find an equivalent (long-wavelength) representation of a medium that contains one or

several fracture sets. Fractures are treated as planar and parallel surfaces of weakness,

and it is assumed that interaction between fractures can be ignored. The fracture

length is taken to be infinite, while fracture apertures have to be small compared

to the dominant seismic wavelength. According to the linear-slip theory, the jumps

in the displacement vector [ui] (i.e., “slips”) across a fracture are to the first order
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proportional to the (continuous) stresses σjk:

[ui] = h Kij σjk nk, (A-1)

where n is the normal to the fracture plane, h is the average spacing between fractures,

and Kij are called the “compliances” of the fracture set.

The effective compliance tensor s of a fractured medium is then found as the sum

of the background compliance sb and the excess compliances sfi
of all fracture sets

(e.g., Schoenberg and Muir, 1989; Hood, 1991):

s = sb +

N
∑

i=1

sfi
. (A-2)

The compliances Kij of each fracture set are mapped onto the corresponding

compliance tensor sijkl using Hooke’s law (Sayers and Kachanov, 1995):

sijkl =
1

4
(Kiknlnj + Kjkninl + Kilnjnk + Kjlnink) . (A-3)

Equation A-1 indicates that K is a 3 × 3 matrix that has to be symmetric and

nonnegative definite because of the symmetries of the compliance tensor. Hence, a

fracture system can be described by up to six independent compliance elements. The

diagonal terms of the matrix relate the jumps in the normal displacement (“normal

slips”) to the normal tractions acting across the surface of the fractures, as well as

the tangential slips to the shear stresses. The off-diagonal elements are responsible

for the coupling of the normal slips and shear stresses and vice-versa. Hereafter, we
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follow the notation of Grechka et al. (2003):

K11 → KN ; K22 → KH ; K33 → KV ;

K12 → KNH ; K13 → KNV ; K23 → KV H .

We consider two vertical, orthogonal fracture sets oriented in such a way that that

the x1-axis is perpendicular to the first set. The summation in equation A-2 is

more conveniently carried out using the condensed Voigt notation, which allows the

compliance tensor to be replaced by a 6 × 6 compliance matrix. Then, according to

equation A-3, the compliances matrices for the two sets take the form

sf1 =









































KN1
0 0 0 KNV1

KNH1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

KNV1
0 0 0 KV1

KV H1

KNH1
0 0 0 KV H1

KH1









































, (A-4)

sf2 =









































0 0 0 0 0 0

0 KN2
0 KNV2

0 KNH2

0 0 0 0 0 0

0 KNV2
0 KV2

0 KV H2

0 0 0 0 0 0

0 KNH2
0 KV H2

0 KH2









































. (A-5)
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The compliance matrix of the isotropic background can be written as

sb =









































E−1 −ν/E −ν/E 0 0 0

−ν/E E−1 −ν/E 0 0 0

−ν/E −ν/E E−1 0 0 0

0 0 0 µ−1 0 0

0 0 0 0 µ−1 0

0 0 0 0 0 µ−1









































, (A-6)

where E is Young’s modulus and ν is Poisson’s ratio, which can be expressed through

the Lamé parameters λ and µ:

E =
µ (3λ + 2µ)

λ + µ
; (A-7)

ν =
λ

2 (λ + µ)
. (A-8)

APPENDIX B

LINEARIZED STIFFNESS MATRIX FOR TWO

ORTHOGONAL FRACTURE SETS

Wave phenomena are more conveniently described using the effective stiffness matrix

that can be obtained by inverting the compliance matrix A-2. To obtain weak-

anisotropy approximations for seismic signatures, the stiffness elements can be lin-

earized in the normalized quantities called fracture weaknesses. Following Grechka et al.
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(2003), the weaknesses for our model can be defined as

∆Ni
≡ (λ + 2µ)KNi

1 + (λ + 2µ)KNi

, (B-1)

∆Vi
≡ µKVi

1 + µKVi

, (B-2)

∆Hi
≡ µKHi

1 + µKHi

, (B-3)

∆NVi
≡

√

µ (λ + 2µ)KNVi

1 +
√

µ (λ + 2µ)KNVi

, (B-4)

∆NHi
≡

√

µ (λ + 2µ)KNHi

1 +
√

µ (λ + 2µ)KNHi

, (B-5)

∆V Hi
≡

√

µ (λ + 2µ)KV Hi

1 +
√

µ (λ + 2µ)KV Hi

, (B-6)

where the subscript i = 1, 2 refers to the number of the fracture set. Since the matrix

K has to be nonnegative definite, the weaknesses satisfy the inequalities

∆2
IJ

≤ ∆
I
∆

J
, (B-7)

where I and J denote the subscripts N , V , and H.

Using equations A-2 and A-4–A-6 and linearizing the stiffness matrix c ≡ s−1 in

the fracture weaknesses (equations B-1–B-6), we obtain

c ≈









































c11 c12 c13 χc24 c15 c16

c12 c22 c23 c24 χc15 c26

c13 c23 c33 χc24 χc15 c36

χc24 c24 χc24 c44 0 c46

c15 χc15 χc15 0 c55 c56

c16 c26 c36 c46 c56 c66









































, (B-8)
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where

χ ≡ λ

λ + 2µ
. (B-9)

The linearized stiffness elements are given by

c11 = (λ + 2µ)
(

1 − ∆N1
− χ2∆N2

)

, (B-10)

c12 = λ (1 − ∆N1
− ∆N2

) , (B-11)

c13 = λ (1 − ∆N1
− χ ∆N2

) , (B-12)

c14 = −
√

λµχ ∆NV2
, (B-13)

c15 = −
√

µ (λ + 2µ)∆NV1
, (B-14)

c16 = −
√

µ (λ + 2µ) (∆NH1
+ χ ∆NH2

) , (B-15)

c22 = (λ + 2µ)
(

1 − ∆N2
− χ2∆N1

)

, (B-16)

c23 = λ (1 − χ ∆N1
− ∆N2

) , (B-17)

c24 = −
√

µ (λ + 2µ)∆NV2
, (B-18)

c25 = −
√

λµχ ∆NV1
, (B-19)

c26 = −
√

µ (λ + 2µ) (χ ∆NH1
+ ∆NH2

) , (B-20)

c33 = (λ + 2µ)
[

1 − χ2 (∆N2
+ ∆N1

)
]

, (B-21)

c34 = −
√

λµχ ∆NV2
, (B-22)

c35 = −
√

λµχ ∆NV1
, (B-23)

c36 = −
√

λµχ (∆NH1
+ ∆NH2

) , (B-24)

c44 = µ (1 − ∆V2
) , (B-25)

c45 = 0 , (B-26)
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c46 = −µ

√

µ

λ + 2µ
∆V H2

, (B-27)

c55 = µ (1 − ∆V1
) , (B-28)

c56 = −µ

√

µ

λ + 2µ
∆V H1

, (B-29)

c66 = µ (1 − ∆H1
− ∆H2

) . (B-30)

If the weaknesses of the second fracture set are equal to zero, the linearized effective

stiffnesses given above reduce to those obtained by Grechka et al. (2003) for a single

microcorrugated fracture set orthogonal to the x1-axis. Another special case is that

of rotationally invariant fractures, for which the off-diagonal weaknesses vanish and

the tangential weaknesses ∆Vi
and ∆Hi

are equal to each other. If both fracture

sets are made rotationally invariant, our stiffness matrix becomes identical to that in

Bakulin et al. (2000b).
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Vavryčuk, V. and I. Pšenčik, 1998, PP-wave reflection coefficients in weakly

anisotropic elastic media: Geophysics, 63, 2129–2141.

34



x3

x1
x2

Figure 1: Model of two sets of orthogonal vertical fractures. Since the linear-slip

theory does not account for the interaction of fracture sets, fractures are not supposed

to intersect each other. The parameters of the fracture set with the normal parallel

to the x1-axis are denoted by the subscript “1” in the text.
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x3

x1

Figure 2: Idealized fracture with corrugations that are offset from one face to the

other (adapted from Schoenberg and Douma, 1988). In such a model, the normal

slips (discontinuities in displacement) are coupled to the shear stresses and vice-versa.

For example, slip in the x3-direction will cause the coupling of the fracture faces and,

therefore, shear stress in the x1-direction.
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Figure 3: Variation of the shear-wave splitting coefficient (γS) for vertical propagation

as a function of the weakness ∆NV1
and the VPb/VSb ratio. The solid curves mark the

exact γS from equation 11, where the velocities are computed from the Christoffel

equation; the dashed curves are the approximation 12. The VPb/VSb ratio is equal to

two (black lines) and three (gray). The other model parameters are VPb = 3 km/s,

∆N1
= 0.5, ∆V1

= ∆H1
= 0.25, and ∆NH1

= ∆V H1
= 0.1. Each weakness of the

second fracture set except for ∆NV2
is equal one-third of the corresponding weakness

of the first set; ∆NV2
= (1/3)∆NH1

.
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Figure 4: Exact NMO ellipses of P-waves (dotted), S1-waves (solid black) and S2-

waves (solid gray) for an effective orthorhombic model formed by two vertical, or-

thogonal sets of rotationally invariant fractures. The semi-major axes (black arrows)

of the P- and S1-wave NMO ellipses are parallel to the strike of the dominant fractured

set (azimuth 90◦). The semi-major axis of S2-wave ellipse (gray arrow) is orthogo-

nal to the main fracture set. The parameters are VPb = 2 km/s, VSb = 1 km/s,

∆N1
= 0.25, and ∆V1

= ∆H1
= 0.12. Each weakness of the second fracture set is

equal to one-third of the corresponding weakness of the first set. The radius of the

external circle corresponds to 2 km/s.
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Figure 5: Exact NMO ellipses for two vertical, orthogonal sets of microcorru-

gated fractures. The strike azimuth of the dominant (first) fracture set is 90◦.

The parameters are VPb=2 km/s, VSb=1 km/s, ∆N1
= 0.25, ∆V1

= ∆H1
= 0.12,

∆NV1
= ∆NH1

= 0.17, and ∆V H1
= 0.12. Each weakness of the second fracture set is

equal to one-third of the corresponding weakness of the first set.
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Figure 6: Comparison between the exact NMO ellipses of the P- and S2-waves from

Figure 5 (solid lines) and the weak-anisotropy approximations (dots for the P-wave

and the dashed line for the S2-wave). The approximations are computed from equa-

tions 17–19 and 29–31. The exact and approximate NMO ellipses of the S1-wave (not

shown) practically coincide with each other.
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Figure 7: Azimuthal variation of the absolute value of the P-wave AVO gradient for

our triclinic model computed from equation 37. The strike azimuth of the dominant

fracture set is 90◦; the direction of the largest gradient (black arrow) is close to 35◦.

The parameters are VPb/VSb = 3, ∆N1
= 0.25, ∆V1

= ∆H1
= 0.12, and ∆NH1

= 0.05.

Each weakness of the second fracture set is equal to one-third of the corresponding

weakness of the first set.
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