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lane-wave attenuation anisotropy in orthorhombic media
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ABSTRACT

Orthorhombic models are often used in the interpretation of
azimuthally varying seismic signatures recorded over fractured
reservoirs. Here, we develop an analytic framework for describ-
ing the attenuation coefficients in orthorhombic media with
orthorhombic attenuation �i.e., the symmetry of both the real and
imaginary parts of the stiffness tensor is identical� under the as-
sumption of homogeneous wave propagation. The analogous
form of the Christoffel equation in the symmetry planes of ortho-
rhombic and VTI �transversely isotropic with a vertical symme-
try axis� media helps to obtain the symmetry-plane attenuation
coefficients by adapting the existing VTI equations. To take full
advantage of this equivalence with transverse isotropy, we intro-
duce a parameter set similar to the VTI attenuation-anisotropy
parameters �Q, �Q, and �Q. This notation, based on the same prin-
ciple as Tsvankin’s velocity-anisotropy parameters for ortho-

rhombic media, leads to concise linearized equations for the
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D9
ymmetry-plane attenuation coefficients of all three modes �P,

1, and S2�.The attenuation-anisotropy parameters also allow us
o simplify the P-wave attenuation coefficient AP outside the
ymmetry planes under the assumptions of small attenuation and
eak velocity and attenuation anisotropy. The approximate coef-
cient AP has the same form as the linearized P-wave phase-ve-

ocity function, with the velocity parameters � �1,2� and � �1,2,3� re-
laced by the attenuation parameters � Q

�1,2� and � Q
�1,2,3�. The exact

ttenuation coefficient, however, also depends on the velocity-
nisotropy parameters, while the body-wave velocities are al-
ost unperturbed by the presence of attenuation. The reduction

n the number of parameters responsible for the P-wave attenua-
ion and the simple approximation for the coefficient AP provide

basis for inverting P-wave attenuation measurements from
rthorhombic media. The attenuation processing must be preced-
d by anisotropic velocity analysis that can be performed �in the
bsence of pronounced velocity dispersion� using existing algo-
ithms for nonattenuative media.
INTRODUCTION

Effective velocity models of fractured reservoirs often have
rthorhombic or an even lower symmetry �Schoenberg and Helbig,
997; Bakulin et al., 2000�. It is likely that polar and azimuthal ve-
ocity variations in orthorhombic formations are accompanied by di-
ectionally dependent attenuation. Indeed, systems of aligned frac-
ures or pores are among the most common physical reasons for an-
sotropic attenuation �Mavko and Nur, 1979; Akbar et al., 1993; Par-
a, 1997; Stanchits et al., 2003; Maultzsch et al., 2003; Brajanovski
t al., 2005�. For example, Lynn et al. �1999� discuss the relationship
etween the azimuthal variation of attenuation and horizontal per-
eability measured over a fractured reservoir. MacBeth �1999� re-

iews some intrinsic attenuation mechanisms such as intracrack flu-
d flow and attributes the azimuthal variation of P-wave reflection

Manuscript received by the Editor September 26, 2005; revised manuscrip
1Formerly Colorado School of Mines, Center for Wave Phenomena, Depar

ompany, P. O. Box 2189, Houston, Texas 77252. E-mail: yaping.zhu@exxo
2Colorado School of Mines, Center for Wave Phenomena, Department of G
2007 Society of Exploration Geophysicists.All rights reserved.
mplitudes to attenuation anisotropy. Pointer et al. �2000� describe
hree different models of wave-induced fluid flow in cracked porous

edia; these models yield anisotropic velocities and attenuation co-
fficients when the cracks are aligned.

Other possible causes of attenuation anisotropy may include inter-
edding of thin attenuative layers �e.g., Carcione, 1992; Molotkov
nd Bakulin, 1998�, stress-induced phenomena �e.g., Liu et al.,
993; Souriau and Romanowicz, 1996; Stanley and Christensen,
001; Prasad and Nur, 2003�, anisotropy of the density tensor in po-
oelastic Biot media �Bakulin and Molotkov, 1998�, and azimuthal
cattering �Willis et al., 2004�.

Physical modeling shows that the P-wave attenuation coefficient
n the direction perpendicular to aligned fractures or pores is higher
han that parallel to the fractures �Akbar et al., 1993; Maultzsch et

ed September 15, 2006; published online December 29, 2006.
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com.
ics, Golden, Colorado 80401. E-mail: ilya@mines.edu.
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D10 Zhu and Tsvankin
l., 2003�. Similar results were obtained by Hosten et al. �1987� for
n orthorhombic sample made of composite material. On the whole,
xisting experimental data indicate that both velocity and attenua-
ion in fractured rocks are angle-dependent, with the type and mag-
itude of the anisotropy controlled by such factors as the shape, dis-
ribution, type of infill, and orientation of aligned fractures and
ores. When the dominant wavelength is much larger than the char-
cteristic size of heterogeneities, the scattering phenomena can be
gnored, and the medium can be treated as effectively homogeneous.

This paper is devoted to the macroscopic behavior of attenuation
nisotropy and does not address the physical mechanisms that cause
irectionally dependent attenuation. We study the attenuation of
lane waves propagating in a homogeneous medium that has ortho-
hombic symmetry for both the velocity function and attenuation co-
fficient.

The two main assumptions used here to facilitate the analytic de-
cription of attenuation are as follows:

� Wave propagation is ‘‘homogeneous,’’ which means that the
real and imaginary parts of the complex wave vector, k̃ = k
− ikI, are parallel to each other. This assumption is generally
valid for point-source radiation in weakly attenuative media,
but may lead to errors in the presence of strong attenuation or in
describing reflection/transmission at medium interfaces. A de-
tailed analysis of inhomogeneous plane-wave propagation in
an unbounded, attenuative, anisotropic medium can be found in
Červený and Pšenčík �2005a, 2005b�.

� The symmetry of the imaginary part of the complex stiffness
matrix, c̃ij = cij + icij

I , coincides with that of the real part �for
orthorhombic media, we assume that cij and cij

I have the same
orientation of the symmetry planes�. This assumption ensures
that the quality-factor matrix, Qij �cij/cij

I �Carcione, 2001�, has
the same structure as the real part of the stiffness matrix, which
governs the velocity anisotropy. Note that the physical-model-
ing results of Hosten et al. �1987� indicate that the symmetry of
the attenuation coefficient in an orthorhombic sample closely
follows that of the velocity function.
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igure 1. Sketch of the phase-velocity surfaces in orthorhombic me-
ia �after Tsvankin, 2005�. aij ��cij/� are the normalized stiffness
oefficients. Tsvankin’s velocity-anisotropy parameters �� �1,2�,
�1,2,3�, and � �1,2�� are defined in the symmetry planes of the model,
hich coincide with the coordinate planes.
For homogeneous wave propagation, the wave vector is parallel
o the unit vector n in the slowness direction: k̃ = n�k − ikI�. Aniso-
ropic attenuation can be characterized by the normalized attenua-
ion coefficient A that determines the rate of amplitude decay per
avelength:

A �
kI

k
. �1�

he main challenge in describing the attenuation anisotropy in
rthorhombic materials is in the large number of parameters that
ontrol the attenuation coefficients of P-, S1-, and S2-waves. Because
f the coupling between the velocity and attenuation anisotropy, the
oefficient A depends �for a fixed orientation of the symmetry
lanes� on the nine real stiffness coefficients and nine elements of
he quality-factor matrix. Here, we show that significant progress
an be achieved by extending the principle of Tsvankin’s �1997� no-
ation for velocity anisotropy �also, see Tsvankin, 2005� to attenua-
ive orthorhombic media.

The equivalence between the complex Christoffel equations �Ap-
endix A� in the symmetry planes of orthorhombic and VTI media
akes it possible to obtain the symmetry-plane attenuation coeffi-

ients from the corresponding VTI equations. As discussed by Zhu
nd Tsvankin �2006�, attenuation anisotropy in VTI media can be
onveniently described by the Thomsen-style parameters �Q, �Q, and
Q. Using physical-modeling data, Zhu et al. �2007� demonstrate the
easibility of estimating these attenuation-anisotropy parameters
rom wide-angle amplitude measurements.

Adapting the results of Zhu and Tsvankin �2006� for the symmetry
lanes of orthorhombic media, we introduce seven anisotropy pa-
ameters responsible �in combination with the velocity parameters�
or directionally dependent attenuation in orthorhombic materials.
inearizing the P-wave attenuation coefficient in the limit of small
ttenuation and weak anisotropy yields a simple expression outside
he symmetry planes that has the same form as Tsvankin’s �1997� ap-
roximate velocity function. The accuracy of this linearized solution
s verified using numerical tests for models with substantial attenua-
ion and velocity anisotropy.

To highlight the similarities between the anisotropy parameters
or velocity and attenuation, we generally follow the organization of
svankin’s �1997� paper in which he extended Thomsen’s �1986� ve-

ocity-anisotropy notation to orthorhombic media. On the other
and, we emphasize distinct properties of attenuation anisotropy re-
ated to the coupling between the attenuation coefficient and veloci-
y function.

EQUIVALENCE BETWEEN ATTENUATIVE
ORTHORHOMBIC AND VTI MEDIA

We consider propagation of plane waves in orthorhombic media
ith orthorhombic attenuation under the assumption that the sym-
etry planes for the real and imaginary parts of the stiffness matrix

ave the same orientation �see above�. It is convenient to choose a
artesian coordinate system aligned with the natural coordinate

rame of the model, so that each coordinate plane coincides with one
f the three mutually orthogonal symmetry planes �Figure 1�.

Plane-wave properties in anisotropic media are governed by the
hristoffel equation, which has the same general form in attenuative
nd purely elastic models �Crampin, 1981; Helbig, 1994; Carcione,
001�. However, since in the presence of attenuation the polarization
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Orthorhombic attenuation D11
nd wave vectors become complex, the velocity function and attenu-
tion coefficient are described by two coupled equations obtained by
eparating the real and imaginary parts of the Christoffel equation.
or example, the Christoffel equation in the �x1,x3� symmetry plane
f attenuative orthorhombic media is given by

c̃11k̃ 1
2 + c̃55k̃ 3

2 − ��2 0 �c̃13 + c̃55�k̃ 1k̃ 3

0 c̃66k̃ 1
2 + c̃44k̃ 3

2 − ��2 0

�c̃13 + c̃55�k̃1k̃3 0 c̃55k̃ 1
2 + c̃33k̃ 3

2 − ��2
��Ũ1

Ũ2

Ũ3

� = 0,

�2�

here � is the density, � is the angular frequency, and Ũ is the com-
lex displacement �polarization� vector. Note that equation 2 is valid
or any angle between the real and imaginary parts of the complex
ave vector k̃ and, therefore, is not limited to homogeneous wave
ropagation.

Equation 2 is almost identical to the Christoffel equation for VTI
edia with VTI attenuation, which is analyzed in detail by Zhu and
svankin �2006�. The only difference between the two equations is

hat while for VTI media c̃44 = c̃55, that is generally not the case for
rthorhombic symmetry. However, the stiffness c̃44 influences only
he decoupled shear �SH� mode polarized perpendicular to the prop-
gation plane �x1,x3�, while c̃55 contributes to the velocity and atten-
ation of the in-plane polarized waves �P and SV�. Therefore, the
ell-known equivalence between the Christoffel equation in purely

lastic VTI media and symmetry planes of orthorhombic media
e.g., Tsvankin, 1997� holds for attenuative models, as long as the
eal and imaginary parts of the stiffness matrix have the same sym-
etry. In the regime of homogeneous wave propagation, the velocity

nd attenuation of all three modes in the �x1,x3� plane are given by
he results of Zhu and Tsvankin �2006� for VTI media.

The Christoffel equation in the symmetry planes �x2,x3� and
x1,x2� can be obtained from equation 2 by making the simple substi-
utions in the subscripts listed in Tsvankin �1997�. Hence, the equiv-
lence with vertical transverse isotropy is valid for the complex
hristoffel equation in all three symmetry planes of attenuative
rthorhombic media. This equivalence is used below to extend the
TI notation of Zhu and Tsvankin �2006� to orthorhombic models.

ATTENUATION-ANISOTROPY PARAMETERS

The Thomsen-style notation for velocity anisotropy introduced
y Tsvankin �1997� facilitates the analytic description of a wide
ange of seismic signatures for orthorhombic models. Tsvankin’s pa-
ameters provide a basis for inversion and processing of wide-azi-
uth data acquired over azimuthally anisotropic formations �Grech-

a and Tsvankin, 1999; Grechka et al., 1999, 2005; Bakulin et al.,
000�. Here, we extend his approach to attenuative orthorhombic
edia with the main goal of defining the parameter combinations

hat govern the directionally dependent attenuation coefficient A.
Since our notation is designed primarily for reflection data, we

hoose the P- and S-wave attenuation coefficients in the vertical �x3�
irection �AP0 and AS0� as the reference isotropic quantities. The co-
fficient AS0 corresponds to the S-wave polarized in the x1-direction,
hich may be either the fast or slow shear mode, depending on the

elationship between the stiffnesses c44 and c55. The approximate
accurate to the second order in 1/Q� coefficients AP0 and AS0 are
iven by
AP0 �
1

2Q33
, �3�

AS0 �
1

2Q55
. �4�

To characterize the attenuation of waves propagating in the �x1,x3�
lane, we define three attenuation-anisotropy parameters analogous
o the Thomsen-style parameters �Q, �Q, and �Q introduced for VTI

edia with VTI attenuation by Zhu and Tsvankin �2006�. The pa-
ameters �Q

�2� and �Q
�2� �the superscript�2� stands for the x2-axis perpen-

icular to the �x1,x3� plane� determine the fractional difference be-
ween the attenuation coefficients in the x1- and x3-directions for P-
nd SH-waves, respectively. Another parameter, � Q

�2�, is expressed
hrough the second derivative of the P-wave attenuation coefficient

P
�2� in the �x1,x3� plane:

�Q
�2� �

Q33 − Q11

Q11
, �5�

� Q
�2� �

1

2AP0

	 d2AP
�2����

d� 2 	
� = 0

=

Q33 − Q55

Q55

c55
�c13 + c33�2

�c33 − c55�
+ 2

Q33 − Q13

Q13

c13 �c13 + c55�

c33�c33 − c55�

�6�

4

Q33 − Q55

Q55
g�2� + 2

Q33 − Q13

Q13
�1 + 2� �2� − 2g�2�� ,

�7�

�Q
�2� �

Q44 − Q66

Q66
, �8�

here � is the phase angle with the vertical, g�2� �c55/c33, and � �2� is
velocity-anisotropy parameter defined in the �x1,x3� plane �Ts-

ankin, 1997�. Equation 7 for � Q
�2� is simplified by dropping quadrat-

c and higher-order terms in g�2� and � �2�. Since the derivative of AP
�2�

s taken in the vertical direction, � Q
�2� governs the P-wave attenuation

or near-vertical propagation in the �x1,x3� plane.
Equations 5–8 are equivalent to the definitions of the correspond-

ng VTI parameters. In contrast to VTI models, however, the stiff-
esses and quality-factor elements of orthorhombic media with the
ubscripts 55 and 44 are generally different, and cannot be inter-
hanged in equations 6–8.

Using the same substitutions in the subscripts �11→22, 13→23,
5→44, and 44→55� as those in Tsvankin �1997�, we introduce
hree attenuation-anisotropy parameters in the �x2,x3� plane:

�Q
�1� �

Q33 − Q22

Q22
, �9�

� Q
�1� �

1

2AP0

	 d2AP
�1����

d� 2 	
� = 0

=

Q33 − Q44

Q44

c44
�c23 + c33�2

�c33 − c44�
+ 2

Q33 − Q23

Q23

c23 �c23 + c44�

c33�c33 − c44�

�10�
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4
Q33 − Q44

Q44
g�1� + 2

Q33 − Q23

Q23
�1 + 2� �1� − 2g�1�� ,

�11�

�Q
�1� �

Q55 − Q66

Q66
. �12�

n equation 11, the attenuation coefficient AP
�1� is measured in the

x2,x3� plane as a function of the phase angle � with the vertical,
�1� �c44/c33, and � �1� is a velocity-anisotropy parameter defined in
he �x2,x3� plane.

Since the attenuation coefficient is supposed to be positive �other-
ise, the amplitude will increase with distance�, the diagonal com-
onents of the Qij matrix must be positive as well. This constraint
mplies the parameters � Q

�1�, � Q
�2�, � Q

�1�, and � Q
�2� are always larger than

1.
The only element of the Qij matrix not involved in the above defi-

itions is Q12. Following the approach of Tsvankin �1997�, we use
12 to introduce one more anisotropy parameter, � Q

�3�, which plays
he role of the VTI parameter �Q in the �x1,x2� plane �x1 is treated as
he symmetry axis of the equivalent VTI model�:

� Q
�3� �

1

2AP
�3��� = 0�

	 d2AP
�3����

d� 2 	
�=0

=

Q11 − Q66

Q66

c66
�c11 + c12�2

�c11 − c66�
+ 2

Q11 − Q12

Q12

c12 �c12 + c66�

c11�c11 − c66�

�13�


4
Q11 − Q66

Q66
g�3� + 2

Q11 − Q12

Q12
�1 + 2� �3� − 2g�3�� ,

�14�
here the coefficient AP

�3� is measured in the �x1,x2� plane as a func-
ion of the phase angle � with the x1 axis, g�3� �c66/c11, and � �3� is a
elocity-anisotropy parameter defined in the �x1,x2� plane.Although
t is also possible to add the parameters � Q

�3� and � Q
�3� in the �x1,x2�

lane, they would be redundant.
The nine attenuation-anisotropy parameters defined in equations

–14, combined with Tsvankin’s �1997� velocity-anisotropy param-
ters, are sufficient to fully characterize plane-wave attenuation in
rthorhombic media. An additional practically important parameter
esponsible for the differential attenuation of the split S-waves in the
ertical direction is introduced in the next section.

APPROXIMATE ATTENUATION COEFFICIENTS
IN THE SYMMETRY PLANES

The equivalence with VTI media discussed above means that the
ymmetry-plane attenuation coefficients of all three modes can be
btained by adapting the corresponding VTI equations. While the
xact attenuation coefficients are rather complicated even for VTI
odels and do not provide insight into the influence of various atten-

ation-anisotropy parameters, much simpler solutions can be found
nder the following assumptions used by Zhu and Tsvankin �2006�:
� The magnitude of attenuation measured by the inverse Qij val-
ues or the parameters AP0 and AS0 is small.

� Attenuation anisotropy is weak, which implies that the absolute
values of all attenuation-anisotropy parameters introduced
above are much smaller than unity.

� Velocity anisotropy is also weak, so the absolute values of all
Tsvankin’s �1997� anisotropy parameters are much smaller
than unity.

The approximate �linearized in the small parameters� SH-wave
ttenuation coefficient in the �x1,x3� plane can be written as

ASH
�2� = ĀS0�1 + �Q

�2� sin2�� , �15�

here � is the phase angle with the vertical, and

ĀS0 =
1

2Q44
= AS0

1 + �Q
�1�

1 + �Q
�2� �16�

s the vertical attenuation coefficient for the S-wave polarized in the
2 direction. Equation 15 is obtained by replacing the parameter �Q

n the linearized VTI result of Zhu and Tsvankin �2006� by �Q
�2� and

sing the appropriate reference value ĀS0. Similarly, the correspond-
ng linearized coefficient in the �x2,x3� plane has the form

ASH
�1� = AS0 �1 + �Q

�1� sin2�� . �17�

It should be emphasized that the term SH-wave refers to two dif-
erent shear modes in the vertical symmetry planes �Tsvankin, 1997;
ee Figure 1�. For example, if c44�c55, then the fast shear wave S1

epresents an SH-wave in the �x1,x3� plane where it is polarized in
he x2 direction. For propagation in the �x2,x3� plane, however, the
1-wave becomes an SV mode that has an in-plane polarization vec-

or.
The difference between the attenuation coefficients of the verti-

ally traveling split shear waves can be quantified by the attenuation
plitting parameter �Q

�S�:

�Q
�S� � 	 ĀS0 − AS0

AS0
	 =

��Q
�1� − �Q

�2��
1 + �Q

�2� 
 ��Q
�1� − �Q

�2�� .

�18�

he definition in equation 18 is analogous to that of the widely used
-wave velocity-splitting parameter � �S� �e.g., Helbig, 1994; Ts-
ankin, 2005�.Although � Q

�S� would be redundant as part of our nota-
ion for attenuative orthorhombic media, this parameter should play
n important role in the attenuation analysis of shear-wave data.

Substituting the attenuation-anisotropy parameters � Q
�2� and � Q

�2�

nto the VTI equations of Zhu and Tsvankin �2006� yields the follow-
ng approximate attenuation coefficients of the P- and SV-waves in
he �x1,x3� plane:

AP
�2� = AP0 �1 + � Q

�2� sin2� cos2� + �Q
�2� sin4�� , �19�

ASV
�2� = AS0 �1 + �Q

�2� sin2� cos2�� , �20�

here

�Q
�2� �

1

gQ
�2��2�1 − gQ

�2����2� +
�Q

�2� − � Q
�2�

g�2� 
 , �21�
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Orthorhombic attenuation D13
g�2� � c55/c33, gQ
�2� � Q33/Q55 = AS0/AP0,

nd
� �2� � �� �2� − � �2��/g�2�.

he approximate attenuation coefficients in equations 19 and 20
ave exactly the same form as the corresponding linearized phase-
elocity equations �Tsvankin, 1997�. However, the dependence of
he attenuation-anisotropy parameter � Q

�2� �see equations 6 and 7� on
he real parts of the stiffness coefficients reflects the coupling be-
ween the attenuation and velocity anisotropy. In contrast, the aniso-
ropic phase-velocity function is practically independent of attenua-
ion �see below�. The linearized coefficients AP

�1� and ASV
�1� in the

x2,x3� plane are adapted in the same way from the VTI equations by
sing the attenuation-anisotropy parameters � Q

�1� and � Q
�1�.

AZIMUTHAL ANALYSIS OF
P-WAVE ATTENUATION

Because of the difficulties in linearizing S-wave attenuation coef-
cients for out-of-plane phase directions, the scope of this section is

imited to P-wave attenuation. While the attenuation of the split
hear waves can be studied numerically by solving the Christoffel
quation, the area of validity of such plane-wave solutions in de-
cribing radiation from seismic sources is significantly reduced by
he distortions associated with S-wave point singularities �e.g.,
rampin, 1991�.
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igure 2. Influence of isotropic attenuation on the exact P-wave
hase velocity in orthorhombic media computed from the Christof-
el equation. Each plot corresponds to a fixed azimuthal phase angle.
he solid curves mark the velocity for a nonattenuative orthorhom-
ic model with the following parameters: VP0 = 3 km/s, � �1� = 0.25,
�2� = 0.15, � �1� = 0.05, � �2� = −0.1, and ��3� = 0.15. The dashed
urves are computed for a model with the same velocity parameters
nd strong isotropic attenuation �Q33 = Q55 = 10 �AP0 = AS0

0.05�; all attenuation-anisotropy parameters are set to zero�.
nfluence of attenuation on phase velocity

As pointed out above, the attenuation coefficients depend not just
n the quality-factor elements Qij but also on the velocity-anisotropy
arameters. In contrast, the presence of attenuation has an almost
egligible influence on the phase-velocity function in VTI media.
his result remains valid for the symmetry planes of the orthorhom-
ic model. Here, we demonstrate that attenuation-related distortions
f phase velocity can be ignored outside the symmetry planes as
ell.
In the limit of weak attenuation �1/Qij�1�, the real part of the

hristoffel equation A-1 can be simplified by dropping terms qua-
ratic in the inverse Q components. The resulting equation A-3,
hich governs the velocity function, is identical to the Christoffel

quation for the reference nonattenuative medium, both within and
utside the symmetry planes.

To evaluate the contribution of the higher-order attenuation terms,
e compute the exact P-wave phase velocity for two orthorhombic
elocity models with strong attenuation. For the first model, the at-
enuation is isotropic with a very low quality factor, Q33 = Q55 = 10
Figure 2�. Still, the maximum attenuation-related change in the
hase velocity is limited to 0.5%, which is equal to 1/2Q33

2 .
The second model has the same real part of the stiffness matrix,

ut this time accompanied by pronounced attenuation anisotropy
Figure 3�. Although the deviation of the phase-velocity function
rom that in the reference nonattenuative medium increases away
rom the vertical, it remains insignificant �up to 1%� for the whole
ange of polar and azimuthal phase angles. Although this analysis
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0.05�, � Q
�1� = � Q

�2� = 0.8, � Q
�1� = � Q

�2� = � Q
�3� = −0.5, and � Q

�1� = � Q
�2�

0.8.
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D14 Zhu and Tsvankin
oes not take into account attenuation-related velocity dispersion, it
s usually small in the frequency band typical for reflection seismol-
gy.

Hence, seismic processing for orthorhombic media with ortho-
hombic attenuation can be divided into two steps. First, one can per-
orm anisotropic velocity analysis and estimation of Tsvankin’s pa-
ameters without taking attenuation into account �e.g., Grechka and
svankin, 1999; Grechka et al., 2005�. Then the reconstructed aniso-

ropic-velocity model can be used in the processing of amplitude
easurements and inversion for the attenuation-anisotropy parame-

ers.

pproximate attenuation outside the symmetry planes

The linearized approximation for the P-wave attenuation coeffi-
ient is extended to arbitrary propagation directions outside the sym-
etry planes in theAppendix:

AP��,	� = AP0 �1 + �Q�	� sin2� cos2� + �Q �	� sin4�� ,

�22�

here � is the phase angle with the vertical �i.e., the polar angle�, 	 is
he phase angle with the x1 axis �i.e., the azimuthal angle�, and

�Q�	� = �Q
�1� sin2	 + �Q

�2� cos2	 , �23�

�Q�	� = �Q
�1� sin4	 + �Q

�2� cos4	

+ �2�Q
�2� + �Q

�3�� sin2	 cos2	 . �24�

vidently, the approximate P-wave attenuation coefficient in any
ertical plane 	 = const is described by the VTI equation �Zhu and
svankin, 2006� with the azimuthally varying parameters �Q�	� and
Q�	�. For wave propagation in the �x1,x3� plane �	 = 0°�, �Q = �Q

�2�,
Q = �Q

�2�, and equation 22 reduces to equation 19. Similarly, for the
x2,x3� plane �	 = 90°�, �Q = �Q

�1� and �Q = �Q
�1�.

Interestingly, equations 22–24 have exactly the same form as the
inearized P-wave phase-velocity equations �1.107–1.109� in
svankin �1997�. This similarity is explained by the identical sym-
etry imposed on both the real and imaginary parts of the stiffness
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igure 4. Influence of the parameter AS0 �Q55 = 1/�2AS0� is marked
n the plot� on the exact P-wave attenuation coefficient. The relevant
elocity-anisotropy parameters correspond to an orthorhombic
odel formed by vertical cracks embedded in a VTI background

Schoenberg and Helbig, 1997�: � �1� = 0.329, � �2� = 0.258, � �1� =
.083, � �2� = −0.078, and � �3� = −0.106. The P-wave vertical atten-
ation coefficient is AP0 = 0.01 �Q33 = 50�; each relevant attenua-
ion-anisotropy parameter is twice the corresponding velocity-
nisotropy parameter: �Q

�1� = 0.658, �Q
�2� = 0.516, �Q

�1� = 0.166,

Q
�2� = −0.156, and �Q

�3� = −0.212.
atrix and by the assumption of homogeneous wave propagation.
owever, an important difference between the coefficient AP and

he phase-velocity function is that the parameters �Q
�1�, �Q

�2�, and �Q
�3�

nclude a contribution of the velocity anisotropy. In contrast, as
hown above, phase velocity is practically independent of attenua-
ion. Also, the exact coefficient AP is influenced by the velocity-an-
sotropy parameters even for fixed values of �Q

�1,2,3�; this is discussed
n more detail below.

Transversely isotropic models with both vertical �VTI� and hori-
ontal �HTI� symmetry axes represent special cases of orthorhombic
edia. For VTI media with VTI attenuation, all vertical planes are

dentical, and there is no velocity or attenuation variation in the hori-
ontal �isotropy� plane:

��1� = ��2� = �, �Q
�1� = �Q

�2� = �Q,

� �1� = � �2� = �, �Q
�1� = �Q

�2� = �Q,

��1� = ��2� = �, �Q
�1� = �Q

�2� = �Q,

� �3� = 0, �Q
�3� = 0.

hen �Q�	� = �Q, �Q�	� = �Q, and equation 22 reduces to the VTI
esult:

AP
VTI = AP0 �1 + �Q sin2� cos2� + �Q sin4�� . �25�

Next, suppose that the symmetry axis of the TI medium �for both
elocity and attenuation� points in the x1 direction. In this case, there
re no property variations in the �x2,x3� plane, and

��1� = �Q
�1� = 0,

� �1� = �Q
�1� = 0,

� �1� = � Q
�1� = 0.

lso, the parameters � �3� and � �2� are no longer independent because
he �x1,x2� plane is equivalent to the �x1,x3� plane. If the velocity an-
sotropy is weak, � �3� = � �2� − 2� �2� �Tsvankin, 1997�. For weak at-
enuation anisotropy, �Q

�3� = �Q
�2� − 2�Q

�2�, and equation 24 becomes
Q�	� = �Q

�2� cos4 	 + �Q
�2� sin2 	 cos2 	. Then the attenuation coeffi-

ient in equation 22 takes the form

AP
HTI = AP0 �1 + �Q

�2� cos2	 sin2� cos2�

+ ��Q
�2� cos4	 + � Q

�2� sin2	 cos2	� sin4�� . �26�

arameters for P-wave attenuation

The linearized P-wave attenuation coefficient in equation 22 is in-
ependent of the parameters AS0, �Q

�1�, and �Q
�2�, which are primarily

esponsible for S-wave attenuation. Numerical tests show that this
onclusion remains valid for the exact coefficient AP in models with
trong attenuation and pronounced velocity and attenuation aniso-
ropy. As illustrated by Figure 4, the dependence of AP on the
-wave vertical attenuation coefficient AS0 becomes noticeable only
or extremely large attenuation �i.e., uncommonly small values of

55�. The influence of the parameters �Q
�1� and �Q

�2� on the coefficient
P �not shown here� for typical moderately attenuative models is

lso negligible.
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Therefore, for a fixed orientation of the symmetry planes and
xed velocity parameters, P-wave attenuation is controlled by the
eference value AP0 and five attenuation-anisotropy parameters
�Q

�1�, �Q
�2�, �Q

�1�, �Q
�2�, and �Q

�3��. An equivalent result for velocity aniso-
ropy was obtained by Tsvankin �1997�, who showed that the
-wave phase-velocity function in orthorhombic media is governed
y just the vertical velocity VP0 and the parameters � �1,2� and � �1,2,3�.
However, the numerical results discussed below reveal an impor-

ant difference between attenuation and velocity anisotropy. Even if
ll attenuation-anisotropy parameters are held constant, the exact
-wave attenuation coefficient depends somewhat on the P-wave
elocity-anisotropy parameters � �1,2� and � �1,2,3�.3

ccuracy of the linearized solution and influence of
he velocity parameters

To evaluate the accuracy of the weak-anisotropy approximation
2 outside the symmetry planes, we compare it with the exact coeffi-
ient AP computed from the Christoffel equation for a model with
ronounced orthorhombic attenuation �Figure 5�. The velocity pa-

3According to our numerical testing, P-wave attenuation is practically inde
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igure 5. Comparison of the exact P-wave attenuation coefficient AP

solid curves� with the linearized approximation 22 �dashed� for the
odel with orthorhombic velocity and attenuation from Figure 4

Q55 = 40�.
ameters correspond to the moderately anisotropic model of Schoen-
erg and Helbig �1997�. Since no measurements of the attenuation-
nisotropy parameters are available, each of them is set to be twice as
arge as the corresponding velocity-anisotropy parameter �e.g.,

Q
�2� = 2� �2��.
As expected, the weak-anisotropy approximation gives satisfac-

ory results for near-vertical propagation directions with polar an-
les up to about 30°. The error becomes more significant for interme-
iate propagation angles in the range 30°
�
75°. When the inci-
ence plane is close to either vertical symmetry plane �i.e., the azi-
uth 	 approaches 0° or 90°�, the approximate solution also yields

n accurate estimate of AP near the horizontal direction. Overall, the
rror of the weak-anisotropy approximation for the full range of po-
ar and azimuthal angles is less than 15%. Note that while the veloci-
y anisotropy for this model is moderate �both � �1� and � �2� are about
.3�, the attenuation anisotropy is much more pronounced.

To identify the source of errors in the weak-anisotropy approxi-
ation, we repeat the test in Figure 5 using a purely isotropic veloci-

y model �Figure 6�. The approximate solution �dashed lines� in Fig-

t of the shear-wave velocity parameters � �1� and � �2�.
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igure 6. Comparison of the exact coefficient AP �solid curves� with
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D16 Zhu and Tsvankin
re 6 coincides with that in Figure 5, because the models have identi-
al attenuation-anisotropy parameters. The exact attenuation coeffi-
ient AP �solid lines�, however, is influenced by the velocity-
nisotropy parameters in such a way that the error of the weak-
nisotropy approximation almost disappears when the velocity field
s isotropic �Figure 6�.

Hence, the accuracy of approximation 22 is controlled primarily
y the strength of the P-wave velocity anisotropy. This can be ex-
lained by the multiple linearizations in the velocity-anisotropy pa-
ameters involved in deriving equations A-4 and A-7. Therefore,
quation 22 gives an adequate qualitative description of P-wave at-
enuation �under the assumption of homogeneous wave propaga-
ion� for models with weak or moderate velocity anisotropy, even if
he attenuation anisotropy is much stronger.

It should be emphasized that the contribution of different subsets
f the velocity-anisotropy parameters to the attenuation coefficient

P varies with the azimuth 	.As illustrated in Figure 7, the influence
f the parameters � �2� and � �2� defined in the �x1,x3� plane �i.e., for the
zimuth 	 = 0°� decreases with azimuth and completely vanishes in
he orthogonal �x2� direction. Indeed, according to the Christoffel
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igure 7. Influence of the P-wave velocity anisotropy on the exact at-
enuation coefficient AP. The solid curves are computed for the
rthorhombic model with orthorhombic attenuation from Figures 4
nd 5. The dashed curves are obtained by setting the velocity-aniso-
ropy parameters � �2� and � �2� defined in the �x1,x3� plane �azimuth

= 0°� to zero; all other model parameters are unchanged.
quation, the exact P-wave attenuation coefficient in either vertical-
ymmetry plane is fully determined by the velocity- and attenuation-
nisotropy parameters defined in that plane.

CONCLUSIONS

The attenuation coefficients of P-, S1-, and S2-waves in ortho-
hombic media with orthorhombic attenuation depend on the orien-
ation of the symmetry planes, nine velocity parameters, and nine
omponents of the quality-factor matrix. The large number of inde-
endent parameters, compounded by the coupling between the at-
enuation and velocity anisotropy, makes attenuation analysis for
his model extremely difficult. Here, we demonstrated that the de-
cription of attenuation coefficients in orthorhombic media can be
ubstantially simplified by introducing a set of attenuation-anisotro-
y parameters similar to Tsvankin’s notation for the velocity func-
ion. While we do not use any specific physical model, it is assumed
hat the real and imaginary parts of the stiffness tensor have identical
ymmetry and wave propagation is homogeneous �i.e., the inhomo-
eneity angle is negligible�.

The equivalence between the Christoffel equation in the symme-
ry planes of orthorhombic and VTI media, established previously
or purely elastic media, holds in the presence of orthorhombic at-
enuation. Therefore, the symmetry-plane attenuation coefficients of
ll three modes can be obtained by simply adapting the known VTI
quations.Also, our Thomsen-style notation for attenuative VTI me-
ia can be extended to orthorhombic models following the approach
uggested by Tsvankin for velocity anisotropy. The parameter set in-
roduced here includes the vertical P- and S-wave attenuation coeffi-
ients �AP0 and AS0� and seven dimensionless anisotropy parameters
�Q

�1,2�, �Q
�1,2,3�, and �Q

�1,2��.
Adaptation of the approximate VTI equations allows us to obtain

oncise symmetry-plane attenuation coefficients of P-, S1-, and
2-waves valid for small attenuation and weak velocity and attenua-

ion anisotropy. Furthermore, linearization of the Christoffel equa-
ion in the anisotropy parameters yields the P-wave attenuation coef-
cient AP outside the symmetry planes as a simple function of AP0,

Q
�1,2�, and �Q

�1,2,3�. The influence of the parameters AS0 and �Q
�1,2� on

-wave attenuation is negligible even for large attenuation anisotro-
y.

The linearized coefficient AP has the same form as the approxi-
ate P-wave phase-velocity function in terms of Tsvankin’s velocity

arameters and can be represented by the VTI equation with the azi-
uthally varying parameters �Q and �Q. This equivalence between

he linearized equations for attenuation and velocity anisotropy
tems from the identical �orthorhombic� symmetry of the real and
maginary parts of the stiffness tensor and from the assumption of
omogeneous wave propagation. Still, there are important differ-
nces between the treatment of velocity and attenuation anisotropy.
n the absence of pronounced velocity dispersion, the influence of at-
enuation �i.e., of the imaginary part of the stiffness tensor� on veloc-
ty is practically negligible. In contrast, the definitions of the attenua-
ion-anisotropy parameters �Q

�1,2,3� include the velocity parameters
�1,2,3�.
Also, the exact attenuation coefficient AP is somewhat dependent

n the P-wave velocity-anisotropy parameters � �1,2� and � �1,2,3�, even
or fixed values of AP0, �Q

�1,2�, and �Q
�1,2,3�. Moreover, the accuracy of

he linearized equation for AP is controlled to a large degree by the
trength of the P-wave velocity anisotropy. Numerical tests demon-
trate that the approximate A remains close to the exact value even
P
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or large �by absolute value� attenuation-anisotropy parameters, pro-
ided the velocity anisotropy is moderate.

Thus, the P-wave attenuation coefficient is governed primarily by
he orientation of the symmetry planes and six �instead of nine� at-
enuation-anisotropy parameters: AP0, �Q

�1,2�, and �Q
�1,2,3�. However,

ince for models with pronounced velocity variations, AP is also in-
uenced by the parameters � �1,2� and � �1,2,3�, accurate inversion of at-

enuation measurements may have to involve anisotropic velocity
nalysis. Also, knowledge of the anisotropic velocity field is needed
o obtain the normalized attenuation coefficient A and to correct for
he difference between the phase attenuation coefficient studied here
nd the group attenuation coefficient responsible for the amplitude
ecay along seismic rays. Overall, these results provide an analytic
oundation for estimating the attenuation-anisotropy parameters
rom wide-azimuth seismic data.

Whereas this study is restricted to homogeneous wave propaga-
ion, the inhomogeneity angle in layered attenuative media is not
ecessarily small, and its influence deserves further analysis. We
lso assumed that the symmetry planes for the velocity and attenua-
ion functions are aligned, which is justified for effective azimuthal-
y anisotropic media caused by systems of parallel fractures. Still,
or more complicated porous, fractured models, this assumption
ay break down, and most of our developments would need to be re-

ised. Finally, if the quality-factor matrix varies with frequency, the
ttenuation-anisotropy parameters also become frequency-depen-
ent, although their definitions remain the same.
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APPENDIX A

APPROXIMATE ATTENUATION OUTSIDE THE
SYMMETRY PLANES OF

ORTHORHOMBIC MEDIA

The complex Christoffel equation for homogeneous wave propa-
ation outside the symmetry planes can be written as

�c11n1
2 + c66n2

2 + c55n3
2�K1,�1,6,5� − �V2 + i�c11n1

2 + c66n2
2

+ c55n3
2�K2,�1,6,5�� � ���c66n1

2 + c22n2
2 + c44n3

2�K1,�6,2,4�

− �V2 + i�c66n1
2 + c22n2

2 + c44n3
2�K2,�6,2,4�� � ��c55n1

2

+ c44n2
2 + c33n3

2�K1,�5,4,3� − �V2 + i�c55n1
2 + c44n2

2

+ c33n3
2�K2,�5,4,3�� − ��c23 + c44�n2n3�K1,�23,44�

+ iK2,�23,44���2� − ��c12 + c66�n1n2�K1,�12,66�

+ iK2,�12,66��� � ���c12 + c66�n1n2�K1,�12,66�

+ iK2,�12,66��� � ��c55n
2 + c44n

2 + c33n
2�K1,�5,4,3�
1 2 3
− �V2 + i�c55n1
2 + c44n2

2 + c33n3
2�K2,�5,4,3��

− ��c13 + c55�n1n3�K1,�13,55� + iK2,�13,55��� � ��c23

+ c44�n2n3�K1,�23,44� + iK2,�23,44����

+ ��c13 + c55�n1n3�K1,�13,55� + iK2,�13,55��� � ���c12

+ c66�n1n2�K1,�12,66� + iK2,�12,66��� � ��c23 + c44�

�n2n3�K1,�23,44� + iK2,�23,44��� − ��c13 + c55�n1n3

��K1,�13,55� + iK2,�13,55��� ��c66n1
2 + c22n2

2 + c44n3
2�

�K1,�6,2,4� − �V2 + i�c66n1
2 + c22n2

2 + c44n3
2�

�K2,�6,2,4��� = 0, �A-1�

here

K1 = 1 − A2 +
2

Q33
A, K2 =

1 − A2

Q33
− 2A ,

K1,�i,j,l� = K1 + 2
��i,j,l�

Q33
A, K2,�i,j,l� = K2 +

��i,j,l�

Q33
�1 − A2� ,

K1,�ij,kl� = K1 + 2
��ij,kl�

Q33
A, K2,�ij,kl� = K2 +

��ij,kl�

Q33
�1 −A2� ,

��i,j,l� =

cii n1
2
Q33 − Qii

Qii

+ cjj n2
2
Q33 − Qjj

Qjj

+ cll n3
2
Q33 − Qll

Qll

cii n1
2 + cjj n2

2 + cll n3
2

,

��ij,kl� =

cij

Q33 − Qij

Qij
+ ckl

Q33 − Qkl

Qkl

cij + ckl
.

ote that A�kI/k is on the order of the inverse Q-factor �1/Q�.
hen the attenuation is weak �A�1�, we obtain K1 
1 and

2 
1/Q33 − 2A by dropping the quadratic and higher-order terms
n A �i.e., in 1/Q�. Assuming that Q33 and Q55 are of the same order
the common case�, weak-attenuation anisotropy implies the same
rder for all components Qij. Hence, the magnitude of the terms

�i,j,l� and ��ij,kl� cannot be much larger than unity. Then the terms
��i,j,l�/Q33�A, ���ij,kl�/Q33�A, ���i,j,l�/Q33�A2, and ���ij,kl�/Q33�A2 are
ither quadratic or cubic in A. Dropping these terms yields K1,�i,j,l�

1, K2,�i,j,l� 
�1 + ��i,j,l��/Q33 − 2A, K1,�ij,kl� 
1, and K2,�ij,kl� 
�1
��ij,kl��/Q33 − 2A.
Next, we denote C�i,j,l� = cii n1

2 + cjj n2
2 + cll n3

2 and C�ij,kl� = �cij

ckl�ninj and simplify equation A-1 for weak attenuation and weak
ttenuation anisotropy as
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�C�1,6,5� − �V2 + iC�1,6,5��1 + ��1,6,5�

Q33
− 2A�


���C�6,2,4� − �V2 + iC�6,2,4��1 + ��6,2,4�

Q33
− 2A�


��C�5,4,3� − �V2 + iC�5,4,3��1 + ��5,4,3�

Q33
− 2A�


− C�23,44�
2 �1 + i�1 + ��23,44�

Q33
− 2A�
2�

− C�12,66��1 + �1 + ��12,66�

Q33
− 2A�


��C�12,66��1 + �1 + ��12,66�

Q33
− 2A�


��C�5,4,3� − �V2 + iC�5,4,3��1 + ��5,4,3�

Q33
− 2A�


− C�13,55��1 + �1 + ��13,55�

Q33
− 2A�


�C�23,44��1 + i�1 + ��23,44�

Q33
− 2A�
�

+ C�13,55��1 + i�1 + ��13,55�

Q33
− 2A�


��C�12,66��1 + i�1 + ��12,66�

Q33
− 2A�


�C�23,44��1 + i�1 + ��23,44�

Q33
− 2A�


− C�13,55��1 + i�1 + ��13,55�

Q33
− 2A�


��C�6,2,4� − �V2 + iC�6,2,4��1 + ��6,2,4�

Q33
− 2A�
�

= 0. �A-2�

he real part of equation A-2 is

c11n1
2 + c66n2

2 + c55n3
2 − �V2���c66n1

2 + c22n2
2 + c44n3

2

− �V2��c55n1
2 + c44n2

2 + c33n3
2 − �V2�

− �c23 + c44�2 n2
2n3

2� − �c12 + c66�n1n2��c12 + c66�

�n1n2�c55n1
2 + c44n2

2 + c33n3
2 − �V2� − �c13 + c55��c23

+ c44�n1n2n3
2� + �c13 + c55�n1n3��c12 + c66��c23

+ c44�n1n2n3
2 − �c13 + c55�n1n3�c66n1

2 + c22n2
2 + c44n3

2

− �V2�� = 0, �A-3�

hich is identical to the Christoffel equation for the reference nonat-
enuative medium.
The normalized attenuation coefficient A is obtained from the
maginary part of equation A-2:

A =
1

2Q33
�1 +

Hu

Hd
� , �A-4�

here

u = ��1,6,5� C�1,6,5���C�6,2,4� − �V2�

��C�5,4,3� − �V2� − C�23,44�
2 � + ��6,2,4� C�6,2,4�

���C�1,6,5� − �V2��C�5,4,3� − �V2� − C�13,55�
2 �

+ ��5,4,3� C�5,4,3���C�1,6,5� − �V2��C�6,2,4� − �V2�

− C�12,66�
2 � − 2��13,55� C�13,55�

2 �C�6,2,4� − �V2�

− 2��12,66� C�12,66�
2 �C�5,4,3� − �V2�

− 2��23,44� C�23,44�
2 �C�1,6,5� − �V2� + 2���13,55�

+ ��12,66� + ��23,44�� C�13,55� C�12,66� C�23,44� �A-5�

nd

Hd = �V2 ��C�1,6,5� − �V2��C�6,2,4� − �V2� + �C�1,6,5� − �V2�

��C�5,4,3� − �V2� + �C�6,2,4� − �V2��C�5,4,3� − �V2�

− C�12,66�
2 − C�13,55�

2 − C�23,44�
2 � . �A-6�

he term Hu/Hd in equation A-4 can be expressed through the veloc-
ty- and attenuation-anisotropy parameters. Assuming that the an-
sotropy is weak for both velocity and attenuation, we drop the qua-
ratic and higher-order terms in all anisotropy parameters to obtain

Hu = c33�c33 − c55�2 ��Q
�2�n1

4 + �Q
�1�n2

4 + �2�Q
�2� + �Q

�3��n1
2 n2

2

+ �Q
�2�n1

2n3
2 + �Q

�1�n2
2n3

2� ,

Hd = c33�c33 − c55���c33 − c55��1 + 2��2�n1
4 + 2��1�n2

4

+ 2� �2�n1
2n3

2 + 2� �1�n2
2 n3

2 + 4��2�n1
2 n2

2 + 2� �3�n1
2 n2

2�

+ c33 ���1��− 2n2
2 + 6n2

4� + ��2��− 2n1
2 + 6n1

4

+ 12n1
2 n2

2� + 6� �1�n2
2 n3

2 + 6� �2�n1
2 n3

2 + 6� �3�n1
2 n2

2�

+ 2c55�� �1��− 1 − n2
2� + � �2��1 − n1

2��� . �A-7�

ote that since Hu is linear in the anisotropy parameters, it is suffi-
ient to keep just the isotropic part of Hd. Substitution of equations
-6 and A-7 into equation A-4 yields the final form of the approxi-
ate P-wave attenuation coefficient given in the main text in equa-

ion 22.
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