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ABSTRACT

Compensation for geometrical spreading along a raypath is
one of the key steps in AVO �amplitude-variation-with-offset�
analysis, in particular, for wide-azimuth surveys. Here, we pro-
pose an efficient methodology to correct long-spread, wide-azi-
muth reflection data for geometrical spreading in stratified azi-
muthally anisotropic media. The P-wave geometrical-spreading
factor is expressed through the reflection traveltime described by
a nonhyperbolic moveout equation that has the same form as in
VTI �transversely isotropic with a vertical symmetry axis� me-
dia.

The adapted VTI equation is parameterized by the normal-mo-
veout �NMO� ellipse and the azimuthally varying anellipticity
parameter � ���. To estimate the moveout parameters, we apply a
3D nonhyperbolic semblance algorithm of Vasconcelos and Ts-

vankin that operates simultaneously with traces at all offsets and
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D161
zimuths. The estimated moveout parameters are used as the in-
ut in our geometrical-spreading computation. Numerical tests
or models composed of orthorhombic layers with strong, depth-
arying velocity anisotropy confirm the high accuracy of our
ravetime-fitting procedure and, therefore, of the geometrical-
preading correction. Because our algorithm is based entirely
n the kinematics of reflection arrivals, it can be incorporated
eadily into the processing flow of azimuthalAVO analysis.

In combination with the nonhyperbolic moveout inversion, we
pply our method to wide-azimuth P-wave data collected at the
eyburn field in Canada. The geometrical-spreading factor for

he reflection from the top of the fractured reservoir is clearly in-
uenced by azimuthal anisotropy in the overburden, which
hould cause distortions in the azimuthal AVO attributes. This
ase study confirms that the azimuthal variation of the geometri-
al-spreading factor often is comparable to or exceeds that of the
eflection coefficient.
INTRODUCTION

Seismic signatures measured in wide-azimuth reflection surveys
ay be strongly influenced by azimuthal anisotropy associated with

atural fracture systems, nonhydrostatic stresses, or dipping trans-
ersely isotropic layers �e.g., shales�. The inversion of azimuthally
arying traveltimes and amplitudes of reflected waves gives valu-
ble information for characterization of fractured reservoirs and li-
hology discrimination �Mallick et al., 1998; Grechka and Tsvankin,
999a; Lynn et al., 1999; Bakulin et al., 2000; Rüger, 2001; Hall and
endall, 2003�.Although the most direct evidence of the presence of

zimuthal anisotropy is provided by shear-wave splitting, estimation
f a representative set of anisotropic parameters is impossible with-
ut performing azimuthal moveout and/or amplitude-variation-
ith-offset �AVO� analysis.

Manuscript received by the EditorAugust 22, 2005; revised manuscript rec
1Colorado School of Mines, Department of Geophysics, Center for Wa
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2006 Society of Exploration Geophysicists.All rights reserved.
The main advantages of anisotropic AVO inversion are �1� the
ossibility of resolving the reflection coefficient at the target hori-
on, and �2� the high sensitivity of body-wave reflectivity to aniso-
ropic parameters �e.g., Tsvankin, 1995, 2005; Rüger, 2001�. How-
ver, transforming seismic amplitudes measured at the surface into
he reflection coefficients involves correcting for the source signa-
ure and for propagation phenomena along the raypath �e.g., Mault-
sch et al., 2003�. Major amplitude distortions in anisotropic media,
n particular for wide-azimuth data, are caused by the directionally
arying geometrical spreading above the reflector. Detailed discus-
ions of geometrical spreading in transversely isotropic �TI� and
rthorhombic media can be found in Ursin and Hokstad �2003�, Ts-
ankin �2005, Chapter 2� and Xu et al. �2005�.

If the velocity model of the overburden is known, geometrical
preading can be computed, for example, by performing dynamic
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D162 Xu and Tsvankin
ay tracing. A more practical approach, however, is based on ex-
ressing geometrical spreading through reflection traveltimes using
ay theory �e.g., see equation 4.10.50 in Cěrvený, 2001�.As shown in
u et al. �2005�, the geometrical-spreading factor L for laterally ho-
ogeneous media can be found as the following function of travel-

ime T:

L�x,�� =
�cos �s cos �r

Vg
� �2T

�x2

�T

�x

1

x
+

�2T

�x2

�2T

��2

1

x2

− � �T

��
�2 1

x4�−1/2

, �1�

here x is the source-receiver offset, � is the azimuth of the source-
eceiver line with respect to the x1-axis, Vg is the group velocity at the
ource location, and �s and �r are the angles between the ray and the
ertical at the source and receiver, respectively.

Xu et al. �2005� combined our equation 1 with the Tsvankin-Th-
msen nonhyperbolic moveout equation �Tsvankin and Thomsen,
994� to study P-wave geometrical spreading in a horizontal ortho-
hombic layer. Analytic results and numerical modeling reveal pro-
ounced distortions of the geometrical spreading caused by both po-
ar and azimuthal anisotropy. Xu et al. �2005� demonstrated that reli-
ble recovery of the reflection coefficient from the azimuthal AVO
esponse often requires an accurate anisotropic geometrical-spread-
ng correction �also, see Mallick et al., 1998�.

The goal of this paper is to develop a practical implementation of
eometrical-spreading correction for layered azimuthally anisotrop-
c media. The main emphasis of the paper is on models with ortho-
hombic symmetry considered typical for naturally fractured reser-
oirs �e.g., Schoenberg and Helbig, 1997; Bakulin et al., 2000�. It is
lear from equation 1 that the key issue in computing the geometri-
al-spreading factor from surface data is to find a smooth approxi-
ation for reflection traveltime that can be used for a wide range of

ffsets and azimuths.
We start by testing the accuracy of a simplified P-wave moveout

quation based on the approximate kinematic equivalence between
rthorhombic and VTI media. Although this equation provides a
ood fit to the traveltimes for layered models with a uniform �identi-
al� orientation of the vertical symmetry planes in all layers, it re-
uires modification when the symmetry-plane azimuths vary with
epth. We use the 3D semblance algorithm of Vasconcelos and Ts-
ankin �2006� to estimate the best-fit moveout parameters necessary
or evaluating the traveltime derivatives in equation 1. Numerical
ests for layered orthorhombic models confirm that azimuthal aniso-
ropy may produce comparable distortions in the geometrical
preading and in the reflection coefficient. Finally, we apply the al-
orithm to wide-azimuth data collected at the Weyburn field in Can-
da to evaluate the azimuthally varying geometrical-spreading fac-
or for wide-angle reflections from the reservoir.

MOVEOUT EQUATIONS FOR
ORTHORHOMBIC MEDIA

omogeneous layer

Analysis in Xu et al. �2005� confirms the conclusion of Al-Dajani
t al. �1998� that P-wave reflection traveltime in a horizontal ortho-
hombic layer with a horizontal symmetry plane is well described by
he Tsvankin-Thomsen nonhyperbolic moveout equation �Tsvankin
nd Thomsen, 1994�. The form of this equation remains the same for
ifferent anisotropic symmetries, but in the presence of azimuthal
nisotropy, the moveout coefficients become azimuthally depen-
ent:

T2�x,�� = T0
2 +

x2

Vnmo
2 ���

+
A4���x4

1 + A���x2 . �2�

ere, Vnmo is the normal-moveout �NMO� velocity, A4 is the quartic
oveout coefficient, and A is the coefficient that ensures the conver-

ence of equation 2 for large source-receiver offsets.
The azimuthally varying NMO velocity traces out an ellipse with

ts axes parallel to the vertical symmetry planes of the orthorhombic
ayer �Grechka and Tsvankin, 1998�:

Vnmo
−2 ��� =

sin2�� − ��
�Vnmo

�1� �2 +
cos2�� − ��

�Vnmo
�2� �2 , �3�

here Vnmo
�1� and Vnmo

�2� are the semiminor and semimajor axes of the
MO ellipse, respectively, and � is the azimuth of the semimajor

xis.
Explicit expressions for the coefficients A4��� and A��� are given

n al-Dajani et al. �1998� and Xu et al. �2005�. However, the nonhy-
erbolic �x4� term in equation 2 can be simplified substantially by us-
ng an approximate equivalence between the P-wave kinematics in
he vertical symmetry planes of orthorhombic and VTI media. The
TI moveout equation of Alkhalifah and Tsvankin �1995� can be

dapted for an orthorhombic layer by introducing an azimuthally
arying anellipticity coefficient � ��� �Pech and Tsvankin, 2004; Xu
t al., 2005�:

2�x,�� = T0
2 +

x2

Vnmo
2 ���

−
2����x4

Vnmo
2 ����T0

2Vnmo
2 ��� + 	1 + 2����
x2�

, �4�

���� = ��1� sin2�� − �� + ��2� cos2�� − ��

− ��3� sin2�� − �� cos2�� − �� . �5�

he anellipticity parameters ��1�, ��2�, and ��3� are defined in the sym-
etry planes by analogy with the Alkhalifah-Tsvankin parameter �

or VTI media �Grechka and Tsvankin, 1999b�.
Although the analogy between orthorhombic and VTI media is

ased on the weak-anisotropy approximation, extensive numerical
esting shows that equation 4 with fitted moveout parameters pro-
ides excellent accuracy for a homogeneous orthorhombic layer that
as a horizontal symmetry plane �see also Vasconcelos and Tsvan-
in, 2006�. In Figure 1, the parameters Vnmo

�1� , Vnmo
�2� , � �1�, � �2�, � �3�, and

were found by fitting equation 4 to ray-traced traveltimes using the
east-squares method. Here and in the examples that follow, synthet-
c data are generated using ANRAY — the 3D anisotropic ray-trac-
ng code of Gajewski and Pšenčík �1990�. The difference between
he ray-traced traveltimes and those computed from equation 4 is

uch less than 1% of the zero-offset two-way traveltime �i.e.,
4 ms� for a wide range of offsets and azimuths. Note that the mod-

l in Figure 1 has substantial polar and azimuthal anisotropy, and the
aximum offset-to-depth ratio is as large as three. Below, we ana-
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Anisotropic geometrical-spreading correction D163
yze in detail the influence of traveltime errors on computation of the
oveout parameters and geometrical spreading.

ayered models with uniform
ymmetry-plane orientation

Next, we apply equation 4 to more complicated, multilayered azi-
uthally anisotropic models. Suppose the medium above the reflec-

or includes horizontal layers of orthorhombic or higher symmetries,
nd the vertical symmetry planes in each layer have the same orien-
ation. Note that in azimuthally isotropic �i.e., VTI or purely isotro-
ic� media, any vertical plane is a plane of mirror symmetry. Uni-
orm orientation of the symmetry planes in all layers implies that the
odel as a whole has two orthogonal vertical symmetry planes.
Because of the kinematic equivalence between the symmetry

lanes of orthorhombic and VTI media, P-wave nonhyperbolic mo-
eout in the symmetry-plane directions is well described by equa-
ion 4, with the effective parameter � computed from the VTI aver-
ging equations �Tsvankin, 1997, and 2005, Appendix 4B�. Al-
hough for off-symmetry azimuthal directions the kinematic analo-
y with VTI media is valid only for weak anisotropy, the numerical
esting in the previous section indicates that equation 4 parameter-
zed by the best-fit values of Vnmo and � may be sufficiently accurate
or any given azimuth. It is not clear, however, whether the azimuth-
l variation of the effective parameter � ��� can be described by the
ingle-layer equation 5.

To estimate the effective moveout parameters in equation 4 with-
ut traveltime picking, we employ the 3D nonhyperbolic semblance
lgorithm of Vasconcelos and Tsvankin �2006�. They developed a
hree-step procedure designed to make the multiparameter sem-
lance search for wide-azimuth surveys more efficient. First, con-
entional-spread data are used to reconstruct the NMO ellipse and
stimate the symmetry-plane azimuth � and the NMO velocities

nmo
�1� and Vnmo

�2� . Second, the anellipticity parameters � �1� and � �2�,
hich are defined in the vertical-symmetry planes, are found from

he VTI nonhyperbolic semblance analysis in narrow sectors cen-
ered at the symmetry-plane directions. The third step is a full-azi-

uth nonhyperbolic semblance search based on equations 3–5, us-
ng the estimated values of the parameters �, Vnmo

�1� , Vnmo
�2� , � �1�, and

�2� to specify the starting model.
Application of this semblance algorithm to ray-traced seismo-

rams computed for the four-layer model with the parameters listed
n Table 1 confirms that equation 4 accurately describes long-spread

oveout for the full range of azimuths �Figure 2�. The model in-
ludes two orthorhombic layers with a substantial magnitude of po-
ar and azimuthal anisotropy sandwiched between two isotropic lay-
rs. The error of equation 4 does not exceed 0.3%
f the zero-offset traveltime for all offsets and az-
muths; similar results were obtained for a wide
ange of plausible orthorhombic models.

The high accuracy of the traveltime-fitting
ethod, however, does not imply that the esti-
ated effective NMO velocity and, especially,

he coefficient � are always close to the analytic
alues because trade-offs exist between various
oveout parameters �Vasconcelos and Tsvankin,

006�. Nevertheless, as long as equation 4 accu-
ately matches the exact traveltime, the best-fit
oveout parameters provide suitable input for

eometrical-spreading correction.

Table 1. Par
orthorhombi
� = 90�. The
Figure 8 is s

Sy

Layer 1 Isot

Layer 2 Orth

Layer 3 Orth

Layer 4 Isot
odels with misaligned symmetry planes

For media without throughgoing vertical symmetry planes, azi-
uthal variation of the quartic moveout coefficient A4 becomes
ore complicated �Al-Dajani et al., 1998�, and equation 5 for the pa-

ameter � may no longer be accurate. However, we performed ex-
ensive testing for a range of orthorhombic models with misaligned
ymmetry planes, and the tests showed that traveltime errors seldom
xceed 0.5% of the zero-offset time. Apparently, the magnitude of
he additional terms in the azimuthal dependence of � is relatively
mall, and the moveout-inversion algorithm compensates for these
issing terms by adjusting the best-fit parameters � �1�, � �2�, and � �3�.
Model 2, used in Figure 3, contains two orthorhombic layers with

ncommonly large values of the anisotropy parameters and with the
ertical-symmetry planes misaligned by 45° �Table 2�. For this ex-
reme example, the normalized errors of equation 4 reach 1%. Al-
hough traveltime errors on the order of 0.5%–1% may be acceptable

s of a four-layer model (model 1) that includes two
s with aligned vertical-symmetry planes � = 0� and

ty used to compute the reflection coefficient in
.0 g/cm3 in all layers.

y
VP0 �km/s�

Thickness
�km� Vnmo

�1� Vnmo
�2� ��1� ��2� ��3�

1.5 0.2 1.5 1.5 0 0 0

bic 2.437 0.9 2.632 2.239 0.211 0.398 0.194

bic 3.0 0.9 3.146 2.683 0.182 0.313 −0.056

3.2 3.2 0.5 3.2 0 0 0

igure 1. Accuracy of equation 4 in describing full-azimuth, long-
ffset P-wave moveout in a homogeneous orthorhombic layer. The
oveout parameters are found by fitting equation 4 to traveltimes

omputed by anisotropic ray tracing. The map shows the difference
etween the best-fit and ray-traced traveltimes normalized by
he zero-offset time �0.82 s�. The radius corresponds to the source-
eceiver offset �the maximum offset-to-depth ratio is three�, and
he numbers around the perimeter indicate the azimuth with respect
o the 	x1,x3
 symmetry plane. The P-wave velocity parameters of
he model are VP0 = 2.437 km/s, � �1� = 0.329, � �2� = 0.258, � �1� =
.083, � �2� = −0.078, and � �3� = −0.106. The corresponding move-
ut parameters are Vnmo

�1� = 2.632 km/s, Vnmo
�2� = 2.239 km/s, � �1�

0.211, � �2� = 0.398, and � �3� = 0.194.
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or purposes of conventional moveout inversion, they propagate with
mplification into the geometrical-spreading factor �equation 1�.

To improve time fitting for multilayered anisotropic media with
isaligned symmetry planes, equation 5 can be modified in a rela-

ively straightforward way. To introduce this modification, we ana-
yze the effective parameter � ��� for a stack of horizontal ortho-
hombic layers by applying the VTI averaging equation �Tsvankin,
005, equation 4.47� for each azimuth �:

� ��� =
1

8
� 1

Vnmo
4 ���T0

�

i=1

N

	Vnmo
�i� ���
4 	1 + 8� �i����
 T0

�i�� − 1� ,

�6�

here Vnmo
�i� ��� and � �i���� are the interval parameters in layer i. Al-

hough equation 6 may become inaccurate for models with strong
zimuthal anisotropy, it usually reproduces the shape of the azimuth-
l variation of the effective � �Al-Dajani et al., 1998�.

Figure 4 shows a comparison between the effective parameter
��� computed from equation 6 �solid curve� and estimated by the
oveout-inversion algorithm �dashed� for a two-layer orthorhombic
odel with the symmetry planes misaligned by 15°. The shape of the

wo curves is quite similar, which explains the relatively low magni-
ude of the time residuals typically produced by equation 4. The mis-
lignment of the symmetry planes, however, causes a rotation of the
stimated �-curve with respect to the one calculated from equation
.

The moveout-inversion algorithm cannot accommodate this
-curve rotation because the principal axes of the azimuthal varia-

ion of � ��� in equation 5 are parallel to the axes of the NMO ellipse
equation 3�. Therefore, the traveltime fitting at far offsets can be im-
roved by decoupling the nonhyperbolic moveout term from the
MO ellipse and introducing an additional angle �1 responsible for

he azimuthal variation of the effective parameter �:

� ��� = ��1� sin2�� − �1� + � �2� cos2�� − �1�

− ��3� sin2 �� − �1�cos2�� − �1� . �7�

The first two steps of the modified moveout-inversion algorithm
emain the same as those described above, but at the last step we fix
he orientation of the NMO ellipse �angle �� and search for the angle

1 and the other moveout parameters using the full range of offsets
nd azimuths. Application of this algorithm to model 2 �Table 2�, re-
ults in a greatly improved time fitting �compare Figure 5 to Figure
� and a 15% increase in the total semblance value. Hence, equation
helps to make our moveout approximation suitable even for mod-

ls with uncommonly strong, depth-varying azimuthal anisotropy.

AZIMUTH-DEPENDENT
GEOMETRICAL-SPREADING

CORRECTION

The traveltime derivatives in the geometrical-
spreading equation 1 can be computed from the
best-fit moveout parameters in equation 4. Ex-
plicit expressions for those derivatives are given
inAppendix A.

Equation 1 also contains the group angles at the
source �� s� and receiver �� r� locations. Because
our model is laterally homogeneous, the ray pa-

ombic
isotropy.

� = 0�

�2� ��3�

875 −0.192

071 0.030
able 2. Parameters of a model (model 2) that includes two orthorh
ayers with misaligned symmetry planes and uncommonly strong an
he azimuth of the †x1,x3‡ symmetry plane is � = 45� in layer 1 and

n layer 2.

Symmetry
type VP0 �km/s�

Thickness
�km� Vnmo

�1� Vnmo
�2� ��1� �

ayer 1 Orthorhombic 3.0 1.0 2.509 2.683 0.857 0.

ayer 2 Orthorhombic 3.0 1.0 3.421 2.509 0.038 1.
igure 2. Accuracy of equation 4 for the layered azimuthally aniso-
ropic model from Table 1 �model 1�. The azimuths �� = 0°, 45°, and
0°� with respect to the 	x1,x3
 symmetry plane are marked on the
lot. The dashed line is the ray-traced traveltime for the reflection
rom the bottom of layer 3, and the solid line is the corresponding
raveltime computed from equation 4 with the following estimated
best-fit� moveout parameters: � = 90°, Vnmo

�1� = 2.307 km/s, Vnmo
�2�

�1� �2� �3�
igure 3. Map of the traveltime residuals �normalized by the zero-
ffset time T0 = 1.334 s� plotted as a function of offset and azimuth
or the two-layer model with misaligned symmetry planes from Ta-
le 2 �model 2�. The residuals are computed for the reflection from
he bottom of the model as the differences between the best-fit trav-
ltimes from equation 4 and ray tracing. The maximum offset is
km; the corresponding offset-to-depth ratio is two. The estimated
oveout parameters are � = 78°, Vnmo

�1� = 2.60 km/s, Vnmo
�2� = 3.00

�1� �2� �3�
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Anisotropic geometrical-spreading correction D165
ameter �horizontal slowness� phor does not change along the raypath
nd can be computed as

phor = �� �T

�x
�2

+ �1

x

�T

��
�2

. �8�

n most cases of practical importance, the subsurface layer is isotro-
ic and has a known P-wave velocity V. Then, the group angles at the
ource and receiver can be found directly from phor:

cos � s = cos � r = �1 − phor
2 V 2. �9�

f the subsurface layer is anisotropic, estimation of the group angles
rom the traveltime derivatives involves the relevant anisotropy pa-
ameters.

Combining equation 1 with the expressions in Appendix A and
aking equation 9 into account, one can compute the geometrical
preading from the best-fit moveout parameters.

ynthetic example

Using the method described above, we calculate the geometrical-
preading factor L�x,�� for the reflection from the bottom of layer 3
n model 1 �Table 1�. As was the case for the homogeneous ortho-
hombic medium discussed in Xu et al. �2005�, the influence of an-
sotropy here leads to pronounced azimuthally dependent distortions
f the geometrical spreading �Figure 6�. For an offset-to-depth ratio
f unity, the factor L decreases by 17% between the azimuths � = 0°
nd 90° �Figure 7�. Because all layers are horizontal, dependence of
he geometrical spreading on azimuth is caused entirely by the azi-

uthal anisotropy above the reflector. For comparison, the azimuth-
l variation of the reflection coefficient for the same event is less than
3% �Figure 8�. Clearly, if the anisotropic geometrical spreading is
naccounted for, it can compromise the azimuthalAVO signature for
his model.

igure 4. Comparison of the effective parameter � ��� computed
rom the VTI averaging equation 6 �solid curve� and estimated
y the moveout-inversion algorithm �dashed�. The model is com-
osed of two orthorhombic layers. For the top layer, � = 15°, Vnmo

�1�

2.236 km/s, Vnmo
�2� = 2.850 km/s, � �1� = 0.375, � �2� = 0.000, and

�3� = −0.086; for the bottom layer, � = 0°, Vnmo
�1� = 3.421 km/s,

nmo
�2� = 2.683 km/s, � �1� = 0.000, � �2� = 0.375, and � �3� = 0.163.
he maximum offset-to-depth ratio of the data used in the inversion

s two.
We can verify the high accuracy of our algorithm by comparing its
utput with the results of dynamic ray tracing �Figure 9�. The geo-
etrical-spreading factors computed by the two methods are almost

dentical for offset-to-depth ratios less than 1.5, and diverge only
lightly at longer offsets. The deviation of our algorithm’s result
rom that of ray tracing, which reaches a maximum of 6% for � = 0°,
an be explained by the approximate nature of equation 4 and, possi-
ly, by numerical errors in both algorithms. Overall, our method pro-
uces an accurate geometrical-spreading factor in layered ortho-
hombic media for a wide range of offsets and azimuths.

rror analysis

To study the influence of realistic traveltime noise on the geomet-
ical spreading computed by our method, we add linear and sinu-
oidal time errors to the reflection traveltimes for model 1 �Table 1

igure 5. Same map of traveltime residuals as in Figure 3, but here
he moveout parameters of equation 4 were estimated by the modi-
ed inversion algorithm that allows for an independent orientation
f the � ���-curve �equation 7�. The best-fit parameters are � = 81°,

nmo
�1� = 2.586 km/s, Vnmo

�2� = 3.00 km/s, � �1� = 0.594, � �2� = 0.339,
�3� = 0.161, and �1 = 89°.

igure 6. Map of geometric spreading for the reflection from the bot-
om of layer 3 in model 1 �Table 1�. The factor L is normalized by
ts value in the reference isotropic homogeneous medium with the
elocity equal to Vnmo = �Vnmo

�1� + Vnmo
�2� �/2. The maximum offset-to-

epth ratio is two.
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D166 Xu and Tsvankin
nd Figure 2�. Linear traveltime noise can approximate long-period
tatic errors, whereas sinusoidal errors can result from short-period
tatics.

The linear time error changes from 4 ms at zero offset to −4 ms at
aximum offset �equal to two reflector depths� for each azimuth �.
pplication of our algorithm to the perturbed traveltimes in the full

ange of azimuths yields slightly distorted values of the velocities

nmo
�1,2� �with errors of about 1%� and parameters � �1,2,3� �with errors of

ess than 0.03�; the maximum error in the geometrical spreading
oes not exceed 2%. When the magnitude of the linear error function
ncreases from 4 to 8 ms, the corresponding geometrical-spreading
rror reaches only 5%. We note that the moveout parameters estimat-
d from wide-azimuth data are less sensitive to linear traveltime er-
ors than those obtained from 2D semblance analysis for VTI media
Tsvankin, 2005�. On the whole, our geometrical-spreading compu-
ation is robust in the presence of moderate linear noise.

To test the influence of short-period static errors, we contaminate
he traveltimes for model 1 by several sinusoidal functions of the
orm A sin�n� x/xmax� sin m�. The maximum time error A was fixed

igure 7. Azimuthally varying geometrical spreading for model 1
Figure 6� computed for an offset of 2 km. The corresponding phase
ncidence angle at the reflector �the bottom of layer 3� is approxi-

ately 30° �30° ± 5°�.

igure 8. Azimuthally varying reflection coefficient from the bottom
f layer 3 in model 1 �Table 1� computed for the phase incidence an-
le at the reflector equal to 30°.
t 4 ms; the coefficients n and m control the period of the error func-
ion in the radial and azimuthal directions, respectively. When

= 0 �i.e., when there is no azimuthal variation in the error� and n is
n even number, the spreading remains almost unchanged. Appar-
ntly, an equal number of peaks and troughs over the spread length
ompensate for one another, and the noise does not noticeably distort
he best-fit moveout parameters and, consequently, the geometrical
preading. However, when n is an odd number �i.e., when the num-
er of peaks and troughs differs by one�, the sinusoidal error does in-
uence the output of our algorithm. The most significant distortion

n geometrical spreading occurs for n = 3, when the maximum
preading error reaches 4% �for m = 0� over the whole range of off-
ets and azimuths; the error decreases with n.

Next, we make the traveltime error azimuthally dependent by
arying m. Our tests show that the spreading errors are higher when
is an even number because in that case the azimuthal variation of

he error function is similar to that of the traveltime T�x,��, which is
overned by sin2 � and cos2 � �see equations 3–5�. Figure 10 dis-
lays the distortion in geometrical spreading caused by the travel-
ime error function 4 sin�3� x/xmax� sin 4� �i.e., n = 3 and m = 4�.
he maximum error of just 4% is the same as the one that we ob-

ained for the azimuthally invariant error function with n = 3. When

igure 9. Accuracy of our method for the reflection from the bottom
f layer 3 in model 1; the azimuths from the 	x1,x3
 symmetry plane
re � = 0°, 40°, and 90°. The geometrical-spreading factor L com-
uted by our algorithm �solid lines� is compared with the output of
ynamic ray-tracing codeANRAY �dashed�.

igure 10. Percentage error of geometrical spreading for model 1
aused by the traveltime error function 4 sin�3�x/xmax�sin 4�
in ms�. Model is in Figure 6. The maximum offset-to-depth ratio is
wo.
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Anisotropic geometrical-spreading correction D167
he magnitude of the error function increases from 4 ms to 8 ms, the
orresponding geometrical-spreading error only doubles for fixed
alues of m and n.

Because it is difficult to study the influence of all plausible travel-
ime distortions �obviously, not limited to statics errors� on geomet-
ical spreading, next we examine the sensitivity of factor L to errors

igure 11. Histogram of the error distribution in the geometrical
preading computed in the 	x1,x3
 symmetry plane of model 1 �Fig-
re 6�. The moveout parameters were contaminated by Gaussian
oise with the following standard deviations: 0.5% for T0, 3% for
nmo
�1� and Vnmo

�2� , 30% for � �1� and � �2�, and 50% for � �3�. The offset-to-
epth ratio is equal to one �a� and two �b�. The standard deviation of
he error in L is 5% in plot �a� and 8% in plot �b�.

igure 12. Map of geometrical spreading for the P-wave reflection
rom the Mississippian formation �the top of the reservoir� at Wey-
urn field computed for CMP 10829. Factor L is normalized by its
alue in the reference isotropic homogeneous medium with the ve-
ocity equal to �Vnmo

�1� + Vnmo
�2� �/2. The moveout parameters are taken

rom Vasconcelos and Tsvankin �2006�: � = 99°, Vnmo
�1� = 2.371

m/s, Vnmo
�2� = 2.464 km/s, � �1� = 0.255, � �2� = 0.186, and � �3� =

0.062. The reflector depth is 1.4 km �the maximum offset-to-depth
atio is 2.5�. The north-south direction is at � = 0°.
n the input moveout parameters �see Appendix A�. Figure 11 shows
he geometrical-spreading error in a symmetry plane of model 1
aused by adding Gaussian noise to the moveout parameters. The
evel of that noise is slightly higher than the largest distortions
aused by the traveltime errors studied above.

As the offset-to-depth ratio increases from one to two, the stan-
ard deviation of the error in L grows from 5% to 8%. Still, given the
elatively high level of errors in the input parameters, the distortion-
f the spreading factor remains acceptable within the practically im-
ortant offset range of as much as two reflector depths. In particular,
he geometrical-spreading error is smaller than the percentage error
n each moveout parameter when the other parameters are held con-
tant, which indicates that our operator is sufficiently stable. For ex-
mple, a 5% error in Vnmo

�1� yields an error in L of less than 3%, if the
ffset-to-depth ratio does not exceed two.

ield-data application

To demonstrate the influence of azimuthal anisotropy on geomet-
ical spreading for field data, next we test our algorithm on wide-azi-
uth reflection events acquired above a fractured reservoir at the
eyburn field in Canada by the Reservoir Characterization Project

a research consortium at Colorado School of Mines�. Vasconcelos
nd Tsvankin �2006� carried out nonhyperbolic moveout inversion
or P-wave reflections from several interfaces in the overburden and
btained relatively large values �as high as 0.25� of the parameters
�1,2,3�. Vasconcelos and Tsvankin �2006� also concluded that at least

he shallow part of the overburden exhibited nonnegligible azimuth-
l anisotropy.

Those results agree well with Cardona’s �2002� analysis of shear-
ave splitting and with Jenner’s �2001� analysis of the azimuthal
VO response. In particular, Jenner �2001� found that P-wave AVO
ttributes at the reservoir level vary with azimuth. His amplitude
rocessing, however, included only the conventional geometrical-
preading correction for isotropic media.

To evaluate possible anisotropy-induced distortions of geometri-
al spreading, we apply our algorithm to the reflection from the top
f the reservoir �Figure 12�. The moveout parameters were obtained
y Vasconcelos and Tsvankin �2006� using equations 3–5. The influ-
nce of anisotropy causes a dramatic 50% distortion in geometrical
preading for offset-to-depth ratios close to two. The magnitude of
he azimuthal variation of factor L at offset-to-depth ratios slightly
arger than unity reaches 10% �Figure 13�. Such a difference be-

igure 13. Normalized geometrical spreading from Figure 12 in the
ast-west and north-south directions.
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D168 Xu and Tsvankin
ween the geometrical spreading in the east-west and north-south di-
ections may cause noticeable distortions in the azimuthal variation
f theAVO gradient studied by Jenner �2001�.

CONCLUSIONS

The formalism suggested by Xu et al. �2005� provides an analytic
asis for geometrical-spreading correction in layered azimuthally
nisotropic media. Because the correction involves only the spatial
erivatives of the reflection traveltime and the group-velocity vector
t the source and receiver locations, it does not require knowledge of
he velocity field beneath the subsurface layer. The main issue in
omputing geometrical spreading for purposes of wide-angle azi-
uthal AVO analysis is to find a sufficiently accurate, smooth ap-

roximation for long-offset, multiazimuth reflection moveout in the
resence of azimuthal anisotropy.

Numerical testing shows that even for models composed of
trongly anisotropic orthorhombic layers, long-spread P-wave re-
ection traveltime can be described by a nonhyperbolic moveout
quation that has the same form as the widely used Alkhalifah-Ts-
ankin equation for VTI media. Keeping the same general form of
he moveout equation for azimuthally anisotropic and VTI media
elps to facilitate the transition between models with different sym-
etries in both the moveout inversion and geometrical-spreading

orrection. To accommodate the influence of azimuthal anisotropy,
oth moveout coefficients — the NMO velocity Vnmo and the anellip-
icity parameter � — must vary with the azimuth �. Whereas Vnmo���
races out an ellipse in media of almost any complexity, the form of
he function � ���depends on the degree of alignment of the symme-
ry planes in the constituent layers.

If the azimuths of the vertical symmetry planes do not change
rom layer to layer, the model as a whole has two orthogonal symme-
ry planes, and the azimuthal dependence of � �equation 5� is the
ame as in a homogeneous orthorhombic medium. For correcting
eometrical spreading, such a model is fully equivalent to a single
rthorhombic layer. The moveout equation is controlled by the azi-
uth � of one of the symmetry planes, two symmetry-plane NMO

elocities Vnmo
�1,2�, and three anellipticity parameters � �1,2,3� that govern

���. For media with depth-varying orientation of the symmetry
lanes, the accuracy of the moveout equation can be maintained by
ntroducing an additional azimuthal angle �1 that governs the direc-
ion of the principal axes of the function � ���. The moveout parame-
ers, needed in the computation of geometrical spreading, are deter-

ined using Vasconcelos and Tsvankin’s algorithm, based on a 3D
onhyperbolic semblance operator.

Synthetic tests for layered orthorhombic media illustrate the high
ensitivity that spatially varying geometrical spreading exhibits to-
ard the anisotropic parameters. The magnitude of the anisotropy-

nduced azimuthal variation of geometrical spreading may exceed
hat of the reflection coefficient. �However, comparison of this type
ely strongly on the model assumptions because geometrical spread-
ng of reflected waves is independent of the elastic parameters be-
eath the reflector.� Therefore, anisotropic geometrical-spreading
orrection should be considered an integral part of azimuthal AVO
nversion.

The importance of correcting wide-azimuth data for geometrical
preading prior to AVO analysis is highlighted by applying the algo-
ithm to field data acquired at the Weyburn field in Canada. The geo-
etrical-spreading factor for the reflection from the top of the frac-

ured reservoir is influenced by the ellipticity of the NMO-velocity
unction and, especially, by the large values �exceeding 0.2� of the
ffective parameters � �1,2,3�. The reliability of theAVO attributes can
e improved by taking into account the variation of the geometrical
preading between the symmetry planes �i.e., between the east-west
nd north-south directions�. Note that although information about
he effective anisotropy is contained in the input moveout parame-
ers, the difference between the geometrical-spreading factors com-
uted for the top and the bottom of a fractured layer can serve as a
racture-detection attribute.

The sensitivity study shows that our geometrical-spreading algo-
ithm is robust in the presence of moderate traveltime errors. Still,
he results of traveltime fitting and, therefore, geometrical-spreading
orrection may be somewhat distorted by coherent noise associated,
or example, with short-period statics. Also, in the presence of sig-
ificant amplitude variation with offset and azimuth, it is preferable
o estimate the moveout parameters using an AVO-sensitive algo-
ithm.
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APPENDIX A

TRAVELTIME DERIVATIVES FOR THE
GEOMETRICAL-SPREADING CORRECTION

InAppendix B of Xu et al. �2005�, the traveltime derivatives need-
d in geometrical-spreading equation 1 are expressed through the
arameters A2, A4, and A of the Tsvankin-Thomsen moveout equa-
ion �Tsvankin and Thomsen, 1994�. Here, we show that an accurate
escription of traveltimes in layered orthorhombic media can be
chieved by using a simpler moveout approximation �equation 4�
ased on the analogy with vertical transverse isotropy. Equation 4
an be considered a special case of the Tsvankin-Thomsen moveout
quation, with the parameters given by

A2��� =
sin2�� − ��

�Vnmo
�1� �2 +

cos2�� − ��
�Vnmo

�2� �2 , �A-1�

A4��� = −
2� ���

T0
2Vnmo

4 ���
, �A-2�

A��� =
1 + 2� ���
T0

2Vnmo
2 ���

, �A-3�

here

� ��� = � �1� sin2�� − �1� + � �2� cos2�� − �1�

− � �3� sin2�� − � �cos2�� − � � . �A-4�
1 1
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s we discussed in the main text, the azimuth �1 is equal to � for
odels with uniform symmetry-plane orientation.
Substituting our equations A-1–A-3 into equations B-2–B-4 of

u et al. �2005�, we obtain the derivatives �T/�x and � 2T/�x2 in
erms of the parameters T0, �, �1, Vnmo

�1� , Vnmo
�2� , � �1�, � �2�, and � �3�. Geo-

etrical spreading also depends on the first two traveltime deriva-
ives with respect to the azimuth �, which are expressed in equations
-5 and B-6 of Xu et al. �2005� through the corresponding deriva-

ives of A2, A4, and A. Using equations A-1–A-3 to differentiate A2,
4, and A with respect to �, we find �note that prime and double-
rime denote the first- and second-order derivatives, respectively�

2� = � 1

�Vnmo
�1� �2 −

1

�Vnmo
�2� �2�sin 2�� − �� , �A-5�

2� = 2� 1

�Vnmo
�1� �2 −

1

�Vnmo
�2� �2�cos 2�� − �� , �A-6�

4� =
1

T0
2�Vnmo

�1� �4�Vnmo
�2� �4�2	�Vnmo

�1� �2 cos2�� − ��

+ �Vnmo
�2� �2 sin2�� − ��


1

2
	�Vnmo

�1� �2 + �Vnmo
�2� �2

+ 	�Vnmo
�1� �2 − �Vnmo

�2� �2
 cos 2�� − ��


�	− ��1� + ��2� + ��3� cos 2�� − �1�
 sin 2�� − �1�

+ 	�Vnmo
�1� �2 − �Vnmo

�2� �2
 cos�� − �� sin�� − ��

�	− 4��2� cos2�� − �1� − 4��1� sin2�� − �1�

+ ��3� sin2 2�� − �1�
� , �A-7�

4� =
1

2T0
2�Vnmo

�1� �4�Vnmo
�2� �4�12 	�Vnmo

�1� �2 − �Vnmo
�2� �2


��	�Vnmo
�1� �2 + �Vnmo

�2� �2
 cos 2�� − ��

+ 	�Vnmo
�1� �2 − �Vnmo

�2� �2
 cos 4�� − ���

�	− 4���1� + ��2�� + ��3� + 4���1� − ��2��

�cos 2�� − �1� − ��3� cos 4�� − �1�


− 2��Vnmo
�1� �2 + �Vnmo

�2� �2

+ 	�Vnmo
�1� �2 − �Vnmo

�2� �2
 cos 2�� − ���2

�	���2� − ��1�� cos 2�� − �1� + ��3� cos 4�� − �1�


+ 8	�Vnmo
�1� �2 − �Vnmo

�2� �2
��Vnmo
�1� �2 + �Vnmo

�2� �2

+ 	�Vnmo
�1� �2 − �Vnmo

�2� �2
 cos 2�� − ��� � 	− ��1� + ��2�

+ ��3� cos 2�� − �1�
 sin 2�� − �� sin 2�� − �1�� ,

�A-8�

� = −
1

T0
2�Vnmo

�1� �2�Vnmo
�2� �2�12 ��Vnmo

�1� �2 + �Vnmo
�2� �2
+ 	�Vnmo
�1� �2 − �Vnmo

�2� �2
 cos 2�� − ��� 	− ��1� + ��2�

+ ��3� cos 2�� − �1�
 sin 2�� − �1�

+ 	�Vnmo
�1� �2 − �Vnmo

�2� �2
 cos�� − �� sin�� − ��

�	2 + 4��2� cos2�� − �1� + 4��1� sin2�� − �1�

− ��3� sin2 2�� − �1�
� , �A-9�

� =
1

T0
2�Vnmo

�1� �2�Vnmo
�2� �2

��1

2
	�Vnmo

�1� �2 − �Vnmo
�2� �2
 cos 2�� − ��

�	− 4�1 + ��1� + ��2�� + ��3� + 8���1� − ��2��

�cos 2�� − �1� − 5��3� cos 4�� − �1�


+ 2	�Vnmo
�1� �2 + �Vnmo

�2� �2
 	���1� − ��2�� cos 2�� − �1�

− � �3� cos 4�� − �1�
 + 4	�Vnmo
�1� �2 − �Vnmo

�2� �2


�	− � �1� + � �2� + ��3� cos 2�� − �1�


�sin 2� sin 2�� − �1�� . �A-10�

Substitution of equations A-5–A-10 into equations B-5 and B-6 of
u et al. �2005� yields the derivatives �T/�� and �2T/��2 as explicit

unctions of the moveout parameters.
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