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Effective attenuation anisotropy of thin-layered media
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ABSTRACT

One of the well-known factors responsible for the anisotropy
of seismic attenuation is interbedding of thin attenuative layers
with different properties. Here, we apply Backus averaging
to obtain the complex stiffness matrix of an effective medium
formed by an arbitrary number of anisotropic, attenuative con-
stituents. Unless the intrinsic attenuation is uncommonly strong,
the effective velocity function is controlled by the real-valued
stiffnesses (i.e., independent of attenuation) and can be deter-
mined from the known equations for purely elastic media. Atten-
uation analysis is more complicated because the attenuation pa-
rameters are influenced by the coupling between the real and
imaginary parts of the stiffness matrix. The main focus of this
work is on effective transversely isotropic models with a vertical
symmetry axis (VTI) that include isotropic and VTI constituents.
Assuming that the stiffness contrasts, as well as the intrinsic ve-
locity and attenuation anisotropy, are weak, we develop explicit
first-order (linear) and second-order (quadratic) approximations
for the attenuation-anisotropy parameters €, 9y, and y,. Where-
as the first-order approximation for each parameter isgiven sim-

ply by the volume-weighted average of its interval values, the
second-order terms include coupling between various factors re-
lated to both heterogeneity and intrinsic anisotropy. Interesting-
ly, the effective attenuation for P- and SV-waves is anisotropic
even for amedium composed of isotropic layers with identical at-
tenuation, provided there is a velocity variation among the con-
stituent layers. Contrasts in the intrinsic attenuation, however, do
not create attenuation anisotropy, unless they are accompanied
by velocity contrasts. Extensive numerical testing shows that the
second-order approximation for €, &y, and 1y, is close to the ex-
act solution for most plausible subsurface models. The accuracy
of the first-order approximation depends on the magnitude of the
quadratic terms, which is largely governed by the strength of the
velocity (rather than attenuation) anisotropy and velocity con-
trasts. The effective attenuation parameters for multiconstituent
VTI models vary within a wider range than do the velocity pa-
rameters, with almost equal probability of positive and negative
values. If some of the constituents are azimuthally anisotropic
with misaligned vertical symmetry planes, the effective velocity
and attenuation functions may have different principal azimuthal
directions or even different symmetries.

INTRODUCTION

The directional dependence of attenuation has been observed in
laboratory experiments (e.g., Hosten et al., 1987; Tao and King,
1990; Prasad and Nur, 2003; Zhu et al., 2007) and several field case
studies (e.g., Lynn et al., 1999; Vasconcelos and Jenner, 2005). Al-
though the substantial magnitude of attenuation anisotropy for many
subsurface formations is unquestionable, the underlying physical
mechanisms are not completely understood.

In their analysis of a shallow multiazimuth reverse vertical seis-
mic profile (VSP) survey, Liu et al. (1993) estimate anisotropy in

both velocity and attenuation, and attribute it to stress-induced frac-
tures and microcracks. Pointer et al. (2000) discuss three different
mechanisms for wave-induced fluid flow in cracked porous media
that might result in anisotropic velocity and attenuation functions
when the cracks are aligned. A poroelastic model introduced by
Chapman (2003) in his discussion of frequency-dependent anisotro-
py can explain strong anisotropic attenuation in the seismic frequen-
cy band. Using Chapman’s model, Maultzsch et al. (2003) estimate
the Q-factor as a function of phase angle for synthetic samples com-
posed of sand-epoxy matrix with embedded thin metal discs. Analy-
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sis of seismic body waves and normal-mode data shows that even the
inner core of the earth possesses attenuation anisotropy likely caused
by columnar crystals elongated in the radial direction (Souriau and
Romanowicz, 1996; Bergman, 1997).

Another possible cause of effective attenuation anisotropy is in-
terbedding of thin layers with different velocities and attenuation co-
efficients. Long-wavelength velocity anisotropy of layered media is
discussed extensively in the literature (e.g., Backus, 1962; Berry-
man, 1979; Schoenberg and Muir, 1989; Shapiro and Hubral, 1996;
Berryman et al., 1999; Bakulin, 2003; Bakulin and Grechka, 2003).
Although attenuation anisotropy usually accompanies velocity an-
isotropy (e.g., Tao and King, 1990; Arts and Rasolofosaon, 1992),
much less attention has been devoted to studies of the effective prop-
erties of layered attenuative media. Sams (1995) measures effective
attenuation coefficients partially associated with apparent (layer-in-
duced) attenuation, but his work is restricted to isotropic attenuation
models. Molotkov and Bakulin (1998) introduce a matrix-averaging
technique for a stratified lossy medium and obtain an effective Biot
medium with anisotropic viscosity and relaxation. By employing the
correspondence principle (Bland, 1960) for thin-layered viscoelas-
tic media, Carcione (1992) derives the complex stiffnesses of effec-
tive media composed of attenuative, isotropic constituent layers.
This effective stiffness matrix can be used to quantify the anisotropy
of both velocity and attenuation.

Here, we analyze the effective properties of a sequence of attenua-
tive, anisotropic layers. The discussion is focused primarily on trans-
versely isotropic (TT) constituents with a vertical symmetry axis for
both velocity and attenuation. First, the Backus averaging technique
is used to obtain the exact stiffness matrix in the low-frequency limit.
Then we develop the first- and second-order approximations for the
effective velocity and attenuation anisotropy in terms of the interval
anisotropy parameters and stiffness contrasts. The second-order
(quadratic) solution is particularly helpful in evaluating the contri-
butions of various factors to the effective attenuation-anisotropy pa-
rameters. Numerical tests demonstrate that the performance of the
approximations is mostly influenced by the velocity field (i.e., by the
real parts of the stiffness coefficients). Simulations for a representa-
tive set of random-layered TI models allow us to estimate the bounds
on the effective velocity and attenuation parameters. Finally, we
consider azimuthally anisotropic constituent layers and discuss pos-
sible differences between the symmetries of the velocity and attenu-
ation functions.

EFFECTIVE PARAMETERS FOR ATTENUATIVE,
ANISOTROPIC LAYERS

The Backus (1962) averaging technique originally was designed
to compute the effective properties of a stack of elastic (nonattenua-
tive), isotropic layers in the long-wavelength limit. Here, we derive
the effective stiffness coefficients for stratified models composed of
attenuative, arbitrarily anisotropic layers.

Suppose a thin-layered model includes N types of constituents
whose spatial distribution is stationary across the layers. For sim-
plicity, throughout the paper the layering plane is assumed to be hor-
izontal. The medium properties are constant within each layer but
change across layer boundaries (medium interfaces). Different lay-
ers belong to the same constituent if they have identical medium
properties, including both velocity and attenuation. For example,
even a minimum of two interbedding constituents makes it possible
to form a model with any desired number of thin layers.

The Backus averaging technique for both elastic and attenuative
media is applied in the long-wavelength limit, which means the
dominant wavelength is much larger than the thickness of each layer.
Following Backus (1962) and Schoenberg and Muir (1989), we as-
sume that in the time domain the components of the traction vector
that acts across (horizontal) interfaces are the same for all layers:

K —

( (k) —
Ti3 = Ti3, T3 = T3, T33 = T3, (1)

where the superscript denotes the kth constituent. The in-plane strain
components are also supposed to be the same:

0 _ 0 _ 0 _
3(11) = ey, 652) = ep, e<12) = eqp- (2)

Equations 1 and 2 remain valid for the frequency-domain counter-
parts of the stress and strain elements:

~(K) _ ~ ~() _ ~ ~(k) _ ~

7'(13) = T3 7(23) =Ty, Tgs) =T33 (3)
and

~0) _ = S ~K) _ ~

eV =¢, & =e, e =2, (4)

where all quantities become complex valued (denoted by the tilde).

Because all stress and strain components in equations 3 and 4 are
just the complex counterparts of the corresponding quantities in
equations 1 and 2, the effective stiffnesses for layered attenuative
media can be obtained using the results of Schoenberg and Muir
(1989) for purely elastic models:

Cyy = (Can ™, (5)

ETN = <ETNEI_\7}V>ENN’ (6)
and
éTT = <ETT> - <6TN61_\1}\16NT>
+ <6TN61_V}V>6NN<61;11\16NT>a (7)

where (-) denotes the volume-weighted average. The submatrices for
each constituent have the following form (in Voigt notation):
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Equations 5-10 completely describe the effective properties for

any number of constituents with arbitrary anisotropy in terms of both
velocity and attenuation.
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Effective stiffnesses for TI media

TI layers (primarily shales and shaly sands) are common for sedi-
mentary basins (Sayers, 1994; Tsvankin, 2005). Here, we consider a
layered medium composed of TI constituents with a vertical symme-
try axis for both velocity and attenuation. Substituting the complex
stiffness matrix ¢; of the VTI constituent layers (e.g., Carcione,
2001) into equations 5-10 yields an effective attenuative VTT model
with five independent complex stiffnesses:

~ \2 -1/ ~ 2
1 c
¢y =) — (i,l_%) +\ = ), an
€33 €33 €33
1 -1
cz=\=—/ . (12)
€33
B 1\'/¢
F={— -3, (13)
33 €33
_ 1\
Cs5 =\ — > (14)
Css
Co6 = (Co6)» (15)

with ¢y, = €1y — 2Cs-

The effective velocity-anisotropy parameters in Thomsen (1986)
notation are obtained using the real parts c; of the effective stiff-
nesses ¢; from equations 11-15:

C C
Voo = /=2, Vo = /2, (16)
p p

€= 011—033’ (17)
2C33

(c13 + Css)2 - (33— C55)2

o= , (18)
2¢33(c33 = Cs5)
Cep — C
y= = (19)
Css

where p = (p) is the volume-averaged density.

To characterize attenuative anisotropy, we employ the effective
attenuation-anisotropy parameters defined by Zhu and Tsvankin
(20006):

€= M, (20)

O

Q33— 055 (cn+cep)  _03-0n;
Css +2 cizers + css)
_ Oss (€33 = ¢s5) O3
6Q - >
ca3(c33 = cs5)

21

Oss — Qes
==, 22

ve Os6 @2)
where Q;; = ¢;;/c}; is the quality-factor matrix (no index summation
is applied) and c}; is the imaginary part of the stiffness ¢;;.

These parameters help to significantly simplify the analytic de-
scription of the wavenumber-normalized attenuation coefficient
A=K'/kin TI media (k and k' are the real and imaginary parts of the
complex wavenumber k ). The notation of Zhu and Tsvankin (2006)
also includes two reference quantities — the rate of amplitude decay
per wavelength in the symmetry (vertical) direction for P- and
S-waves (Ap, and Ay, respectively):

1 1
Apg = (\/1 ——1)2— 23
P = Q3 ’ (033) 2033 @3)
R N -
0T (0s5)° 2055

The approximate versions of equations 23 and 24 are obtained in the
weak-attenuation limit by keeping only the linear terms in 1/Q;
(ii = 33 0or55).

and

APPROXIMATE ATTENUATION PARAMETERS
OF EFFECTIVE VTI MEDIA

Explicit equations for the effective stiffnesses in terms of the in-
terval parameters have a rather complicated form. To evaluate the in-
fluence of different factors on the effective parameters, we present
approximate expressions developed under the assumption of weak
intrinsic velocity and attenuation anisotropy as well as small con-
trasts in the stiffnesses between the constituents.

Unless the medium is strongly attenuative and has nonnegligible
dispersion, the influence of the quality-factor elements on phase ve-
locity is of the second order and typically can be ignored (Cerveny
and PSencik, 2005; Zhu and Tsvankin, 2006). Hence, the effective
velocity-anisotropy parameters practically coincide with those
for the purely elastic model defined by the real parts of the stiffness
elements. Because a detailed description of the velocity anisot-
ropy of fine-layered VTI media can be found in Bakulin (2003), the
discussion below focuses primarily on the attenuation-anisotropy
parameters.

First-order approximation

Approximate effective parameters can be derived by expanding
the exact equations in the small quantities (velocity- and attenua-
tion-anisotropy parameters and the contrasts in the stiffnesses) and
neglecting higher-order terms. In the first-order (linear) approxima-
tion, the effective value of any anisotropy parameter is equal to its
volume-weighted average (Bakulin and Grechka, 2003). For exam-
ple, the linearized parameter € can be written as

N
e=(e) = E ¢(k)€(k), (25)
k=1

where ¢® is the volume fraction of the kth constituent. Similarly, for
the attenuation-anisotropy parameter €,, we have
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N
€p = <€Q> = E ¢(k)E(Qk)- (26)
k=1

Evidently, the effective medium properties in the long-wavelength
limit are independent of the spatial sequence of the constituents,
which can be arranged in an arbitrary order.

Second-order approximation

The second-order approximation for the effective velocity-anisot-
ropy parameters of two-constituent VTI media is given by Bakulin
(2003). Here, we present a more general analysis that accounts for
attenuation and allows for an arbitrary number of VTI constituents.

The parameters assumed to be small for each constituent k
include Acy, Ack, AQY, A0, e®, 5®, y®, e, 5%, and v,
where Ac® and AQ¥ quantify the magnitude of property variations
in the model:

. AcP

el = =5 (27)
Cii
AQW

Ag® = _L i =33 or 55. (28)
Qii

Here, ¢; = (1/N)Z),c® and Q;; = (1/N)ZY.,Q are the arithmetic
averages of ¢; and Qj;, while Ac® = ¢V — Z;and AQY = QW — 0,
denote the deviations from the average values. Note that we do not
treat the squared vertical-velocity ratio § = ¢ss/c3; and the vertical-
attenuation ratio gp = Q;;/QsS as small parameters. We assume,
however, that the attenuation is not uncommonly strong so that qua-
dratic and higher-order terms in 1/Q;; can be neglected.

The quadratic approximations for both velocity and attenuation
anisotropy are given in Appendix A, where c; is assumed to be posi-
tive. For the special case of two constituents (N = 2), our velocity-
anisotropy parameters become identical to those given by Bakulin
(2003).

In principle, the exact effective velocity-anisotropy parameters
depend on all possible factors, including the quality-factor matrix
that describes the intrinsic attenuation. However, unless the model
has extremely high attenuation with some of the quality-factor com-
ponents smaller than 10, the effective velocity anisotropy is con-
trolled by the real part of the stiffness matrix and is not sensitive to
the attenuation parameters.

In contrast, the effective attenuation anisotropy is influenced not
just by the intrinsic attenuation and the contrasts in the attenuation
parameters but also by the velocity parameters. The second-order
approximations for the effective Thomsen-style attenuation parame-
ters are given by (see equations A-37,A-43,and A-15)

(is-Van)

€p = (€p) + 6 )+ € + 685'(23") + ega"'Qa"), (29)

8p = (8p) + 85Y + 8 M 4 HVHm AW 4 sV (30)

and

Yo = <')/Q> + ')’ (is) ,y(is -Van) + ,y(Qis—Qan) + ,y(Van Qan)’ (31)
where (-) is the first-order term equal to the volume-weighted aver-
age of the intrinsic parameter values, and the rest of the terms are
quadratic (second-order) in the small parameters listed above. The

superscript (is) refers to the contribution of the parameters Ac!® and

QW (i = 3,5), which quantify the heterogeneity (contrasts) of the
1sotrop1c quantities, while (Van) depends on the velocity-anisotropy
contrasts. The superscripts (is-Van), (is-Qan), and (Van-Qan) denote
the quadratic terms that represent, respectively, the coupling be-
tween the isotropic heterogeneity and velocity-anisotropy contrasts,
between the isotropic heterogeneity and attenuation-anisotropy con-
trasts, and between the contrasts in velocity and attenuation aniso-
tropy.

Note that there are no quadratic terms in the velocity-anisotropy
contrasts, denoted by (Van), in equation 29 for €, and in equation 31
for y,. The parameter &, in equation 30 does include the term 55"
but not 53", which is similar to the structure of equation A-32 for
the velocity-anisotropy parameter &. It is interesting that while the
second-order approximations for €, &y, and 7y, depend on the cou-
pling between the intrinsic attenuation anisotropy and other factors
(the intrinsic velocity anisotropy and the isotropic heterogeneity),
none of them contains the sole contribution of the intrinsic attenua-
tion-anisotropy parameters [i.e., there are no terms with the super-
script (Qan)]. The leading (first-order) terms, however, are entirely
controlled by the corresponding average attenuation-anisotropy
parameters.

Explicit expressions for all second-order terms are listed in Ap-
pendix A. Equations A-43—A-48 show that the parameter J, is inde-
pendent of the intrinsic-anisotropy parameters €® and E(k) this re-
sult follows directly from the exact equation 21. In contrast, €pisin-
fluenced by all anisotropy parameters responsible for the velocities
of P-and SV-waves (e®, 5%, €}, and 5’) because these parameters
contribute to the effective values of ¢;; and O, (equation A-21).

According to equations A-39 and A-45, the isotropic heterogene-
ity terms €} and 63" vanish when both ¢% and Q% (or c% and )
are constant for all constituents. (The parameter 7“5) in equation
A-17 goes to zero if either c% = constor Q% = const.) This is a gen-
eralization of a well-known result for the effective velocity anisotro-
py of nonattenuative media. As discussed by Postma (1955) and
Bakulin (2003), the velocity-heterogeneity terms €, §@, @ go to
zeroif c® = const.

Also, the term 8@ = 0 if the vertical-velocity ratio V&/V¥ (or
c®/c®) is constant for all constituents (see equation A-34) because
then Acss/Css = Acs3/Ty;. The parameter 83° in equation A-45, how-
ever, does not possess such a property. Even if c®/c® = const and
ok /Q33 = const, &, (9 does not vanish unless Z, 8o =1 (i.e., the aver-
age 033 and Qs; are 1dentrcal)

Velocity contrast versus attenuation contrast

Whereas the effective velocity anisotropy caused by velocity vari-
ations among the constituents is generally well understood (e.g.,
Backus, 1962; Brittan et al., 1995; Werner and Shapiro, 1999), it is
unclear how velocity contrasts contribute to the effective attenuation
anisotropy. In this section, we compare the influence of the velocity
and attenuation contrasts on the effective attenuation-anisotropy
parameters.

The second-order approximations discussed above help to sepa-
rate the contributions of the velocity parameters from those of the at-
tenuation contrasts and intrinsic attenuation anisotropy. Indeed, the
attenuation-anisotropy parameters €, and 8, (equations A-37-A-42
and A-43-A-48) contain several terms controlled entirely by the
contrasts in the real-valued stiffnesses ¢33 and ¢s5 and in the velocity-
anisotropy parameters. This means that the velocity parameters can
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create effective attenuation anisotropy for P- and SV-waves even
without any contrasts in attenuation. Still, for the attenuation-anisot-
ropy parameters to have finite values, the constituents need to be at-
tenuative. If the medium is purely elastic and all intrinsic Q;; compo-
nents are infinite, the parameters €, &y, and 7y, become undefined
(equations 20-22).

To explore this issue further, let us consider the effective quality-
factor components for a medium composed of layers with isotropic
attenuation (i.e., €’ = 83 = y5 = 0 forall k). The Q-factor matrix
for each constituent in this case is described by two independent
components (Carcione, 2001; Zhu and Tsvankin, 2006), which we
assume to be constant for the whole model: Q¥ = 0, and Q% = Q,
where Qp and Qy are the quality factors for P- and S-waves, respec-
tively. Then, as discussed by Zhu and Tsvankin (2006), the normal-
ized attenuation coefficients .4 in all layers will be identical and iso-
tropic (independent of angle). Note that if the real-valued stiffnesses
vary among the constituents, the quality-factor component Q' (un-
like Qp and Q) will not necessarily be constant. Setting 53’ in equa-

tion 21 to zero, we find Q(]'g) as

0
_ (zg= DB(H + B

k k
2e0(cW 4 (BB~ )

(32)

where go= 0»/Qs.
The effective Q;; components for this model can be obtained from
equations A-21-A-23,A-2, and A-5:

On = QPj:(C(lkl)?CS’Mg 53‘)), (33)
033 = Op, (34)
Oss = Q¢ = Os (35)
and
N
2 ¢(k)§(k)
O;3= QPA],czl—, (36)
E ¢(k) g(k) gék)
k=1

where £0=c{/c{ and £ = 0,/Q. The explicit form of the func-
tion Fis too long to be given here.

Although the attenuation of all constituents is identical and isotro-
pic, the dependence of Q;; and Q3 on the real-valued stiffnesses
makes the effective attenuation for P- and SV-waves angle-depen-
dent (i.e., €, # 0 and &, # 0). However, the normalized attenuation
coefficient of SH-waves is isotropic because the effective parameter
Yo g0es to zero.

For the special case of equal quality factors for P- and S-waves
(033 = Ossor Qp = Os; gp = 1), the element Q; is constant for all
constituents (0 = Qp) and £Y'=1. Then €, = 0 and &, = 0 be-
cause all effective quality-factor components are identical (Q;,
= 033 = Qi3 = Oss = Q). This means that for O, = Qy, the effec-
tive attenuation is isotropic no matter how significant the velocity
contrasts and intrinsic velocity anisotropy may be.

The magnitude of the velocity-induced attenuation anisotropy for
a two-constituent model is illustrated in Figure 1, where the velocity
parameters taken from Bakulin (2003) correspond to a medium with

an uncommonly large velocity contrast for P- and S-waves. Both
constituents have isotropic velocity functions and the same isotropic
attenuation (with Q33 # QOss). The substantial contrasts in the P- and
S-wave velocities, however, create nonnegligible velocity and atten-
uation anisotropy for P- and SV-waves. In particular, the parameter
€p reaches values close to 0.1 when the volume fractions of the con-
stituents are equal to each other.

Next, we analyze the influence of the attenuation contrasts on the
effective attenuation anisotropy by assuming that the velocity field is
homogeneous and all five interval velocity parameters (c\¥, ¢, e®,
8™, and y ) are constant. The effective quality-factor components
then have identical form:

1

< : (37)
2 (M101)

Qij =

where ij = 11,33,13,55, or 66. When the intrinsic attenuation is iso-
tropic (ie., € = 8y = y§ =0), the only quantities that vary
among the constituents are Q“f) and Q%. Since for isotropic intrinsic
attenuation Q1) = 0% and Q¥ = QW, the effective parameters €,

and 1y, vanish. Also, the element Q' becomes

(k)
k 03
o = ®
33
1- <_(k) - 1)
55

2

css(cis + e33)
2c13(c13 + cs5)(c33 = C55)

where ¢’ = ¢;; because the velocity field is homogeneous. The ef-

fective Q;; component is then given by

Oi3= 0 Oss
1—(—9—1>

css(cpz + 033)2
Oss

2c13(c13 + e55)(c33 = ¢55)
which yields effective &, = 0. Hence, if the velocity field is homoge-
neous, the contrasts in isotropic attenuation do not produce effective
attenuation anisotropy.

This conclusion is supported by the 2D finite-difference simula-
tion of SH-wave propagation in Figure 2. The model is made up of
two VTI constituents with the thicknesses less than 1/20 of the pre-
dominant wavelength, so the medium can be characterized as effec-
tively homogeneous. Both constituents have isotropic attenuation

. (38)

. (39)

a) b)

>
2 0.1 8_ 0.1 —
o =
£ 3 -84
£ 0.05 € 0.05 ~Ta
s | 7N | S e
z S e
80 S
(O] c
> g

<C

0 02 O.4¢O.6 08 1 0 02 O.4¢0.6 08 1

Figure 1. Exact effective anisotropy parameters computed from
equations 17-22 for a layered model composed of two constituents
with identical isotropic attenuation (Q%) = Q% = 100; QY = 0%
= 50) and different isotropic velocity functions. The velocity con-
trasts are defined by Acs3/¢3; = 90% and Acss/css = 70% (refer to
Bakulin, 2003); for the first constituent, V{ = 3.2 km/s, V{
= 1.55 km/s, and p'V = 2.45 g/cm?. The horizontal axis represents
the volume fraction of the first constituent (¢ = ¢,).
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and the same VTI velocity parameters, but there is a large contrast in
the SH-wave quality-factor component Qss. A snapshot of the SH-
wavefront from a point source located at the center of the model is
shown in Figure 2a. As pointed out by Tsvankin (2005), for 2D non-
attenuative TI models, the amplitude along the SH-wavefront is con-
stant (see the dashed circle in Figure 2b).

If the effective normalized attenuation coefficient .4 were aniso-
tropic, it would cause angle dependence of the wavefront amplitude.

a) b) 180
0 0.4

03 [ Attenuative ~\120

200 0.2 - - -Elastic
B 0.1 ;
Nt 90
N 400 0

A 05
600 2 60
0 200 400 600

x (m)

Figure 2. (a) Snapshot of the SH-wavefront computed by 2D finite
differences for a layered attenuative medium (the time ¢ = 0.3 s).
The model includes two constituents with the same VTI velocity pa-
rameters and density: Vg = 1500 m/s, y = 0.2, and p = 2400 kg/
m?. The intrinsic attenuation is isotropic. For the first constituent,
QOss = Qg = 20 and the volume percentage ¢ = 33.3%; for the sec-
ond constituent, Qss = Qg = 50. (b) Polar plot of the picked ampli-
tude along the wavefront (solid curve) and the corresponding ampli-
tude for the nonattenuative model with Qss = Q¢ = « (dashed
curve).

Table 1. Parameters of a two-constituent attenuative VTI
model, where the velocity parameters are taken from
Bakulin (2003). For the first constituent, Vp, = 3 km/s, Vg,
= 1.5 km/s, p = 2.4 g/cm?, Q3; = 100, and Q55 = 80.

AC33/E33 AC55/C_‘55 em e® om o 'y(l> 7(2)

30% -30% 005 025 O 02 005 025

0 0 (1 o) ) 0
€ € % % Yo Yo

AQw/Qsy  AQss/Oss

However, despite some distortions produced by the automatic pick-
ing procedure, the amplitude variation along the wavefront in the at-
tenuative model is almost negligible (Figure 2b). Clearly, the attenu-
ation contrast does not result in effective attenuation anisotropy if it
is not accompanied by velocity contrasts.

NUMERICAL TESTS

Here, we compare the first- and second-order approximations
with the exact solutions, analyze the contributions of the attenuation
and velocity parameters to the effective attenuation, and evaluate the
magnitude of attenuation anisotropy for multiconstituent models.

Accuracy of the approximations

To test the accuracy of the approximations introduced above, we
first use a model formed by two VTI constituent layers. The velocity
parameters listed in Table 1 are taken from Bakulin (2003). The max-
imum magnitude of the velocity-anisotropy parameters is 0.25,
while the contrast in ¢;; and ¢ss reaches 30%. Since the strength of at-
tenuation anisotropy often exceeds that of velocity anisotropy, we
take each attenuation-anisotropy parameter to be twice as large by
absolute value as the corresponding velocity parameter (e.g., |€|
= |2¢]). Also, in accordance with the experimental results of Zhu et
al. (2007), all attenuation-anisotropy parameters are negative. The
contrast in the quality-factor elements Qs; and Qss (60%) is also
twice that in ¢33 and ¢ss, which means the value of Qs; for the second
constituent is nearly doubled compared to that for the first constitu-
ent and Qss is almost halved.

The numerical results in Figure 3 demonstrate that the linear
(first-order) approximation (dashed lines) generally follows the
trend of the exact effective parameters (solid lines). The maximum
error for the velocity-anisotropy parameters, which occurs when the
constituents occupy nearly equal volumes (¢ = ¢V = 0.5), does not
exceed 0.03. The accuracy of the linear approximation is much low-
er for the attenuation-anisotropy parameters, especially for &,. The
error in &, reaches 0.3, and the linear solution even predicts the
wrong sign of this parameter for a wide range of the volume ratios
03 <o <1).

Despite the substantial velocity and attenua-
tion contrast between the two constituents, the

60% -60% -0.1 -0.5 0 -04 -0.1 -0.5
a) b) ¢)
0.258 0.20 8, 0.25
0.20 0.15 0.20
L RT) S S S 0.10 P g 0.15
\“ w ‘.‘~ o~
0.10 0.05 0.10
0.05 a0 Sa  0.05

second-order approximations in Figure 3 (dotted
lines) are sufficiently close to the exact values.
The maximum error does not exceed 0.005 for the
velocity-anisotropy parameters and 0.04 for the
attenuation-anisotropy parameters.

0 02 0.4¢0.6 08 1 0 02 0.4¢0.6 08 1

0 02 0.4¢0.6 08 1

Next, to analyze the relative contribution of the
attenuation parameters to the effective attenua-
tion anisotropy, we change the model by making

d) e)
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Figure 3. Effective (a—c) velocity-anisotropy and (d—f) attenuation-anisotropy parame-
ters for the two-constituent VTI model from Table 1. The horizontal axis represents the
volume fraction of the first constituent (¢ = ¢,). The exact parameters (solid lines) are
plotted along with the first-order (dashed) and second-order (dotted) approximations.

the velocity functions of both constituents isotro-
pic and eliminating the velocity contrast between
them. In agreement with the theoretical analysis
in the previous section, most second-order terms
for such a model vanish, which substantially in-
creases the accuracy of the linear approximation
(Figure 4).

The second-order approximation for all pa-
rameters in Figure 4 virtually coincides with the
exact result. Therefore, the accuracy of the qua-
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dratic solutions 29, 30, and 31 is mostly governed by the contrasts in
the velocity parameters. This is further confirmed by the test in Fig-
ure 5, which shows that the error of the second-order approximation
remains practically negligible even for large contrasts in the attenua-
tion-anisotropy parameters as long as the velocity field is homoge-
neous and isotropic.

Although the second-order approximation is adequate for a wide
range of typical subsurface models, it deteriorates for uncommonly
large velocity and attenuation contrasts (Figure 6). The error is par-
ticularly significant for the parameter €, because the second-order
solution produces distorted values of the quality-factor element Q.

To test the performance of our approximations for a more compli-
cated, multiconstituent medium, we follow Bakulin and Grechka
(2003) in generating multiple realizations of a layered VTI model
with intrinsic VTTattenuation (Figure 7). The vertical velocities (Vpg
and V) are computed using the 1/f* distribution with & = 0.3. The
component Qs; for different realizations varies between 70 and 125,
while Qss varies between 40 and 90. The density and interval aniso-
tropy parameters follow normal random distributions with the fol-
lowing mean values: p = 2.49 g/cm3, €= 0.2, 6= 0.08, ¥ = 0.15,
€ =—-0.4, 8, = =0.16 and ¥, = —0.3. The standard deviations are
std(p) = 20 kg/m?, std(e) = std(d) = std(y) = 0.09, and std(ep)
= std(8p) = std(y,) = 0.2.

The test is similar to the one used by Bakulin and Grechka (2003),
who show that the first-order (linear) approximation is surprisingly
accurate for the effective velocity-anisotropy parameters of typical
layered media with moderate intrinsic anisotropy. In other words,
the effective velocity anisotropy is primarily determined by the
mean values of the interval parameters €, 6, and .

The test in Figure 8 demonstrates that this result also applies to ef-
fective attenuation anisotropy. After computing the exact effective
parameters for 2000 realizations of the model, we can compare their
ranges (bars) with the mean values (crosses) listed above. Although
some of the mean values are biased (i.e., shifted from the center of
the distribution interval), they give a satisfactory prediction of the
effective parameters. Therefore, despite the substantial property
contrasts in the model realizations, the magnitude of the second-or-
der terms in such multiconstituent models with random parameter
distributions is relatively small, and all velocity- and attenuation-an-
isotropy parameters are close to the mean of the corresponding inter-
val values.

Magnitude of attenuation anisotropy

For purposes of seismic processing and inversion, it is important
to evaluate the upper and lower bounds of the parameters €, 6, and
vo- We start with the SH-wave parameter y,, which has a relatively
simple analytic representation.

If a model is composed of isotropic constituents (in terms of both
velocity and attenuation), the effective attenuation anisotropy is
caused just by the heterogeneity. The SH-wave effective anisotropy
parameters for a two-constituent isotropic model are given by

x2

1-x%

y=2¢(1 - ¢) (40)

Yo =~ 8¢(1 — ¢)XXQ/{[¢(1 +x)(1 + XQ) +(1 - ¢)
X(1 = x)(1 = xg)][&(1 = x) + (1 = $)(1 + )]}, (41)

where ¢ is the volume fraction of the first constituent, and x= (c?
- D@ + ) and xo=(0% - O/(QY + Q) denote the
property contrasts between the constituents. In agreement with the
discussion above, equation 41 shows that a contrast in the attenua-
tion parameter Qss is not sufficient to produce attenuation anisotro-
py. The parameter 7y, also vanishes if the velocity contrast is not ac-
companied by an attenuation contrast, which is not the case for the
parameters €, and J.

Itis clear from equation 40 that the velocity parameter yis always
positive and finite for layered media composed of two different iso-
tropic constituents. (This result remains valid for any number of con-
stituents.) The possible range of values of 1y, is not immediately ob-
vious from equation 41. For the special case ¢ = 0.5, v, has to be

Figure 4. Effective attenuation anisotropy for a model with the same
attenuation parameters as those in Figure 3, but both constituents

have identical isotropic velocity functions (e = €® = §) = §@
=y = y® = Ac33/C33 = Acss/Tss = 0). Compare with Figure 3d-f.

a) ‘ b)—0.4
05 /j -05
0 w06
05 -0.7 :
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Figure 5. Effective attenuation anisotropy for a model with the same
velocity parameters and contrasts in Q33 and Qs;s as those in Figure 4,
but the contrasts in the attenuation-anisotropy parameters are more
pronounced: €y = 0.6, €5 =-0.8, 5y =-0.5, &5 =-0.8, v}’
= 0.8, and ) = —0.8. As before, the exact parameters (solid lines)
are plotted alQ()ng with the first-order (dashed) and second-order (dot-
ted) approximations.
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greater than —1, but this lower bound follows directly from the defi-
nition of the parameters y, and €, (Zhu and Tsvankin, 2006).
Therefore, to study the distribution of the effective parameters for
arepresentative set of more complicated models composed of multi-
ple isotropic (for both velocity and attenuation) constituents, we per-
form numerical simulations. First, we compute the anisotropy pa-
rameters of 2000 models using uniform random distributions for the
interval velocities and density. The histograms of the effective aniso-
tropy parameters for a relatively small number of constituents (two
to five) are displayed in Figure 9. The effective velocity-anisotropy
parameter 7y for isotropic constituents must be positive, which is
confirmed by our numerical results. The parameter €is predominant-
ly positive as well, and both yand € generally do not exceed 0.5. An-
other velocity-anisotropy parameter, J, can be either positive or neg-

ative, with the mean value close to zero. This is consistent with the
Monte Carlo simulations for finely layered isotropic media per-
formed by Berryman et al. (1999), who conclude that positive and
negative ¢ values are equally likely. In contrast to € and v, all three
effective attenuation-anisotropy parameters have an almost even
distribution around zero and a much wider variation.

In the next simulation (Figure 10), the maximum number of con-
stituents is increased to 200 (the minimum number is still two). The
most noticeable change in the histograms is a much more narrow dis-
tribution of both velocity-anisotropy and attenuation-anisotropy pa-
rameters, which suggests that the contributions of multiple random
constituents partially cancel each other. As a result, the attenuation-
anisotropy parameters are largely confined to the interval between

—0.5 and 0.5. Also, the distribution peaks of the
velocity-anisotropy parameters € and 7y (but not
§) are shifted toward positive values.

It should be emphasized that the tests described
above were performed for models without intrin-
sic velocity or attenuation anisotropy. Our numer-
ical analysis shows that making the constituents

anisotropic not only moves the distribution peaks
(especially, if the average value of the parameter
is not zero) but also changes the shape of the his-

tograms.

EFFECTIVE SYMMETRY FOR
AZIMUTHALLY ANISOTROPIC
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Figure 6. Effective (a—c) velocity-anisotropy and (d—f) attenuation-anisotropy parame-
ters for amodel with the same values of €2, 512, (12, €l 5%, and y* as those in
Figure 3 (Table 1), but the contrasts in the isotropic quantities are much higher: Ac;3/¢33
= AQ33/03 = 90% and Acss/Css = AQss/Qss = 710%. For the first constituent, V)
=3.2 km/s, V{) = 1.55 km/s, pV = 2.45 g/cm?, Q) = 100, and Q') = 80. The exact
parameters (solid lines) are plotted along with the first-order (dashed) and second-order

(dotted) approximations.
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Figure 7. Interval parameters of one realization of a model com-
posed of VTT layers with VTI attenuation: (a) the vertical velocities
and density, (b) the quality-factor components Q33 and Qss, and (c)
the anisotropy parameters € and €. The sampling interval is 5 m.

CONSTITUENTS

The examples in the previous sections were
generated for purely isotropic or VTI constitu-
ents, in which both intrinsic velocity and attenua-
tion are independent of azimuth. The effective ve-
locity and attenuation functions in such models
are also azimuthally isotropic, and the equivalent
homogeneous medium has VTI symmetry.

The general averaging equations 5—-10, howev-
er, hold for any symmetry of the interval stiffness matrix and can be
used to study layered azimuthally anisotropic media. An interesting
issue that arises for such models is whether the effective velocity and
attenuation anisotropy have different principal symmetry directions
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02l i = Range
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[
o
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C
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€ ) Y €q g Yo

Figure 8. Mean values (crosses) of the interval anisotropy parame-
ters and ranges (bars) of the exact effective parameters computed for
2000 realizations of the model from Figure 7. The standard devia-
tions of all model parameters are listed in the text.
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(i.e., different azimuths of the vertical symmetry 800 1000 600
planes). Here, without attempting to give a com- 600 800
prehensive analysis of this problem, we discuss a 400 600 400
numerical example for the simple model in Fig- 400 200
ure 11, which includes two HTI (transversely iso- 200 200
tropic with a horizontal symmetry axis) constitu- O35 0 o5 7 % 50955 7 % =5 0 o5 i
ents. The first constituent is purely elastic (nonat- € 5 Y
tenuative); the second has HTT attenuation with 250 250 300
the same symmetry axis as that for the velocity 200 200
function. The velocity parameters (i.e., the real 150 150 200
part of the stiffness matrix) of three constituents 100 100
are identical, but the symmetry axes have differ- 50 50 k 100
ent orientations (Figure 11b). 0 0 0

After computing the effective stiffnesses from S 2 8% 23 =2 5% tes 82 }90 1.2 3

equations 5-10, we obtained the effective P-wave

phase velocity and normalized attenuation coeffi-
cient A using the Christoffel equation. The coef-
ficient A was calculated under the assumption of
homogeneous wave propagation (i.e., the planes
of constant amplitude are taken to be parallel to

Figure 9. Histograms of the effective anisotropy parameters computed for 2000 random-
ly chosen models composed of isotropic (for both velocity and attenuation) constituents.
The vertical axis shows the frequency of the parameter values. The ranges of the interval
parameters are: Vp, = 2000-6000 m/s, Vs, = 1000-3000 m/s (the vertical P-to-S veloc-
ity ratio was kept between 1.5 and 2.5), p = 2000-4000 kg/m3, Q33 = 30-300, and Qss

the planes of constant phase). Notice that the ef-
fective velocity function is almost entirely gov-
erned by the real-valued stiffnesses, unless the at-

= 30-300. The number of constituents is chosen randomly between two and five.

tenuation is uncommonly strong. In this model, 1500 2000 1000
the HTI constituents have identical velocity pa- 1000 1500 800
rameters and occupy the same volume, so the real 1000 igg
part of the effective stiffness matrix is well de- 500
. . . 500 200
scribed by orthorhombic symmetry. This conclu- 0
sion is confirmed by the computation of the effec- 0_1 05 0 05 1 0_1 05 0 05 1 41 05 0 05 1
tive phase-velocity function in the horizontal € o v
plane and two vertical coordinate planes, one of 600 500 500
which bisects (with the azimuth 90°) the symme- 400 400
try-axis directions (see Figure 11). The shape of 400 300 300
the phase-velocity curves in Figure 12a and c 200 200 200
shows that the symmetry planes of the effective 100 100
orthorhombic velocity surface are aligned with 0. ~ ol 0.
the coordinate planes -1 -05 0 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1
) €Q o] e

In contrast to the velocity surface, the effective
normalized attenuation coefficient is not sym-
metric with respect to any vertical plane (Figure
12b). Because of the coupling between the the
real and imaginary parts of the effective stiffness matrix, the effec-
tive attenuation has a lower symmetry, which we found to be mono-
clinic. Also, the extrema of the coefficient A in the horizontal plane
do not correspond to the symmetry planes of the effective velocity
surface. The minimum value of A occurs at an azimuth of 65°,
whereas the maximum occurs at 175°. Because the layering in this
model is horizontal and both constituents have a horizontal symme-
try axis, the monoclinic symmetry system for the effective attenua-
tion has a horizontal symmetry plane (Figure 12d).

Next, we modify the model by reducing the magnitude of the in-
trinsic attenuation anisotropy (Figure 13). Since the real-valued
stiffnesses are kept unchanged, the effective velocity function prac-
tically coincides with that in Figure 12a and c. The horizontal and
vertical cross sections of the coefficient A (Figure 13) show that the
effective attenuation in this model is well described by orthorhom-
bic, rather than monoclinic, symmetry. Although the effective veloc-
ity and attenuation for this model have the same symmetry, the verti-
cal symmetry planes for the velocity and attenuation functions are
misaligned by about 36°. This result is consistent with the conclu-

two and 200.

Figure 10. Same as Figure 9, but the number of constituents is randomly chosen between

60° i 60°

Figure 11. (a) Layered model composed of two HTI constituents
with the same volume (¢, = ¢, = 0.5), one of which is elastic while
the other one has HTI attenuation. (b) Plan view of the symmetry-ax-
is directions. The azimuth of the symmetry axis for the first (elastic)
constituent is 60° toward northeast; for the second constituent, the
azimuth is 60° northwest. The velocity parameters for both constitu-
ents are p = 2000 g/cm?, Vpy = 3 km/s, Vg =2 km/s, € =0.2, &
= 0.05, and y = 0.2. For the second constituent, the attenuation pa-
rameters are 0 = 100, 0% = 80, €5’ = 0.4, 5 = 0.1, and v’
=-04.
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Figure 12. (a, ¢) Effective P-wave phase velocity and (b, d) normal-
ized attenuation coefficient .4 for the model from Figure 11. The ve-
locity and attenuation are plotted in the horizontal plane as functions
of the azimuthal phase angle (a, b) and in the two vertical coordinate
planes as functions of the polar phase angle (c, d).
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Figure 13. (a) Horizontal and (b) vertical cross sections of the effec-
tive normalized attenuation coefficient for a model with relatively
weak attenuation anisotropy. The model parameters are the same as

those in Figure 11, except for 5 = =0.1, 85 = 0.03, and 7y’ =
-0.1.

sions of Liu et al. (2006), who argue that the symmetry directions es-
timated from velocity or traveltime inversion do not necessarily
agree with those obtained from amplitude or attenuation analysis
and may not measure the same properties of subsurface fractures.

CONCLUSIONS

Interpretation of seismic amplitude measurements requires a bet-
ter understanding of the physical reasons for attenuation in the seis-
mic frequency band and, in particular, of the main factors responsi-
ble for attenuation anisotropy. Similar to velocity anisotropy, the ef-
fective attenuation coefficient can become directionally dependent
because of interbedding of thin layers with different velocity and at-
tenuation. Here, we studied the relationship between the effective
Thomsen-style attenuation-anisotropy parameters (€y, &y, and 7y,)
and the properties of finely layered media composed of attenuative
isotropic or TI constituents.

The exact equations for the effective stiffness components in the
long-wavelength limit were obtained using the Backus averaging
technique. For attenuative media, the effective stiffnesses are com-
plex, and the attenuation anisotropy depends on both the real and
imaginary parts of the stiffness matrix. In contrast, the effective ve-
locity function is almost entirely governed by the real-valued stiff-
nesses and, unless the attenuation is uncommonly strong, does not
depend on the intrinsic attenuation parameters. Therefore, the effec-
tive velocity anisotropy of attenuative layered media can be well de-
scribed using the results for the corresponding elastic models.

To gain insight into the behavior of the attenuation-anisotropy pa-
rameters for thin-layered VTI media, we developed approximate so-
lutions by assuming that the velocity and attenuation contrasts, as
well as the interval velocity- and attenuation-anisotropy parameters,
are small by absolute value. As is the case for velocity anisotropy, the
first-order (linear in the small quantities) terms in these approxima-
tions are given by the volume-weighted average of the correspond-
ing interval parameters. The second-order (quadratic) terms include
coupling between different factors responsible for the effective at-
tenuation anisotropy, such as that between the intrinsic anisotropy
and heterogeneity. The second-order approximation, which includes
both linear and quadratic terms, remains sufficiently accurate for
models with strong property contrasts and pronounced intrinsic
anisotropy.

It is noteworthy that even for models with isotropic constituents
that have identical attenuation coefficients, the effective attenuation
of P- and SV-waves is anisotropic if the interval velocity changes
across layer boundaries. However, jumps in the interval attenuation
alone (i.e., not accompanied by a velocity contrast between isotropic
constituent layers) do not create effective attenuation anisotropy.
Because of the large contribution of the velocity contrasts to the qua-
dratic attenuation terms, the accuracy of the linear (first-order) ap-
proximation for the attenuation-anisotropy parameters is controlled
primarily by the strength of the interval velocity variations. Also, the
total contribution of the second-order terms tends to be higher for the
attenuation parameters than for the velocity parameters. The relative
magnitude of the overall velocity and attenuation anisotropy, how-
ever, is strongly dependent on the average values of the correspond-
ing interval parameters (i.e., on the first-order terms).

In addition to several tests for two-constituent models, we per-
formed extensive numerical simulations for more complicated me-
dia composed of up to 200 constituents. To evaluate the upper and
lower bounds of the attenuation anisotropy caused entirely by heter-
ogeneity, all constituents were isotropic in terms of both velocity and
attenuation. While the distributions of the parameters €y, dy, and 7y,
are centered at zero, their values cover a wider range (at least from
—0.5t0 0.5) than that for the velocity-anisotropy parameters.

Although most of the paper is devoted to azimuthally isotropic
models, we also evaluated the effective anisotropy for an HTI medi-
um that includes two constituents with different azimuths of the
symmetry axis. Such changes in the symmetry direction are often re-
lated to variations of the dominant fracture azimuth with depth. If the
intrinsic attenuation anisotropy is sufficiently strong, the velocity
and attenuation functions of the effective medium may have differ-
ent symmetries (e.g., orthorhombic versus monoclinic). Even when
both velocity and attenuation are described by orthorhombic mod-
els, their vertical symmetry planes may be misaligned. These results
may have implications in field measurements of attenuation over
fractured reservoirs.
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APPENDIX A

SECOND-ORDER APPROXIMATION FOR
THE EFFECTIVE PARAMETERS OF
ATTENUATIVE VTI MEDIA

Here, we derive the second-order approximation for the effective
velocity- and attenuation-anisotropy parameters for thin-layered
media composed of an arbitrary number of VTI (in terms of both ve-
locity and attenuation) constituents. In accordance with the main as-
sumption of Backus averaging (see the main text), the thickness of
each layer must be much smaller than the predominant wavelength.

Anisotropy parameters for SH-waves

First, we consider the parameters vy and vy, which control the ve-
locity and attenuation anisotropy (respectively) for the SH-wave.
The effective stiffness component ¢ss is given by (see equation 14)

; (A-1)

where ¢® denotes the volume fraction of the kth constituent
(Z},¢® = 1). In the weak-attenuation limit (1/Qs5< 1), Cs5 can be
approximated as

1 1

_ Css 55055
Css = . (A-2)

1 -1
Css =\ (A-3)
Css

and

1
Css
Oss=—F— - (A-4)
1
¢550ss
According to equation 15,
c
Cos = (Co6) — l< Q66> (A-5)
66
which yields
cos = (Co6) (A-6)
and
Qs = <C66>< 0 > (A-7)
66

By dropping the cubic and higher-order terms in Ac%® and y*), we
obtain the second-order approximation for the effective parameter y:

1 N N 2
y=+ 5| 2 AL - (E ¢<k>Ac§’?>

k=1 k=1

N N
+ 2 d)k)Ac(k 2 d)(k)AAC(S/g)E ¢(k)y(k)

(A-8)

Note that for any quantities x and y varying among different constit-
uents, we have

N N N
2 qS(k)x(k)y(k) _ E d,(k)x(k)z d’(k)y(k)
k=1 k=1 k=1
N N
2 E qS(k)d)(l)Ax(k'l)Ay(k’l), (A-9)
where Ax®) = x — x® Then ycan be represented as
y = <,y> + ,y(is) + ,y1§ Van) + ,yVan (A-lO)
where
N
(9 =2 ¢Wy® (A-11)
k=1
kl)
Y= —E E ¢<k>¢”( ) (A-12)
21 12k Css
1s -Van) _ E 2 d’(k)d’l) 55 A (kl (A-13)
k=11=k+1 Css
and
yVa = . (A-14)
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Here, A-® denotes the difference between the medium properties of
the kth and [th constituents; for example, Ac%? = ¢l — ¢® and
Ay®D = 4y — 4®  Equations A-10-A-14 generalize equations
16-19 of Bakulin (2003) for layered media with an arbitrary number
of constituents.

To obtain the second-order approximation for the effective attenu-
ation-anisotropy parameter o, we substitute equations A-4 and A-7
into equation 22 and keep only the linear and quadratic terms in
AC55 AQSSs y"®,and '}’(k)‘

Yo = <'}’Q> + y(ls 7(19 Van) y (is- Qan) ,y (Van- Qan)
(A-15)
where
N
(yo) = 2 dM9Y, (A-16)
k=1
Acls” AQL"
7§ = zE E Y e SN
k=11=k+1 Css Q55
N N AQ%!
,y(lsVan _ 2 2 (k)¢(1) 55 Ay (kl) (A-18)
k=11=k+ QOss

N
18-Qan AC AQ(k])
Yl - 3 2 ¢<k>¢<z>( 5 Ay,

k=11=k+1 Css Qss
(A-19)
and
N N
y(Van Qan) _ 5 2 E d’(k) ¢(1)A,y(k DA '}’(k A (A-20)
k=11=k+1
Anisotropy parameters for P- and SV-waves
In the weak-attenuation limit, equations 11-13 yield
N N
Zn= 2 ¢0e - Q) - X ¢P(E
k=1 k=1
N e N )
= ol

Q<k>(1 (k))}

N ) 2
x{E ¢<’<>g<k>{1 +ﬁ(1 - <’<>)} . (A2

k=1 33
% P N ¢<k>
k=1 0(313) k 10(3]§)Q
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(A-23)

where £= c3/c3; and £,= Q033/Q,3. Using equations 18 and 21, &,
can be rewritten as

(1-g8,-8(go- DU+ -g)
28(g + &
where g = css/c33and go = Q33/0ss.

If we ignore the cubic and higher-order terms in &, the second-or-
der approximation for £ becomes

Eo=1+ . (A-24)

2

§=1—2g+5—2(1—_g)

(for c;3 > 0) (A-25)

or

2

E=-1-0 g

(for ¢;3 < 0). (A-26)

Hereafter, c,; is assumed to be positive (equation A-25).

By keeping only the linear and quadratic terms in Ac(¥, Ac%®,
AAQE?, AQ%), as well as in the interval velocity- and attenuation-an-
isotropy parameters for P- and SV-waves, we obtain the second-or-

der approximations for the effective VTI parameters.

Parameter €

e=(e) + € 4 lisVan 4 (Van) (A-27)
where

N

(&= 2 ¢pWe (A-28)
k=1

AckD ACKD [ AcKD
=23 3 ¢<’<>¢“>{ n -8 =) |
k=11=k+1 €33 Css Css
(A-29)

N N (k,1)
Elis-Van) _ 2 2 k) d)(z)AC% (Ae®D — A5KD)
k=11=k €33

(kD)
+2% A —2A§KD,

Css

(A-30)
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e(Van) - _ _2 E ¢k)¢(1)(A5(k l))2 (A-3])
252112k
and
g = Cs5/C33.
Parameter 6
5= (&) + 81 4 slsVan 4 sVan) = (A_32)
where
N
(0y= 2 ¢8, (A-33)
k=1

b}

0 _ackd)ackt

NoX Acys
1%)_2g2 2 (k) (1)(

€33 Css Css
(A-34)
slisvan = 0, (A-35)
and
(A5 )
SVan) — _ EE E ¢(k)¢(l) (A-36)
k=11=k+1 -8

As was the case for SH-waves, equations A-27-A-36 generalize
equations 29-32 and 21-24 of Bakulin (2003) for multiconstituent
layered media.

Parameter €,

gs—Van) + Ggs—Qan) + GfQVan—Qan),

€9 =€) + egs) + €
(A-37)
where

N
(A-38)

—k+ €33
(k l)) cglg_l) Ac (k ’)AQ(" 1) ~ (Ac%’)
_ + g _
Css Css Css Q33 €33
A (k 1) (k )]
- (A-39)
Css Oss

N Aclkd
e_(QiS—Van) — E 2 ¢(k)¢(l)|: 28(1 _ gQ) 55 Aa(k l)
k=11=k+l Css
(kD) (k1)
: 2§§QA?55 AskD _ AQ3; 2B (AkD
Oss 03
- Aﬁ(k”))} , (A-40)
G(QiS-Qan 2 E ¢(k)¢(l)|: 33 (A (k1) Aﬁg’[))
k=1 1=kl
(k.1) (k,0)
Aoy 95 4 ¢ (kl 1287 Acss Aé(kl (A-41)
033 Css
and
N N
(Van Qan) _ 2 2 ¢(k) d)([)[ZA (k, I)Ae(kl
k=11=k+1
- AS DALY (A-42)

Parameter 6,

5Q — <§Q> + 5(Qis) + 555—Qan) + 5(QVan»Qan) + 5éVan)’

(A-43)
where
N
(6) = 2 ¢V, (A-44)
k=1
' N N kl)
550 =-433 3 ¢We"| (1- )(
k=11=k+l €33
Ac kl))AC];l) Ac (kl)Ale) B (Acglg,l)
- + 8o\
Css Css Css QO €33
A (k ) A (k1)
- Q s (A-45)
€ss Oss
- § AQE"
53s—Qan) E 2 ¢(k) ¢(1) kl) (A-46)
k=11=k+1 Q33
1 N N
5&Van-Qan) - _ _2 E ¢(k)¢(l 5(1(1 5(k 0 (A 47)
I = 8r=t1i=k+1
and
_1-g
=g 2 S S giasr  (ads)

(1 -8 i1 2k

where §Q = Q33/Q55.
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