
Analysis of prestack amplitude variation with offset and
azimuth (often called “azimuthal AVO analysis” or “AVAZ”)
is one of the most effective tools for seismic characteriza-
tion of fractures and in-situ stress field. The main advan-
tage of amplitude methods compared to traveltime inversion
is their high vertical resolution that makes AVO analysis
applicable to relatively thin reservoirs. Also, body-wave
amplitudes are highly sensitive to seismic anisotropy and,
in particular, to azimuthal velocity variations associated
with vertical fracture systems and nonhydrostatic stresses. 

Similar to traveltimes, reflection amplitudes recorded at
the surface represent effective quantities influenced by the
medium properties along the whole raypath. The goal of
AVO analysis is to resolve the local physical parameters at
the reservoir level using the reflection coefficient, which is
hidden in the measured amplitude.Therefore, a critical ele-
ment of AVO processing is separation of the reflection coef-
ficient from the source signature and the propagation factors,
most notably from the geometrical spreading in the over-
burden. 

In practice, it is often assumed that as long as the over-
burden is structurally simple (e.g., layer-cake), it should not
produce substantial amplitude distortions. This “common-
sense” assumption, however, can be dangerously mislead-
ing if some of the overburden formations are anisotropic.
Anisotropy above the reflector acts like a lens that focuses
and defocuses seismic energy in accordance with angular
velocity variations. In his book, Tsvankin (2005) gives strik-
ing examples of weakly anisotropic VTI (transversely
isotropic with a vertical symmetry axis) models that pro-
duce dramatic amplitude variations along the wavefronts
of both P- and S-waves. If not corrected for, this strong angle
dependence of the anisotropic geometrical-spreading fac-
tor can compromise the AVO signature (e.g., the AVO gra-
dient) and lead to erroneous interpretation results. 

In particular, the AVO response for wide-azimuth data
can be distorted by the azimuthal variation of geometrical
spreading caused by aligned vertical fractures in the over-
burden (fractures often permeate much of the section above
the reservoir). Still, most anisotropic AVO algorithms employ
empirical amplitude corrections used in isotropic process-
ing (e.g., the t- or t2-gain factors). Such approximate ampli-
tude treatment generally does not prevent azimuthal AVO
from estimating the dominant fracture directions, as attested
by successful case studies reported in the literature (e.g., Hall
and Kendall, 2003; Gray and Todorovic-Marinic, 2004).
However, to put the method on a firm quantitative footing
and make it suitable for estimating the physical properties
of fractures, one has to apply a more robust geometrical-
spreading correction that honors the azimuthal anisotropy
in the overburden. 

In principle, the geometrical-spreading factor can be
computed using dynamic ray tracing or other forward-mod-
eling techniques. Unfortunately, our anisotropic velocity
models are rarely accurate enough to make this approach
practical. Therefore, we recently proposed a moveout-based

anisotropic spreading-correction method that can be abbre-
viated as “MASC.” This method makes it possible to com-
pute geometrical spreading for wide-angle reflections in
horizontally layered, azimuthally anisotropic media directly
from the reflection traveltimes. The spreading correction is
preceded by 3D nonhyperbolic moveout analysis using the
semblance algorithm of Vasconcelos and Tsvankin (2006).
The moveout parameters estimated from wide-azimuth data
serve as the input to the geometrical-spreading correction.
MASC does not require knowledge of the velocity model
(except for the velocities in the layer containing the sources
and receivers) and was shown to be sufficiently robust in
the presence of noise. 

Here, we process full-waveform 3D synthetic reflection
data to answer several important practical questions regard-
ing MASC and anisotropic spreading correction for PP-waves: 

1) Can MASC, despite its reliance on ray theory, accurately
reconstruct reflection coefficients in the presence of
strong azimuthal anisotropy? 

2) Can we replace MASC with simple gain corrections com-
monly used in practice? 

3) Is it possible to ignore the contribution of the transmis-
sion coefficients (which are not included in MASC) along
the raypath? 
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We begin by describing the modeling code and the algo-
rithm used to reconstruct the reflection coefficient from the
picked amplitudes of reflected PP-waves. Then we compare
the performance of MASC and empirical gain corrections
for three relatively simple models that include an orthorhom-
bic layer beneath an isotropic overburden. Although most
current implementations of azimuthal AVO analysis oper-
ate with HTI (TI with a horizontal symmetry axis) media,
orthorhombic symmetry is more typical for realistic fractured
reservoirs. Recent work of Grechka and Kachanov (2006)
shows that orthorhombic models accurately describe even
multiple sets of vertical fractures with arbitrary azimuthal
orientations.

Synthetic modeling. The modeling algorithm, based on the
anisotropic version of the reflectivity method, is designed to
simulate exact 3D wavefields for horizontally layered,
anisotropic media. The reflectivity code (ANISYNPA) was

originally developed by Dennis Corrigan at ARCO and later
modified at the Center for Wave Phenomena.

All three models used here include an orthorhombic
layer sandwiched between two isotropic media (see Tables
1, 2, and 3). One of the symmetry planes of the orthorhom-
bic medium is horizontal, while the other two coincide with
the coordinate planes [x1, x3] (azimuth 0°) and [x2, x3]
(azimuth 90°). If the azimuthal anisotropy is caused by a
single system of fractures in a VTI background, one of the
vertical symmetry planes is aligned with the fracture strike.
Synthetic seismograms were computed for a wide range of
offsets in both vertical symmetry planes, as well as for the
45° azimuth. The code calculates three displacement com-
ponents of the wavefield excited by a point force parallel to
one of the coordinate axes. 

The vertical displacement from a vertical force for model
1 is displayed in Figure 1. Our goal is to carry out azimuthal
AVO analysis for the PP-wave reflected from the bottom of
the orthorhombic layer (this event is marked by the arrows)
for all three models. To avoid the interference of this PP
reflection with ground roll and surface-related multiples, we
eliminated the free surface in the computation of the syn-
thetic seismograms. Still, the target PP event interferes with
the PS- and SS-wave reflections from the top of the
orthorhombic layer, particularly for model 3 (Figure 2),
which causes distortions of the picked AVO response. 

Estimation of the reflection coefficient from the AVO
response. MASC computes the offset- and azimuth-depen-
dent geometrical-spreading factor for a given reflection
event using the zero-offset time t0 and effective moveout
parameters Vnmo

(1) , Vnmo
(2)  , η(1), η(2), and η(3). The symmetry-plane

normal-moveout (NMO) velocities Vnmo
(1) and Vnmo

(2) deter-
mine the NMO ellipse on conventional spreads, while η(1),
η(2), and η(3) are the anellipticity parameters (they are simi-
lar to the well-known parameter η for VTI media) respon-
sible for nonhyperbolic (long-spread) moveout. The
moveout parameters are estimated with a global semblance
algorithm that maximizes semblance computed for all off-
sets and azimuths in the gather. It should be emphasized
that the geometrical-spreading correction is not influenced
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Figure 1. Synthetic shot
gathers for model 1
(Table 1) computed by
the reflectivity method
in three azimuthal
directions: (a) 0° (sym-
metry plane [x1, x3]); (b)
45°; and (c) 90° (sym-
metry plane [x2, x3]).
The arrows mark the
target PP-wave reflected
from the bottom of the
orthorhombic layer. The
ellipses highlight the
areas of interference of
the target PP event with
the PS and SS
reflections from the top
of the orthorhombic
layer.



by the tradeoffs between the NMO velocities and η-para-
meters, as long as the reconstructed moveout function is suf-
ficiently close to the actual traveltimes. 

The processing flow starts with picking raw amplitudes

of a certain event on all traces along the traveltime surface
defined by the estimated moveout parameters. Then the
picked amplitudes are corrected for the anisotropic geo-
metrical spreading computed for each offset and azimuth.
Finally, assuming that the sources and receivers are located
in an isotropic layer with a known P-wave velocity, the algo-
rithm removes the source and receiver directivity factors
using local time slopes (i.e., horizontal slownesses) calcu-
lated from the moveout function. 

Since our models are nonattenuative, the corrected
amplitude should be determined primarily by the plane-
wave reflection coefficient. The only propagation factor not
accounted for in this algorithm is the product of the trans-
mission coefficients along the raypath, which is usually
close to a constant (see below). Ascalar related to the strength
of the source can be removed by simple normalization. 

The output amplitudes have to be smoothed to mitigate
the distortions caused by the interference of the PP reflection
with shear and converted waves (see the ellipses in Figures
1 and 2).The smoothing was accomplished by least-squares
fitting of a fourth-order polynomial in the horizontal slow-
ness to the reconstructed reflection coefficients. In practice,
the results of AVO processing often require smoothing
because of noisy amplitudes, variations in the source and
receiver coupling, etc. 

Model 1. The parameters of the orthorhombic layer in model
1 (see Table 1) are based on Wang’s (2002) results for two
transversely isotropic brine-saturated shale samples.
Orthorhombic symmetry can be fully described by the two
vertical velocities (VP0 for P-waves and VS0 for one of the
split S-waves) and seven anisotropy parameters (ε(1), ε(2), δ(1),
δ(2), δ(3), γ(1), and γ(2)). The anellipticity parameters η(1), η(2),
and η(3) control P-wave nonhyperbolic moveout. For a
detailed explanation, see Tsvankin (2005). The main reason
for choosing this model is that the large difference between
the SH-wave parameters γ(1) and γ(2) causes an extremely pro-
nounced azimuthal variation of the P-wave AVO gradient.
Note that γ(1) = 0.513 is much higher than the average value
of Thomsen’s γ for shales (0.2), so this model likely exag-
gerates the typical magnitude of the azimuthal AVO
response. 

The PP-wave reflection coefficient from the bottom of
the orthorhombic layer reconstructed by our moveout-based
geometrical-spreading correction and by the empirical t2

gain is marked by dashed lines in Figures 3a and 3b. (We
chose the t2 function because it generally gives better results
for our models than the linear t compensation or Newman’s
correction.) For comparison, Figure 3 also displays the exact
reflection coefficient (solid lines). To remove the source fac-
tor, the estimated reflection coefficient is normalized to
match the exact value at normal incidence (zero offset). 

The maximum horizontal slowness (0.3 s/km) in Figure
3 corresponds to an incidence angle at the source close to
40° (it varies with azimuth) and an offset-to-depth-ratio
slightly larger than two. The slownesses up to 0.15 s/km
(the corresponding incidence angle is up to 20°) define what
we will call the near-offset amplitude response; the reflection
coefficient in this slowness range is governed mostly by the
AVO gradient. 

Clearly, for near offsets the MASC algorithm recovers the
reflection coefficient with extremely high accuracy (Figure
3a). The small deviation of the estimated reflection coeffi-
cient from the exact curve at far offsets for azimuths of 45°
and 90° is related to the interference with shear and mode-
converted waves (Figures 1b and 1c). The excellent agree-
ment between the reconstructed and exact reflection
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Figure 2. Synthetic gather for model 3 (Table 3) computed in the symme-
try plane [x2, x3] (azimuth 90°).



coefficients for a wide range of offsets and azimuths is
ensured by the application of the moveout-based geometri-
cal-spreading correction. Figure 4 confirms that the output
of MASC for all three azimuths practically coincides with
the geometrical spreading computed by dynamic raytracing. 

The performance of the simple t2 gain correction often
used in practice varies with azimuth (Figure 3b). For an
azimuth of 0° the estimated reflection coefficient is close to

the exact value for the full offset range. The accuracy of the
t2 gain, however, is much lower for the other two azimuths,
especially at far offsets. 

Since the traveltime depends on both polar and azi-
muthal velocity variations, the t2 function absorbs some of
the influence of the anisotropy on the geometrical-spread-
ing factor. For that reason, the t2 gain happens to be ade-
quate for the 0° azimuth, although it does not accurately
reproduce the variation of the spreading away from that
direction. Still, it is clear from Figure 3b that the error of the
t2 correction does not seriously compromise qualitative
analysis of the AVO gradient as a function of azimuth. For
model 1, the variation of the AVO gradient between the sym-
metry planes is so pronounced that the geometrical-spread-
ing factor does not have to be computed with high accuracy.
Quantitative inversion of the AVO response on long-spread
gathers, however, should be based on the MASC algorithm. 

Model 2. The second model is designed in such a way that
the geometrical spreading of the target event from the bot-
tom of the orthorhombic layer is the same as that in model
1, but the azimuthal variation of the reflection coefficient is
much less pronounced (which is more typical for field data).
The ratio of the overall azimuthal variation of the geomet-
rical spreading and that of the reflection coefficient (esti-
mated at a horizontal slowness of 0.15 s/km) for model 2
reaches 40%. In the absence of interference with other
arrivals at large offsets, the reflection coefficient recovered
by MASC is almost identical to the exact value for the whole
range of offsets and azimuths (Figure 5a). 

The impact of the errors produced by the t2 gain in this
model is amplified by the relatively weak azimuthal depen-
dence of the reflection coefficient (Figure 5b). The reflection
coefficients after the t2 gain are close for all three azimuths
(and practically coincide for 45° and 90°, even at far offsets).
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Figure 4. Comparison of the geometrical spreading computed by MASC
(dashed lines) and dynamic ray tracing (solid) for the PP reflection from
the bottom of the orthorhombic layer in model 1. 

Figure 3. Comparison of the reconstructed (dashed lines) and exact (solid
lines) reflection coefficients for the PP-wave reflected from the bottom of
the orthorhombic layer in model 1. The reflection coefficient is estimated
using (a) MASC; and (b) the t2 gain. The offset-to-depth ratio that corre-
sponds to the maximum horizontal slowness (0.3 s/km) is slightly larger
than two.



Evidently, such small azimuthal differences in amplitude
would be undetectable in the presence of realistic noise.
Hence, application of the empirical t2 correction for this
model obliterates the azimuthal AVO signature and makes
it useless for fracture-detection purposes. 

Model 3. The parameters of the orthorhombic layer in model
3 are typical for a set of parallel, vertical, penny-shaped
cracks embedded in a VTI background medium (the so-
called “standard orthorhombic model” of Schoenberg and
Helbig). The PP reflection coefficient from the bottom of the
orthorhombic layer computed by MASC remains accurate
up to a horizontal slowness of about 0.2 s/km (Figure 6a).
For larger slownesses (i.e., at far offsets) the reconstructed
reflection coefficient is severely distorted by the interference
of the target event with the PS conversion from the top of
the orthorhombic layer (see Figure 2). Note that for model
3 the slowness 0.15 s/km corresponds to an incidence angle
close to 25° (slightly higher than that for model 1) and an
offset-to-depth ratio of one. 

The t2 gain correction for this model works better than
for model 2 but worse than for model 1 (Figure 6b). The ratio
of the overall azimuthal variation of the geometrical spread-
ing and that of the reflection coefficient, estimated at a hor-
izontal slowness of 0.15 s/km, for model 3 is 15%. For all
three azimuths, the reflection coefficient after the t2 correc-
tion is larger than the exact value and the error becomes

noticeable at relatively small offsets. The reconstructed
reflection coefficient in the 90° direction even has the sign
of the AVO gradient wrong. However, while the t2 gain is
clearly inadequate for purposes of quantitative AVO inver-
sion, it correctly reproduces the azimuthal trend of the AVO
gradient between the vertical symmetry planes. 

Influence of the transmission loss. The transmission coef-
ficients along the raypath are not part of the geometrical-
spreading correction and are difficult to estimate from
surface data. To evaluate the transmission loss for our mod-
els, we subtract from unity the product of the transmission
coefficients along the raypath of the target PP reflection
(Figure 7). For all three models, the transmission loss be-
comes noticeable only at far offsets, but the related azimuthal
amplitude variation is substantially smaller than that of the
reflection coefficient (as can be seen by comparing Figure
7a with the solid curves in Figure 3). Therefore, the trans-
mission loss can be considered a secondary factor in
azimuthal AVO analysis, which is confirmed by the high
accuracy of MASC in our examples. 

Discussion. Our modeling results show that application of
MASC is essential if the azimuthal variation of the geo-
metrical spreading is not negligible compared to that of the
reflection coefficient. It is important to keep in mind that
geometrical spreading and reflection coefficient are gov-
erned by two different sets of medium parameters defined
at different scales. When the model is orthorhombic, the
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Figure 5. Comparison of the reconstructed (dashed lines) and exact
(solid) reflection coefficients for model 2. The reflection coefficient is
estimated using (a) MASC; and (b) the t2 gain. The reconstructed
reflection coefficients for the 45° and 90° azimuths on plot (b) practi-
cally coincide with one another; for the 0° azimuth, the reconstructed
coefficient is almost invisible because it is close to the exact value. The
offset-to-depth ratio that corresponds to the maximum horizontal slow-
ness (0.3 s/km) is close to two. 

Figure 6. Comparison of the reconstructed (dashed lines) and exact
(solid) reflection coefficients for model 3. The reflection coefficient is
estimated using (a) MASC; and (b) the t2 gain. The offset-to-depth
ratio that corresponds to the maximum horizontal slowness (0.3 s/km)
is close to 2.5. 



azimuthal variation of the P-wave AVO gradient is con-
trolled by the local jump in the shear-wave splitting para-
meter and in the difference between the Thomsen δ
parameters (δ(2) - δ(1)) across the target interface. In contrast,
geometrical spreading of reflected waves depends on the
effective (average) parameters of the overburden. 

If fracturing is largely limited to reservoir formation, the
azimuthal amplitude variation of the reflection from the
top of the reservoir generally follows the reflection coeffi-
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Figure 7. Transmission loss for the PP reflection from the bottom of the
orthorhombic layer in (a) model 1; (b) model 2; and (c) model 3. The
loss is computed by subtracting from unity the product of the plane-
wave transmission coefficients along the raypath. 



cient (the case of our model 1). This explains why the results
of azimuthal AVO analysis with the conventional (isotropic)
spreading correction often are in good agreement with other
fracture-characterization methods. However, natural frac-
tures that respond to the local stress field often permeate
the whole section and lead to substantial azimuthal
anisotropy in the overburden. In such cases, application of
MASC is highly beneficial even for purposes of “qualitative”
AVO analysis designed to estimate the relative change in
the AVO response between the symmetry planes. Also, the
azimuthal variation of geometrical spreading is more
significant for the reflection from the bottom of the reservoir,
especially for relatively thick reservoir layers. Note that the
moveout and geometrical spreading of reflections from
beneath the reservoir contain useful information for reser-
voir characterization which is complementary to that pro-
vided by the reflection coefficient. 

Long-offset reflection data used in our synthetic study
help to increase the sensitivity of the azimuthal AVO
response to the anisotropy parameters. However, even if
amplitude analysis is restricted to the AVO gradient esti-
mated on conventional offsets, the geometrical-spreading
correction can benefit from nonhyperbolic moveout inver-
sion for the anellipticity parameters η(1, 2). Although this
result seems counterintuitive, it is explained by the strong
dependence of geometrical spreading on the second trav-
eltime derivative with respect to offset. 

Conclusions. The transformation of seismic amplitudes
measured at the surface into the reflection coefficient at the
target horizon is a critically important step in AVO analy-
sis. Here, we tested the moveout-based anisotropic geo-
metrical-spreading correction (MASC) on long-offset,
wide-azimuth synthetic data from three models which
included a strongly anisotropic layer of orthorhombic sym-
metry. The results show that although MASC is based on
ray theory, it accurately reconstructs the azimuthally vary-
ing reflection coefficient for a wide range of offsets and
azimuths. The errors in the estimated reflection coefficient
are mostly caused by interference-related amplitude dis-
tortions.

In practice, azimuthal AVO analysis often involves an
empirical gain correction designed to compensate for the
amplitude loss in the overburden. Our tests demonstrate that
although the t2 gain absorbs some of the influence of
anisotropy on geometrical spreading, it produces significant
errors in the reflection coefficient, especially for offsets-to-
depth ratios greater than unity. Therefore, the empirical cor-
rection cannot be used in quantitative inversion of the
azimuthally varying AVO response for the anisotropy para-
meters (e.g., for the fracture compliances). 

On the other hand, most existing applications of
azimuthal AVO are limited to estimating the principal
azimuthal directions of the AVO gradient and its variation
between the vertical symmetry planes. This relative
azimuthal change in the AVO gradient measured over a
fractured reservoir is then used to identify “sweet spots” of
high fracture density. For models where the azimuthal vari-
ation of the reflection coefficient is much more pronounced
than that of geometrical spreading (e.g., our models 1 and
3), the t2 gain is sufficient to reproduce the general azimuthal
trend of the reflection coefficient. 

However, as the ratio of the overall azimuthal variation
of the geometrical spreading and that of the reflection coef-
ficient (estimated for an incidence angle of about 20°)
increases to 40% in model 2, the empirical correction com-
pletely smears the AVO signature. For model 2, the reflection

coefficient after the t2 gain is so weakly dependent on
azimuth that it contains almost no information about the
reservoir. On the whole, application of MASC becomes
essential even in qualitative AVO analysis when the
azimuthal variation of the geometrical spreading reaches
about one-third of that of the reflection coefficient. 

It should be emphasized that the MASC algorithm can
be conveniently incorporated into the processing flow prior
to velocity model-building at almost no extra cost. Indeed,
azimuthal AVO analysis always is preceded by a moveout
correction designed to flatten the event of interest. The esti-
mated effective moveout parameters can then be used as the
input to the MASC algorithm, which does not require any
other information about the velocity model (other than the
layer that contains the sources and receivers). 

Suggested reading. The theory and algorithm of the moveout-
based anisotropic spreading correction (MASC) method are
described in “Geometrical spreading of P-waves in horizontally
layered, azimuthally anisotropic media” by Xu et al. (GEOPHYSICS,
2005) and “Anisotropic geometrical-spreading correction for wide-
azimuth P-wave reflections” by Xu and Tsvankin (GEOPHYSICS,
2006). “Nonhyperbolic moveout inversion of wide-azimuth P-
wave data for orthorhombic media” by Vasconcelos and Tsvankin
(Geophysical Prospecting, 2006) introduces the moveout-inversion
algorithm applied prior to the geometrical-spreading correction.
A detailed discussion of body-wave amplitudes and geometrical
spreading in anisotropic media can be found in the book Seismic
Signatures and Analysis of Reflection Data in Anisotropic Media by
Tsvankin (Elsevier, 2005). The book also explains the notation for
orthorhombic media used in this article. The anisotropy para-
meters for models 1 and 2 are based on the laboratory measure-
ments in “Seismic anisotropy in sedimentary rocks, part 2:
Laboratory data” by Wang (GEOPHYSICS, 2002). The parameters
for model 3 are computed for the “standard” fractured orthorhom-
bic medium introduced in “Orthorhombic media: Modeling elas-
tic wave behavior in a vertically fractured earth” by Schoenberg
and Helbig (GEOPHYSICS, 1997). Effective orthorhombic models for
multiple fracture sets are discussed in the paper “Seismic char-
acterization of multiple fracture sets: Does orthotropy suffice?”
by Grechka and Kachanov (GEOPHYSICS, 2006). Reflection Coefficients
and Azimuthal AVO Analysis in Anisotropic Media by Rüger (SEG,
2001) gives a comprehensive and clear exposition of AVO equa-
tions for anisotropic media. For a concise description of the main
concepts of azimuthal AVO analysis, see “Using AVO for frac-
ture detection: Analytic basis and practical solutions” by Rüger
and Tsvankin (TLE, 1997). Recent case studies of azimuthal AVO
analysis are presented in “Fracture detection using 3D azimuthal
AVO” by Gray and Todorovic-Marinic (CSEG Recorder, 2004) and
“Fracture characterization at Valhall: Application of P-wave ampli-
tude variation with offset and azimuth (AVOA) analysis to a 3D
ocean-bottom data set” by Hall and Kendall (GEOPHYSICS, 2003).
TLE
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