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Plane-wave propagation in attenuative transversely isotropic media

Yaping Zhu1 and Ilya Tsvankin1

ABSTRACT
Directionally dependent attenuation in transversely iso-

tropic (TI) media can influence significantly the body-wave
amplitudes and distort the results of the AVO (amplitude
variation with offset) analysis. Here, we develop a con-
sistent analytic treatment of plane-wave properties for TI
media with attenuation anisotropy. We use the concept of
homogeneous wave propagation, assuming that in weakly
attenuative media the real and imaginary parts of the wave
vector are parallel to one another.

The anisotropic quality factor can be described by
matrix elements Qij , defined as the ratios of the real and
imaginary parts of the corresponding stiffness coefficients.
To characterize TI attenuation, we follow the idea of the
Thomsen notation for velocity anisotropy and replace the
components Qij by two reference isotropic quantities and
three dimensionless anisotropy parameters εQ, δQ, and γQ.
The parameters εQ and γQ quantify the difference between
the horizontal- and vertical-attenuation coefficients of P-

and SH-waves, respectively, while δQ is defined through the
second derivative of the P-wave attenuation coefficient in
the symmetry direction. Although the definitions of εQ, δQ,
and γQ are similar to those for the corresponding Thom-
sen parameters, the expression for δQ reflects the coupling
between the attenuation and velocity anisotropy.

Assuming weak attenuation as well as weak velocity and
attenuation anisotropy allows us to obtain simple attenua-
tion coefficients linearized in the Thomsen-style paramet-
ers. The normalized attenuation coefficients for P- and
SV-waves have the same form as the corresponding ap-
proximate phase-velocity functions, but both δQ and the ef-
fective SV-wave attenuation-anisotropy parameter σQ de-
pend on the velocity-anisotropy parameters in addition to
the elements Qij . The linearized approximations not only
provide valuable analytic insight, but they also remain ac-
curate for the practically important range of small and
moderate anisotropy parameters — in particular, for near-
vertical and near-horizontal propagation directions.

INTRODUCTION

Attenuation is a process that dissipates the energy of elastic
waves and alters their amplitude and frequency content. The
influence of attenuation on the amplitudes of reflected waves
may cause errors in amplitude variation with offset (AVO)
analysis. For example, Blangy (1994) speculates that some un-
explained pitfalls in AVO interpretation may be attributed
to attenuation-related phenomena. Reflection and transmis-
sion coefficients in isotropic attenuative media are discussed
by Ursin and Stovas (2002) and, in transversely isotropic (TI)
media, by Carcione (1997). More significant distortions of the
AVO response, however, may be caused by the attenuation
along the raypath of the reflected wave, in particular if the at-
tenuation coefficient is angle dependent.
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Physical-modeling experiments show that attenuation in
anisotropic rocks can vary with direction, and the attenua-
tion anisotropy is sometimes more significant than the veloc-
ity anisotropy (Hosten et al., 1987; Tao and King, 1990; Arts
and Rasolofosaon, 1992). The same conclusion is drawn by
Carcione (2000), who models wavefields propagating through
attenuative shale models. Prasad and Nur (2003) observe P-
wave attenuation anisotropy for reservoir rocks (such as flu-
vial sandstones and dolomites) by measuring the attenuation
coefficient in two orthogonal directions. Their experiments in-
dicate that the attenuation anisotropy can be related to the
texture of sedimentary rocks.

For azimuthally anisotropic formations that contain systems
of small-scale aligned fractures, both velocity and attenuation
vary with azimuth. The azimuthal variation of the attenuation
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coefficient can be used to estimate the orientation and some
physical properties of the fractures (Rathore et al., 1995; Lynn
et al., 1999; Chichinina et al., 2004).

Although the physical mechanism of intrinsic attenuation
is not clearly understood, a number of parameters have been
introduced to quantify attenuation-related amplitude decay
(e.g., Johnston and Toksöz, 1981). The most common choices
are the quality factor Q and the magnitude of the imagi-
nary part of the complex wavenumber, usually called the at-
tenuation coefficient. A detailed discussion of wave propa-
gation in anisotropic attenuative media is given by Carcione
(2001). His treatment, however, is based on the stiffness co-
efficients, and the results are not generally expressed in a
form amenable to data-processing applications. As demon-
strated below, analysis of the influence of anisotropic attenu-
ation on seismic signatures can be facilitated by introducing
dimensionless anisotropy parameters responsible for the
angle-dependent quality factor.

The terminology in this paper is designed to clearly dis-
tinguish between the anisotropy of velocity and attenuation.
To ensure consistency with existing literature on nonatten-
uative anisotropic media, terms such as anisotropic media
or transversely isotropic (TI) media refer to the velocity ani-
sotropy. When discussing attenuative media, we explicitly
specify the character of the attenuation. For example, the terms
TI medium with isotropic attenuation means that the model is
transversely isotropic with respect to the velocity function, but
the attenuation is isotropic (i.e., independent of direction).

For plane waves propagating through attenuative media,
the orientations of the real and the imaginary parts of the wave
vector are generally different from one another. This means
that the planes of constant phase and constant amplitude do
not coincide (Borcherdt and Wennerberg, 1985; Borcherdt
et al., 1986; Krebes and Slawinski, 1991; Krebes and Le, 1994),
and the direction of wave propagation deviates from the direc-
tion of maximum attenuation. However, when the wavefield
is excited by a point source in a weakly attenuative homo-
geneous medium, the angle between the real and imaginary
parts of the wave vector (the so-called inhomogeneity angle)
is usually small, and the rate of attenuation is highest close
to the propagation direction (Ben-Menahem and Singh, 1981;
I. Pšenčı́k, 2004, personal communication). Here, we show
that as long as the sine of the inhomogeneity angle is of
the same order as the velocity-anisotropy and attenuation-
anisotropy parameters, the misalignment of the real and imag-
inary parts of the wave vector has negligible influence on the
attenuation coefficient. Therefore, in most of the discussion
the real and imaginary parts of the wave vector are taken to
be parallel to one another, which corresponds to the homoge-
neous wave-propagation.

This paper is devoted to plane-wave signatures in TI me-
dia with both isotropic and TI attenuation. After defining
the quality-factor elements Qij through the ratios of the real
and imaginary parts of the stiffness coefficients, we introduce
Thomsen-style parameters that describe the angle-dependent
attenuation. The advantages of this notation are demonstrated
by analyzing the attenuation coefficient as a function of phase
angle. To gain insight into the behavior of the attenuation co-
efficients for P- and SV-waves, we simplify the exact equa-
tions under the assumptions that the attenuation and velocity
anisotropy, as well as the attenuation itself, are weak. The ac-

curacy of the approximate attenuation coefficients is verified
by numerical tests for representative TI models.

DEFINITION OF THE Q MATRIX

The quality factor Q can be related to several other param-
eters used in attenuation measurements, such as the atten-
uation coefficient, logarithmic decrement of amplitude, and
complex modulus (Johnston and Toksöz, 1981). All of those
parameters, however, were originally designed for isotropic
attenuation and need to be generalized for anisotropic mate-
rials.

To develop a consistent description of the Q-factor for
both isotropic and anisotropic attenuation, we follow
Carcione (2001, p. 58) in defining Q as twice the time-averaged
strain-energy density divided by the time-averaged dissipated-
energy density. In terms of the complex stiffness coefficients,
the Q-factor matrix is given by

Qij ≡ cij

cI
ij

, (1)

where cij and cI
ij are the real and the imaginary parts, respec-

tively, of the stiffness coefficient c̃ij = cij + icI
ij . Note there is

no summation over i or j in equation 1.
Our analysis is restricted to TI media with either isotropic

or TI attenuation. The symmetry axis is assumed to be vertical
(VTI), but because all results are derived for a homogeneous
medium, they can be readily adapted to TI models with any
symmetry-axis orientation.

As follows from equation 1, the Q matrix inherits the struc-
ture of the stiffness matrix. For the case of VTI media with
VTI attenuation, the matrices cij and cI

ij have the same VTI
symmetry, and the Q matrix has the form

Q =




Q11 Q12 Q13 0 0 0

Q12 Q11 Q13 0 0 0

Q13 Q13 Q33 0 0 0

0 0 0 Q55 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66




, (2)

where

Q12 = Q11
c11 − 2c66

c11 − 2c66
Q11

Q66

.

When both the real and imaginary parts of the stiffness ma-
trix have isotropic structure, the Q-factor is described by only
two independent parameters, Q33 and Q55:

Q =




Q33 Q13 Q13 0 0 0

Q13 Q33 Q13 0 0 0

Q13 Q13 Q33 0 0 0

0 0 0 Q55 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q55




. (3)
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The component Q13 = Q12 can be obtained from Q33 and Q55

as

Q13 = Q33
c33 − 2c55

c33 − 2c55
Q33

Q55

.

The P-wave attenuation is controlled by Q33, while Q55 is re-
sponsible for the SV-wave attenuation.

According to the attenuation measurements in sandstones
by Gautam et al. (2003), the Q-factor for P-waves may be ei-
ther larger or smaller than that for SV-waves, depending on
the mobility of fluids in the rock. The crossover frequency, for
which Q33 = Q55, corresponds to the special case when all
components of the Q matrix are identical:

Qij = Q. (4)

If the quality factor is given by equation 4, the attenuation for
both P- and S-waves is isotropic (independent of direction),
even for arbitrarily anisotropic media.

Anisotropic attenuation can be described by calculating
the so-called eigenstiffnesses from the cij matrix and apply-
ing relaxation functions to the eigenstiffnesses to obtain the
complex stiffness coefficients c̃ij and the Q matrix (Helbig,
1994). For TI media, those operations are detailed by Car-
cione (2001). Here, we do not consider any specific attenua-
tion mechanism and focus on examining wave propagation for
the general TI structure of the Q matrix.

The discussion below is based on the assumption of a fre-
quency-independent Q, which is often valid in the seismic-
frequency band. In a more rigorous description of attenuation,
the complex stiffness components and the Q-factor vary with
frequency, as does the velocity. Our results, however, can still
be applied for any given frequency, and the Thomsen-style
anisotropy coefficients become frequency dependent.

Christoffel equation for anisotropic, attenuative media

The displacement of a harmonic plane wave can be written
as

ũ = Ũ exp[i(ωt − k̃ · x)], (5)

where Ũ denotes the polarization vector, ω is the angular fre-
quency, t is the time, and k̃ is the wave vector that becomes
complex in the presence of attenuation: k̃ = k−ikI . The imagi-
nary part (kI ) of the wave vector is sometimes called the atten-
uation vector. In general, kI is not parallel to k, which means
that the planes of constant phase and constant amplitude do
not coincide and the direction of the fastest amplitude decay
deviates from the phase-velocity vector. Then wave propaga-
tion is called inhomogeneous, and the angle between kI and k
is called the inhomogeneity angle.

While the inhomogeneity angle is a free parameter in plane-
wave propagation, for wavefields excited by point sources in
weakly attenuative media, the deviation of kI from k is usu-
ally small (Ben-Menahem and Singh, 1981). As discussed in
Appendices A and B, if the sine of the inhomogeneity angle is
of the same order as the velocity-anisotropy and attenuation-
anisotropy parameters, the deviation of kI from k has a neg-
ligibly small influence on both the attenuation coefficient and
phase velocity. Hence, our treatment of plane waves is restric-
ted to homogeneous wave-propagation, for which k and kI are

parallel to one another so that k̃ = n(k − ikI ), where n is the
unit vector in the phase direction, k = |k|, and kI = |kI |.

By substituting the plane wave of equation 5 into the equa-
tion of motion, we obtain the Christoffel equation of the same
form as in nonattenuative media:

[G̃ik − ρṼ 2δik]Ũk = 0. (6)

Here, G̃ik = c̃ijklnjnl is the Christoffel matrix that depends on
the complex stiffnesses c̃ijkl and the phase direction n, ρ is the
density, δik is Kronecker’s delta, and Ṽ = ω/k̃ is the complex
phase velocity (k̃ = |k̃|). The real part V of the phase velocity
is given by (Carcione, 2001) as

V =
[

Re
(

1
Ṽ

)]−1

= ω

k
. (7)

Below, we examine the solutions of the Christoffel equation 6
for all three wave types (P, SV, SH) in VTI media with both
isotropic and VTI attenuation.

SH-WAVE ATTENUATION

For waves propagating in the [x1, x3]-plane of VTI media,
the Christoffel equation 6 splits into an equation for the SH-
wave polarized in the x2-direction and two coupled equations
for the in-plane polarized P- and SV-waves. The equation
for the wave vector of the SH-wave has the same form as
that in nonattenuative media, but the stiffness coefficients and
wavenumbers are complex quantities:

c̃66k̃
2
1 + c̃55k̃

2
3 − ρω2 = 0. (8)

Isotropic attenuation

As shown in Appendix A for homogeneous wave-
propagation in a medium with isotropic Q (Q = Q55 = Q66),
the imaginary part of equation 8 reduces to

K2 ≡ k2 − (kI )2

Q
− 2kkI = 0. (9)

The assumption of isotropic Q for SH-waves does not involve
the condition Q33 = Q55. Solving for kI , we find [also see equa-
tion 2.122 in Carcione (2001)]

kI = k
(√

1 + Q2 − Q
)
. (10)

It is convenient to introduce the normalized attenuation co-
efficient A that defines the rate of amplitude decay per wave-
length:

A ≡ kI

k
. (11)

For brevity, the word normalized is omitted in most of the text
below. Equation 10 shows that the coefficient A for SH-waves
in media with isotropic Q is independent of the phase angle.
When attenuation is weak (i.e., 1/Q � 1), equation 10 yields

ASH = 1
2Q

. (12)

The weak-attenuation approximation 12 is close to the exact
attenuation coefficient A for the practically important range
Q > 10 and breaks down only for strongly attenuative media
(Figure 1).
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The real part of the Christoffel equation 8 can be used to
obtain the phase velocity of the SH-wave (Appendix A):

VSH (θ) = ξQV elast
SH (θ), (13)

where V elast
SH is the SH-wave phase velocity in the reference

nonattenuative medium (equation A-15) and ξQ is given in
equation A-19. In the limit of weak attenuation, the phase ve-
locity becomes

VSH (θ) = V elast
SH (θ)

(
1 + 1

2Q2

)
. (14)

For a realistic range of Q-values, the influence of attenua-
tion on the real part of the wavenumber and therefore on the
phase velocity can be ignored. Even for strongly attenuative
media with Q = 5, the contribution of the term 1/2Q2 in equa-
tion 14 is limited to 2% of the velocity VSH . Attenuation, how-
ever, causes velocity dispersion that is not always negligible,
even in the seismic-frequency band.

VTI attenuation

Since the real and imaginary parts of the wave vector are
coupled in the Christoffel equation, the directional de-
pendence of the attenuation is influenced by the velocity
anisotropy of the material. The physical reasons for the at-
tenuation and velocity anisotropy in TI media may be similar.
For example, preferential orientation of clay platelets in shales
may be responsible not just for the velocity anisotropy (Say-
ers, 1994) but also for the attenuation anisotropy. Therefore, it
is reasonable to assume that the symmetry of the attenuation
in TI media is the same as that of the phase velocity. Further-
more, we take the symmetry axes of the attenuation coeffi-
cient and velocity function as parallel to one another, which
results in the general VTI form of the Q matrix in equation 2.

The Christoffel equation 8 yields the following relationship
between the real and the imaginary SH-wavenumbers (Ap-
pendix A):

k2 − (kI )2 − 2Q55αkkI = 0, (15)
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Figure 1. Normalized attenuation coefficient A for SH-waves
as a function of the Q-factor for a medium with Q55 = Q66 =
Q. The solid line is the exact A from equations 10 and 11; the
dashed line is the weak-attenuation approximation 12.

where γ ≡ (c66 − c55)/(2c55) is Thomsen’s velocity-anisotropy
parameter for SH-waves and

α ≡ (1 + 2γ ) sin2 θ + cos2 θ

(1 + 2γ )
Q55

Q66
sin2 θ + cos2 θ

. (16)

Equation 16 is essentially identical to equation 35 in Krebes
and Le (1994). Solving equation 15 for kI , we find the SH-
wave-attenuation coefficient:

ASH ≡ kI

k
=
√

1 + (Q55α)2 − Q55α. (17)

In the weak-attenuation limit, equation 17 reduces to

ASH = 1
2Q55α

. (18)

Equation 18 shows that Q55 is multiplied with the direction-
ally dependent parameter α to form the effective Q-factor for
the SH-wave, Qeff

55 = Q55α. At vertical incidence (θ = 0◦), α =
1 and ASH = 1/(2Q55). In the horizontal direction (θ = 90◦),
α = Q66/Q55 and ASH = 1/(2Q66). For intermediate propaga-
tion directions, α reflects the coupling between the SH-wave
velocity-anisotropy parameter γ and the ratio of the elements
Q55 and Q66. The contribution of the ratio Q55/Q66 in equa-
tion 16 is used below to define an attenuation-anisotropy pa-
rameter analogous to Thomsen’s parameter γ .

P- AND SV-WAVE ATTENUATION

Because of the coupling between P- and SV-waves, the
equations governing their velocity and attenuation are more
complicated than those for SH-waves. While the complex
wavenumbers for P- and SV-waves can be evaluated numer-
ically from equations B-3 and B-4 in Appendix B, the ex-
pression for the imaginary wavenumber kI is cumbersome.
Therefore, we use approximate solutions to study the depen-
dence of the attenuation coefficients of P- and SV-waves on
the medium parameters.

If both the attenuation anisotropy and attenuation itself are
weak, the coefficient A for both P- and SV-waves can be found
as (see Appendix C)

A = 1
2Q33

(1 + H), (19)

where H ≡ Hu/Hd ,

Hu ≡
(

c11 sin2 θ
Q33 − Q11

Q11
+ c55 cos2 θ

Q33 − Q55

Q55

)
× (c55 sin2 θ + c33 cos2 θ − ρV 2)

+ c55 sin2 θ
Q33 − Q55

Q55
(c11 sin2 θ+c55 cos2 θ−ρV 2)

− 2
(

c13
Q33 − Q13

Q13
+ c55

Q33 − Q55

Q55

)
(c13 + c55)

× sin2 θ cos2 θ, (20)

and

Hd ≡ ρV 2[(c55 + c11) sin2 θ

+ (c33 + c55) cos2 θ − 2ρV 2]. (21)
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The phase-velocity V in equations 20 and 21 corresponds to
either P- or SV-waves, depending on which attenuation coef-
ficient is desired.

The parameter H is responsible for the contribution of the
attenuation anisotropy. For P-waves at vertical incidence (θ =
0◦), H = 0 and AP = 1/(2Q33); for horizontal direction
(θ = 90◦), H = (Q33 − Q11)/Q11 and AP = 1/(2Q11). Hence,
the ratio (Q33 − Q11)/Q11 quantifies the fractional difference
between the P-wave attenuation coefficients in the horizontal
and the vertical directions and can be used to characterize the
P-wave attenuation anisotropy. If H = 0 for all angles, then
the P-wave attenuation is isotropic and AP = 1/(2Q33).

For SV-waves, the value H = (Q33 − Q55)/Q55 is the
same for both the vertical and horizontal directions; the
corresponding attenuation coefficient is ASV = 1/(2Q55).
Therefore, isotropic SV-wave attenuation implies that H =
(Q33 − Q55)/Q55 for the whole range of angles.

The high accuracy of the approximate solutions for A is con-
firmed by the example in Figure 2 generated for a VTI
medium with substantial attenuation (the smallest Q-value is
15). The model is elliptical for the velocity anisotropy since
ε = δ, but the shape of the attenuation coefficients is strongly
nonelliptical. The attenuation coefficients in Figure 2 were
computed from equations 19–21 and then substituted into
equation B-3 to estimate the real part of the wavenumber and
to calculate the slownesses. These approximations practically
coincide with the exact solutions for both slowness and atten-
uation obtained by jointly solving equations B-3 and B-4. (For
that reason, the exact curves are not plotted in Figure 2.) This
test also demonstrates that the phase velocities are virtually
unchanged in the presence of moderate attenuation.

The approximate solution 19 for A remains accurate even
for models with much more significant attenuation and un-
commonly large values of the velocity-anisotropy parameters
ε and δ (Figure 3). In both the vertical (θ = 0◦) and horizontal
(θ = 90◦) directions, the attenuation is independent of ε or δ.
However, the shape of the attenuation curves at intermediate
angles varies with both ε and δ, especially when the velocity
anisotropy is strong.

THOMSEN-STYLE NOTATION
FOR VTI ATTENUATION

The description of seismic signatures in the presence of
velocity anisotropy can be simplified substantially by using
Thomsen (1986) notation. The advantages of Thomsen pa-
rameters in the analysis of seismic velocities and amplitudes
for TI media are discussed in detail by Tsvankin (2001).

Here, we extend the principle of Thomsen notation to the
directionally dependent attenuation coefficient. The Q matrix
for models with VTI attenuation contains five independent
elements that can be replaced by two reference (isotropic)
parameters and three dimensionless coefficients (εQ, δQ, and
γQ) responsible for the attenuation anisotropy. Since we oper-
ate with the attenuation coefficient, which is inversely propor-
tional to the quality factor, the Thomsen-style parameters are
convenient to define through quantities 1/Qij . To maintain
close similarity with Thomsen notation for velocity anisotropy
and to make our parameterization suitable for reflection data,
we choose the P- and SV-wave attenuation coefficients in the

symmetry (vertical) direction as the reference values:

AP 0 = Q33

(√
1 + 1

Q2
33

− 1

)
≈ 1

2Q33
, (22)

AS0 = Q55

(√
1 + 1

Q2
55

− 1

)
≈ 1

2Q55
. (23)

The coefficient AS0 is also responsible for the SH-wave at-
tenuation in the symmetry (vertical) direction and the SV-
wave attenuation in the isotropy plane. Note that the lin-
earization of the square roots in definitions 22 and 23 produces
approximate vertical attenuation coefficients accurate to the
first order in 1/Qij .

  0.5
  1

30

210

60

240

90270

120

300

150

330

180

0

  0.025
  0.05

30

210

60

240

90270

120

300

150

330

180

0

b)a)

Figure 2. (a) Slownesses and (b) attenuation coefficients A of
P-waves (solid curves) and SV-waves (dashed) as functions
of the phase angle with the symmetry axis (numbers on the
perimeter). The coefficients A were computed from approx-
imation 19 and substituted into equation B-3 to obtain the
slownesses. The approximations are almost indistinguishable
from the exact solutions (not shown). The model parameters
are VP 0 = 3 km/s, VS0 = 1.5 km/s, ε = δ = 0.2, Q11 =
30, Q33 = 20, Q13 = 15, and Q55 = 15. (The Q-components
yield the attenuation-anisotropy parameters εQ = −0.33 and
δQ = 0.98.)
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Figure 3. Normalized attenuation coefficients for P-waves (top
row) and SV-waves (bottom row) computed for a strongly at-
tenuative, strongly anisotropic medium. The solid curves are
the exact solutions from equations B-3 and B-4; the dashed
curves represent approximation 19. The two pairs of the pa-
rameters ε and δ used in the tests are marked on the plots.
The other model parameters are VP 0 = 3 km/s, VS0 = 1.5 km/s,
Q11 = 4, Q33 = 3, Q13 = 2, and Q55 = 3.
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SH-wave parameter γQ

We define the attenuation-anisotropy parameter γQ for SH-
waves as the fractional difference between the attenuation co-
efficients in the horizontal and vertical directions (see equa-
tion 18):

γQ ≡
1

Q66
− 1

Q55
1

Q55

= Q55 − Q66

Q66
. (24)

This definition is analogous to that of the Thomsen parame-
ter γ , which is close to the fractional difference between the
horizontal and vertical velocities of the SH-wave. The param-
eter γQ controls the magnitude of the SH-wave attenuation
anisotropy; for isotropic Q, γQ = 0.

Substituting γQ into equation 16 for the parameter α yields

α = (1 + 2γ ) sin2 θ + cos2 θ

(1 + 2γ )(1 + γQ) sin2 θ + cos2 θ
. (25)

When both γ and γQ are small (|γ | � 1,
∣∣γQ

∣∣ � 1), α can be
linearized in these parameters:

α = 1 − γQ sin2 θ. (26)

The attenuation coefficient from equation 18 then becomes in-
dependent of γ :

ASH = AS0(1 + γQ sin2 θ), (27)

where AS0 is given in equation 23. Equation 27 has the same
form as the SH-wave phase velocity linearized in the param-
eter γ (Thomsen, 1986). Note, however, that the exact phase
velocity, unlike the exact attenuation coefficient, is described
by a simple function of γ that corresponds to an elliptical slow-
ness surface.

It is clear from equation 27 that γQ determines the sign and
rate of the variation of ASH (θ) away from the vertical (symme-
try) direction. When γQ > 0, the factor α decreases with the
phase angle θ , which increases the attenuation coefficient (Fig-
ure 4a). If the magnitude of the velocity anisotropy is small
(i.e., |γ | � 1), approximation 27 gives an accurate estimate of
the attenuation coefficient even for relatively large absolute
values of γQ reaching 0.4 (Figure 4b).
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Figure 4. (a) Factor α and (b) SH-wave attenuation coefficient
ASH for a medium with γ = 0.1, Q55 = 10, and γQ varying
from −0.4 to 0.4. The exact ASH (solid line) is computed from
equation 17, and the approximate ASH (dashed) is computed
from equation 27.

P-SV-wave parameters εQ and δQ

The attenuation-anisotropy parameter εQ can be defined by
analogy with the Thomsen parameter ε as the fractional differ-
ence between the P-wave attenuation coefficients in the hori-
zontal and vertical directions (see also Chichinina et al., 2004):

εQ ≡
1

Q11
− 1

Q33
1

Q33

= Q33 − Q11

Q11
. (28)

To complete the description of TI attenuation, we need to
introduce a parameter similar to Thomsen’s δ that involves
the Q-factor component Q13. It may seem that the definition
of δ (Thomsen, 1986) can be adapted for attenuative media by
replacing the stiffnesses cij with 1/Qij :

δ̂Q ≡
(

1
Q13

+ 1
Q55

)2
−
(

1
Q33

− 1
Q55

)2

2
Q33

(
1

Q33
− 1

Q55

) . (29)

The parameter δ̂Q from equation 29, however, is not physically
meaningful. For example, when the attenuation is isotropic
and Q33=Q55 (Gautam et al., 2003), the anisotropic parame-
ters are supposed to vanish. Instead, δ̂Q for isotropic Q goes to
infinity.

As discussed by Tsvankin (2001, equation 1.49), δ proved to
be extremely useful in describing signatures of reflected P-
waves in VTI media because it determines the second deriva-
tive of the P-wave phase-velocity function in the vertical (sym-
metry) direction (the first derivative goes to zero). Therefore,
the idea of Thomsen notation can be preserved by defining δQ

through the second derivative of the P-wave attenuation coef-
ficient AP at θ = 0:

δQ ≡ 1
2AP 0

d2AP

dθ2

∣∣∣∣
θ=0

. (30)

In other words, δQ controls the curvature of AP (θ) in the ver-
tical direction.

Assuming that both the attenuation and attenuation ani-
sotropy are weak, we find the following explicit expression for
δQ (Appendix C):

δQ ≡
Q33 − Q55

Q55
c55

(c13 + c33)2

(c33 − c55) + 2Q33 − Q13
Q13

c13(c13 + c55)

c33(c33 − c55)
.

(31)

The role of δQ in describing the P-wave attenuation anisotropy
is similar to that of δ in the P-wave phase-velocity equation
(Thomsen, 1986; Tsvankin, 2001). Since the first derivative of
AP for θ = 0 is zero, δQ is responsible for the angular vari-
ation of the P-wave attenuation coefficient near the vertical
direction.

In the special case of a purely isotropic (i.e., angle-inde-
pendent) velocity function, δQ reduces to a weighted summa-
tion of the fractional differences (Q33 − Q55)/Q55 and (Q33 −
Q13)/Q13:

δQ = Q33 − Q55

Q55

4µ

λ + 2µ
+ Q33 − Q13

Q13

2λ

λ + 2µ
, (32)

where λ and µ are the Lamé parameters.
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Unless attenuation is uncommonly strong, the phase veloc-
ities of P- and SV-waves are close to those in the reference
nonattenuative medium and do not depend on the attenua-
tion parameters εQ and δQ. Equation 31 for the parameter
δQ, however, indicates that the attenuation anisotropy is in-
fluenced by the velocity anisotropy. If we approximate c13 ≈
c33(1 + δ) − 2c55, which can be done for small |δ| (Tsvankin,
2001), and denote

g ≡ V 2
S0

V 2
P 0

= c55

c33
, (33)

equation 31 for δQ can be rewritten as

δQ = Q33 − Q55

Q55
g

(2 + δ − 2g)2

(1 − g)2

+ Q33 − Q13

Q13

2(1 + δ − 2g)(1 + δ − g)
(1 − g)

. (34)

Linearizing equation 34 in g under the assumption g � 1 leads
to the following simplified expression:

δQ = 4
Q33 − Q55

Q55
g + 2

Q33 − Q13

Q13
(1 + 2δ − 2g). (35)

Figure 5 shows an example of δQ as a function of δ and g.
The parameters Q33 and Q55 are taken from the experimen-
tal results of Gautam et al. (2003) for Rim sandstone at a fre-
quency of 25 Hz, while Q13 is assigned an arbitrary value. With
this choice of the Q-components, the parameter δQ is quite
sensitive to the squared velocity ratio g and reaches large neg-
ative values for hard rocks with g > 0.35. While the simplified
equation 35 for δQ is sufficiently accurate for small magnitudes
of both δ and g (−0.1 < δ < 0.2 and g < 0.2), it produces a
significant error for g > 0.25. Note that the absolute value of
δQ may be large (even greater than unity).

In combination with the Thomsen parameters for the ve-
locity function, the parameters AP 0,AS0, εQ, δQ, and γQ fully
characterize the attenuation of P-, SV-, and SH-waves.

APPROXIMATE ATTENUATION COEFFICIENTS
FOR P- AND SV-WAVES

The exact equations for the P- and SV-wave attenuation
coefficients are too cumbersome to be represented as expli-
cit functions of the anisotropy-attenuation parameters intro-
duced earlier. It is possible, however, to obtain relatively
simple approximations for the coefficient A by assuming si-
multaneously (1) weak-attenuation (1/Qij � 1); (2) weak-
attenuation anisotropy (|εQ| � 1, |δQ| � 1); and (3) weak-
velocity anisotropy (|ε| � 1, |δ| � 1). Note that weak
attenuation and weak-attenuation anisotropy were already
assumed in deriving the P- and SV-wave attenuation coeffi-
cients in equations 19–21.

Approximate P-wave attenuation

The approximate P-wave attenuation coefficient can be ob-
tained from equation 19 by expressing the stiffnesses cij

through the Thomsen parameters ε and δ and the elements
Qij through the attenuation parameters εQ and δQ. Dropping
quadratic terms in ε, δ, εQ, and δQ yields the following lin-

earized expression:

AP = AP 0 (1 + δQ sin2 θ cos2 θ + εQ sin4 θ), (36)

where AP 0 is defined in equation 22. The angle depen-
dence of the approximate AP is governed just by the
attenuation-anisotropy parameters εQ and δQ, although δQ it-
self contains a contribution of the velocity anisotropy. The
parameter δQ is responsible for the attenuation coefficient in
near-vertical directions, while εQ controls AP near the hori-
zontal plane. If both εQ and δQ go to zero, the approximate-
coefficient AP becomes isotropic.

It is noteworthy that equation 36 has the same form as the
well-known Thomsen’s (1986) weak anisotropy approxima-
tion for P-wave phase velocity:

VP = VP 0 (1 + δ sin2 θ cos2 θ + ε sin4 θ). (37)

To obtain the attenuation coefficient 36 from the phase-velo-
city equation 37, we need to replace VP 0 with AP 0, ε with εQ,
and δ with δQ.

Approximate SV-wave attenuation

The SV-wave attenuation coefficient is also obtained by lin-
earizing equation 19:

ASV = AS0

1 +
(

2σ

gQ

+ εQ − δQ

ggQ

)
sin2 θ cos2 θ

1 + 2σ sin2 θ cos2 θ
, (38)

where AS0 and g are defined in equations 23 and 33, respec-
tively; gQ is given by

gQ ≡ Q33

Q55
, (39)

and σ is the SV-wave velocity-anisotropy parameter (Tsvan-
kin and Thomsen, 1994; Tsvankin 2001):

σ ≡ V 2
P 0

V 2
S0

(ε − δ) = ε − δ

g
. (40)

If |σ | � 1 and
∣∣ 2σ

gQ
+ εQ−δQ

ggQ

∣∣ � 1, equation 38 can be simpli-
fied further to

ASV = AS0(1 + σQ sin2 θ cos2 θ); (41)
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Figure 5. Contour plot of the parameter δQ as a function of
δ and g ≡ V 2

S0/V 2
P 0 computed from (a) equation 31, and (b)

equation 35. The other parameters are Q33 = 4, Q55 = 8,
and Q13 = 3. The range of g values corresponds to 1.5 <
VP 0/VS0 < 2.5.
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σQ ≡ 1
gQ

[
2(1 − gQ)σ + εQ − δQ

g

]
. (42)

The parameter σQ determines the curvature of the SV-wave
attenuation coefficient ASV in the symmetry direction. The
form of equation 41 is identical to that of Thomsen’s (1986)
approximation for the SV-wave phase velocity in terms of σ .
However, σQ is a function of both attenuation-anisotropy and
velocity-anisotropy parameters. Depending on the sign of σQ,
the coefficient ASV has either a maximum or a minimum at
θ = 45◦.

Note that the assumption |σ | � 1 used in deriving equa-
tion 41 may not be valid for many typical TI formations be-
cause σ often has a substantial magnitude even when |ε − δ| is
small.

Isotropic attenuation

According to the approximate expression 36, the normal-
ized P-wave attenuation coefficient is isotropic (i.e., indepen-
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Figure 6. (a) Influence of the parameter AS0 = 1/(2Q55) on
the normalized P-wave attenuation coefficient; AP 0 = 0.014
(Q33 = 35). (b) Influence of the parameter AP 0 = 1/(2Q33) on
the normalized SV-wave attenuation coefficient; AS0 = 0.017
(Q55 = 30). The other model parameters on both plots are
VP 0 = 2.42 km/s, VS0 = 1.4 km/s, ε = 0.4, δ = 0.15, εQ =
−0.125, and δQ = 0.94 (δQ is computed from equation 31).

  0.01
  0.02

30

210

60

240

90270

120

300

150

330

180

0

  0.01
  0.02

30

210

60

240

90270

120

300

150

330

180

0

b)a)

Figure 7. Attenuation coefficients of (a) P-waves and (b) SV-
waves as functions of the phase angle. The solid curves are the
exact values of A obtained by jointly solving equations B-3
and B-4; the dashed-dotted curves are the approximate coeffi-
cients from equations 36 and 41; the dashed curve on the right
plot is the approximate SV-wave coefficient from equation 38.
The model parameters are the same as in Figure 6, except for
Q33 = 35 and Q55 = 30.

dent of angle) if

εQ = δQ = 0. (43)

Similarly, the coefficient ASV for SV-waves (equation 41) is
isotropic when σQ = 0 or

εQ − δQ = −2(1 − gQ)(ε − δ). (44)

The coefficients AP and ASV are both isotropic when εQ =
δQ = 0 and either gQ = 1 or ε − δ = 0 (elliptical anisotropy).
The condition gQ = 1, combined with εQ = δQ = 0, corre-
sponds to the special case of identical Q-components for P-SV
waves,

Q11 = Q33 = Q13 = Q55, (45)

which yields isotropic normalized attenuation coefficients
for P- and SV-waves in VTI media with arbitrary velocity
anisotropy. (As discussed earlier, the normalized SH-wave at-
tenuation coefficient is isotropic when Q55 = Q66, i.e., γQ = 0).
The second condition, however, is limited to the approximate
attenuation coefficients unless all anisotropy parameters for
P- and SV-waves vanish (ε = δ = εQ = δQ = 0). Hence, when
referring to isotropic attenuation in TI media, one ought to
specify the type of plane wave.

The above discussion pertains to the normalized attenu-
ation coefficient A that characterizes the rate of amplitude
decay per wavelength. Alternatively, attenuation can be de-
scribed by the imaginary wavenumber (i.e., the attenuation
coefficient without normalization) denoted here as kI . Since
the wavelength in anisotropic media changes with direction, a
model with a purely isotropic coefficient A generally has an
angle-dependent wavenumber kI . The conditions that make
kI isotropic for all three modes are derived in Appendix D.

Numerical examples

The approximate P-wave attenuation coefficient (equation
36) does not contain the vertical shear-wave attenuation coef-
ficient AS0. Although the linearized approximation becomes
inaccurate with increasing magnitude of the anisotropy pa-
rameters, AP remains independent of AS0 even for models
with strong attenuation and pronounced velocity and attenu-
ation anisotropy. As demonstrated in Figure 6a, the variation
of the coefficient AP with AS0 becomes noticeable only for
extremely high attenuation (i.e., uncommonly small values of
Q55). Therefore, P-wave attenuation in VTI media is mainly
governed by a reduced set of parameters: AP 0, εQ, and δQ.
Note that a similar result is valid for the P-wave phase-velocity
function that is practically independent of the shear-wave ver-
tical velocity VS0 (Tsvankin and Thomsen, 1994; Tsvankin,
2001).

In contrast, SV-wave attenuation is strongly influenced by
the vertical P-wave attenuation coefficient AP 0 through the
parameter σQ (Figure 6b). Since σQ for this model is neg-
ative (for Q33 values of 15, 35, and 300, the parameter σQ

is −4.84, −2.93, and −1.66, respectively), further reduction
in Q33 results in negative SV-wave attenuation coefficients,
which should be considered physically impossible.

The accuracy of the approximate solutions 36, 38, and 41
is illustrated by the numerical tests in Figures 7–11. The
P-wave attenuation coefficient in Figure 7 has an extremum
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(a maximum) at an angle slightly smaller than 45◦ because εQ

and δQ have opposite signs. If the signs of εQ and δQ are the
same, AP varies monotonically between the vertical and hori-
zontal directions.

The curve of ASV has a concave shape because σQ in equa-
tion 41 is negative and large by absolute value. Approxi-
mations 38 and 41 predict a minimum of the SV-wave at-
tenuation coefficient at θ = 45◦. The extrema of the exact
coefficients A in Figure 7 (solid lines) for both P- and SV-
waves, however, are somewhat shifted toward the vertical axis
with respect to their approximate positions.

The linearized expressions for the attenuation coefficients
give satisfactory results for near-vertical propagation direc-
tions with angles θ up to about 30◦. The error becomes notice-
able for intermediate angles 30◦ < θ < 75◦ and then decreases
again near the horizontal plane. Note that the velocity (see
Figure 8) and attenuation anisotropy for the model from Fig-
ure 7 cannot be considered weak, and the values of σ = 0.75
and σQ = −2.93 are particularly large. Since equation 38
does not assume that σ and [(2σ/gQ) + (εQ − δQ)/(ggQ)] =
(2σ + σQ) are small by absolute value, it provides a better
approximation for the SV-wave attenuation coefficient than
does equation 41.

For models with smaller magnitudes of the anisotropy pa-
rameters (Figure 9), equations 36 and 41 become sufficiently
accurate for the attenuation coefficients in the full range of
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Figure 8. Slownesses (s/km) of P-waves (solid curves) and SV-
waves (dashed curves) for the model from Figure 7.
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Figure 9. Attenuation coefficients of (a) P-waves and (b)
SV-waves for VP 0 = 2.42 km/s, VS0 = 1.4 km/s, ε = 0.125, δ =
−0.05, Q33 = 35, Q55 = 30, εQ = −0.125, and δQ = 0.05. The
solid curves are the exact values of A obtained by jointly solv-
ing equations B-3 and B-4; the dashed-dotted curves are the
approximate coefficients from equations 36 and 41.
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Figure 10. Attenuation coefficients of (a) P-waves and (b) SV-
waves for ε = 0.4, δ = 0.15, and εQ = δQ = 0. The solid curves
are the exact values of A obtained by jointly solving equations
B-3 and B-4; the dashed-dotted curves are the approximate
coefficients from equations 36 and 41. The other model pa-
rameters are the same as those in Figure 9.
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Figure 11. Exact (a) slownesses and (b) attenuation coeffi-
cients A of P-waves (solid curves) and SV-waves (dashed) for
a medium with the isotropic condition for SV-wave attenua-
tion (σQ = 0). The model parameters are VP 0 = 2.42 km/s,
VS0 = 1.4 km/s, ε = 0.18, δ = 0.05, Q33 = 35, Q55 = 30,
εQ = −0.30, and δQ = −0.40 (εQ and δQ satisfy equation 44).

phase angles. Our tests show that the error of the approximate
solutions 36, 38, and 41 is controlled primarily by the strength
of the velocity anisotropy, even if the magnitude of the atten-
uation anisotropy is much higher.

Figure 10 displays the attenuation coefficients for a medium
with εQ = δQ = 0. The approximate P-wave attenuation com-
puted from equation 36 in this case is isotropic. However, the
exact coefficient AP deviates slightly from a circle, which in-
dicates the nonnegligible influence of quadratic and higher-
order terms in the parameters εQ and δQ. Also, the attenuation
coefficient of SV-waves varies with angle because of the con-
tribution of the velocity anisotropy (i.e., of the term involving
σ ) in equation 41. If the condition εQ = δQ = 0 is supple-
mented by gQ = 1, all Qij become identical, and both P- and
SV-wave attenuation coefficients are independent of direction
no matter how strong the velocity anisotropy is.

If εQ and δQ satisfy condition 44 that results in σQ = 0 (Fig-
ure 11), the exact SV-wave attenuation coefficient is almost
constant, although some deviations from a circle are visible.
The curve of the P-wave coefficient AP closely resembles an
ellipse, but elliptical attenuation anisotropy for P-waves re-
quires that εQ = δQ.
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DISCUSSION AND CONCLUSIONS

The main goal of this paper was to build a practical, analytic
framework for describing attenuation-related amplitude dis-
tortions in TI media. Although the symmetry axis was taken
to be vertical, all results can be applied for TI media with an
arbitrary axis orientation. Under the assumption of weak at-
tenuation, we restricted the discussion to homogeneous-wave-
propagation by taking the real and the imaginary parts of the
wave vector to be parallel to one another. For layered atten-
uative models, however, the assumption of homogeneity may
cause errors in the estimation of attenuation coefficients.

When attenuation is directionally dependent, the quality
factor Q becomes a matrix with each component Qij defined
as the ratio of the real and the imaginary parts of the cor-
responding stiffness coefficient. The Q-matrix has a purely
isotropic structure if it includes just two independent elements
responsible for the attenuation coefficients of P- and S-waves
along the symmetry axis. For the special case of identical Qij

components, plane-wave attenuation is independent of prop-
agation direction, even for arbitrary velocity anisotropy.

It seems plausible that the attenuation anisotropy, defined
by the structure of the Q matrix, has the same or higher sym-
metry as the velocity anisotropy. Here, we treated TI velocity
models with either TI or isotropic attenuation and assumed
that the symmetry axes for the velocity and attenuation
anisotropy are aligned. Analysis of the Christoffel equation
for this model shows that the perturbation of the phase-
velocity function caused by the attenuation is of the second
order and can be ignored.

To facilitate the description of TI attenuation, we intro-
duced Thomsen-style parameters responsible for directionally
dependent attenuation coefficients of P-, SV-, and SH-waves.
The reference isotropic values are the P- and S-wave atten-
uation coefficients in the vertical (symmetry) direction (AP 0

and AS0). Following the idea of Thomsen’s notation for ve-
locity anisotropy, we supplemented the reference quantities
with three dimensionless anisotropic parameters denoted by
εQ, δQ, and γQ.

The parameter εQ is equal to the fractional difference be-
tween the P-wave horizontal and vertical attenuation coeffi-
cients, and γQ denotes the same quantity for SH-waves. Sim-
ilar to the Thomsen parameter δ for velocity anisotropy, δQ

is designed to describe near-vertical variations in P-wave at-
tenuation. We defined δQ as the normalized second deriva-
tive of the P-wave attenuation coefficient at vertical incidence.
In contrast to εQ and γQ, the parameter δQ depends on δ

and therefore reflects the coupling between the attenuation
and velocity anisotropy. If the frequency dependence of the
Q-factor and phase velocity for seismic bandwidth cannot
be ignored, the attenuation-anisotropy parameters also be-
come functions of frequency. However, this does not formally
change our definitions of εQ, δQ, and γQ.

While the attenuation coefficient of SH-waves can be ex-
pressed straightforwardly through the parameter γQ, exact
equations for the attenuation anisotropy of P- and SV-waves
are much more involved. The Thomsen-style parameters,
however, can be used to obtain the linearized attenuation co-
efficients under the assumptions of weak attenuation and of
weak velocity and attenuation anisotropy. The approximate
P-wave attenuation coefficient has the same form as the lin-

earized phase-velocity function, with the vertical velocity VP 0

replaced by AP 0, ε by εQ, and δ by δQ. Although the approxi-
mate solution for the attenuation coefficient for SV-waves in-
volves contributions of both attenuation and velocity param-
eters, it has the same-angle dependence as its phase-velocity
counterpart.

Numerical examples demonstrate that the approximate so-
lutions adequately reproduce the character of attenuation
anisotropy and are sufficiently accurate for moderately
anisotropic (in terms of both velocity and attenuation) TI
models. The exact P-wave attenuation coefficient in strongly
anisotropic media remains a function of just three parameters:
AP 0, εQ, and δQ. Computation of the exact attenuation coeffi-
cients also confirms that the isotropic Q matrix in TI media
does not necessarily yield isotropic (i.e., independent of direc-
tion) attenuation of P- and SV-waves because of the influence
of the velocity anisotropy.

ACKNOWLEDGMENTS

We are grateful to Michael Batzle and Maarten de Hoop
(Colorado School of Mines), Ivan Pšenčı́k (Czech Academy
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APPENDIX A

PLANE SH-WAVES IN ATTENUATIVE VTI MEDIA

The Christoffel equation for a plane SH-wave propagating
in an attenuative VTI medium yields

c̃66k̃
2
1 + c̃55k̃

2
3 − ρω2 = 0, (A-1)

where c̃ij = cij +icI
ij are the complex stiffness coefficients. The

complex wavenumber is represented as k̃i = ki − ikI
i , where

kI =
√

kI2
1 + kI2

2 + kI2
3 is the attenuation coefficient.

VTI Q matrix: Inhomogeneous wave-propagation

First, we consider the general case of inhomogeneous-wave-
propagation and allow the vectors k and kI to make different
angles (θ and θI , respectively) with the vertical symmetry axis.
If the Q matrix has VTI symmetry, equation A-1 becomes

c66

(
1 + i

Q66

)
(k sin θ − ikI sin θI )2

+ c55

(
1 + i

Q55

)
(k cos θ − ikI cos θI )2 − ρω2 = 0.

(A-2)

Equation A-2 can be separated into the real part,

c66

[
k2 sin2 θ − (kI )2 sin2 θI + 1

Q66
2kkI sin θ sin θI

]
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+ c55

[
k2 cos2 θ − (kI )2 cos2 θI + 1

Q55
2kkI cos θ cos θI

]
− ρω2 = 0, (A-3)

and the imaginary part,

c66

[
1

Q66
(k2 sin2 θ − (kI )2 sin2 θI ) − 2kkI sin θ sin θI

]

+ c55

[
1

Q55

(
k2 cos2 θ − (kI )2 cos2 θI )

− 2kkI cos θ cos θI

]
= 0. (A-4)

By introducing the SH-wave velocity-anisotropy parameter
γ ≡ (c66 − c55)/(2c55) (Thomsen, 1986), equation A-4 can be
rewritten as

k2
[

(1 + 2γ )
Q55

Q66
sin2 θ + cos2 θ

]

− (kI )2
[

(1 + 2γ )
Q55

Q66
sin2 θI + cos2 θI

]
− 2kkIQ55[(1 + 2γ ) sin θ sin θI + cos θ cos θI ] = 0.

(A-5)

The only physically meaningful solution of equation A-5 is
given by

kI

k
=



√

1 +

[
(1 + 2γ ) Q55

Q66
sin2 θ + cos2 θ

][
(1 + 2γ ) Q55

Q66
sin2 θI + cos2 θI

]
Q2

55[cos(θI − θ) + 2γ sin θ sin θI ]2
− 1




× Q55[cos(θI − θ) + 2γ sin θ sin θI ][
(1 + 2γ ) Q55

Q66
sin2 θI + cos2 θI

] . (A-6)

For weakly attenuative media with Q55 → ∞, the term
Q55| cos(θI − θ)| is much greater than unity if the inhomo-
geneity angle θI − θ �= ±90◦. Although it is possible for the
conditions Q55 → ∞ and θI − θ = ±90◦ to be satisfied si-
multaneously, models of this kind are not typical (Krebes and
Slawinski, 1991). Then the square root in equation A-6 can be
expanded in the small parameter 1/[Q2

55 cos2(θI − θ)]. Retain-
ing only the linear term in this parameter, we obtain

kI

k
= 1

2Q55

(1 + 2γ )
Q55

Q66
sin2 θ + cos2 θ

cos(θI − θ) + 2γ sin θ sin θI
. (A-7)

If attenuation is weak (1/Q55 � 1 and 1/Q66 � 1), the
inhomogeneity angle θI −θ that appears in problems involving
point sources in homogeneous media is small so that | sin(θI −
θ)| � 1 (Ben-Menahem and Singh, 1981). In this case, the
contribution of the inhomogeneity angle in equation A-7 is of
the second order. Indeed, cos(θI − θ) ≈ 1 − (θI − θ)2/2, while
sin θI can be represented as

sin θI = sin θ cos(θI − θ) + cos θ sin(θI − θ). (A-8)

Note that in equation A-7, sin θI is multiplied with the Thom-
sen parameter γ . Therefore, if the velocity anisotropy is weak
(|γ | � 1), all terms involving the inhomogeneity angle in the
denominator of equation A-7 are quadratic or higher order
in the small parameters. When we further assume that the at-
tenuation anisotropy is weak (|(Q55 − Q66)/Q66| � 1), equa-

tion A-7 can be simplified by dropping all quadratic terms in
the parameters sin(θI − θ), γ , and (Q55 − Q66)/Q66:

kI

k
= 1

2Q55

(
1 + Q55 − Q66

Q66
sin2 θ

)
. (A-9)

Analysis of the phase-velocity function (equation A-3) in
the limit of small attenuation and of weak attenuation and ve-
locity anisotropy (not shown here) leads to a similar result: As
long as the inhomogeneity angle is small, it contributes only to
second-order terms.

VTI Q matrix: Homogeneous wave-propagation

For homogeneous wave-propagation (θI = θ), equation A-
5 takes a much simpler form:

k2 − (kI )2 − 2Q55αkkI = 0, (A-10)

where

α ≡ (1 + 2γ ) sin2 θ + cos2 θ

(1 + 2γ )
Q55

Q66
sin2 θ + cos2 θ

. (A-11)

The physically meaningful solution is

kI

k
=
√

1 + (Q55α)2 − Q55α. (A-12)

The real part of the Christoffel equation (equation A-3) then
reduces to

(c66 sin2 θ + c55 cos2 θ)
[
k2 − (kI )2 + 2kkI

Q55α

]
− ρω2 = 0.

(A-13)

The phase velocity of SH-waves is found as

VSH = ω

k
= ξQV elast

SH , (A-14)

where V elast
SH is the phase velocity in purely elastic VTI media,

V elast
SH =

√
c66 sin2 θ + c55 cos2 θ

ρ
, (A-15)

and ξQ is the factor responsible for the influence of the
anisotropic attenuation:

ξQ ≡

√√√√2
(√

1 + (Q55α)2 − Q55α
)

(1 + (Q55α)2)

Q55α
.

(A-16)

For weak attenuation, ξQ ≈ 1 + 1
2(Q55α)2 .

Isotropic Q matrix

Isotropic Q for the SH-wave propagation implies Q55 =
Q66. Taking into account that α = 1, the imaginary part of
equation A-1 reduces to

k2 − (kI )2 − 2QkkI = 0. (A-17)

Hence, for isotropic Q we find

kI = k(
√

1 + Q2 − Q), (A-18)
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and

ξQ =
√

2(
√

1 + Q2 − Q)(1 + Q2)
Q

. (A-19)

APPENDIX B

PLANE P- AND SV-WAVES IN
ATTENUATIVE VTI MEDIA

For P- and SV-waves, the Christoffel equation 6 can be writ-
ten as (

c̃11k̃
2
1 + c̃55k̃

2
3 − ρω2)(c̃55k̃

2
1 + c̃33k̃

2
3 − ρω2)

− [(c̃13 + c̃55)k̃1k̃3]2 = 0. (B-1)

Analysis of the attenuation coefficients and phase velocities
of P- and SV-waves in the limit of small attenuation and weak
attenuation and velocity anisotropy shows that the inhomo-
geneity angle contributes only to second-order terms (see the
analysis for SH-waves in Appendix A). Hence, this discussion
is limited to homogeneous P- and SV-wave propagation.

VTI Q matrix

When the Q matrix has VTI symmetry, equation B-1 yields{[(
c11 + icI

11

)
sin2

θ + (
c55 + icI

55

)
cos2 θ

]
(k − ikI )2 − ρω2

}
×{[(

c55 + icI
55

)
sin2

θ + (
c33 + icI

33

)
cos2 θ

]
(k − ikI )2 − ρω2

}
−{[

(c13 + c55) + i
(
cI

13 + cI
55

)]
sin θ cos θkkI

}2 = 0. (B-2)

The real and the imaginary parts are given, respectively, by

[(c11 sin2 θ + c55 cos2 θ)Ka
1 − ρω2]

× [(c55 sin2 θ + c33 cos2 θ)Kb
1 − ρω2]

− (c11 sin2 θ + c55 cos2 θ)(c55 sin2 θ + c33 cos2 θ)Ka
2Kb

2

− (c13 + c55)2 sin2 θ cos2 θ
[(
Kc

1

)2 − (
Kc

2

)2] = 0 (B-3)

and

(c11 sin2 θ + c55 cos2 θ)Ka
2

× [
(c55 sin2 θ + c33 cos2 θ)Kb

1 − ρω2]
+ (c55 sin2 θ + c33 cos2 θ)Kb

2

× [
(c11 sin2 θ + c55 cos2 θ)Ka

1 − ρω2]
− (c13 + c55)2 sin2 θ cos2 θ2Kc

1Kc
2 = 0, (B-4)

where

Ka
1 =K1 + �a

Q33
2kkI , Ka

2 =K2 − �a

Q33
[k2 − (kI )2],

Kb
1 =K1 + �b

Q33
2kkI , Kb

2 =K2 − �b

Q33
[k2 − (kI )2], (B-5)

Kc
1 =K1 + �c

Q33
2kkI , Kc

2 =K2 − �c

Q33
[k2 − (kI )2],

K1 = k2 − (kI )2 + 2kkI

Q33
, (B-6)

K2 = 1
Q33

[k2 − (kI )2] − 2kkI , (B-7)

and

�a = c11 sin2 θ

c11 sin2 θ + c55 cos2 θ

Q33 − Q11

Q11

+ c55 cos2 θ

c11 sin2 θ + c55 cos2 θ

Q33 − Q55

Q55
,

(B-8)

�b = c55 sin2 θ

c55 sin2 θ + c33 cos2 θ

Q33 − Q55

Q55
,

�c = c13

c13 + c55

Q33 − Q13

Q13
+ c55

c13 + c55

Q33 − Q55

Q55
.

Using equation B-4, we find

K2 = −A�a + B�b − C�c

A + B − C

[k2 − (kI )2]
Q33

, (B-9)

where

A = (c11 sin2 θ + c55 cos2 θ)

× [
(c55 sin2 θ + c33 cos2 θ)Kb

1 − ρω2],
B = (c55 sin2 θ + c33 cos2 θ) (B-10)

× [
(c11 sin2 θ + c55 cos2 θ)Ka

1 − ρω2],
C = 2(c13 + c55)2 sin2 θ cos2 θKc

1.

Equations B-7 and B-9 can be combined to solve for the
normalized attenuation coefficient A ≡ kI /k. As shown in
Appendix C, equation B-9 can be simplified by assuming weak
attenuation and weak-attenuation anisotropy.

Special case: Qij ≡ Q

For the special case of identical Q-components, c11/c
I
11 =

c33/c
I
33 = c13/c

I
13 = c55/c

I
55 = Q, equation B-1 becomes

[(c11 sin2 θ + c55 cos2 θ)K1 − ρω2

+ i(c11 sin2 θ + c55 cos2 θ)K2]

× [(c55 sin2 θ + c33 cos2 θ)K1 − ρω2

+ i(c55 sin2 θ + c33 cos2 θ)K2]

− [(c13 + c55) sin θ cos θ(K1 + iK2)]2 = 0, (B-11)

where K1 and K2 are defined in equations B-6 and B-7 with
Q33 replaced by Q.

The only physically meaningful solution of the imaginary
part of equation B-11 is K2 = 0, which then yields the same
isotropic expression for kI as that in equation A-18.

Solving the real part of equation B-11, we obtain the phase
velocities in the form

V{P,SV } = ξQV elast
{P,SV }, (B-12)

where ξQ is given in equation A-19 and V elast
{P,SV } is the P- or

SV-wave phase velocity in the reference purely elastic VTI
medium:

V elast
{P,SV } = 1√

2ρ

{
(c11 + c55) sin2 θ + (c33 + c55) cos2 θ

±
√

[(c11 − c55) sin2 θ − (c33 − c55) cos2 θ]2 + 4(c13 + c55)2 sin2 θ cos2 θ
}1/2

.

(B-13)
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APPENDIX C

APPROXIMATE SOLUTIONS FOR
WEAK ATTENUATION AND WEAK

ATTENUATION ANISOTROPY

Here we simplify the attenuation coefficient derived in Ap-
pendix B for homogeneous wave-propagation under the
assumption of weak attenuation and weak attenuation ani-
sotropy.

Attenuation coefficients for P- and SV-waves

For weak attenuation (kI � k), the term (kI )2 in the differ-
ence k2 − (kI )2 can be dropped. If the attenuation anisotropy
is weak, then the fractional difference between the P-wave
attenuation coefficients in the horizontal and vertical direc-
tions is small and

∣∣(Q33 − Q11)/Q11

∣∣ � 1. When Q33 and Q55

are comparable (a common case), the assumption of weak-
attenuation anisotropy implies that Q13 is comparable to (i.e.,
of the same order as) Q33 and Q55 (it follows from the def-
inition of the parameter δQ). Hence, the magnitude of the
terms �a,�b, and �c in equation B-8 is not much larger
than unity. Then the terms (�a/Q33)2kkI , (�b/Q33)2kkI , and
(�c/Q33)2kkI in equations B-5 are of the second order com-
pared to k2, and Ka

1 ≈ Kb
1 ≈ Kc

1 ≈ K1. It follows from equation
B-6 that for weak attenuation K1 ≈ k2, which allows us to rep-
resent equations B-10 as

A = (c11 sin2 θ + c55 cos2 θ)[(c55 sin2 θ

+ c33 cos2 θ)k2 − ρω2],

B = (c55 sin2 θ + c33 cos2 θ)[(c11 sin2 θ (C-1)

+ c55 cos2 θ)k2 − ρω2],

C = 2(c13 + c55)2 sin2 θ cos2 θk2.

Combining equations B-7 and B-9 in the limit of weak at-
tenuation, we find

k2 − 2Q33kkI = −A�a + B�b − C�c

A + B − C
k2. (C-2)

Substituting equations C-1 into equation C-2 yields

A = 1
2Q33

(1 + H), (C-3)

where

H ≡ A�a + B�b − C�c

A + B − C
. (C-4)

Parameter δQ

The attenuation-anisotropy parameter δQ is defined through
the second derivative of the normalized P-wave attenuation
coefficient AP with respect to the phase-angle θ at vertical in-
cidence:

d2AP

dθ2

∣∣∣∣
θ=0

= 2AP 0 δQ. (C-5)

Substitution of AP from equation C-3 leads to the following
expression for δQ under the assumption of weak attenuation

and weak attenuation anisotropy:

δQ = 1
2

d2H
dθ2

∣∣∣∣
θ=0

. (C-6)

By evaluating d2H/dθ2|θ=0 and taking into account that for P-
waves H|θ=0 = 0 and ∂H/∂θ |θ=0 = 0, we obtain

δQ =
Q33−Q55

Q55
c55

(c13+c33)2

(c33−c55) + 2Q33−Q13
Q13

c13(c13 + c55)

c33(c33 − c55)
.

(C-7)

APPENDIX D

ISOTROPIC CONDITIONS FOR THE
ATTENUATION COEFFICIENT kI

In the main text, we discuss the conditions needed to make
the normalized attenuation coefficient A isotropic (indepen-
dent of angle). For completeness, here we introduce the
isotropic conditions for the imaginary wavenumber (attenu-
ation coefficient) kI . The attenuation and velocity anisotropy,
as well as the attenuation itself, are assumed to be weak.

SH-wave

We find the approximate SH-wave attenuation coefficient
by substituting the SH-wave phase-velocity VSH as a function
of the phase-angle θ into equation 27:

kI
SH = ω

VSH (θ)
ASH

(D-1)

= ω

2Q55VS0

1 + γQ sin2 θ√
1 + 2γ sin2 θ

,

where ω is the angular frequency and VS0 is the shear-wave
velocity along the symmetry axis. If |γ | � 1, equation D-1
simplifies to

kI
SH = ω

2Q55VS0
[1 + (γQ − γ ) sin2 θ ]. (D-2)

The coefficient kI
SH is independent of angle only if

γ = γQ. (D-3)

P–SV-waves

Using the linearized phase-velocity functions (Thomsen,
1986), the P- and SV-wave attenuation coefficients can be ob-
tained from equations 36 and 41 as

kI
P = ω

VP (θ)
AP

(D-4)

= ω

2Q33VP 0

1 + δQ sin2 θ cos2 θ + εQ sin4 θ

1 + δ sin2 θ cos2 θ + ε sin4 θ
,

kI
SV = ω

VSV (θ)
ASV = ω

2Q55VS0

1 + σQ sin2 θ

1 + σ sin2 θ
. (D-5)

The coefficient kI
P becomes isotropic if

ε = εQ and δ = δQ. (D-6)
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Isotropic kI
SV requires that

σ = σQ. (D-7)

Both kI
P and kI

SV are independent of angle if the anisotropic
parameters satisfy equation D-6 and, as follows from equa-
tion 42,

gQ ≡ Q33

Q55
= 1. (D-8)

Therefore, unlike the normalized attenuation coefficient,
the imaginary wavenumber kI does not necessarily become
isotropic even if all elements Qij are identical (then εQ = δQ =
0 and gQ = 1). It is clear from equation D-6 that an addi-
tional condition required in this case is the absence of velocity
anisotropy for P- and SV-waves (ε = δ = 0).

REFERENCES

Arts, R. J., and P. N. J. Rasolofosaon, 1992, Approximation of velocity
and attenuation in general anisotropic rocks: 62nd Annual Interna-
tional Meeting, SEG, Expanded Abstracts, 640–643.

Ben-Menahem, A., and S. J. Singh, 1981, Seismic waves and sources:
Springer-Verlag, New York.

Blangy, J. P., 1994, AVO in transversely isotropic media—An
overview: Geophysics, 49, 775–781.

Borcherdt, R. D., and L. Wennerberg, 1985, General P, type-I S, and
type-II S waves in anelastic solids: Inhomogeneous wave fields in
low-loss solids: Bulletin of the Seismological Society of America,
75, 1729–1763.

Borcherdt, R. D., G. Glassmoyer, and L. Wennerberg, 1986, Influ-
ence of welded boundaries in anelastic media on energy flow, and
characteristics of P, S-I, and S-II waves: Observational evidence for
inhomogeneous body waves in low-loss solids: Journal of Geophys-
ical Research, 91, 11503–11518.

Carcione, J. M., 1997, Reflection and transmission of qP-qS plane
waves at a plane boundary between viscoelastic transversely
isotropic media: Geophysical Journal International, 129, 669–680.

———, 2000, A model for seismic velocity and attenuation in
petroleum source rocks: Geophysics, 65, 1080–1092.

———, 2001, Wave fields in real media: Wave propagation in
anisotropic, anelastic, and porous media: Pergamon Press.

Chichinina, T., V. Sabinin, and G. Ronquillo-Jarrillo, 2004, P-wave at-
tenuation anisotropy for fracture characterization: Numerical mod-
eling in reflection data: 74th Annual International Meeting, SEG,
Expanded Abstracts, 143–146.

Gautam, K., M. Batzle, and R. Hofmann, 2003, Effect of fluids on
attenuation of elastic waves: 73rd Annual International Meeting,
SEG, Expanded Abstracts, 1592–1595.

Helbig, K., 1994, Foundations of anisotropy for exploration seismics:
Pergamon Press.

Hosten, B., M. Deschamps, and B. R. Tittmann, 1987, Inhomogeneous
wave generation and propagation in lossy anisotropic solids: Appli-
cation to the characterization of viscoelastic composite materials:
Journal of the Acoustical Society of America, 82, 1763–1770.
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