GEOPHYSICS, VOL. 71,NO. 4 (JULY-AUGUST 2006); P. D107-D121, 17 FIGS.
10.1190/1.2210970

Modeling and inversion of PS-wave moveout asymmetry
for tilted Tl media: Part | — Horizontal TTI layer

Pawan Dewangan' and llya Tsvankin?

ABSTRACT

One of the distinctive features of mode-converted waves is
their asymmetric moveout (i.e., the PS-wave traveltime in gener-
al is different if the source and receiver are interchanged) caused
by lateral heterogeneity or elastic anisotropy. If the medium is
anisotropic, the PS-wave moveout asymmetry contains valuable
information for parameter estimation that cannot be obtained
from pure reflection modes.

Here, we generalize the so-called PP + PS = SS method,
which is designed to replace reflected PS modes in velocity anal-
ysis with pure (unconverted) SS-waves, by supplementing the
output SS traces with the moveout-asymmetry attributes of PS-
waves. The time-asymmetry attribute Afpg is computed in the
slowness domain as the difference between the paired travel-
times of the PS arrivals corresponding to ray parameters (hori-
zontal slownesses) of equal magnitude but opposite sign. Anoth-
er useful asymmetry attribute is the offset x,,;, of the PS-wave
traveltime minimum on a common-midpoint (CMP) gather.

‘We demonstrate the effectiveness of the developed algorithm

and the importance of including the asymmetry attributes of PS-
waves in anisotropic velocity analysis for a horizontal trans-
versely isotropic layer with a tilted symmetry axis (or TTI) medi-
um. Simple analytic expressions for the moveout asymmetry of
PSV-waves, derived in the weak-anisotropy approximation, are
verified by anisotropic ray tracing. The attribute Az is propor-
tional to the anellipticity parameter 7 and reaches its maximum
when the symmetry axis deviates by 20°-30° from the vertical or
horizontal direction.

All relevant parameters of a TTI layer can be estimated by a
nonlinear inversion of the NMO velocities and zero-offset travel-
times of PP- and SS- (SVSV) waves combined with the moveout-
asymmetry attributes of the PSV-wave. The inversion of pure-
mode (PP and SS) moveouts alone is nonunique, while the addi-
tion of the attributes Atpg and x,;, yields stable parameter esti-
mates from 2D data acquired in the vertical symmetry-axis plane.
If the TTI model is formed by obliquely dipping fractures, the an-
isotropic parameters can be inverted further for the fracture ori-
entation and compliances.

INTRODUCTION

The complex, multidimensional nature of inverse problems in an-
isotropic media makes it imperative to combine different wave types
in estimating medium parameters. Because the use of shear-wave
sources is still relatively rare, most multicomponent data sets consist
primarily of P-waves and converted PS-waves. Therefore, building
anisotropic models for depth imaging is based often on supplement-
ing P-waves with mode conversions (e.g., Tsvankin, 2001). As dis-
cussed by Thomsen (1999), Granli etal. (1999), Sheley and Schuster
(2003), and others, PS-waves also proved effective in imaging be-
neath gas clouds, migration of steeply dipping events, and lithology
discrimination.

Processing of mode conversions, however, is complicated by sev-

eral factors related to the asymmetry of their raypath, reflection-
point dispersal (smearing), and polarity reversals (e.g., Thomsen,
1999; Grechka and Tsvankin, 2002a; Hou and Marfurt, 2002). In
particular, if the medium is either laterally heterogeneous or aniso-
tropic without a horizontal symmetry plane, the traveltime of PS-
waves does not remain the same when the source and receiver are in-
terchanged (Pelissier et al., 1991; Thomsen, 1999; Tsvankin and
Grechka, 2000). This moveout asymmetry causes serious problems
in applying conventional seismic processing algorithms designed
for PP reflections (normal-moveout and dip-moveout corrections,
velocity analysis, stacking) to PS data.

The difficulties in processing mode conversions prompted Grech-
ka and Tsvankin (2002a) and Grechka and Dewangan (2003) to de-
velop the so-called PP + PS = SS method designed to construct
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pseudo-SS reflections from PP and PS data without precise knowl-
edge of the velocity model. (The constructed SS events have the cor-
rect kinematics but not the amplitudes of the SS-wave primary re-
flections.) Since the moveout of the computed SS-waves is symmet-
ric, it can be combined with that of the recorded PP arrivals in aniso-
tropic stacking-velocity tomography (Grechka et al., 2002a) or other
existing velocity-analysis algorithms. This approach significantly
simplifies the inversion/processing flow for multicomponent sur-
veys, and it is effective in anisotropic velocity analysis of field data
(Grechka et al., 2002b; Grechka and Dewangan, 2003).

While replacing PS-waves with pure SS reflections is advanta-
geous from the processing viewpoint, the PP + PS = SS method
does not preserve the information about the asymmetry of PS move-
out. Indeed, as discussed below, the traveltime of the constructed SS
arrival for each source-receiver pair is obtained from the sum of the
reciprocal PS-wavetimes corresponding to the same reflection point.
(The reciprocal times correspond to the PS-waves with the same ab-
solute value but opposite signs of the projection of the slowness vec-
tor onto the reflector.) As aresult, the difference between the recipro-
cal times that quantifies the moveout asymmetry does not contribute
to the computed SS data and cannot be used in the subsequent veloc-
ity analysis. Note that the moveout asymmetry of PS reflections was
used by Tsvankin and Grechka (2000, 2002) for parameter estima-
tion in dipping TI layers with a vertical symmetry axis (VTI).

This paper demonstrates that supplementing PP and SS moveout
data (the SS traveltimes are supposed to be computed from the PP
+ PS = SS method) with the asymmetric moveout of PS-waves can
help to build an anisotropic velocity field in the depth domain with-
out a priori information. We consider the model of a horizontal trans-
versely isotropic layer with a tilted symmetry axis (TTI) that de-
scribes, for example, obliquely dipping, rotationally invariant (pen-
ny-shaped) fractures embedded in isotropic host rock.

Other examples of subsurface TTI formations (Figure 1) include
progradational clastic or carbonate sequences (e.g., Sarg and
Schuelke, 2003) and dipping shale layers near salt domes and in
fold-and-thrust belts such as the Canadian Foothills (e.g., Isaac and
Lawton, 1999; Vestrum et al., 1999; Grechka et al., 2001). The TTI
medium is parameterized here by the velocities of P- and S-waves in
the symmetry direction (Vp, and Vi, respectively), the tilt of the
symmetry axis from the vertical v, and Thomsen’s (1986) anisotrop-
ic coefficients €, 6, and ydefined in the coordinate system associated
with the symmetry axis (Tsvankin, 2001).

In principle, the symmetry-axis orientation and the interval pa-
rameters Vp, €, and 6 of a TTI layer can be estimated from P-wave
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Figure 1. Horizontal TI layer with a tilted symmetry axis describes a
system of dipping penny-shaped cracks embedded in an isotropic
matrix as well as thin-layered progradational sequences. The results
of this paper also can be applied to reflections from horizontal inter-
faces beneath dipping shale layers (e.g., in the Canadian Foothills).

data alone, but this inversion requires the NMO ellipses (i.e., wide-
azimuth P-wave reflections) from a horizontal and a dipping inter-
face, and both the tilt v and reflector dip should be no less than
30°-40° (Grechka and Tsvankin, 2000). Although the addition of the
NMO ellipses of pure SV-waves to those of P-waves makes it possi-
ble to invert for the TTI parameters using the reflections from a sin-
gle interface, the parameter estimation is still ambiguous for a range
of small tilts and reflector dips (Grechka and Tsvankin, 2000; Grech-
ka et al., 2002a). Therefore, even wide-azimuth traveltimes of pure
reflection modes (P and SV) are insufficient for constraining the pa-
rameters of horizontally layered TTI media.

The asymmetry of PS-wave moveout in a horizontal TTI layer is
caused by the tilt of the symmetry axis that creates a model without a
horizontal symmetry plane. The possibility of using the traveltime
asymmetry of converted waves in estimating the parameters of frac-
tured TTI media has been demonstrated on field data by Angerer et
al. (2002).

In this paper, we begin by reviewing the PP + PS = SS method
and then modify it to compute the asymmetry attributes of PS-waves
in addition to the pure SS reflection data. Next, we study the asym-
metric moveout of PS-waves in a horizontal TTI layer and
develop simple linearized approximations for the time and offset
asymmetry attributes. Finally, we present an inversion algorithm de-
signed to estimate the parameters of TTI media from long-spread PP
and PS reflection traveltimes and verify its accuracy and stability on
noise-contaminated input data.

MODIFICATION OF THE PP + PS = SS METHOD

The PP + PS = SS method introduced by Grechka and Tsvankin
(2002a) is designed for seismic surveys in which shear waves are not
excited (e.g., ocean-bottom cable, or OBC) but may be recorded
by multicomponent receivers. In this case, the shear wavefield is
formed by mode-converted PS-waves, with the conversion often
happening at the reflector. As discussed above, inversion and pro-
cessing of mode conversions is hindered by their large reflection-
point dispersal, polarity reversals, and moveout asymmetry.

The idea of the PP + PS = SS method is to transform the recorded
PP and PS wavefields into the corresponding pure SS reflections,
which are not physically generated in the survey. For anisotropic
media, an important preprocessing step is Alford-type polarization
analysis used to separate the converted wavefield into the fast (PS;)
and slow (PS,) modes. The PP + PS = SS method is then applied to
each split PS-wave separately with the goal of generating the fast
and slow pure shear-wave reflections.

The construction of SS-waves with the correct kinematics (but not
amplitudes) does not require explicit information about the velocity
field, butitis necessary to correlate PP and PS arrivals and to identify
the events reflected from the same interface. The original version of
the PP + PS = SS method described by Grechka and Tsvankin
(2002a) operates with PP and PS traveltimes picked on prestack
data. As illustrated in Figure 2, matching the reflection slopes on
common-receiver gathers makes it possible to find two PS rays (re-
corded at points x® and x¥) with the same reflection point as the PP
reflection x""Rx®. Then the traveltime of the SS-wave is determined
from

TSS(XG)’XM)) — tps(x(l),x(3)) + tps(.x<2),x(4)) _ tpp(x(l),x(z)).

(1)
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Application of equation 1 produces reflection SS data with the
traveltimes of SS primaries but generally distorted amplitudes. The
moveout of the constructed SS-waves in common-midpoint (CMP)
geometry is always symmetric, as is the case for any pure reflection
mode. Conventional-spread SS traveltimes are described by the
NMO velocity (in two dimensions) and NMO ellipse (in three di-
mensions), which can be obtained using algorithms developed for
PP-wave data. The NMO velocities or ellipses of the PP- and SS-
waves then can be combined in velocity analysis using, for example,
stacking-velocity tomography, proven to be particularly efficient for
anisotropic media (Grechka et al., 2002a).

Still, for many anisotropic models including a horizontal TTI lay-
er, pure reflection modes are not sufficient for estimating the vertical
velocities and anisotropic coefficients (Grechka et al., 2002a). In
such a case, an important question is whether including asymmetry
attributes of the recorded PS-waves in the inversion algorithm can
help inrecovering the medium parameters. Itis clear from equation 1
that information about the moveout asymmetry of PS arrivals is not
preserved in the computed SS traveltime, which depends on only the
sum of the traveltimes of the PS-waves converted at point R (Figure
2). Below, we add certain measures of the PS-wave moveout asym-
metry to the traveltimes of the PP-waves and the reconstructed SS-
waves.

A generalized version of the PP + PS = SS method based on
equation 1 has been developed by Grechka and Dewangan (2003).
Instead of operating with prestack PP and PS traveltimes, they apply
a particular convolution of PP and PS traces to produce seismograms
of the corresponding SS-waves. The convolution operator in the fre-
quency domain is given by

WSS(w,x(3),x(4)) — f f WPS((”’ x(l),x(S))W;P(w’x(l)’x(Z))

X Wpg(w,x? x®)dxWVdx?, 2)

where o is the radial frequency, Wpp and Wy are the spectra of PP
and PS traces, Wy is the spectrum of the constructed SS trace for the
source and receiver located at points x® and x*, and the * denotes
complex conjugate. The integration is performed over the P-wave
source and receiver coordinates x" and x® (Figure 2). The main
contribution to the integral comes from the stationary point that
yields the traveltime of the constructed SS-wave given by equation
1:

TSS()C(3), X(4)) = min (lps(x(l),x@)) + lps(x(z),x<4))
1),

— tpp(x, x?)). 3)

To preserve information about the moveout asymmetry of the re-
corded PS-wave, we suggest generating an asymmetry gather in ad-
dition to the SS data. When using the PP + PS = SS method, it is
natural to define the asymmetry through the difference between the
two PS traveltimes corresponding to the same reflection point (Fig-
ure 2):

Atpg(x™, x W) = 1pg(xV, xP) = 1ps(x?,xY). (4)

We modified the algorithm of Grechka and Dewangan (2003 ) to esti-
mate the stationary points given by equation 3. Then the difference
between the PS traveltimes (picked on the original data) correspond-
ing to each stationary point is used to compute the time-asymmetry
attribute from equation 4.

If the reflector is horizontal and the overburden is laterally homo-
geneous, the two reciprocal PS-waves (i.e., the waves with the ray-
paths x("Rx® and x?Rx™ in Figure 2) have the same magnitude but
opposite signs of the ray parameter (horizontal slowness). Hence,
equation 4 defines the asymmetry of the PS moveout in the slowness
domain. Analytic expressions that describe the asymmetry attribute
Atpgare given in the next section.

Equation 2 can be extended to 3D multiazimuth reflection data
(Grechka and Dewangan, 2003). Because sources and receivers then
cover an area on the earth’s surface, their coordinates x become two-
component vectors. The integration then has to be performed over
four coordinates, and the stationary point (equation 3) corresponds
to aminimum in the 4D space.

ASYMMETRIC MOVEOUT OF
PS-WAVES IN TTI MEDIA

Here, we use parametric representation of reflection moveout of
mode-converted waves to give an analytic description of the move-
out-asymmetry attributes for tilted transverse isotropy.

Parametric moveout equations

Consider a PS-wave formed by mode conversion at an interface
underlying an arbitrarily anisotropic, homogeneous layer. In gener-
al, an incident P-wave in such a model excites two reflected shear
modes (PS, and PS,). The traveltime of either PS-wave can be repre-
sented in parametric form as (Tsvankin and Grechka, 2002)

tps =tp+ts=2(qp = P1pqip — P2pq2p + 4s — P1sq.15
— P2sq2s) (5)

where 7 and f are the traveltimes along the P- and S- legs, respec-
tively, z is the depth of the reflection (conversion) point, p, and p, are
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Figure 2. A 2D ray diagram of the PP + PS = SS method (after Gre-
chka and Tsvankin, 2002a). The medium above the reflector can be
arbitrarily anisotropic and heterogeneous. The reflected PP ray from
x to x? and the PS rays from x") to x® and x? to x have the same
reflection point R. The rays with the common reflection point are
identified by matching the slopes on common-receiver gathers (i.e.,
the ray parameters) of the PP- and PS-waves.
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the horizontal components of the slowness vector (the subscripts P
and S indicate the wave type), ¢ = ps is the vertical slowness, and
q.; = dq/dp; (i = 1,2). Following Tsvankin and Grechka (2002),
the slownesses are computed under the convention that the x;-axis
points up and both legs of the PS ray represent upgoing waves (i.e.,
the corresponding group-velocity vectors point toward the earth’s
surface).

Here, we study a horizontal layer in which the projections of the
slowness vectors of the P- and S-legs onto the horizontal plane have
to be identical to comply with Snell’s law:

Pip=P1==Diss Pap=P2=~ Pas- (6)

Equation 5 then simplifies to

tps = zlap + qs = P1(q1p = 4.15) = P2(q2p = G25)]-
(7)

The corresponding source-receiver vector X of PS-waves in an an-
isotropic, homogeneous layer can be also expressed through the
slowness components (Tsvankin and Grechka, 2002):

Xps = X100 = 2{(q1p = 4.15):(@2p = q29)}: (8)

where

X1 = Z(CI,1P - 6],15)

and

Xy = Z(Q,zp - 6],25)-

Equation 8 yields the source-receiver offset xpg and the azimuth « of
the source-receiver line with respect to the x;-axis:

[
xps = [Xpg| = Va7 + x3, 9)

a:tan_l(ﬁ). (10)

X1

Moveout asymmetry in the slowness domain

For laterally homogeneous models, such as a horizontal TTI layer,
the moveout of converted waves becomes asymmetric only if the
medium does not have a horizontal symmetry plane (e.g., Tsvankin,
2001). Conventionally, the moveout asymmetry is estimated in the
offset domain by interchanging the source and receiver positions.
Here, however, we define the time-asymmetry attribute in the slow-
ness domain:

Atps = tps(p1,p2) = tps(= p1,— p2) = Atp + Atg, (11)

where Atp and At represent the contributions to Az g from the P- and
S-legs of the PS ray, respectively. Equation 11 describes the differ-
ence between the traveltimes of the PS arrivals excited by two inci-
dent P-waves that have the same magnitude (Vp? + p3) of the slow-
ness vector but opposite signs of the horizontal slownesses p; and p,.
For a horizontal reflector beneath a laterally homogeneous medium,
this definition of the time asymmetry corresponds to the two recipro-
cal PS-wavesin the PP + PS = SS method (Figure 2).

If the moveout of PS-waves is symmetric, then changing the sign
of the horizontal slowness reverses the direction of the source-re-

ceiver vector x (equation 8) with no change in the absolute value of
offset. Hence, the measure of asymmetry for x can be defined in the
following way:

Axpg = Xpg(p1.p2) + Xps(= p1.— pa). (12)

The main advantage of treating the asymmetry in the slowness do-
main is that, for a laterally homogeneous medium, both Az,g and
Ax g can be obtained directly from the PP + PS = SS method (see
equation 4 and Figure 2).

Equations 7, 8, 11, and 12 give an exact representation of the
moveout asymmetry of PS-waves for any horizontal anisotropic lay-
er. Next, we apply this formulation to study the dependence of Atpg
on the parameters of TI media with an arbitrary tilt of the symmetry
axis. The offset asymmetry Axp is discussed later, after the intro-
duction of the offset x,,;, of the PS-wave moveout minimum in CMP
geometry.

Because the contributions of the symmetry-axis orientation and
anisotropic parameters to the time-asymmetry attribute Azpg are hid-
den in the components of the slowness vector, in Appendix A we lin-
earize equation 11 with respect to € and & under the assumption of
weak anisotropy (|| < 1 and |8 < 1). The derivation is carried
out for the PS mode that is polarized in the plane formed by the slow-
ness vector and the symmetry axis. Note that although we will de-
note this wave PSV, its polarization vector lies in the vertical inci-
dence plane only if that plane contains the symmetry axis.

The coordinate system is chosen in such a way that the symmetry
axis is confined to the [x;,x;] plane, which represents the only verti-
cal symmetry plane of the model and is called here the symmetry-ax-
is plane (Figure A-1). The sign of the time difference in equation 11
is specified by assuming that the symmetry axis is dipping in the pos-
itive x,;-direction.

Substituting equations A-5 and A-6 into equation 11, we obtain a
linearized expression for the time-asymmetry attribute of the PSV-
wave:

Atps = — 87zVa,pi[p3 + (2p7 + p3)cos 2v]sin 2v,  (13)

where 7= (e - 8)/(1 +28) = € — & is the anellipticity coeffi-
cient responsible for time processing of P-wave data in VTI media
(Alkhalifah and Tsvankin, 1995). In the symmetry-axis plane
[x1,x3], the slowness component p, vanishes, and equation 13 sim-
plifies to

Atpg(py = x5 = 0) = — 872V p; sin 4v. (14)

Using equations 13 and 14 and the results of Appendix A, the main
properties of the PSV-wave time asymmetry in the slowness domain
can be summarized as follows:

e The asymmetry attribute Azps vanishes for VTI (v = 0°) and HTI
(v = 90°) media because these two models have a horizontal
symmetry plane. In the symmetry-axis plane, the linearized at-
tribute Afpg (equation 14) also goes to zero for v = 45°. In this
case, however, the higher-order terms in € and & (not included in
equation 14) do not vanish, which makes the moveout weakly
asymmetric.

e The contributions to the asymmetry attribute from the P-leg
(equation A-5) and S-leg (equation A-6) of the converted wave
are identical. Although this result is proved here in the weak-an-
isotropy approximation, numerical tests show that it remains val-
id for the arbitrary strength of the anisotropy.
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e The asymmetry in the slowness domain depends only on the dif-
ference 77 = € — & and vanishes if the anisotropy is elliptical (e
= 6). Because for elliptical media there is no SV-wave velocity
anisotropy, the S-leg of the converted wave does not produce any
moveout asymmetry. This means that the P-leg cannot cause the
asymmetry either (see above).

e The magnitude of Aty in the symmetry-axis plane (equation 14)
reaches its maximum for the tilts v = 22.5° and v = 67.5°. There-
fore, Atpgis quite sensitive to the deviation of the symmetry axis
from the vertical and horizontal directions.

The azimuthally varying time-asymmetry attribute computed for
atypical TTI model from the exact equations 7 and 11 is displayed in
Figure 3. There is a substantial variation of Atpg with the slowness
component p, (e.g., in the x;-direction where p, = 0), while the in-
fluence of p, is much weaker. Therefore, Figure 3 indicates that most
of the 3D (wide-azimuth) moveout-asymmetry information can be
obtained in the symmetry-axis plane [ x;,x3].

Note that the line p, = 0 in Figure 3 where Atpg = 0 does not cor-
respond to acquisition in the [ x,, x3] plane. Because [ x,, x3] is not a
symmetry plane, downgoing P-rays with p; = 0 deviate from the
vertical incidence plane [ x,,x3], and the source-receiver direction of
the reflected PS-wave is not parallel to the x,-axis.

Figure 4 shows the function Azpg(p;) in the symmetry-axis plane
in more detail. Both the PP + PS = SS method and parametric equa-
tion 11 are supposed to produce exact values of Atpg, which is con-
firmed by our numerical results. The magnitude of the asymmetry at-
tribute is quite substantial; it exceeds 40% of the zero-offset time be-
fore rapidly decreasing for large values of p;.

The accuracy of the weak-anisotropy approximation 14 in Figure
4 is quite satisfactory considering that it incorporates the contribu-
tion of the S-leg of the converted wave. Typically, the weak-aniso-
tropy approximation is much less accurate for SV-waves than it is for
P-waves because of the large magnitude of the anisotropic parameter
o = (V3,/V%)(e — d) that controls SV-wave anisotropy (Tsvankin
and Thomsen, 1994; Tsvankin, 2001). In our case, however, the an-

0.35

P, (s/km)
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Figure 3. Exact azimuthally varying time-asymmetry attribute Atpg
in the slowness domain for the PSV-wave in a horizontal TTI layer.
The value Aty is normalized by the zero-offset traveltime 7, of the
PSV-wave. The asymmetry for negative slowness p, is not shown
because Atps(p,—p2) = Atps(p1,p2). The medium parameters are
Vpo =4 km/s, Vgo=2 km/s, e=0.1, §=-0.1, »=70° and z
=1 km.

isotropy-related asymmetry attributes for the P- and S-legs are equal
to each other (see above), and the error of the weak-anisotropy ap-
proximation is the same for both P- and S-waves.

Moveout asymmetry in the offset domain

Most existing results on the moveout asymmetry of PS-waves are
obtained in the offset domain by interchanging the source and re-
ceiver positions (Thomsen, 1999; Tsvankin and Grechka, 2000,
2002). The time-asymmetry attribute in the offset domain is defined
as

Atpg = tps(Xps) — tps(— Xpg), (15)

where Xps s the offset vector of the PS-wave given by equation 8.

Azimuthally varying minimum-time offset X,

If reflection moveout is asymmetric, the minimum of the travel-
time curve in a CMP gather is shifted from the CMP location. The
offset x;, corresponding to the traveltime minimum is a convenient
measure of the asymmetry that depends on the reflector orientation
and medium parameters (for a numerical example, see Figure 5.7 in
Tsvankin, 2001). Analytic expressions for x,;, in a VTT layer above a
dipping reflector are given by Tsvankin and Grechka (2000, 2002)
and Tsvankin (2001). In a horizontal TTI layer, x,;, carries useful in-
formation about the tilt of the symmetry axis and the anisotropic pa-
rameters.

In Appendix B, we use equations 8—10 for the offset x in terms of
the ray parameter to obtain the following simple expression for the
azimuthal variation of x,,:

Xmin(@) = X cos @, (16)

where xy = xmin(@ = 0°) is the offset of the traveltime minimum in
the symmetry-axis plane [ x;,x;] given in equation B-5:

V2
Xp = Xpin(a@ = 0°) = z| esin2v — l7(1 + —go)sin4v .
2 Vo

(17)

AtPS/tO

—0.05 0.1 -0.15 -0.2 -0.25
P, (s/km)

Figure 4. Asymmetry attribute Atpg from Figure 3 in the [ x,,x3] plane

(p2 = 0). The solid line is obtained from the exact parametric equa-
tion 11, the dashed line is the weak-anisotropy approximation 14,
and the stars mark the output of the PP + PS = SS method. The max-
imum offset-to-depth ratio of the PP and PS data is close to two.
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According to equation 16, x;,(@) reaches its maximum in the
symmetry-axis plane and vanishes in the orthogonal direction. If x,y;,
is plotted as the radius vector for each azimuth «, it traces out a circle
with the radius x,/2 and center (x,,0) on the x;-axis. While equation
17 for x, is valid only in the weak-anisotropy limit, the azimuthal de-
pendence of x,,;, is described by equation 16 for any strength of the
anisotropy (Figure 5: similar results were obtained for much larger
magnitudes of € and §). Hence, the azimuthal variation of x,,;, can
help to estimate the symmetry-axis azimuth from converted-wave
data, but it does not provide additional information about the aniso-
tropic coefficients.

The offset x,,;, is not only responsible for the shape of the PS-wave
moveout in CMP geometry, but it also largely controls the asymme-
try measure Axpg (equation 12) defined in the slowness domain. In
the symmetry-axis, plane Ax g can be written as

Axpg = Xpg(p1,0) + Xps(= p1,0). (18)

Linearizing equation 18 in the anisotropic coefficients using equa-
tion 8 yields the projection of the vector Ax g onto the x;-axis in the
form

(Axps),, = 2x0 + 1292V3p] sin 4v, (19)

where x, is given by equation 17. According to equation 19, | AXpg|
can be approximated by a hyperbolic function of the slowness p,
with the value at the apex determined by 2x,. Indeed, when p; = 0,
the PS-rays corresponding to both p,; and —p, coincide and have the
same offset x, (Figure 6). If the PS moveout were symmetric, the off-
sets for p; and —p, (circles and diamonds, respectively, in Figure 6)
would have identical absolute values but opposite signs, and the ze-
ro-offset PS-ray would have the slowness p; = 0. Figure 6 also con-
firms that the linearized equation 19 is sufficiently accurate for weak
and moderate anisotropy.

270

Figure 5. Polar plot (in kilometers) of the offset x,,;,( @) for the model
from Figure 3. The stars mark values obtained from anisotropic ray
tracing of PS-waves, and the solid line is computed from equation 16
with the exact value of x,.

Therefore, an alternative way of estimating x, is to fit a hyperbolic
function to the slowness-dependent function (Axps)xl and find its in-
tercept for p; = 0. Itis interesting that the coefficient of the quadratic
term of the hyperbola 19 is formed by the same combination of the
medium parameters that governs the time-asymmetry attribute 14.

Time asymmetry in the offset domain

To give an analytic description of the attribute Azpg (equation 15)
in the offset domain, we expanded the traveltime in a double Taylor
series around the offset x,;, (see Appendix C). The result is conve-
nient to represent in terms of the azimuth « of the source-receiver
line and offset x. The linearized expression C-14 for Atpg contains
linear and cubic terms in the offset x and is sufficiently accurate for
relatively small offsets.

This approximation can be extended to larger offsets by adapting
the approach of Tsvankin and Thomsen (1994), who developed a
highly accurate nonhyperbolic moveout equation for P-waves by
modifying the #2(x?) Taylor series in such a way that it became con-
vergent at x — . For long-offset converted PS-waves, the incident
P-wave travels almost horizontally and accounts for most of the total
reflection traveltime. The contribution of the S-leg then becomes
negligible, and the asymmetry attribute at infinite offset goes to zero.
To ensure that Azpg vanishes for x — o, we add a denominator
(1 + Cx?) to the cubic term in equation C-14:

Bx*

— 20
1+ Cx? (20)

AtPS =Ax +

A X, ,x(km)

0 0.05 0.1 0.15 0.2
Ip 1[ (s/km)

Figure 6. Slowness-domain offset-asymmetry attribute (Ax,)s)x1 and
the corresponding PS-wave offsets in the symmetry-axis plane of a
TTI layer with the same parameters as those in Figure 3. The solid
line marks exact values of ( Ax,:s)x1 from equation 18, and the dashed
line is the weak-anisotropy approximation 19. Exact PS-wave off-
sets for positive slownesses p; are marked by circles, offsets for neg-
ative slownesses, by diamonds. The offset is considered positive if
the vector X ps points in the positive x;-direction.
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where
2Xx, cos &
A=z —022%
2(Vpo + Vo)
4nV>, sin2v cosa
B=- 7’2 = 5 (2 cos2v cos’a + sin’a),
Z (Vp() + VSO)

B
C=-—.

A

In the symmetry-axis plane (a = 0°), the coefficients A and B in
equation 20 become

2
A=— ¢’ (21)
2(Vpo + Vo)
4nV3, sin 4
B = SN Vpo SINAY (22)

2(Vpy + Vo)

The initial slope A of the asymmetry attribute for any azimuth ais
governed by the term (x, cos «), which represents the offset x,;,( @)
of the local traveltime minimum (equation 16). The higher-order co-
efficient B depends on the parameter 7 =~ € — ¢ and the tilt v. In
principle, B can be combined with A for parameter estimation. Anal-
ysis of equation 20, however, shows that the moveout asymmetry in
the offset domain can be expressed through the time-asymmetry at-
tribute Az, in the slowness domain and the offset x,,;,( «).

The azimuthally varying time-asymmetry attribute in the offset
domain in Figure 7 exhibits a pattern generally similar to that of Atpg
in the slowness domain. The most rapid change in Az, is observed in
the [ x;,x3] plane (see also Figure 8), while in the [ x,,x3] plane the PS-
wave moveout is symmetric (Azpg = 0). The absence of the moveout
asymmetry for acquisition in the x,-direction is predicted by equa-
tion 20, which yields Azpg = 0 for @ = 90°. Note that, as discussed
above, PS-waves recorded in the [x,,x;] plane have out-of-plane
slowness vectors with p; # 0. Therefore, the lines x; = 0 in Figure 7
and p; = 0 in Figure 3 correspond to PS arrivals with different azi-
muthal orientations of the source-receiver vector.

The error of the weak-anisotropy approximation 20 increases
with offset before flattening out at intermediate x (Figure 8) and
eventually going to zero for infinitely large offsets. Overall, equation
20 gives an adequate qualitative description of the moveout asym-

x, (km)

Figure 7. Exact normalized time-asymmetry attribute Az pg in the off-
set domain (equation 15). The data were generated by anisotropic
ray tracing for the model from Figure 3. After the initial increase
with offset, the asymmetry decreases for large offsets and goes to
zero forx — oo,

metry and correctly predicts a maximum of Az,s(x) at offsets close to
the reflector depth (Figure 8). By design, equation 20 also converges
toward the correct value Azpg = 0 forx — 0.

PARAMETER ESTIMATION

The goal of the inversion algorithm introduced here is to estimate
the parameters of a horizontal TTI layer from PP and PS (PSV) re-
flection events. As emphasized by Grechka and Tsvankin (2002a)
and Grechka and Dewangan (2003), effective application of the PP
+ PS = SS method requires acquisition of long-offset (i.e., offsets
should reach at least twice the reflector depth) PP and PS data. If the
offset-to-depth ratio for the recorded arrivals is less than two, the
range of offsets for the constructed SS data is insufficient for obtain-
ing areliable estimate of the S-wave stacking velocity.

The numerical tests below prove that for a wide range of tilt angles
v of the symmetry axis, the inversion can be performed using 2D
data in the symmetry-axis plane. Full-azimuth acquisition, however,
can help to find the orientation of this plane, unless it is known from
geological or other information. An alternative way to estimate the
azimuth of the symmetry-axis plane is by analyzing the polarization
direction of PS-waves at small source-receiver offsets.

Data processing

Conventional hyperbolic velocity analysis of the recorded PP data
yields their stacking velocity (V) and zero-offset reflection trav-
eltime (7py). Then, application of the PP + PS = SS method to the PP
and PS records produces traces of pseudoshear waves that have
the kinematics of the pure SS (SVSV) reflections (Grechka and
Tsvankin, 2002a; Grechka and Dewangan, 2003). Therefore, pro-
cessing of the constructed SS arrivals can be used to estimate the
stacking velocity (V) and zero-offset traveltime (zg) of the SS
reflections that are not excited physically in the survey. If the data
have a wide range of source-receiver azimuths, it may be possible to
obtain the NMO ellipses of the PP- and SS-waves (Grechka and Ts-
vankin, 1998; Grechka et al., 2002a).

The above methodology, described in detail by Grechka et al.
(2002a), is designed to avoid complications associated with process-
ing mode-converted waves. For some anisotropic models, the com-
bination of PP- and SS-waves is sufficient to estimate the medium
parameters without additional information. In the case of TTI media,
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Figure 8. Asymmetry attribute Afpg from Figure 7 in the symmetry-
axis plane x, = 0. The solid line is the ray-tracing result; the dashed
line is the weak-anisotropy approximation 20. Also marked is the
offset xy = xmin( @ = 0°) of the traveltime minimum.
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however, the joint inversion of PP- and SS-waves is feasible only for
substantial reflector dips or near-horizontal orientations of the sym-
metry axis (Grechka et al., 2002a).

Here, we supplement the moveouts of the PP-waves and con-
structed SS-waves in parameter estimation with the PS-wave asym-
metry attributes obtained from the PP + PS = SS method. For later-
ally homogeneous media, the time asymmetry Atps(x®,x™) pro-
duced by the PP + PS = SS method (equation 4) coincides with the
asymmetry attribute defined in the slowness domain (equation 11).
Another reason to work with the asymmetry attributes in the slow-
ness domain is the relative simplicity of the corresponding analytic
expressions.

The offset xnin( @ = 0) of the PS-wave traveltime minimum in the
symmetry-axis plane [ x;,x;] can be obtained also from the PP + PS
= SS method. Picking the offsets (along with the traveltimes) of the
two PS-waves corresponding to the same reflection point for a range
of the slownesses p; allows us to build the function (Axps), (p1)
(equation 19). As discussed above, this function can then be approxi-
mated with a hyperbola whose apex yields the value of x,. Alterna-
tively, it can be shown that the offset x, corresponds to the PS-wave
with p; = 0, whose legs coincide with the zero-offset PP and PS re-
flections.

Inversion algorithm

The azimuth of the symmetry-axis plane can be estimated, for ex-
ample, from azimuthally varying moveout of pure (PP or SS) modes.
The general equation of the NMO ellipse has the following form
(Grechka and Tsvankin, 1998):

V;rzno(a) = W, cos® @ + 2W,, sin a cos a + W, sin® a,
(23)

where W;; = 7ydp;/dx; (i,j = 1,2), 79 = 1,/2 is the one-way zero-
offset traveltime, and p, and p, are the horizontal slowness compo-
nents for one-way rays from the zero-offset reflection point to the
surface. All derivatives are evaluated at the CMP location. For a ho-
mogeneous horizontal layer, the matrix W can be represented as
(Grechkaetal., 1999)

W = -4 . (51,22 61,12>’ (24)
411922 —4912\"4912 411

where ¢ = g(p;,p,) is the vertical slowness and ¢; = d3%g/
(dp; dp;). For pure-mode reflections, the slowness vector of the ze-
ro-offset ray for a horizontal layer is vertical, so the derivatives are
computed for p; = p, = 0.

If the medium has a vertical symmetry plane, one of the axes of the
NMO ellipse is parallel to the symmetry-plane direction (Grechka
and Tsvankin, 1998). For a TTI layer with the symmetry axis con-
fined to the [ x;,x3] plane, the terms ¢ ;, and W, (equation 24) vanish,
while W,; and W, define the semiaxes of the NMO ellipse (equation
23). Therefore, the orientation of the NMO ellipse of the recorded
PP-waves or constructed SS-waves can be used to find the azimuth
of the symmetry-axis plane [ x;, x3].

Then, as described above, processing of 2D multicomponent data
in the symmetry-axis plane produces the following data vector d:

d= {Vnmo,P’tPO’ Vnmo,S’tSO’AtPS(plsO)s x()}s (25)

where xy = xpin(a = 0°). Although Arps(p;,0) denotes multiple
measurements of the asymmetry attribute for the available range of

the horizontal slownesses p, equation 14 indicates that the moveout
asymmetry in the [ x;,x;] plane may constrain only one combination
of the layer parameters.

Analytic expressions for Arps(p;,0) and xg = xpi(@ = 0°) needed
to model these quantities in the inversion algorithm were introduced
in the previous section. The NMO velocities V0 p and V5 in the
x;-direction (@ = 0°) can be computed from equation 24 with g ,,
=0:

L _/-4u (26)

Vamo = 77—
VWi q

The model vector m includes the following parameters of the TTI
layer:

m = {VP05VSO’€’ (S, V,Z}. (27)

Thus, six or more [if Azp¢(p,,0) constrains more than one parameter |
independent measurements (equation 25) are controlled by the six
model parameters in equation 27. To estimate the vector m, we ap-
plied nonlinear inversion (the Gauss-Newton method) based on ex-
actequations for all components of data vector 25. The misfit (objec-
tive) function minimized by the inversion algorithm is defined as

(Vcalc _ VmeasP)Z (Vcalc _ Vmeass)Z

f = nmo, P nmo, +w nmo,S nmo,
L v T Vi)’
o (lg;gc _ tl;l(f):as)z . (l;?)lc _ t?oeas‘)Z
3 4
(trlglgas 2 (tgn()eaS)Z
El’ ( A tcalc —A thaS)2 cale measy2
0 PS PS (xo - Xy )
+ Ws We ) R
(S A’ (<5)

(28)

where the superscripts calc and meas denote the calculated and mea-
sured quantities, respectively, and p is the maximum value of the
horizontal slowness p,. The weighting coefficients w; were generally
set to unity. We observed, however, that assigning substantially larg-
er weights to the asymmetry attributes typically leads to a faster con-
vergence of the algorithm.

Because the exact equations for the model parameters are nonlin-
ear and the misfit function contains local minima, selection of the
starting model may have a significant influence on the performance
of the algorithm. We based the initial guesses for the vertical veloci-
ties and anisotropic coefficients on the isotropic relationships,

VPO = Vnmo,P’ VSO = Vnmo,S’E = 0’5 = O’Z = Vnmo,PtP0/2~
(29)

Our numerical tests show that if the starting model is isotropic (equa-
tion 29) and the initial tilt v is set to 0° or 90°, the algorithm either
does not converge toward the correct solution or the convergence is
extremely slow. This happens because the initial values of the partial
derivatives of the objective function 28 with respect to several model
parameters go to zero. The convergence can be improved signifi-
cantly by keeping the initial € = § = 0 but starting with an interme-
diate tilt v thatis as close as possible to the actual value. For example,
if the anisotropy is known to be caused by subvertical fractures, a
good choice of the initial tiltis ¥ = 70°-80°.
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Numerical examples

The uniqueness and stability of the inversion was examined by ap-
plying the algorithm to noise-contaminated input data. We analyzed
arepresentative set of TTI models with a wide range of the tilt angles
v of the symmetry axis.

Models with tilt v > 60°

TTImodels with a significant tilt of the symmetry axis can be con-
sidered typical for dipping fracture sets because fracture planes sel-
dom deviate far from the vertical (Angerer et al., 2002). For a system
of vertical penny-shaped cracks in isotropic host rock, the symmetry
axis is horizontal (v = 90°), and the medium becomes HTL.

The tilt v = 70° of the symmetry axis in Figure 9 is quite favorable
for the inversion based on the moveout-asymmetry attributes of PS-
waves. Here and in the examples below, the data vector d (equation
25) was generated using the exact equations and contaminated by
Gaussian noise. The inversion was carried out for 100 realizations of
the input data, which allowed us to compute the standard deviations
of the estimated parameters. The initial guess was based on the iso-
tropic relationships 29, with the tilt picked randomly from the
50°-85° interval. The model vector m (equation 27) was estimated
by minimizing the objective function specified in equation 28, as
discussed in the previous section.

Figure 9 indicates that the inversion results are unbiased, and the
random noise is not amplified by the parameter-estimation proce-
dure. The standard deviations are close to 0.02 for € and &, 1% for
Vo, 2% for Vg, and z, and 1° for v. In principle,
correlated noise may cause more significant dis-

Because the time asymmetry is estimated from the relatively
small difference of two time measurements, it is important to evalu-
ate the sensitivity of the inversion results to larger errors in the PS-
wave asymmetry attributes. For the test in Figure 10, the standard
deviations of Atpgand x, were increased from 2% to 4% (also, the de-
viations of the zero-offset times were increased to 1%). Despite the
somewhat higher scatter of the inverted parameters, the standard de-
viations do not exceed 0.03 for € and &, 2% for Vy, 3% for Vg, and z,
and 1° for v.

For HTI media (v = 90°) the PS-wave moveout is symmetric, and
the 2D inversion in the symmetry-axis plane cannot constrain the
medium parameters. However, even a small (10°) deviation of the
symmetry axis from the horizontal plane creates a measurable move-
out asymmetry. For the model from Figure 11, the offset x, is close to
20% of the depth z, and the attribute Azpg reaches about 7% of the ze-
ro-offset PS traveltime for x = 2z. Because the magnitude of the
asymmetry attributes is smaller compared to the model with
v = 70°, the error in the asymmetry attributes is expected to be high-
er. Figure 11 shows the inversion results when the error in Az,gand x,
is increased from 2% to 6%. Still, the model parameters are reason-
ably well constrained, with the standard deviations less than 0.04 for
e and &, 2% for Vpy, 3% for Vg and z, and 1° for v. If the symmetry
axis deviates by less than 10° from either the vertical or horizontal
direction, then the asymmetry attributes are too small to be estimated
with reasonable accuracy and the inversion breaks down. In all the
numerical tests below, the standard deviation of the noise is the same
asinFigure 9.

tortions of the inverted parameters. The asymme- 0.2

22 \ .......... .......... ,‘

try attributes, however, are insensitive to a nearly : "
uniform change (near-constant shift) in the re- 015 = 7
flection traveltimes. w 0.1 :g & 70
The best-constrained parameter combination : .8 E/ _
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on the NMO velocity of the constructed SS- Vg (km/s) z(km)

waves. Although the traveltimes of the PP- and

PS-waves in the symmetry-axis plane are suffi-
cient for estimating all relevant TTI parameters,
the addition of wide-azimuth data increases the
accuracy of the inversion in the presence of noise.

It should be emphasized that the parameter es-
timation is feasible only if the asymmetry infor-
mation of the PS-wave is included in the inver-
sion algorithm. The offset x, of the PS-wave mo-
veout minimum for the model from Figure 9
reaches about one-third of the depth z, and the
asymmetry attribute Atpg for the offset x = 2z is
about 15% of the zero-offset PS traveltime. Such
a large magnitude of the time asymmetry helps to
constrain the tilt of the symmetry axis and the an-
isotropic parameters. Without the asymmetry in-
formation, the inversion becomes unstable, even
if the 2D data in the vertical symmetry plane are
supplemented with the NMO ellipses of PP- and
SS-waves (Grechka and Tsvankin, 2000; Grech-
kaetal.,2002a).

Figure 9. Inverted parameters (dots) of a horizontal TTI layer obtained from 2D PP and
PS data in the symmetry-axis plane. The correct model parameters (Vp, = 4 km/s, Vg,
=2 km/s, € = 0.25, §= 0.1, v = 70°, z = 1 km) are marked by the crosses. The dashed
line on the [ €, 8] plot corresponds to the correct value of the difference (e — 8). The input
data were contaminated by Gaussian noise, with the standard deviations of 2% for the
NMO velocities, 0.5% for the zero-offset traveltimes, and 2% for the PS-wave asymme-
try attributes.
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Figure 10. Same as Figure 9, but the standard deviations of the Gaussian noise are in-
creased to 1% for the zero-offset traveltimes and 4% for the PS-wave asymmetry at-
tributes (the standard deviations for the NMO velocities remain unchanged at 2%).
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Models with intermediate tilt

reflections from a horizontal interface beneath dipping shale layers

in fold-and-thrust belts such as the Canadian Foothills (e.g., Isaac

The time-asymmetry attribute in the slowness domain is small not
only for near-vertical and near-horizontal orientations of the sym-
metry axis but also for tilts v close to 45° (equation 14). The model of
a horizontal TTI layer with 35° < » < 55° can be used to describe

2.2f

Vso (km/s)

0.1 0.2 0.3 04 36 3.8 4 42 44 08 09 1 .1 12
£ Vpo (km/s)

Figure 11. Inversion results for a model with the same parameters as those in Figure 9 ex-
cept for the tilt v = 80°. The standard deviations of Gaussian noise here are 2% for the
NMO velocities, 0.5% for the zero-offset traveltimes, and 6% for the PS-wave asymme-
try attributes.
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Figure 12. Inversion results for a model with the same parameters (and the same standard
deviations of the noise) as those in Figure 9 except for the tilt v = 50°.
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Figure 13. Same as Figure 12, but the inversion algorithm is modified to avoid local mini-
ma of the objective function.
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Figure 14. Inversion results for a model with the same parameters as those in Figure 9 ex-
cept for the tilt v = 20°.

and Lawton, 1999).
Figure 12 helps to assess the feasibility of the inversion for a tilt of
50°. Although the offset asymmetry for intermediate tilts is substan-

tial (x is about 34% of z), the inverted parameters
are biased and exhibit significant scatter. Analysis
of the inversion results shows that many estimat-
ed models correspond to local minima of the ob-
jective (misfit) function and do not fit the input
data within the noise level.

The problem with local minima was addressed
by modifying the inversion algorithm. If the
search stops at a minimum where the model does
not fit the data within the standard deviation of the
noise (2% for the NMO velocities and the asym-
metry attributes and 0.5% for the zero-offset trav-
eltimes), then the model is perturbed to resume
the search from a different point in the parameter
space. Figure 13 shows that the modified algo-
rithm produces stable inversion results for v =
50°, with the standard deviations comparable to
those for v = 70° (Figure 9).

Models with mild tilt

For completeness, here we discuss the parame-
ter-estimation results for mild tilts v. While such
models are not plausible if the anisotropy is
caused by dipping fractures, they may be ade-
quate for effective TTI models formed by progra-
dational sequences (e.g., Sarg and Schuelke,
2003).

The scatter in the inversion results for a tilt of
20° is slightly higher than that for large tilts, but
the standard deviations are less than 0.03 for eand
8, 3% for Vpg, Vg, and z, and 2° for v (Figure 14).
As expected, the parameter estimation breaks
down as the model approaches VTI, and the tilt v
becomes less than 10°. Not only do the standard
deviations rapidly increase when » — 0°, but the
parameter estimates also become noticeably bi-
ased. For the model with v = 5° in Figure 15, the
bias is about 0.05 for €; 0.03 for &; and 4% for
Vpos Vso, and z. Only the tilt is relatively well con-
strained by the data because of the sensitivity of
the asymmetry attributes to v.

Elliptically anisotropic models

According to our analytic results, the time
asymmetry of PS-waves in the slowness domain
vanishes if the medium is elliptically anisotropic
(i.e., € = 9). In the offset domain, however, PS
moveout in elliptical media remains asymmetric
and the offset x, # 0. Therefore, the combination
of the time- and offset-asymmetry attributes used
in our inversion algorithm can help to separate el-
liptical TTI models from VTI and HTI media, for
which PS moveout is symmetric in any domain.
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As illustrated by Figure 16, all parameters of an elliptically aniso-
tropic layer except for the tilt are well constrained, and the standard
deviations are less than 0.03 for € = dand less than 2% for Vp, Vi,
and z. The points on the [ €, 8] plot are almost perfectly aligned along
the € = J'line, which indicates that the algorithm is able to identify
elliptical anisotropy. The estimates of v, however, are more scattered
(the standard deviation reaches 5°) than those for anelliptical models
with the same tilt, and the average v is biased by about 2°.

APPLICATIONS AND EXTENSIONS

Although the algorithm presented here breaks down for a horizon-
tal HTI layer, parameter estimation for that model can be accom-
plished using wide-azimuth PP and PS (or SS) reflection traveltimes
(Tsvankin, 1997; Bakulin et al., 2000; Grechka et al., 2002a). Wide-
azimuth data also help to obtain more accurate estimates of the tilt
for elliptical (7 = 0) TTI models. In contrast, when the symmetry
axis is vertical (VTI), PP and PS reflection data do not constrain the
vertical velocities e and &, even if uncommonly long offsets are used
(Grechka and Tsvankin, 2002b).

Our methodology can be used for characterizing a system of dip-
ping penny-shaped cracks embedded in a layer-cake isotropic medi-
um (Angerer et al., 2002). Grechka and Tsvankin (2004) demon-
strate that wide-azimuth seismic data can be inverted even for the pa-
rameters of the more complicated model that includes penny-shaped
cracks in a VTI background. Their method operates with only pure-
mode reflections, but the vertical velocities are assumed to be
known. Itis possible that the addition of the asymmetry attributes of
PS-waves to the signatures of pure PP and SS reflections can make a
priori information for their model unnecessary. Note that according
to the feasibility study by Grechka and Tsvankin (2003), seismic
data can constrain the parameters of up to four dipping systems of
penny-shaped cracks embedded in either isotropic or VIThost rock.

Tilted transverse isotropy also describes dipping shale layers in
fold-and-thrust belts (such as the Canadian Foothills) and the effec-

tive anisotropy of progradational sequences. While our algorithm
can be applied to reflections from horizontal interfaces beneath dip-
ping shales, anisotropic velocity analysis in fold-and-thrust belts
may require including dipping events associated with the shale se-
quence. Joint inversion of PP- and PS-waves reflected from dipping
interfaces overlaid by TTI media is the subject of a companion paper
(Dewangan and Tsvankin, 2006a). Another related paper (Dewan-
gan and Tsvankin, 2006b) introduces a layer-stripping technique that
makes it possible to extend our parameter-estimation methodology
to horizontal or dipping TTI layers at depth.

CONCLUSIONS

The moveout asymmetry of mode-converted waves causes com-
plications in seismic processing and can be removed by applying the
PP + PS = SS method of Grechka and Tsvankin. This method
makes it possible to compute the traveltimes of the primary SS re-
flections (if shear waves are not excited in the survey) from PP and
PS data prior to anisotropic velocity analysis. However, while the re-
placement of converted waves with pure-mode SS reflections is con-
venient for processing purposes, keeping information about the PS-
wave moveout asymmetry may be essential for anisotropic parame-
ter estimation.

Here, we presented a modification of the PP + PS = SS method
designed to supplement the computed SS data with such asymmetry
attributes of the converted waves as the difference Azpg between the
reciprocal traveltimes in the slowness domain and the offset x,,;, of
the traveltime minimum in CMP geometry. The new algorithm was
applied to the inversion of multicomponent data for a horizontal TTI
layer — the model used to describe the effective anisotropy caused
by dipping penny-shaped cracks, dipping shale beds, or prograda-
tional sequences.

Using the weak-anisotropy approximation, we obtained concise
expressions for the azimuthally varying asymmetry attributes of

PSV-waves in terms of the tilt v of the symmetry
axis and the anisotropic parameters € and J. For

20f 10
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VTI (v = 0°) and HTI (v = 90°) media the PS
moveout is symmetric, but the asymmetry rapidly
increases as the tilt v deviates from 0° and, espe-
cially, from 90°. The asymmetry attributes also
exhibit a pronounced azimuthal variation from
the maximum in the symmetry-axis plane to van-
ishing values in the orthogonal direction.
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Figure 15. Inversion results for a model with the same parameters as those in Figure 9 ex-

cept for the tilt v = 5°.

The asymmetry attribute Aty in the slowness
Z(km) domain includes equal contributions from the P-
and S-legs of the PS-wave and, in the linear ap-
proximation, is proportional to the parameter 7
=~ € — ¢.In contrast, the offset x,,;, that quantifies
the asymmetry in the offset domain depends on €
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and ¢ individually and does not vanish in ellipti-
cal media for which 7 = 0 (e = §). It is interest-
ing that the azimuthal variation of x.;, is de-
scribed by a circle with the center in the symme-
try-axis plane.

We combined the asymmetry attributes of
PS(PSV)-waves with the NMO velocities and ze-
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Figure 16. Inversion results for an elliptically anisotropic TTI layer with e = 6 = 0.2.

ro-offset traveltimes of PP- and SS-waves in
a nonlinear inversion algorithm (the SS travel-
times are produced by the PP + PS = SS meth-
od). Although it is desirable to have a wide range
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of source-receiver azimuths to suppress noise, the inversion can be
performed using just 2D data acquired in the symmetry-axis plane.
The orientation of this plane, however, must be determined before-
hand from either the pure-mode NMO ellipses (i.e., from wide-azi-
muth data) or the PS-wave polarization at small offsets.

To assess the stability of the inversion, we ran the algorithm for
multiple realizations of the input data contaminated by Gaussian
noise. Without the asymmetry information, parameter estimation for
a horizontal TTI layer is strongly nonunique, and a wide range of
vastly different models can fit the input data. Including the PS-wave
moveout asymmetry attributes removes this ambiguity and makes
the 2D inversion sufficiently stable if the symmetry axis deviates by
10° or more from the vertical (VTI) and horizontal (HTT) directions.
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APPENDIX A

APPROXIMATE TIME-ASYMMETRY
ATTRIBUTE IN THE SLOWNESS DOMAIN

For a weakly anisotropic TTI layer (|¢ << 1 and |8 < 1), the
asymmetry attribute Afpg in the slowness domain (equations 5 and
11) can be linearized in the anisotropic coefficients € and 8. Without
losing generality, the symmetry axis (unit vector a) is assumed to lie
in the coordinate plane [ x,,x;] (Figure A-1):

a = [a,;,0,a3] = [sin »,0,cos V], (A-1)

where v1is the tilt of the symmetry axis from the vertical direction.
To obtain the vertical slowness ¢ as a function of the horizontal

slowness components p; and p, for both legs of the PS reflected ray,

we use the approach suggested by Grechka and Tsvankin (2000,

a=(a[,0,a3)

y

X3

Figure A-1. The symmetry axis is defined by the unit vector a con-
fined to the [ x,,x;] plane. The slowness vector p has an arbitrary ori-

entation.

their Appendix B). The component g can be represented as the sum
of the isotropic value g and the anisotropy-induced correction term
Ag:

qg=p3=q+A4Aq. (A-2)

For P-waves in an isotropic medium with the velocity Vo, the ver-
tical slowness is given by

~ 1
g=\-Pi-ps- (A-3)
Vo

In the weak-anisotropy approximation Ag can be treated as the
linear term in a Taylor series expansion of ¢ in € and éfor fixed hori-
zontal slownesses p; and p,:

Ag = 1 (a}“ af)

- —e+ —6], (A-4)
dFldg\ de a6

where F(q,p1,p2, Vo, Vso, € 6, v) = 0 is the Christoffel equation for
P- and SV-waves in TTI media.

Next, we obtain the partial derivatives ¢; = dq/dp; (i = 1,2) for
the P-wave, substitute them into equations 7 and 11, and carry out
further linearization using Wolfram Research’s Mathematica sym-
bolic software. The weak-anisotropy approximation for the contri-
bution of the P-leg of the PS-wave to the asymmetry attribute has the
form

Atp = 47(8 — €)p, Vi sin 2v[p3 + (2p] + p3)cos 2v].
(A-5)

The linearized asymmetry contribution of the S-leg can be found
from the P-wave equation A-5 by using the following general trans-
formation rule (Tsvankin, 2001, p. 26):

Vpg — Vg9, € — 0,8 — o3

V2
o= _[230(6 - 0).
V5o

Taking into account that the asymmetry for the S-leg of a given PS-
ray must be computed for the opposite sign of the horizontal slow-
ness (so p; in equation A-5 has to be replaced with —p,, and p, with
—p,), we find

Atg = — 4z(e - 5)p1V12D0 sin 21/[17% + (Zp% + p%)cos 2v]
= AtP (A-6)

APPENDIX B

AZIMUTHAL VARIATION
OF THE OFFSET X,,,,

The slope dt/dx of the CMP moveout curve for any pure or con-
verted reflection mode is determined by the difference between the
projections onto the CMP line of the slowness vectors at the source
and receiver locations (Tsvankin and Grechka, 2000; Tsvankin,
2001, Appendix 5B). (In this formulation, both legs of the reflected
ray are treated as upgoing waves.) This general result, which is valid
for any heterogeneous, anisotropic medium, can be used to find the



Inversion for a horizontal TTl layer D119

offset x,,;, of the PS-wave traveltime minimum where the moveout
slope goes to zero. For a horizontal, laterally homogeneous layer, the
horizontal slowness has the same absolute value for both legs of the
reflected ray, and the slope can vanish only for a ray with the slow-
ness vector orthogonal to the CMP line.

Suppose p,, is the projection of the slowness vector onto the CMP
line that makes the angle a with the x;-axis and p, is the slowness
projection onto the orthogonal (a + 90°) direction. The offset
Xmin( @) then corresponds to the PS ray for which p,, = 0. Rotating the
slowness vector by the angle « in the horizontal plane yields

D1 = PaCOS a— p,sin a, (B-1)

D2 = Do Sin @ + p, CcoS a. (B-2)

The offset x can be parametrically represented as (equations 8 and 9)

q.15)” + (g2p — q29)° (B-3)

To find x,, from equation B-3, the derivatives g, = dq/dp;
(i = 1,2), which are derived for weakly anisotropic TTI media in
Appendix A, must be evaluated for p,, = 0.

Substituting ¢, from Appendix A into equation B-3 and further
linearizing the result in e and & produces x as a function of p, and p,,
which can be replaced by p, and p, using equations B-1 and B-2. The
component p,, is then set to zero, while p, can be found from equation
10 for the azimuth «. Linearizing equation 10 and using equations
B-1and B-2 with p, = 0 allows us to obtain p;:

[
X = Z\’(CI,1P -

Xp Sin &
2(Vso = Vo)’

where xy = xpin(a@ = 0°) is the value of x., in the symmetry-axis
plane.

Because the slowness vectors of reflected rays propagating in the
symmetry-axis plane cannot have out-of-plane components, the oft-
set x, corresponds to the ray with the vertical slowness vector (p,,
= p, = p, = p» = 0). Evaluating x from equation B-3 with p, = p,
= 0 gives

Pt = (B-4)

V2,
Xy =z| €sin2v — —(e— 5)(1 + V—>s1n4v

50
(B-5)

Finally, we substitute p, = 0 and p, from equations B-4 and B-5 into
equation B-3 to obtain the following expression for the azimuthally
varying offset of the moveout minimum:

Xmin(@) = X, cos a. (B-6)

APPENDIX C

APPROXIMATE TIME-ASYMMETRY
ATTRIBUTE IN THE OFFSET DOMAIN

To describe the moveout asymmetry in the offset domain defined
in equation 15, we express the PS traveltime through the compo-
nents x; and x, of the PS-wave offset vector X5 (equation 8). An ap-
proximation for the asymmetry attribute in a horizontal TTI layer
can be found by expanding the traveltime #(x;,x,) in a double Taylor

series in the vicinity of the offset (xy,0) of the moveout minimum
(equation B-5):

t(x1,x5) = 1(x,0) + j_(x1 - xp) + j_tzxz + %zx:(xl
- X0)2 ;j t S+ ﬁ(h = Xo)xp
+ %Z?%(Xl xo)* + %Z_txg
+ %#:xz( - x0) %, + %O.'éi;t %(xl Xo))é
+ o (C-1)

The traveltime derivatives in equation C-1 should be evaluated at
(x; = x9, x» = 0). Note that the first derivatives dt/dx, and dt/dx, at
(x0,0) are equal to zero.

The time-asymmetry attribute in the offset domain can be found
from equation C-1 as

Atpg(x1,x) = tps(x1,X7) = tps(= X1, X3)

2(?2t 5 9%t L1 163 t(
= —2——SXXg— 27— XX X
ax% o x| dx, =0 3¢9x1 !
3
+ 3x1x%) + x5 (xo + xl)
X1 0%
&t 1d% ,
+ ———xx —X (C-2)
&xlﬁxglz 3&32}

Because [ x;,x3] is a plane of symmetry, Azps(x;,X,) must be an even
function of x,:

Atps(xl,XZ) = Atps(xl,— X2). (C-3)

Therefore, equation C-2 should not contain linear and cubic terms in
Xy, and
3%t 3t &t
= =—5=0. (C-4)
axy dx, x5

(9x1 (9.X'2

The second- and third-order derivatives in equation C-2 are conve-
nient to represent in terms of the slowness components of the ray
with p; = p, = 0 that corresponds to the offset x, (see Appendix B).
The time slopes dt/dx; (i = 1,2) can be expressed through the hori-
zontal slownesses p; and p, of the PS-wave using the results of
Tsvankin (2001, Appendix 5B):

at .

—=-p; (i=12). (C-3)
&xi
Differentiating d¢/dx, from equation C-5 with respect to x; and using
equation 8 yields

ﬂ_i<ﬁ)_ -1 -1
3?6% Ixy \ x| axi/dpy  2qipip— qisis)
(C-6)

where g jp;p = 9°qp/(dp;dp;) and q js;s = 3qs/(Ipdp;).
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The third-order derivatives of the traveltime # needed in equation
C-2 can be obtained in a similar fashion:

&x? - &X] C?.Xl/(‘)pl
=—— ]| — |+ —| — || —
&p] ﬁxl/&pl (9x1 6p2 0)(:1/&1)1 dxl
q.1p1pr1P — 4.185,18.18

= ) (C_7)
Zz(q,lP,lP - C],ls,ls)3

7't _i( -1 )
z?xﬁx% - o"xl dXz/O')pz

i( - 1 )(@)
(7p1 (9)@/(7[72 0”)(1

&p2 L?)C2/(9p2 (9)6]
4.2p2pP1P — 42525.18

Zz(‘],zP,zp - Q,zs,zs)z(CI,lp,lP - CI,lS,ls) '
(C-8)

Here, g jpipsr = 336113/(!917;5171‘(9171()’ q.js.isks = 193%/(5171'5171‘(9171()’ and
the derivative (Jdp,/dx,) vanishes because p, = 0 on the x,-axis.

Using the linearized derivatives of the vertical slowness g from
Appendix A (equation A-2) leads to

ot 2
? = —{Vpo[2 + 5+ €+ 2€ecos2v + 3(5 — €)cos 4v]
x| 2

(C-9)
+ Vg2 + 0+ 30 cos 4v)} 7!, (C-10)
3%t 12(€ — 8)V3, sin 4v
_3 - — (2 ) PO 3 , (C-ll)
oy Z2(Vpy + Vo)
&t 4(e - O)V3,sin 2w
2=~ (2 A 3 (C-12)
Ox10x5 (Vo + Vo)

Substituting equations C-9 through C-12 into equation C-2 and
further linearizing the result, we obtain the asymmetry attribute as

21X, 4(e - O)Vpysindv
) 3 XN
2(Vpo + Vo) 22(Vpo + Vo)
4(e - &)V%, sin2v
_ X - Vo XX (C-13)
77 (Vpo + Vo)

Atpg=—

Finally, equation C-13 can be rewritten in terms of the offset x
and the azimuth a of the source-receiver line (x; = xcos a,
X, = x sin @):

2xxgcos a  4(e— 5)V%O sin4v

At pg(x, ) = — - X3 cos® a

s 2(Vpo + Vi) Z(Vpy + Vi)

4(e - 5)Vf,0 sin2v .5
-— 3 X" cos asin” a
(Vo + Vo)

or
Ati(c.a) = 2xxgcos a  4x’(e— 5)V%0 sin 2v cos a

ps\X, @) = —

2(Vpo + Vo) 2(Vpy + Vo)’

X (2 cos 2v cos® a + sin® a). (C-14)
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