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ffective attenuation anisotropy of thin-layered media
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ABSTRACT

One of the well-known factors responsible for the anisotropy
of seismic attenuation is interbedding of thin attenuative layers
with different properties. Here, we apply Backus averaging
to obtain the complex stiffness matrix of an effective medium
formed by an arbitrary number of anisotropic, attenuative con-
stituents. Unless the intrinsic attenuation is uncommonly strong,
the effective velocity function is controlled by the real-valued
stiffnesses �i.e., independent of attenuation� and can be deter-
mined from the known equations for purely elastic media. Atten-
uation analysis is more complicated because the attenuation pa-
rameters are influenced by the coupling between the real and
imaginary parts of the stiffness matrix. The main focus of this
work is on effective transversely isotropic models with a vertical
symmetry axis �VTI� that include isotropic and VTI constituents.
Assuming that the stiffness contrasts, as well as the intrinsic ve-
locity and attenuation anisotropy, are weak, we develop explicit
first-order �linear� and second-order �quadratic� approximations
for the attenuation-anisotropy parameters �Q, �Q, and �Q. Where-
as the first-order approximation for each parameter isgiven sim-
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D93
ly by the volume-weighted average of its interval values, the
econd-order terms include coupling between various factors re-
ated to both heterogeneity and intrinsic anisotropy. Interesting-
y, the effective attenuation for P- and SV-waves is anisotropic
ven for a medium composed of isotropic layers with identical at-
enuation, provided there is a velocity variation among the con-
tituent layers. Contrasts in the intrinsic attenuation, however, do
ot create attenuation anisotropy, unless they are accompanied
y velocity contrasts. Extensive numerical testing shows that the
econd-order approximation for �Q, �Q, and �Q is close to the ex-
ct solution for most plausible subsurface models. The accuracy
f the first-order approximation depends on the magnitude of the
uadratic terms, which is largely governed by the strength of the
elocity �rather than attenuation� anisotropy and velocity con-
rasts. The effective attenuation parameters for multiconstituent
TI models vary within a wider range than do the velocity pa-

ameters, with almost equal probability of positive and negative
alues. If some of the constituents are azimuthally anisotropic
ith misaligned vertical symmetry planes, the effective velocity

nd attenuation functions may have different principal azimuthal
irections or even different symmetries.
INTRODUCTION

The directional dependence of attenuation has been observed in
aboratory experiments �e.g., Hosten et al., 1987; Tao and King,
990; Prasad and Nur, 2003; Zhu et al., 2007� and several field case
tudies �e.g., Lynn et al., 1999; Vasconcelos and Jenner, 2005�. Al-
hough the substantial magnitude of attenuation anisotropy for many
ubsurface formations is unquestionable, the underlying physical
echanisms are not completely understood.
In their analysis of a shallow multiazimuth reverse vertical seis-
ic profile �VSP� survey, Liu et al. �1993� estimate anisotropy in
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oth velocity and attenuation, and attribute it to stress-induced frac-
ures and microcracks. Pointer et al. �2000� discuss three different

echanisms for wave-induced fluid flow in cracked porous media
hat might result in anisotropic velocity and attenuation functions
hen the cracks are aligned. A poroelastic model introduced by
hapman �2003� in his discussion of frequency-dependent anisotro-
y can explain strong anisotropic attenuation in the seismic frequen-
y band. Using Chapman’s model, Maultzsch et al. �2003� estimate
he Q-factor as a function of phase angle for synthetic samples com-
osed of sand-epoxy matrix with embedded thin metal discs. Analy-
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D94 Zhu et al.
is of seismic body waves and normal-mode data shows that even the
nner core of the earth possesses attenuation anisotropy likely caused
y columnar crystals elongated in the radial direction �Souriau and
omanowicz, 1996; Bergman, 1997�.
Another possible cause of effective attenuation anisotropy is in-

erbedding of thin layers with different velocities and attenuation co-
fficients. Long-wavelength velocity anisotropy of layered media is
iscussed extensively in the literature �e.g., Backus, 1962; Berry-
an, 1979; Schoenberg and Muir, 1989; Shapiro and Hubral, 1996;
erryman et al., 1999; Bakulin, 2003; Bakulin and Grechka, 2003�.
lthough attenuation anisotropy usually accompanies velocity an-

sotropy �e.g., Tao and King, 1990; Arts and Rasolofosaon, 1992�,
uch less attention has been devoted to studies of the effective prop-

rties of layered attenuative media. Sams �1995� measures effective
ttenuation coefficients partially associated with apparent �layer-in-
uced� attenuation, but his work is restricted to isotropic attenuation
odels. Molotkov and Bakulin �1998� introduce a matrix-averaging

echnique for a stratified lossy medium and obtain an effective Biot
edium with anisotropic viscosity and relaxation. By employing the

orrespondence principle �Bland, 1960� for thin-layered viscoelas-
ic media, Carcione �1992� derives the complex stiffnesses of effec-
ive media composed of attenuative, isotropic constituent layers.
his effective stiffness matrix can be used to quantify the anisotropy
f both velocity and attenuation.

Here, we analyze the effective properties of a sequence of attenua-
ive, anisotropic layers. The discussion is focused primarily on trans-
ersely isotropic �TI� constituents with a vertical symmetry axis for
oth velocity and attenuation. First, the Backus averaging technique
s used to obtain the exact stiffness matrix in the low-frequency limit.
hen we develop the first- and second-order approximations for the
ffective velocity and attenuation anisotropy in terms of the interval
nisotropy parameters and stiffness contrasts. The second-order
quadratic� solution is particularly helpful in evaluating the contri-
utions of various factors to the effective attenuation-anisotropy pa-
ameters. Numerical tests demonstrate that the performance of the
pproximations is mostly influenced by the velocity field �i.e., by the
eal parts of the stiffness coefficients�. Simulations for a representa-
ive set of random-layered TI models allow us to estimate the bounds
n the effective velocity and attenuation parameters. Finally, we
onsider azimuthally anisotropic constituent layers and discuss pos-
ible differences between the symmetries of the velocity and attenu-
tion functions.

EFFECTIVE PARAMETERS FOR ATTENUATIVE,
ANISOTROPIC LAYERS

The Backus �1962� averaging technique originally was designed
o compute the effective properties of a stack of elastic �nonattenua-
ive�, isotropic layers in the long-wavelength limit. Here, we derive
he effective stiffness coefficients for stratified models composed of
ttenuative, arbitrarily anisotropic layers.

Suppose a thin-layered model includes N types of constituents
hose spatial distribution is stationary across the layers. For sim-
licity, throughout the paper the layering plane is assumed to be hor-
zontal. The medium properties are constant within each layer but
hange across layer boundaries �medium interfaces�. Different lay-
rs belong to the same constituent if they have identical medium
roperties, including both velocity and attenuation. For example,
ven a minimum of two interbedding constituents makes it possible
o form a model with any desired number of thin layers.
The Backus averaging technique for both elastic and attenuative
edia is applied in the long-wavelength limit, which means the

ominant wavelength is much larger than the thickness of each layer.
ollowing Backus �1962� and Schoenberg and Muir �1989�, we as-
ume that in the time domain the components of the traction vector
hat acts across �horizontal� interfaces are the same for all layers:

� 13
�k� � � 13, � 23

�k� � � 23, � 33
�k� � � 33, �1�

here the superscript denotes the kth constituent. The in-plane strain
omponents are also supposed to be the same:

e11
�k� � e11, e22

�k� � e22, e12
�k� � e12. �2�

quations 1 and 2 remain valid for the frequency-domain counter-
arts of the stress and strain elements:

�̃ 13
�k� � �̃ 13, �̃ 23

�k� � �̃ 23, �̃ 33
�k� � �̃ 33 �3�

nd

ẽ11
�k� � ẽ11, ẽ22

�k� � ẽ22, ẽ12
�k� � ẽ12, �4�

here all quantities become complex valued �denoted by the tilde�.
Because all stress and strain components in equations 3 and 4 are

ust the complex counterparts of the corresponding quantities in
quations 1 and 2, the effective stiffnesses for layered attenuative
edia can be obtained using the results of Schoenberg and Muir

1989� for purely elastic models:

C̃NN = �C̃NN
−1 �−1, �5�

C̃TN = �C̃TN C̃NN
−1 �C̃NN, �6�

nd

C̃TT = �C̃TT� − �C̃TN C̃NN
−1 C̃NT �

+ �C̃TN C̃NN
−1 � C̃NN �C̃NN

−1 C̃NT� , �7�

here �·� denotes the volume-weighted average. The submatrices for
ach constituent have the following form �in Voigt notation�:

C̃NN
�k� = �c̃33 c̃34 c̃35

c̃34 c̃44 c̃45

c̃35 c̃45 c̃55
� , �8�

C̃TN
�k� = C̃NT

�k�T = �c̃13 c̃14 c̃15

c̃23 c̃24 c̃25

c̃36 c̃46 c̃56
� , �9�

nd

C̃TT
�k� = �c̃11 c̃12 c̃16

c̃12 c̃22 c̃26

c̃16 c̃26 c̃66
� . �10�

Equations 5–10 completely describe the effective properties for
ny number of constituents with arbitrary anisotropy in terms of both
elocity and attenuation.
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Attenuation anisotropy of layered media D95
ffective stiffnesses for TI media

TI layers �primarily shales and shaly sands� are common for sedi-
entary basins �Sayers, 1994; Tsvankin, 2005�. Here, we consider a

ayered medium composed of TI constituents with a vertical symme-
ry axis for both velocity and attenuation. Substituting the complex
tiffness matrix c̃ij of the VTI constituent layers �e.g., Carcione,
001� into equations 5–10 yields an effective attenuative VTI model
ith five independent complex stiffnesses:

c̃11 = �c̃11� − ��c̃13�2

c̃33
	 + � 1

c̃33
	−1� c̃13

c̃33
	2

, �11�

c̃33 = � 1

c̃33
	−1

, �12�

c̃13 = � 1

c̃33
	−1� c̃13

c̃33
	 , �13�

c̃55 = � 1

c̃55
	−1

, �14�

c̃66 = �c̃66� , �15�

ith c̃12 = c̃11 − 2c̃66.
The effective velocity-anisotropy parameters in Thomsen �1986�

otation are obtained using the real parts cij of the effective stiff-
esses c̃ij from equations 11–15:

VP0 � 
c33

�
, VS0 � 
c55

�
, �16�

� �
c11 − c33

2c33
, �17�

� �
�c13 + c55�2 − �c33 − c55�2

2c33�c33 − c55�
, �18�

� �
c66 − c55

2c55
, �19�

here � = ��� is the volume-averaged density.
To characterize attenuative anisotropy, we employ the effective

ttenuation-anisotropy parameters defined by Zhu and Tsvankin
2006�:

�Q �
Q33 − Q11

Q11
, �20�

�Q �

Q33 − Q55

Q55
c55

�c13 + c33�2

�c33 − c55�
+ 2

Q33 − Q13

Q13
c13�c13 + c55�

c33�c33 − c55�
,

�21�
�Q �
Q55 − Q66

Q66
, �22�

here Qij = cij/cij
I is the quality-factor matrix �no index summation

s applied� and cij
I is the imaginary part of the stiffness c̃ij.

These parameters help to significantly simplify the analytic de-
cription of the wavenumber-normalized attenuation coefficient

�kI/k in TI media �k and kI are the real and imaginary parts of the
omplex wavenumber k̃ �. The notation of Zhu and Tsvankin �2006�
lso includes two reference quantities — the rate of amplitude decay
er wavelength in the symmetry �vertical� direction for P- and
-waves �AP0 and AS0, respectively�:

AP0 = Q33�
1 +
1

�Q33�2 − 1� 

1

2Q33
�23�

nd

AS0 = Q55�
1 +
1

�Q55�2 − 1� 

1

2Q55
. �24�

he approximate versions of equations 23 and 24 are obtained in the
eak-attenuation limit by keeping only the linear terms in 1/Qii

ii = 33 or 55�.

APPROXIMATE ATTENUATION PARAMETERS
OF EFFECTIVE VTI MEDIA

Explicit equations for the effective stiffnesses in terms of the in-
erval parameters have a rather complicated form. To evaluate the in-
uence of different factors on the effective parameters, we present
pproximate expressions developed under the assumption of weak
ntrinsic velocity and attenuation anisotropy as well as small con-
rasts in the stiffnesses between the constituents.

Unless the medium is strongly attenuative and has nonnegligible
ispersion, the influence of the quality-factor elements on phase ve-
ocity is of the second order and typically can be ignored �Červený
nd Pšenčík, 2005; Zhu and Tsvankin, 2006�. Hence, the effective
elocity-anisotropy parameters practically coincide with those
or the purely elastic model defined by the real parts of the stiffness
lements. Because a detailed description of the velocity anisot-
opy of fine-layered VTI media can be found in Bakulin �2003�, the
iscussion below focuses primarily on the attenuation-anisotropy
arameters.

irst-order approximation

Approximate effective parameters can be derived by expanding
he exact equations in the small quantities �velocity- and attenua-
ion-anisotropy parameters and the contrasts in the stiffnesses� and
eglecting higher-order terms. In the first-order �linear� approxima-
ion, the effective value of any anisotropy parameter is equal to its
olume-weighted average �Bakulin and Grechka, 2003�. For exam-
le, the linearized parameter � can be written as

� = ��� = �
k = 1

N

��k���k�, �25�

here ��k� is the volume fraction of the kth constituent. Similarly, for
he attenuation-anisotropy parameter � , we have
Q
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D96 Zhu et al.
�Q = ��Q� = �
k = 1

N

��k��Q
�k�. �26�

vidently, the effective medium properties in the long-wavelength
imit are independent of the spatial sequence of the constituents,
hich can be arranged in an arbitrary order.

econd-order approximation

The second-order approximation for the effective velocity-anisot-
opy parameters of two-constituent VTI media is given by Bakulin
2003�. Here, we present a more general analysis that accounts for
ttenuation and allows for an arbitrary number of VTI constituents.

The parameters assumed to be small for each constituent k
nclude �̂c33

�k�, �̂c55
�k�, �̂Q33

�k�, �̂Q55
�k�, � �k�, � �k�, � �k�, �Q

�k�, �Q
�k�, and �Q

�k�,
here �̂cii

�k� and �̂Qii
�k� quantify the magnitude of property variations

n the model:

�̂cii
�k� =

�cii
�k�

c̄ii

, �27�

�̂Qii
�k� =

�Qii
�k�

Q̄ii

, ii = 33 or 55. �28�

ere, c̄ii = �1/N��k=1
N cii

�k� and Q̄ii = �1/N��k=1
N Qii

�k� are the arithmetic
verages of cii and Qii, while �cii

�k� = cii
�k� − c̄ii and �Qii

�k� = Qii
�k� − Q̄ii

enote the deviations from the average values. Note that we do not
reat the squared vertical-velocity ratio ḡ = c̄55/c̄33 and the vertical-
ttenuation ratio ḡQ = Q̄33/Q̄55 as small parameters. We assume,
owever, that the attenuation is not uncommonly strong so that qua-
ratic and higher-order terms in 1/Qii can be neglected.
The quadratic approximations for both velocity and attenuation

nisotropy are given inAppendix A, where c13 is assumed to be posi-
ive. For the special case of two constituents �N = 2�, our velocity-
nisotropy parameters become identical to those given by Bakulin
2003�.

In principle, the exact effective velocity-anisotropy parameters
epend on all possible factors, including the quality-factor matrix
hat describes the intrinsic attenuation. However, unless the model
as extremely high attenuation with some of the quality-factor com-
onents smaller than 10, the effective velocity anisotropy is con-
rolled by the real part of the stiffness matrix and is not sensitive to
he attenuation parameters.

In contrast, the effective attenuation anisotropy is influenced not
ust by the intrinsic attenuation and the contrasts in the attenuation
arameters but also by the velocity parameters. The second-order
pproximations for the effective Thomsen-style attenuation parame-
ers are given by �see equations A-37,A-43, andA-15�

�Q = ��Q� + �Q
�is� + �Q

�is-Van� + �Q
�is-Qan� + �Q

�Van-Qan�, �29�

�Q = ��Q� + �Q
�is� + �Q

�is-Qan� + �Q
�Van-Qan� + �Q

�Van�, �30�

nd

�Q = ��Q� + �Q
�is� + �Q

�is-Van� + �Q
�is-Qan� + �Q

�Van-Qan�, �31�

here �·� is the first-order term equal to the volume-weighted aver-
ge of the intrinsic parameter values, and the rest of the terms are
uadratic �second-order� in the small parameters listed above. The
uperscript �is� refers to the contribution of the parameters �cii
�k� and

Qii
�k� �i = 3,5�, which quantify the heterogeneity �contrasts� of the

sotropic quantities, while �Van� depends on the velocity-anisotropy
ontrasts. The superscripts �is-Van�, �is-Qan�, and �Van-Qan� denote
he quadratic terms that represent, respectively, the coupling be-
ween the isotropic heterogeneity and velocity-anisotropy contrasts,
etween the isotropic heterogeneity and attenuation-anisotropy con-
rasts, and between the contrasts in velocity and attenuation aniso-
ropy.

Note that there are no quadratic terms in the velocity-anisotropy
ontrasts, denoted by �Van�, in equation 29 for �Q and in equation 31
or �Q. The parameter �Q in equation 30 does include the term �Q

�Van�

ut not �Q
�is-Van�, which is similar to the structure of equation A-32 for

he velocity-anisotropy parameter �. It is interesting that while the
econd-order approximations for �Q, �Q, and �Q depend on the cou-
ling between the intrinsic attenuation anisotropy and other factors
the intrinsic velocity anisotropy and the isotropic heterogeneity�,
one of them contains the sole contribution of the intrinsic attenua-
ion-anisotropy parameters �i.e., there are no terms with the super-
cript �Qan��. The leading �first-order� terms, however, are entirely
ontrolled by the corresponding average attenuation-anisotropy
arameters.

Explicit expressions for all second-order terms are listed in Ap-
endix A. Equations A-43–A-48 show that the parameter �Q is inde-
endent of the intrinsic-anisotropy parameters � �k� and �Q

�k�; this re-
ult follows directly from the exact equation 21. In contrast, �Q is in-
uenced by all anisotropy parameters responsible for the velocities
f P- and SV-waves �� �k�, � �k�, �Q

�k�, and �Q
�k�� because these parameters

ontribute to the effective values of c11 and Q11 �equation A-21�.
According to equations A-39 and A-45, the isotropic-heterogene-

ty terms �Q
�is� and �Q

�is� vanish when both c55
�k� and Q55

�k� �or c55
�k� and c33

�k��
re constant for all constituents. �The parameter �Q

�is� in equation
-17 goes to zero if either c55

�k� = const or Q55
�k� = const.� This is a gen-

ralization of a well-known result for the effective velocity anisotro-
y of nonattenuative media. As discussed by Postma �1955� and
akulin �2003�, the velocity-heterogeneity terms � �is�, � �is�, � �is� go to
ero if c55

�k� = const.
Also, the term � �is� = 0 if the vertical-velocity ratio VP0

�k�/VS0
�k� �or

55
�k�/c33

�k�� is constant for all constituents �see equation A-34� because
hen �c55/c̄55 = �c33/c̄33. The parameter �Q

�is� in equation A-45, how-
ver, does not possess such a property. Even if c55

�k�/c33
�k� = const and

55
�k�/Q33

�k� = const, �Q
�is� does not vanish unless ḡQ = 1 �i.e., the aver-

ge Q̄33 and Q̄55 are identical�.

elocity contrast versus attenuation contrast

Whereas the effective velocity anisotropy caused by velocity vari-
tions among the constituents is generally well understood �e.g.,
ackus, 1962; Brittan et al., 1995; Werner and Shapiro, 1999�, it is
nclear how velocity contrasts contribute to the effective attenuation
nisotropy. In this section, we compare the influence of the velocity
nd attenuation contrasts on the effective attenuation-anisotropy
arameters.

The second-order approximations discussed above help to sepa-
ate the contributions of the velocity parameters from those of the at-
enuation contrasts and intrinsic attenuation anisotropy. Indeed, the
ttenuation-anisotropy parameters �Q and �Q �equations A-37–A-42
nd A-43–A-48� contain several terms controlled entirely by the
ontrasts in the real-valued stiffnesses c33 and c55 and in the velocity-
nisotropy parameters. This means that the velocity parameters can
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Attenuation anisotropy of layered media D97
reate effective attenuation anisotropy for P- and SV-waves even
ithout any contrasts in attenuation. Still, for the attenuation-anisot-

opy parameters to have finite values, the constituents need to be at-
enuative. If the medium is purely elastic and all intrinsic Qij compo-
ents are infinite, the parameters �Q, �Q, and �Q become undefined
equations 20–22�.

To explore this issue further, let us consider the effective quality-
actor components for a medium composed of layers with isotropic
ttenuation �i.e., �Q

�k� = �Q
�k� = �Q

�k� = 0 for all k�. The Q-factor matrix
or each constituent in this case is described by two independent
omponents �Carcione, 2001; Zhu and Tsvankin, 2006�, which we
ssume to be constant for the whole model: Q33

�k� �QP and Q55
�k� �QS,

here QP and QS are the quality factors for P- and S-waves, respec-
ively. Then, as discussed by Zhu and Tsvankin �2006�, the normal-
zed attenuation coefficients A in all layers will be identical and iso-
ropic �independent of angle�. Note that if the real-valued stiffnesses
ary among the constituents, the quality-factor component Q13

�k� �un-
ike QP and QS� will not necessarily be constant. Setting �Q

�k� in equa-
ion 21 to zero, we find Q13

�k� as

Q13
�k� =

QP

1 −
�gQ − 1�c55

�k��c13
�k� + c33

�k��2

2c13
�k��c13

�k� + c55
�k���c33

�k� − c55
�k��

, �32�

here gQ �QP/QS.
The effective Qij components for this model can be obtained from

quations A-21–A-23,A-2, andA-5:

Q11 = QPF�c11
�k�,c33

�k�,� �k�,�Q
�k�� , �33�

Q33 = QP, �34�

Q55 = Q66 = QS, �35�

nd

Q13 = QP

�
k = 1

N

��k�� �k�

�
k = 1

N

��k�� �k��Q
�k�

, �36�

here � �k� �c13
�k�/c33

�k� and �Q
�k� �QP/Q13

�k�. The explicit form of the func-
ion F is too long to be given here.

Although the attenuation of all constituents is identical and isotro-
ic, the dependence of Q11 and Q13 on the real-valued stiffnesses
akes the effective attenuation for P- and SV-waves angle-depen-

ent �i.e., �Q�0 and �Q�0�. However, the normalized attenuation
oefficient of SH-waves is isotropic because the effective parameter
Q goes to zero.
For the special case of equal quality factors for P- and S-waves

Q33 = Q55 or QP = QS; gQ = 1�, the element Q13 is constant for all
onstituents �Q13

�k� = QP� and �Q
�k� �1. Then �Q = 0 and �Q = 0 be-

ause all effective quality-factor components are identical �Q11

Q33 = Q13 = Q55 = Q66�. This means that for QP = QS, the effec-
ive attenuation is isotropic no matter how significant the velocity
ontrasts and intrinsic velocity anisotropy may be.

The magnitude of the velocity-induced attenuation anisotropy for
two-constituent model is illustrated in Figure 1, where the velocity
arameters taken from Bakulin �2003� correspond to a medium with
n uncommonly large velocity contrast for P- and S-waves. Both
onstituents have isotropic velocity functions and the same isotropic
ttenuation �with Q33�Q55�. The substantial contrasts in the P- and
-wave velocities, however, create nonnegligible velocity and atten-
ation anisotropy for P- and SV-waves. In particular, the parameter
Q reaches values close to 0.1 when the volume fractions of the con-
tituents are equal to each other.

Next, we analyze the influence of the attenuation contrasts on the
ffective attenuation anisotropy by assuming that the velocity field is
omogeneous and all five interval velocity parameters �c33

�k�, c55
�k�, � �k�,

�k�, and � �k�� are constant. The effective quality-factor components
hen have identical form:

Qij =
1

�
k = 1

N

���k�/Qij
�k��

, �37�

here ij = 11, 33, 13, 55, or 66. When the intrinsic attenuation is iso-
ropic �i.e., �Q

�k� = �Q
�k� = �Q

�k� = 0�, the only quantities that vary
mong the constituents are Q33

�k� and Q55
�k�. Since for isotropic intrinsic

ttenuation Q11
�k� = Q33

�k� and Q55
�k� = Q66

�k�, the effective parameters �Q

nd �Q vanish.Also, the element Q13
�k� becomes

Q13
�k� =

Q33
�k�

1 − �Q33
�k�

Q55
�k� − 1� c55�c13 + c33�2

2c13�c13 + c55��c33 − c55�

, �38�

here cij
�k� = cij because the velocity field is homogeneous. The ef-

ective Q13 component is then given by

Q13 =
Q33

1 − �Q33

Q55
− 1� c55�c13 + c33�2

2c13�c13 + c55��c33 − c55�

, �39�

hich yields effective �Q = 0. Hence, if the velocity field is homoge-
eous, the contrasts in isotropic attenuation do not produce effective
ttenuation anisotropy.

This conclusion is supported by the 2D finite-difference simula-
ion of SH-wave propagation in Figure 2. The model is made up of
wo VTI constituents with the thicknesses less than 1/20 of the pre-
ominant wavelength, so the medium can be characterized as effec-
ively homogeneous. Both constituents have isotropic attenuation
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50� and different isotropic velocity functions. The velocity con-
rasts are defined by �c33/c̄33 = 90% and �c55/c̄55 = 70% �refer to
akulin, 2003�; for the first constituent, VP0

�1� = 3.2 km/s, VS0
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1.55 km/s, and ��1� = 2.45 g/cm3. The horizontal axis represents
he volume fraction of the first constituent �� = � �.
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D98 Zhu et al.
nd the same VTI velocity parameters, but there is a large contrast in
he SH-wave quality-factor component Q55. A snapshot of the SH-
avefront from a point source located at the center of the model is

hown in Figure 2a. As pointed out by Tsvankin �2005�, for 2D non-
ttenuative TI models, the amplitude along the SH-wavefront is con-
tant �see the dashed circle in Figure 2b�.

If the effective normalized attenuation coefficient A were aniso-
ropic, it would cause angle dependence of the wavefront amplitude.

able 1. Parameters of a two-constituent attenuative VTI
odel, where the velocity parameters are taken from
akulin (2003). For the first constituent, VP0 = 3 km/s, VS0
1.5 km/s, � = 2.4 g/cm3, Q33 = 100, and Q55 = 80.

�c33/c̄33 �c55/c̄55 � �1� � �2� � �1� � �2� � �1� � �2�

30% −30% 0.05 0.25 0 0.2 0.05 0.25

�Q33/Q̄33 �Q55/Q̄55 �Q
�1� �Q

�2� �Q
�1� �Q

�2� �Q
�1� �Q

�2�

60% −60% −0.1 −0.5 0 −0.4 −0.1 −0.5
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igure 2. �a� Snapshot of the SH-wavefront computed by 2D finite
ifferences for a layered attenuative medium �the time t = 0.3 s�.
he model includes two constituents with the same VTI velocity pa-

ameters and density: VS0 = 1500 m/s, � = 0.2, and � = 2400 kg/
3. The intrinsic attenuation is isotropic. For the first constituent,
55 = Q66 = 20 and the volume percentage � = 33.3%; for the sec-
nd constituent, Q55 = Q66 = 50. �b� Polar plot of the picked ampli-
ude along the wavefront �solid curve� and the corresponding ampli-
ude for the nonattenuative model with Q55 = Q66 = 
 �dashed
urve�.
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igure 3. Effective �a–c� velocity-anisotropy and �d–f� attenuation-
ers for the two-constituent VTI model from Table 1. The horizonta
olume fraction of the first constituent �� = �1�. The exact parame
lotted along with the first-order �dashed� and second-order �dotted�
owever, despite some distortions produced by the automatic pick-
ng procedure, the amplitude variation along the wavefront in the at-
enuative model is almost negligible �Figure 2b�. Clearly, the attenu-
tion contrast does not result in effective attenuation anisotropy if it
s not accompanied by velocity contrasts.

NUMERICAL TESTS

Here, we compare the first- and second-order approximations
ith the exact solutions, analyze the contributions of the attenuation

nd velocity parameters to the effective attenuation, and evaluate the
agnitude of attenuation anisotropy for multiconstituent models.

ccuracy of the approximations

To test the accuracy of the approximations introduced above, we
rst use a model formed by two VTI constituent layers. The velocity
arameters listed in Table 1 are taken from Bakulin �2003�. The max-
mum magnitude of the velocity-anisotropy parameters is 0.25,
hile the contrast in c33 and c55 reaches 30%. Since the strength of at-

enuation anisotropy often exceeds that of velocity anisotropy, we
ake each attenuation-anisotropy parameter to be twice as large by
bsolute value as the corresponding velocity parameter �e.g., ��Q�
�2���. Also, in accordance with the experimental results of Zhu et

l. �2007�, all attenuation-anisotropy parameters are negative. The
ontrast in the quality-factor elements Q33 and Q55 �60%� is also
wice that in c33 and c55, which means the value of Q33 for the second
onstituent is nearly doubled compared to that for the first constitu-
nt and Q55 is almost halved.

The numerical results in Figure 3 demonstrate that the linear
first-order� approximation �dashed lines� generally follows the
rend of the exact effective parameters �solid lines�. The maximum
rror for the velocity-anisotropy parameters, which occurs when the
onstituents occupy nearly equal volumes �� = ��1� = 0.5�, does not
xceed 0.03. The accuracy of the linear approximation is much low-
r for the attenuation-anisotropy parameters, especially for �Q. The
rror in �Q reaches 0.3, and the linear solution even predicts the
rong sign of this parameter for a wide range of the volume ratios

0.3 	� 	1�.
Despite the substantial velocity and attenua-

tion contrast between the two constituents, the
second-order approximations in Figure 3 �dotted
lines� are sufficiently close to the exact values.
The maximum error does not exceed 0.005 for the
velocity-anisotropy parameters and 0.04 for the
attenuation-anisotropy parameters.

Next, to analyze the relative contribution of the
attenuation parameters to the effective attenua-
tion anisotropy, we change the model by making
the velocity functions of both constituents isotro-
pic and eliminating the velocity contrast between
them. In agreement with the theoretical analysis
in the previous section, most second-order terms
for such a model vanish, which substantially in-
creases the accuracy of the linear approximation
�Figure 4�.

The second-order approximation for all pa-
rameters in Figure 4 virtually coincides with the
exact result. Therefore, the accuracy of the qua-
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Attenuation anisotropy of layered media D99
ratic solutions 29, 30, and 31 is mostly governed by the contrasts in
he velocity parameters. This is further confirmed by the test in Fig-
re 5, which shows that the error of the second-order approximation
emains practically negligible even for large contrasts in the attenua-
ion-anisotropy parameters as long as the velocity field is homoge-
eous and isotropic.

Although the second-order approximation is adequate for a wide
ange of typical subsurface models, it deteriorates for uncommonly
arge velocity and attenuation contrasts �Figure 6�. The error is par-
icularly significant for the parameter �Q because the second-order
olution produces distorted values of the quality-factor element Q11.

To test the performance of our approximations for a more compli-
ated, multiconstituent medium, we follow Bakulin and Grechka
2003� in generating multiple realizations of a layered VTI model
ith intrinsic VTI attenuation �Figure 7�. The vertical velocities �VP0

nd VS0� are computed using the 1/f� distribution with � = 0.3. The
omponent Q33 for different realizations varies between 70 and 125,
hile Q55 varies between 40 and 90. The density and interval aniso-

ropy parameters follow normal random distributions with the fol-
owing mean values: �̄ = 2.49 g/cm3, �̄ = 0.2, �̄ = 0.08, �̄ = 0.15,

Q = −0.4, �̄Q = −0.16 and �̄Q = −0.3. The standard deviations are
td��� = 20 kg/m3, std��� = std��� = std��� = 0.09, and std��Q�

std��Q� = std��Q� = 0.2.
The test is similar to the one used by Bakulin and Grechka �2003�,

ho show that the first-order �linear� approximation is surprisingly
ccurate for the effective velocity-anisotropy parameters of typical
ayered media with moderate intrinsic anisotropy. In other words,
he effective velocity anisotropy is primarily determined by the

ean values of the interval parameters �, �, and �.
The test in Figure 8 demonstrates that this result also applies to ef-

ective attenuation anisotropy. After computing the exact effective
arameters for 2000 realizations of the model, we can compare their
anges �bars� with the mean values �crosses� listed above. Although
ome of the mean values are biased �i.e., shifted from the center of
he distribution interval�, they give a satisfactory prediction of the
ffective parameters. Therefore, despite the substantial property
ontrasts in the model realizations, the magnitude of the second-or-
er terms in such multiconstituent models with random parameter
istributions is relatively small, and all velocity- and attenuation-an-
sotropy parameters are close to the mean of the corresponding inter-
al values.

agnitude of attenuation anisotropy

For purposes of seismic processing and inversion, it is important
o evaluate the upper and lower bounds of the parameters �Q, �Q, and
Q. We start with the SH-wave parameter �Q, which has a relatively
imple analytic representation.

If a model is composed of isotropic constituents �in terms of both
elocity and attenuation�, the effective attenuation anisotropy is
aused just by the heterogeneity. The SH-wave effective anisotropy
arameters for a two-constituent isotropic model are given by

� = 2��1 − ��
x2

1 − x2 , �40�

Q = − 8��1 − ��xxQ/����1 + x��1 + xQ� + �1 − ��
��1 − x��1 − x �����1 − x� + �1 − ���1 + x��� , �41�
Q
here � is the volume fraction of the first constituent, and x��c55
�2�

c55
�1��/�c55

�2� + c55
�1�� and xQ ��Q55

�2� − Q55
�1��/�Q55

�2� + Q55
�1�� denote the

roperty contrasts between the constituents. In agreement with the
iscussion above, equation 41 shows that a contrast in the attenua-
ion parameter Q55 is not sufficient to produce attenuation anisotro-
y. The parameter �Q also vanishes if the velocity contrast is not ac-
ompanied by an attenuation contrast, which is not the case for the
arameters �Q and �Q.
It is clear from equation 40 that the velocity parameter � is always

ositive and finite for layered media composed of two different iso-
ropic constituents. �This result remains valid for any number of con-
tituents.� The possible range of values of �Q is not immediately ob-
ious from equation 41. For the special case � = 0.5, �Q has to be
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ed� approximations.
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D100 Zhu et al.
reater than −1, but this lower bound follows directly from the defi-
ition of the parameters �Q and �Q �Zhu and Tsvankin, 2006�.
Therefore, to study the distribution of the effective parameters for

representative set of more complicated models composed of multi-
le isotropic �for both velocity and attenuation� constituents, we per-
orm numerical simulations. First, we compute the anisotropy pa-
ameters of 2000 models using uniform random distributions for the
nterval velocities and density. The histograms of the effective aniso-
ropy parameters for a relatively small number of constituents �two
o five� are displayed in Figure 9. The effective velocity-anisotropy
arameter � for isotropic constituents must be positive, which is
onfirmed by our numerical results. The parameter � is predominant-
y positive as well, and both � and � generally do not exceed 0.5.An-
ther velocity-anisotropy parameter, �, can be either positive or neg-
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igure 6. Effective �a–c� velocity-anisotropy and �d–f� attenuation-
ers for a model with the same values of � �1,2�, � �1,2�, � �1,2�, �Q

�1,2�, �Q
�1,2�,

igure 3 �Table 1�, but the contrasts in the isotropic quantities are m
�Q33/Q̄33 = 90% and �c55/c̄55 = �Q55/Q̄55 = 70%. For the fir
3.2 km/s, VS0

�1� = 1.55 km/s, ��1� = 2.45 g/cm3, Q33
�1� = 100, and Q

arameters �solid lines� are plotted along with the first-order �dashe
dotted� approximations.
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igure 7. Interval parameters of one realization of a model com-
osed of VTI layers with VTI attenuation: �a� the vertical velocities
nd density, �b� the quality-factor components Q33 and Q55, and �c�

he anisotropy parameters � and �Q. The sampling interval is 5 m. t
tive, with the mean value close to zero. This is consistent with the
onte Carlo simulations for finely layered isotropic media per-

ormed by Berryman et al. �1999�, who conclude that positive and
egative � values are equally likely. In contrast to � and �, all three
ffective attenuation-anisotropy parameters have an almost even
istribution around zero and a much wider variation.

In the next simulation �Figure 10�, the maximum number of con-
tituents is increased to 200 �the minimum number is still two�. The
ost noticeable change in the histograms is a much more narrow dis-

ribution of both velocity-anisotropy and attenuation-anisotropy pa-
ameters, which suggests that the contributions of multiple random
onstituents partially cancel each other. As a result, the attenuation-
nisotropy parameters are largely confined to the interval between

−0.5 and 0.5. Also, the distribution peaks of the
velocity-anisotropy parameters � and � �but not
�� are shifted toward positive values.

It should be emphasized that the tests described
above were performed for models without intrin-
sic velocity or attenuation anisotropy. Our numer-
ical analysis shows that making the constituents
anisotropic not only moves the distribution peaks
�especially, if the average value of the parameter
is not zero� but also changes the shape of the his-
tograms.

EFFECTIVE SYMMETRY FOR
AZIMUTHALLY ANISOTROPIC

CONSTITUENTS

The examples in the previous sections were
generated for purely isotropic or VTI constitu-
ents, in which both intrinsic velocity and attenua-
tion are independent of azimuth. The effective ve-
locity and attenuation functions in such models
are also azimuthally isotropic, and the equivalent
homogeneous medium has VTI symmetry.

The general averaging equations 5–10, howev-
r, hold for any symmetry of the interval stiffness matrix and can be
sed to study layered azimuthally anisotropic media. An interesting
ssue that arises for such models is whether the effective velocity and
ttenuation anisotropy have different principal symmetry directions
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i.e., different azimuths of the vertical symmetry
lanes�. Here, without attempting to give a com-
rehensive analysis of this problem, we discuss a
umerical example for the simple model in Fig-
re 11, which includes two HTI �transversely iso-
ropic with a horizontal symmetry axis� constitu-
nts. The first constituent is purely elastic �nonat-
enuative�; the second has HTI attenuation with
he same symmetry axis as that for the velocity
unction. The velocity parameters �i.e., the real
art of the stiffness matrix� of three constituents
re identical, but the symmetry axes have differ-
nt orientations �Figure 11b�.

After computing the effective stiffnesses from
quations 5–10, we obtained the effective P-wave
hase velocity and normalized attenuation coeffi-
ient A using the Christoffel equation. The coef-
cient A was calculated under the assumption of
omogeneous wave propagation �i.e., the planes
f constant amplitude are taken to be parallel to
he planes of constant phase�. Notice that the ef-
ective velocity function is almost entirely gov-
rned by the real-valued stiffnesses, unless the at-
enuation is uncommonly strong. In this model,
he HTI constituents have identical velocity pa-
ameters and occupy the same volume, so the real
art of the effective stiffness matrix is well de-
cribed by orthorhombic symmetry. This conclu-
ion is confirmed by the computation of the effec-
ive phase-velocity function in the horizontal
lane and two vertical coordinate planes, one of
hich bisects �with the azimuth 90°� the symme-

ry-axis directions �see Figure 11�. The shape of
he phase-velocity curves in Figure 12a and c
hows that the symmetry planes of the effective
rthorhombic velocity surface are aligned with
he coordinate planes.

In contrast to the velocity surface, the effective
ormalized attenuation coefficient is not sym-
etric with respect to any vertical plane �Figure

2b�. Because of the coupling between the the
eal and imaginary parts of the effective stiffness matrix, the effec-
ive attenuation has a lower symmetry, which we found to be mono-
linic. Also, the extrema of the coefficient A in the horizontal plane
o not correspond to the symmetry planes of the effective velocity
urface. The minimum value of A occurs at an azimuth of 65°,
hereas the maximum occurs at 175°. Because the layering in this
odel is horizontal and both constituents have a horizontal symme-

ry axis, the monoclinic symmetry system for the effective attenua-
ion has a horizontal symmetry plane �Figure 12d�.

Next, we modify the model by reducing the magnitude of the in-
rinsic attenuation anisotropy �Figure 13�. Since the real-valued
tiffnesses are kept unchanged, the effective velocity function prac-
ically coincides with that in Figure 12a and c. The horizontal and
ertical cross sections of the coefficient A �Figure 13� show that the
ffective attenuation in this model is well described by orthorhom-
ic, rather than monoclinic, symmetry.Although the effective veloc-
ty and attenuation for this model have the same symmetry, the verti-
al symmetry planes for the velocity and attenuation functions are
isaligned by about 36°. This result is consistent with the conclu-

–1 –0.5

800

600

400

200

0

–1–2–3

250

200

150

100

50

0

Figure 9. Hist
ly chosen mod
The vertical a
parameters are
ity ratio was k
= 30–300. Th

–1 –0.5

1500

1000

500

0

–1 –0.5

600

400

200

0

Figure 10. Sam
two and 200.
Q Q Q

0 0.5 1
ε

–1 –0.5 0 0.5 1
δ

1000

800

600

400

200

0
–1 –0.5 0 0.5 1

γ

600

400

200

0

0 1 2 3 –1–2–3 0 1 2 3 –1–2–3 0 1 2 3
ε

250

200

150

100

50

0

δ

300

200

100

0

γ

ograms of the effective anisotropy parameters computed for 2000 random-
els composed of isotropic �for both velocity and attenuation� constituents.

xis shows the frequency of the parameter values. The ranges of the interval
: VP0 = 2000–6000 m/s, VS0 = 1000–3000 m/s �the vertical P-to-S veloc-
ept between 1.5 and 2.5�, � = 2000–4000 kg/m3, Q33 = 30–300, and Q55
Q Q Q

0 0.5 1
ε

–1 –0.5 0 0.5 1
δ

2000

1500

1000

500

0
–1 –0.5 0 0.5 1

γ

1000

800

600

400

200

0

0 0.5 1
ε

–1 –0.5 0 0.5 1
δ

500

400

300

200

100

0

500

400

300

200

100

0
–1 –0.5 0 0.5 1

γ

e as Figure 9, but the number of constituents is randomly chosen between
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1 

2 

a) b) 

igure 11. �a� Layered model composed of two HTI constituents
ith the same volume ��1 = �2 = 0.5�, one of which is elastic while

he other one has HTI attenuation. �b� Plan view of the symmetry-ax-
s directions. The azimuth of the symmetry axis for the first �elastic�
onstituent is 60° toward northeast; for the second constituent, the
zimuth is 60° northwest. The velocity parameters for both constitu-
nts are � = 2000 g/cm3, VP0 = 3 km/s, VS0 = 2 km/s, � = 0.2, �
0.05, and � = 0.2. For the second constituent, the attenuation pa-

ameters are Q33
�2� = 100, Q55

�2� = 80, �Q
�2� = −0.4, �Q

�2� = −0.1, and �Q
�2�

−0.4.
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ions of Liu et al. �2006�, who argue that the symmetry directions es-
imated from velocity or traveltime inversion do not necessarily
gree with those obtained from amplitude or attenuation analysis
nd may not measure the same properties of subsurface fractures.

CONCLUSIONS

Interpretation of seismic amplitude measurements requires a bet-
er understanding of the physical reasons for attenuation in the seis-

ic frequency band and, in particular, of the main factors responsi-
le for attenuation anisotropy. Similar to velocity anisotropy, the ef-
ective attenuation coefficient can become directionally dependent
ecause of interbedding of thin layers with different velocity and at-
enuation. Here, we studied the relationship between the effective
homsen-style attenuation-anisotropy parameters ��Q, �Q, and �Q�
nd the properties of finely layered media composed of attenuative
sotropic or TI constituents.

) b) 
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igure 12. �a, c� Effective P-wave phase velocity and �b, d� normal-
zed attenuation coefficient A for the model from Figure 11. The ve-
ocity and attenuation are plotted in the horizontal plane as functions
f the azimuthal phase angle �a, b� and in the two vertical coordinate
lanes as functions of the polar phase angle �c, d�.
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igure 13. �a� Horizontal and �b� vertical cross sections of the effec-
ive normalized attenuation coefficient for a model with relatively
eak attenuation anisotropy. The model parameters are the same as

hose in Figure 11, except for �Q
�2� = −0.1, �Q

�2� = 0.03, and �Q
�2� =

0.1.
The exact equations for the effective stiffness components in the
ong-wavelength limit were obtained using the Backus averaging
echnique. For attenuative media, the effective stiffnesses are com-
lex, and the attenuation anisotropy depends on both the real and
maginary parts of the stiffness matrix. In contrast, the effective ve-
ocity function is almost entirely governed by the real-valued stiff-
esses and, unless the attenuation is uncommonly strong, does not
epend on the intrinsic attenuation parameters. Therefore, the effec-
ive velocity anisotropy of attenuative layered media can be well de-
cribed using the results for the corresponding elastic models.

To gain insight into the behavior of the attenuation-anisotropy pa-
ameters for thin-layered VTI media, we developed approximate so-
utions by assuming that the velocity and attenuation contrasts, as
ell as the interval velocity- and attenuation-anisotropy parameters,

re small by absolute value.As is the case for velocity anisotropy, the
rst-order �linear in the small quantities� terms in these approxima-

ions are given by the volume-weighted average of the correspond-
ng interval parameters. The second-order �quadratic� terms include
oupling between different factors responsible for the effective at-
enuation anisotropy, such as that between the intrinsic anisotropy
nd heterogeneity. The second-order approximation, which includes
oth linear and quadratic terms, remains sufficiently accurate for
odels with strong property contrasts and pronounced intrinsic

nisotropy.
It is noteworthy that even for models with isotropic constituents

hat have identical attenuation coefficients, the effective attenuation
f P- and SV-waves is anisotropic if the interval velocity changes
cross layer boundaries. However, jumps in the interval attenuation
lone �i.e., not accompanied by a velocity contrast between isotropic
onstituent layers� do not create effective attenuation anisotropy.
ecause of the large contribution of the velocity contrasts to the qua-
ratic attenuation terms, the accuracy of the linear �first-order� ap-
roximation for the attenuation-anisotropy parameters is controlled
rimarily by the strength of the interval velocity variations.Also, the
otal contribution of the second-order terms tends to be higher for the
ttenuation parameters than for the velocity parameters. The relative
agnitude of the overall velocity and attenuation anisotropy, how-

ver, is strongly dependent on the average values of the correspond-
ng interval parameters �i.e., on the first-order terms�.

In addition to several tests for two-constituent models, we per-
ormed extensive numerical simulations for more complicated me-
ia composed of up to 200 constituents. To evaluate the upper and
ower bounds of the attenuation anisotropy caused entirely by heter-
geneity, all constituents were isotropic in terms of both velocity and
ttenuation. While the distributions of the parameters �Q, �Q, and �Q

re centered at zero, their values cover a wider range �at least from
0.5 to 0.5� than that for the velocity-anisotropy parameters.
Although most of the paper is devoted to azimuthally isotropic
odels, we also evaluated the effective anisotropy for an HTI medi-

m that includes two constituents with different azimuths of the
ymmetry axis. Such changes in the symmetry direction are often re-
ated to variations of the dominant fracture azimuth with depth. If the
ntrinsic attenuation anisotropy is sufficiently strong, the velocity
nd attenuation functions of the effective medium may have differ-
nt symmetries �e.g., orthorhombic versus monoclinic�. Even when
oth velocity and attenuation are described by orthorhombic mod-
ls, their vertical symmetry planes may be misaligned. These results
ay have implications in field measurements of attenuation over

ractured reservoirs.
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APPENDIX A

SECOND-ORDER APPROXIMATION FOR
THE EFFECTIVE PARAMETERS OF

ATTENUATIVE VTI MEDIA

Here, we derive the second-order approximation for the effective
elocity- and attenuation-anisotropy parameters for thin-layered
edia composed of an arbitrary number of VTI �in terms of both ve-

ocity and attenuation� constituents. In accordance with the main as-
umption of Backus averaging �see the main text�, the thickness of
ach layer must be much smaller than the predominant wavelength.

nisotropy parameters for SH-waves

First, we consider the parameters � and �Q, which control the ve-
ocity and attenuation anisotropy �respectively� for the SH-wave.
he effective stiffness component c̃55 is given by �see equation 14�

c̃55 =
1

�
k=1

N
��k�

c55
�k��1 −

i

Q55
�k��

, �A-1�

here ��k� denotes the volume fraction of the kth constituent
�k=1

N ��k� = 1�. In the weak-attenuation limit �1/Q55�1�, c̃55 can be
pproximated as

c̃55 =

� 1

c55
	 − i� 1

c55Q55
	

� 1

c55
	2

. �A-2�

rom equation A-2, it follows that

c55 = � 1

c55
	−1

�A-3�

nd
Q55 =

� 1

c55
	

� 1

c55Q55
	 . �A-4�

ccording to equation 15,

c̃66 = �c66� − i� c66

Q66
	 , �A-5�

hich yields

c66 = �c66� �A-6�

nd

Q66 = �c66�� c66

Q66
	 . �A-7�

y dropping the cubic and higher-order terms in �̂c55
�k� and � �k�, we

btain the second-order approximation for the effective parameter�:

� = ��� +
1

2��
k = 1

N

��k���̂c55
�k��2 − ��

k = 1

N

��k��̂c55
�k��2�

+ ��
k = 1

N

��k��̂c55
�k�� �k� − �

k = 1

N

��k��̂c55
�k� �

k = 1

N

��k�� �k�� .

�A-8�

ote that for any quantities x and y varying among different constit-
ents, we have

�
k = 1

N

��k�x�k�y�k� − �
k = 1

N

��k�x�k� �
k = 1

N

��k�y�k�

= �
k = 1

N

�
l = k + 1

N

��k���l��x�k,l��y�k,l�, �A-9�

here �x�k,l� = x�l� − x�k�. Then � can be represented as

� = ��� + � �is� + � �is-Van� + � �Van�, �A-10�

here

��� = �
k = 1

N

��k�� �k�, �A-11�

� �is� =
1

2 �
k = 1

N

�
l = k + 1

N

��k���l���c55
�k,l�

c̄55
�2

, �A-12�

� �is-Van� = �
k = 1

N

�
l = k + 1

N

��k���l��c55
�k,l�

c̄55

�� �k,l�, �A-13�

nd

� �Van� = 0. �A-14�
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ere, �·�k,l� denotes the difference between the medium properties of
he kth and lth constituents; for example, �c55

�k,l� = c55
�l� − c55

�k� and
� �k,l� = � �l� − � �k�. Equations A-10–A-14 generalize equations
6–19 of Bakulin �2003� for layered media with an arbitrary number
f constituents.

To obtain the second-order approximation for the effective attenu-
tion-anisotropy parameter �Q, we substitute equations A-4 and A-7
nto equation 22 and keep only the linear and quadratic terms in
ˆ c55

�k�, �̂Q55
�k�, � �k�, and �Q

�k�:

Q = ��Q� + �Q
�is� + �Q

�is-Van� + �Q
�is-Qan� + �Q

�Van-Qan�,

�A-15�

here

��Q� = �
k = 1

N

��k��Q
�k�, �A-16�

�Q
�is� = − 2 �

k = 1

N

�
l = k + 1

N

��k���l��c55
�k,l�

c̄55

�Q55
�k,l�

Q̄55

, �A-17�

�Q
�is-Van� = − 2 �

k = 1

N

�
l = k + 1

N

��k���l��Q55
�k,l�

Q̄55

�� �k,l�, �A-18�

�Q
�is-Qan� = �

k = 1

N

�
l = k + 1

N

��k���l���c55
�k,l�

c̄55

−
�Q55

�k,l�

Q̄55
���Q

�k,l�,

�A-19�

nd

�Q
�Van-Qan� = 2 �

k = 1

N

�
l = k + 1

N

��k���l��� �k,l���Q
�k,l�. �A-20�

nisotropy parameters for P- and SV-waves

In the weak-attenuation limit, equations 11–13 yield

c̃11 = �
k = 1

N

��k�c11
�k��1 − i/Q11

�k�� − �
k = 1

N

��k��� �k��2c33
�k�

��1 +
i

Q33
�k� �1 − 2�Q

�k��� +

�
k = 1

N
��k�

c33
�k� − i �

k = 1

N
��k�

c33
�k�Q33

�k�

��
k = 1

N
��k�

c33
�k� �2

���
k = 1

N

��k�� �k��1 +
i

Q33
�k� �1 − �Q

�k����2

, �A-21�

c̃33 =

�
k = 1

N
��k�

c33
�k� − i �

k = 1

N
��k�

c33
�k�Q33

�k�

��
k = 1

N
��k�

c33
�k� �2 , �A-22�

nd
c̃13 =

�
k = 1

N

��k�� �k�

�
k = 1

N
��k�

c33
�k�

−
i

�
k = 1

N
��k�

c33
�k�
� �

k = 1

N
��k�

c33
�k�Q33

�k�

�
k = 1

N
��k�

c33
�k�

�
k = 1

N

��k�� �k�

− �
k = 1

N

��k� � �k�

Q33
�k� �1 − �Q

�k�� � , �A-23�

here ��c13/c33 and �Q �Q33/Q13. Using equations 18 and 21, �Q

an be rewritten as

Q = 1 +
�1 − g��Q − g�gQ − 1��1 + ��2/�1 − g�

2��g + ��
, �A-24�

here g�c55/c33 and gQ �Q33/Q55.
If we ignore the cubic and higher-order terms in �, the second-or-

er approximation for � becomes

� = 1 − 2g + � −
� 2

2�1 − g�
�for c13 
 0� �A-25�

r

� = − 1 − � +
� 2

2�1 − g�
�for c13 	 0� . �A-26�

ereafter, c13 is assumed to be positive �equation A-25�.
By keeping only the linear and quadratic terms in �̂c33

�k�, �̂c55
�k�,

ˆ Q33
�k�, �̂Q55

�k�, as well as in the interval velocity- and attenuation-an-
sotropy parameters for P- and SV-waves, we obtain the second-or-
er approximations for the effective VTI parameters.

arameter �

� = ��� + � �is� + � �is-Van� + � �Van�, �A-27�

here

��� = �
k = 1

N

��k�� �k�, �A-28�

� �is� = 2ḡ �
k = 1

N

�
l = k + 1

N

��k���l���c33
�k,l�

c̄33

�c55
�k,l�

c̄55

− ḡ��c55
�k,l�

c̄55
�2� ,

�A-29�

�is-Van� = �
k = 1

N

�
l = k + 1

N

��k���l��c33
�k,l�

c̄33

��� �k,l� − �� �k,l��

+ 2ḡ
�c55

�k,l�

c̄
�� �k,l�, �A-30�
55
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�Van� = −
1

2 �
k = 1

N

�
l = k + 1

N

��k���l���� �k,l��2, �A-31�

nd

ḡ = c̄55/c̄33.

arameter �

� = �� � + � �is� + � �is-Van� + � �Van�, �A-32�

here

�� � = �
k = 1

N

��k�� �k�, �A-33�

� �is� = 2ḡ �
k = 1

N

�
l = k + 1

N

��k���l���c33
�k,l�

c̄33

−
�c55

�k,l�

c̄55
��c55

�k,l�

c̄55

,

�A-34�

�is-Van� = 0, �A-35�

nd

� �Van� = −
1

2 �
k = 1

N

�
l = k + 1

N

��k���l� ��� �k,l��2

1 − ḡ
. �A-36�

s was the case for SH-waves, equations A-27–A-36 generalize
quations 29–32 and 21–24 of Bakulin �2003� for multiconstituent
ayered media.

arameter �Q

�Q = ��Q� + �Q
�is� + �Q

�is-Van� + �Q
�is-Qan� + �Q

�Van-Qan�,

�A-37�

here

�Q� = �
k = 1

N

��k��Q
�k�, �A-38�

�Q
�is� = − 4ḡ �

k = 1

N

�
l = k+1

N

��k���l���1 − ḡQ���c33
�k,l�

c̄33

− 2ḡ
�c55

�k,l�

c̄55
��c55

�k,l�

c̄55

+
�c55

�k,l�

c̄55

�Q33
�k,l�

Q̄33

+ ḡQ��c33
�k,l�

c̄33

¯
�c55

�k,l� �Q55
�k,l�
− 2g
c̄55

�
Q̄55

� , �A-39�
Q
�is-Van� = 2 �

k = 1

N

�
l = k+1

N

��k���l��− 2ḡ�1 − ḡQ�
�c55

�k,l�

c̄55

�� �k,l�

− 2ḡḡQ

�Q55
�k,l�

Q̄55

�� �k,l� −
�Q33

�k,l�

Q̄33

����k,l�

− �� �k,l��� , �A-40�

Q
�is-Qan� = �

k = 1

N

�
l = k+1

N

��k���l���c33
�k,l�

c̄33

���Q
�k,l� − ��Q

�k,l��

−
�Q33

�k,l�

Q̄33

��Q
�k,l� + 2ḡ

�c55
�k,l�

c̄55

��Q
�k,l�� , �A-41�

nd

�Q
�Van-Qan� = �

k = 1

N

�
l = k + 1

N

��k���l��2���k,l���Q
�k,l�

− �� �k,l���Q
�k,l�� . �A-42�

arameter �Q

�Q = ��Q� + �Q
�is� + �Q

�is-Qan� + �Q
�Van-Qan� + �Q

�Van�,

�A-43�

here

��Q� = �
k = 1

N

��k��Q
�k�, �A-44�

�Q
�is� = − 4ḡ �

k = 1

N

�
l = k+1

N

��k���l���1 − ḡQ���c33
�k,l�

c̄33

−
�c55

�k,l�

c̄55
��c55

�k,l�

c̄55

+
�c55

�k,l�

c̄55

�Q33
�k,l�

Q̄33

+ ḡQ��c33
�k,l�

c̄33

− 2
�c55

�k,l�

c̄55
��Q55

�k,l�

Q̄55
� , �A-45�

Q
�is-Qan� = − �

k = 1

N

�
l = k + 1

N

��k���l��Q33
�k,l�

Q̄33

��Q
�k,l�, �A-46�

Q
�Van-Qan� = −

1

1 − ḡ
�
k = 1

N

�
l = k + 1

N

��k���l��� �k,l���Q
�k,l�, �A-47�

nd

�Q
�Van� = ḡ

1 − ḡQ

�1 − ḡ�2 �
k = 1

N

�
l = k + 1

N

��k���l�����k,l��2, �A-48�

here ḡ = Q̄ /Q̄ .
Q 33 55
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