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ABSTRACT

Evanescent (inhomogeneous) waves contained in the plane-wave decomposition of

point-source radiation produce not only surface waves but also nongeometrical modes

that can be recorded far away from the boundary. This paper gives an analytic

description of plane evanescent P-, SV-, and SH-waves propagating in the symmetry

planes of non-attenuative transversely isotropic and orthorhombic media.

Simple weak-anisotropy approximations for the slowness and polarization vectors

of horizontally traveling evanescent waves are obtained by linearizing the Christof-

fel equation in the anisotropy parameters. The relationship between the horizontal

slowness (m1) and the imaginary part of the vertical slowness (m3) (i.e., between

the horizontal velocity and the vertical amplitude decay factor) is controlled by the

stiffness matrix. For P-waves, this relationship is sensitive even to relatively small

values of the Thomsen parameters δ and, especially, ε. The weak-anisotropy approxi-

mation correctly reproduces the trend of the dependence of m1 on m3 for moderately

anisotropic media, but deteriorates with increasing difference ε−δ, as the model devi-

ates from elliptical. The influence of anisotropy on the function m1(m3) is particularly

significant for SV-waves because the slowness vector is governed by the parameter σ,

which often exceeds 0.5. Anisotropy also distorts the particle motion of evanescent

P- and SV-waves by changing the eccentricity of the polarization ellipse.
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The results of this work can be used to develop asymptotic solutions for non-

geometrical waves and design new anisotropic parameter-estimation algorithms for

cross-hole and VSP surveys. In particular, measurements of the vertical decay factor

of leaking waves traveling between boreholes can help to constrain the anisotropy

parameters.

KEY WORDS: Evanescent waves, borehole data, slowness vector, particle mo-

tion, weak-anisotropy approximation, anisotropic media, transverse isotropy.

INTRODUCTION

A plane wave is called evanescent or inhomogeneous if at least one component

of its slowness vector is complex. The imaginary part of the slowness vector causes

spatial amplitude decay, with the planes of constant amplitude generally different

from the planes of constant phase (i.e., from the wavefront). For example, plane

waves are always evanescent in the presence of attenuation (absorption) because the

stiffness tensor becomes complex. For non-attenuative media, evanescent waves are

excited during reflection and transmission of conventional homogeneous plane waves

when the angle of incidence exceeds the critical angle (e.g., Aki and Richards, 1980).

Evanescent waves formed by transmission into thin high-velocity layers can become

homogeneous upon leaving the layer and recorded far from the source, leading to

so-called “tunneling” of energy (e.g., Červený and Aranha, 1992).

Also, plane-wave decomposition of point-source radiation always includes a range

of evanescent plane waves whose velocities change continuously between zero and

the medium velocity (Brekhovskikh, 1980). If the distance between the source and

the nearest medium boundary is smaller than the predominant wavelength, evanes-

cent energy contained in the point-source radiation gives rise to surface (Rayleigh,

Stoneley) waves. Furthermore, evanescent plane waves can be transformed into homo-
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geneous (non-decaying) waves during the reflection/transmission process, generating

“nongeometrical” or “nonray” modes (Brekhovskikh, 1980; Tsvankin, 1995).

For example, if a point pressure source is located near a plane interface between

two acoustic (fluid) media with the velocities c and c1, the wavefield transmitted into

the low-velocity halfspace contains two nongeometrical waves shown in Fig. 1. The

wave P* is called “pseudospherical” because it has a spherical wavefront centered

at the projection of the source onto the boundary (Brekhovskikh, 1980). According

to Snell’s law, the P*-wave can exist only in the post-critical domain between the

boundary and the critical angle θcr = sin−1(c1/c). The second nongeometrical wave,

P̄, is a “leaking” mode similar to conventional head waves (Phinney, 1961). It prop-

agates along the boundary with a horizontal velocity slightly smaller than c and has

a conical wavefront in the low-velocity halfspace. The take-off (transmission) angle i

for the P̄-wave (Fig. 1) is close to the critical angle θcr.

Nongeometrical waves often produce intensive secondary reflected and head waves

in layered media and, unlike surface waves, can be recorded far away from the

boundary (Tsvankin, 1995). Because of nongeometrical phenomena, P-wave sources

excite several intensive shear modes, such as the pseudospherical wave S* (Hron

and Mikhailenko, 1981) and leaking waves propagating with shear-wave velocities

(Tsvankin, 1995). This shear-wave energy can be of particular importance to

anisotropic parameter-estimation algorithms that require a combination of P- and

S-wave data (Tsvankin, 2005). Whereas it is well known that anisotropy has a strong

influence on surface waves (Crampin and Taylor, 1971; Crampin, 1975), existing re-

sults for nongeometrical waves are restricted to isotropic models. To give an analytic

description of nongeometrical phenomena in anisotropic media, it is necessary to

study the properties of incident evanescent plane waves.

The goal of this paper is to build a foundation for analysis of nongeometrical

modes in anisotropic media by obtaining closed-form expressions for the slowness

and polarization vectors of evanescent waves. For simplicity, I consider plane waves
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with the slowness vector confined to a symmetry plane of transversely isotropic (TI)

or orthorhombic media. Linearization of the relationship between the horizontal and

vertical slownesses (i.e., between the velocity and amplitude decay factor) helps to

identify the combinations of the anisotropy parameters responsible for the properties

of evanescent waves. Numerical tests for typical TI models confirm the strong in-

fluence of anisotropy on evanescent waves and help to evaluate the accuracy of the

linearized solution.

CHRISTOFFEL EQUATION FOR EVANESCENT WAVES

Let us consider a harmonic plane wave propagating in a homogeneous, arbitrarily

anisotropic medium:

un = Un eiω(mjxj−t) , (1)

where u is the displacement vector, U is the unit polarization vector, ω is the angular

frequency, and m is the slowness vector. If at least one of the components of the

slowness vector is complex so that

mj = mre
j + imim

j , (2)

the wave is called evanescent or inhomogeneous:

un = Un eiω(mre

j
xj−t)−ωmim

j
xj . (3)

To obtain the velocity, polarization, and amplitude decay factor of evanescent

waves, the plane wave from eq. (3) should be substituted into the wave equation,

ρ
∂2ui

∂t2
− cijkl

∂2uk

∂xj ∂xl

= 0 . (4)

Here, ρ is the density and cijkl is the stiffness tensor, which is assumed to be real (i.e.,

the medium is non-attenuative); summation over repeated indices is implied. This
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substitution results in the Christoffel equation, which has the same form as that for

conventional homogeneous waves (e.g., Helbig, 1994; Tsvankin, 2005):

[cijkl mj ml − ρ δik] Uk = 0 , (5)

where cijkl mj ml is usually called the Christoffel matrix and denoted by Gik; δik is

Kronecker’s symbolic δ. For evanescent waves, both the slowness and displacement

vectors are generally complex. This means that the left-hand side of eq. (5) can

be separated into the real and imaginary parts, which leads to coupled Christoffel

equations for the vectors m and U.

Carcione (2001) and Zhu and Tsvankin (2006) analyzed the Christoffel equation

for attenuative anisotropic media (i.e., for complex cijkl), where the imaginary part

mim of the slowness vector is often assumed to be parallel to the real part mre (wave

propagation is then called “homogeneous”). The purpose of this work, however, is

to study evanescent waves for purely elastic (non-attenuative) models. When the

medium is elastic and isotropic, the real and imaginary parts of the slowness vector

are perpendicular to each other. Indeed, for a purely isotropic tensor cijkl, eq. (5)

reduces to the following coupled equations (Tsvankin, 1995):

|mre|2 =
1

V 2
+ |mim|2 , (6)

mre · mim = 0 , (7)

where V is the velocity of P- or S-waves. According to eq. (7), the direction of am-

plitude decay determined by mim is perpendicular to the wave-propagation direction

mre. The magnitude of mim has the meaning of the frequency-normalized amplitude

decay factor of evanescent waves. The evanescent-wave velocity, which is equal to

1/|mre|, decreases from the medium velocity V to zero with increasing |mim| [eq. (6)].

Below I treat evanescent waves that propagate in the horizontal plane [x1, x2] and

decay in the vertical direction x3. Plane evanescent waves of this type are contained
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in Weyl-type integrals (i.e., in plane-wave decompositions of point-source radiation)

used to solve reflection/transmission problems for horizontal interfaces (Brekhovskikh,

1980; Tsvankin and Chesnokov, 1990; Tsvankin, 1995, 2005). The medium is assumed

to be transversely isotropic with a vertical symmetry axis (VTI), but the results are

also valid in the symmetry planes of HTI (TI with a horizontal symmetry axis) and

orthorhombic media where the Christoffel equation has the same form as for vertical

transverse isotropy (Tsvankin, 2005).

Since VTI models are azimuthally isotropic and all vertical planes are equivalent,

it is sufficient to consider the slowness vector confined to the coordinate plane [x1, x3]

(i.e., m2 = 0):

mre = {mre
1 , 0, 0} , mim = {0, 0, mim

3 } . (8)

Then the plane wave from eq. (3) takes the form

un = Un eiω(m1x1−t)−ωm3x3 . (9)

Substituting the stiffness tensor for VTI media (e.g., Helbig, 1994) and the slow-

ness vector from eq. (8) into the Christoffel equation (5) yields

[c11(m
re
1 )2 − c55(m

im
3 )2 − ρ ] U1 + i(c13 + c55) mre

1 mim
3 U3 = 0 , (10)

[c66(m
re
1 )2 − c55(m

im
3 )2 − ρ ] U2 = 0 , (11)

i(c13 + c55) mre
1 mim

3 U1 + [c55(m
re
1 )2 − c33(m

im
3 )2 − ρ ] U3 = 0 . (12)

For brevity, henceforth the superscripts “re” and “im” are omitted because the hori-

zontal component of m is real, while the vertical component is imaginary.

EXACT SOLUTION FOR SH-WAVES

Since the slowness vector lies in a symmetry plane, SH-waves described by eq. (11)

are decoupled from in-plane polarized P- and SV-waves [eqs. (10) and (12)]. The
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SH-wave polarization vector is orthogonal to the propagation plane [x1, x3], and the

horizontal and vertical slownesses are related by [eq. (11)]

c66 m2
1 − c55 m2

3 − ρ = 0 . (13)

The horizontal slowness in eq. (13) can be expressed as

m2
1 =

1

V 2
hor,SH

+
c55

c66
m2

3 =
1

1 + 2γ

(

1

V 2
S0

+ m2
3

)

, (14)

where γ ≡ (c66 − c55)/(2c55) is the Thomsen (1986) anisotropy parameter responsible

for SH-wave anisotropy, VS0 =
√

c55/ρ is the shear-wave vertical velocity, and Vhor,SH

is the horizontal velocity of homogeneous SH-waves:

Vhor,SH =

√

c66

ρ
= VS0

√

1 + 2γ . (15)

Setting γ = 0 makes eq. (14) identical to the corresponding isotropic expression 6.

As in isotropic media, the velocity of evanescent SH-waves (1/m1) is smaller than

the horizontal velocity Vhor,SH and decreases with increasing values of |m3|. The

contribution of γ, however, may substantially distort the realtionship between m1

and m3. Since typically γ > 0 (Wang, 2002), it increases the value of m2
3 (and,

therefore, of the amplitude decay factor) for a fixed horizontal slowness m1.

SOLUTIONS FOR P- AND SV-WAVES

In the following, the discussion is focused on evanescent P- and SV-waves.

Eqs. (10) and (12) cannot be solved simultaneously with a real displacement (po-

larization) vector U. Physically, this means that there is a phase shift between the

vertical and horizontal polarization (displacement) components, and the polarization

of evanescent waves is nonlinear. By analogy with known solutions for isotropic media

(Tsvankin, 1995), this phase shift is expected to be equal to 90◦, which corresponds

to elliptical polarization. As shown below, introducing a 90◦ phase shift between the
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polarization components is indeed sufficient to solve for the slownesses and polariza-

tions of both P- and SV-waves. For simplicity, here the horizontal component U1 is

taken to be real and the vertical component U3 imaginary. However, since eqs. (10)

and (12) constrain only the ratio of the polarization components, both U1 and U3 can

be complex, as long as their phase factors differ by 90◦.

If U1 is real and U3 = i|U3|, eqs. (10) and (12) become

(c11m
2
1 − c55m

2
3 − ρ) U1 − (c13 + c55) m1m3 |U3| = 0 , (16)

(c13 + c55) m1m3 U1 + (c55m
2
1 − c33m

2
3 − ρ) |U3| = 0 . (17)

To obtain a non-trivial solution, the determinant of the 2 × 2 matrix formed by the

coefficients multiplied with U1 and U3 has to be set to zero:

(c11m
2
1 − c55m

2
3 − ρ) (c55m

2
1 − c33m

2
3 − ρ) + (c13 + c55)

2 m2
1 m2

3 = 0 . (18)

Note that eq. (18) becomes identical to the conventional equation for the slownesses

of homogeneous P- and SV-waves in VTI media (e.g., Helbig, 1994) if m2
3 is replaced

by −m2
3. As is the case for homogeneous waves, the slowness components m1 and

m3 can be related to each other by solving a quadratic equation which follows from

eq. (18). Such solutions play an important role in deriving reflection/transmission

coefficients (e.g., Rüger, 2001) because all waves scattered at a horizontal interface

have the same horizontal slowness according to Snell’s law.

Weak-anisotropy approximation for P-waves

Relationship between the slownesses.—The exact expression for m1(m3) (or

vice versa) is not simple enough to reveal the contributions of the anisotropy parame-

ters. As shown in Appendix A, a concise approximation can be obtained by applying

perturbation approach and linearizing eq. (18) in the Thomsen (1986) parameters ε

and δ. Henceforth, m3 will be treated as a positive quantity, although (depending on
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the sign of x3) it can become negative to ensure exponential amplitude decay of the

evanescent wave in eq. (9).

For the P-wave (i.e., for the solution with the smaller value of |m1| for a given

|m3|), the approximate horizontal slowness is given by

m2
1 =

1

V 2
hor

+ m2
3 (1 − 4ε + 2δ) − 2m4

3 V 2
P0 (ε − δ) , (19)

where VP0 and Vhor = VP0

√
1 + 2ε are the vertical and horizontal velocities (respec-

tively) of homogeneous P-waves. To make m1(m3 = 0) exact, the term 1/V 2
hor is not

linearized in the parameter ε. In the absence of anisotropy (ε = δ = 0), eqs. (18)

and (19) become equivalent to the isotropic expression (6):

m2
1 =

1

V 2
P0

+ m2
3 . (20)

According to eq. (20), m1 monotonically increases with m3, so as the amplitude

of evanescent waves decays faster in the vertical direction, their horizontal velocity

decreases from VP0 to zero. It follows from eq. (19) that this general trend is preserved

in the presence of moderate anisotropy (also, see the numerical examples below).

Still, even relatively small values of the parameters ε and δ may significantly

change the velocity Vhor and the m2
3-term in eq. (19), while the m4

3-term is purely

anisotropic. The multiplier of ε in the m2
3-term is twice as large as that of δ because

ε governs the P-wave velocity for near-horizontal directions. To separate the con-

tribution of anisotropy to the linearized function m1(m3), eq. (19) can be rewritten

as

m2
1

1/V 2
P0 + m2

3

= 1 − 2ε − 2m2
3 V 2

P0 (ε − δ) . (21)

For evanescent waves with small values of the product m3VP0 (i.e., with slow am-

plitude decay), the anisotropic term in eq. (21) is controlled primarily by ε. Since

for typical TI models ε > 0 and ε > δ (Wang, 2002; Tsvankin, 2005), the influence

of anisotropy reduces m1 for a fixed value of m3. This also means that for a given
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horizontal slowness m1, anisotropy increases m3 and, therefore, the amplitude decay

factor.

The above results indicate that the relationship between m1 and m3 can help in

constraining the anisotropy parameters ε and δ; this issue is addressed in more detail

below.

Numerical examples.—To evaluate the accuracy of the approximate relationship

between m1 and m3, it is compared here with the exact solution for a representative set

of VTI models. Numerical tests in Figs. 2 and 3 show that the error of eq. (19) strongly

depends on the magnitude of the difference ε− δ, which quantifies the deviation from

elliptical anisotropy. Note that P-wave time processing in VTI media is controlled by

the anellipticity parameter η = (ε − δ)/(1 + 2δ) ≈ ε − δ (Alkhalifah and Tsvankin,

1995). The weak-anisotropy approximation adequately predicts the general behavior

of the exact solution even for strongly anisotropic elliptical models with equal values

of ε and δ (Fig. 3). However, when ε > δ, the m4
3-term in eq. (19) rapidly increases

with m3 and may yield unphysical values of m1, which are smaller than 1/Vhor (see

the model with ε = 0.4 and δ = 0.1 in Fig. 3).

As expected, for a constant ε− δ, the error of the weak-anisotropy approximation

increases with the absolute values of both anisotropy parameters. However, for typical

weakly and moderately anisotropic models in Fig. 2b, eq. (19) is sufficiently close to

the exact solution when m3 is relatively small and correctly reproduces the trend of

the function m1(m3).

The above comparison of the exact and approximate solutions indicates that the

linearized equation somewhat overstates the anisotropic contribution to the depen-

dence of m1 on m3. Still, for typical models with ε > 0 and ε− δ ≥ 0, the anisotropic

terms substantially reduce the slowness m1 for a fixed value of m3, as predicted by

the weak-anisotropy approximation (19) (Fig. 4). In agreement with the exact ex-

pression (14) for elliptical anisotropy, the ratio of the VTI and isotropic values of m1
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is independent of m3 when ε = δ (Fig. 4a). For models with ε − δ > 0 (Fig. 4b),

the difference between the VTI and isotropic results becomes more pronounced for

larger values of m3, which correspond to slower evanescent waves with a higher rate

of amplitude decay.

Polarization ellipse.—Substitution of m1 from eq. (19) into eqs. (16) or (17)

yields the ratio of the polarization components U1 and U3, which determines the

eccentricity of the polarization ellipse. Linearizing the result in the anisotropy pa-

rameters and the VS0/VP0 ratio yields

|U3|
|U1|

=
m3 VP0

√

1 + m2
3 V 2

P0

[

1 − (ε − δ)(1 + m2
3 V 2

P0)
]

. (22)

For a homogeneous P-wave with m3 = 0, the displacement vector is horizontal (U3 =

0), so the wave is polarized in the direction of propagation. The polarization becomes

nonlinear with increasing m3, and the anisotropic term that involves ε − δ can make

a substantial contribution to the polarization ellipse. Since typically ε − δ > 0,

the influence of anisotropy in eq. (22) reduces the ratio |U3|/|U1| and makes the

polarization more linear.

Weak-anisotropy approximation for SV-waves

Relationship between the slownesses.—In principle, the approximate horizon-

tal slowness for SV-waves can be derived in the same way as the one for P-waves

by perturbing the isotropic expression for m1(m3). Such a derivation, however, is

unnecessary because any linearized kinematic (i.e., based entirely on slowness or ve-

locity) signature for SV-waves can be obtained directly from the corresponding P-wave

expression by making the following substitutions (Tsvankin, 2005): VP0 has to be re-

placed with VS0, δ with the SV-wave velocity parameter σ ≡ (V 2
P0/V

2
S0) (ε− δ), and ε

set to zero. Applying this recipe to eq. (19) leads to

m2
1 =

1

V 2
S0

+ m2
3 (1 + 2σ) + 2m4

3 V 2
S0 σ
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=
1

V 2
S0

+ m2
3 (1 + 2σ) + 2m4

3 V 2
P0 (ε − δ) . (23)

Anisotropy does not change the horizontal velocity of homogeneous SV-waves (it

corresponds to m3 = 0), which is equal to the vertical velocity VS0. Since the param-

eter σ typically is positive (Wang, 2002; Tsvankin, 2005), its influence reduces m3

and the amplitude decay factor for a fixed value of m1. Because of the presence of the

squared vertical-velocity ratio, the average value of σ for such common TI formations

as shales exceeds 0.5 (Wang, 2002). Therefore, the contribution of anisotropy to the

m2
3-term is even more substantial for SV-waves than for P-waves. It is interesting

that the factor 1 + 2σ in eq. (23) is also responsible for the SV-wave NMO velocity

in VTI media (Thomsen, 1986; Tsvankin, 2005).

Polarization ellipse.—The linearized polarization ellipse for evanescent SV-waves

has the form

|U1|
|U3|

=
m3 VS0

√

1 + m2
3 V 2

S0

[

1 − (2ε − δ) − 2σ m2
3 V 2

S0

]

. (24)

The polarization vector for a homogeneous SV-wave (m3 = 0) is vertical; the horizon-

tal displacement component increases with m3. According to eq. 24, the anisotropic

terms typically reduce the ellipticity of the SV-wave polarization, which was also the

case for P-waves.

DISCUSSION AND CONCLUSIONS

Evanescent waves play an important role inm1 and m3 a number of wave-

propagation problems, such as generation of nongeometrical modes by sources located

close to medium interfaces. This paper introduces concise weak-anisotropy approx-

imations for the slowness and polarization vectors of evanescent plane waves that

propagate in the horizontal (isotropy) plane of VTI media. The results remain en-

tirely valid for wave propagation along the intersections of the symmetry planes of

orthorhombic and HTI media.
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The velocity of evanescent waves can take any value smaller than the horizontal

velocity of the corresponding (i.e., P, SV, or SH) homogeneous wave. By solving the

Christoffel equation, one can relate the evanescent-wave velocity (or the horizontal

slowness m1) to the vertical slowness m3, which governs the amplitude decay factor.

While the exact relationship between m1 and m3 for SH-waves is rather simple and

involves a single anisotropy parameter (γ), it is much less transparent for P- and SV-

waves. To explain the contribution of anisotropy to both the slowness and polarization

vectors of evanescent P- and SV-waves, the solutions of the Christoffel equation were

linearized in the parameters ε and δ.

The anisotropic terms in the approximate P-wave function m1(m3) include both ε

and δ, although the sensitivity to ε is higher. Even for relatively small values of ε and

δ on the order of 0.1–0.15, the influence of anisotropy on the relationship between

m1 and m3 is significant, especially for evanescent waves with smaller velocities and

higher amplitude decay rates. For typical VTI models with ε > 0 and ε > δ, the decay

factor governed by m3 can be much larger than that in isotropic media for the same

value of m1. Numerical testing demonstrates that the accuracy of the weak-anisotropy

approximation for the dependence m1(m3) is mostly governed by the difference ε− δ,

rather than by either parameter individually.

The linearized relationship m1(m3) for SV-waves was obtained as a special case of

the P-wave result by applying the “substitution rule” described in Tsvankin (2005)

for homogeneous waves. In contrast to P-waves, the influence of anisotropy reduces

the amplitude decay factor of SV-waves for a given m1. The anisotropic terms in the

function m1(m3) are controlled by the SV-wave velocity parameter σ, which often

reaches large values exceeding 0.5.

The polarization of evanescent P- and SV-waves becomes increasingly nonlinear

(elliptical) with a reduction in their horizontal velocity. The weak-anisotropy approx-

imation for the ratio of the vertical and horizontal displacements shows that for both

P- and SV-waves the contribution of ε and δ typically decreases the eccentricity of
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the polarization ellipse.

These results will help to develop asymptotic solutions for nongeometrical waves

in anisotropic media using, for example, the stationary-phase method. In particular,

the description of evanescent waves given above is directly applicable to leaking waves

(Fig. 1) excited by buried (e.g., borehole) sources at internal boundaries.

As discussed in Tsvankin (1995), the dependence of the horizontal velocity on

the amplitude decay factor of evanescent waves [i.e., the function m1(m3)] can be

measured by recording leaking waves in cross-hole or reverse VSP (vertical seismic

profiling) surveys. To estimate the decay factor of a leaking wave, the source should

be moved along the borehole while keeping the receiver position fixed. The strong

influence of the anisotropy parameters on the dependence m1(m3) indicates that

leaking modes can be effectively used to constrain anisotropic velocity fields. In

particular, the relationship between m1 and m3 in cross-hole data can help to estimate

the parameter δ, which is poorly resolved by conventional cross-hole tomography.

ACKNOWLEDGMENTS

I am grateful to my colleagues at the Center for Wave Phenomena (CWP), Col-

orado School of Mines (CSM), for useful discussions and to Jyoti Behura (CSM) for

help with the numerical examples. Reviews by Roel Snieder and Yaping Zhu (both

CSM) helped to improve the manuscript. The support for this work was provided by

the Consortium Project on Seismic Inverse Methods for Complex Structures at CWP

and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic

Energy Sciences, Office of Science, U.S. Department of Energy.

REFERENCES

Aki, K. and Richards, P. G., 1980. Quantitative Seismology. Theory and Methods.

W. N. Freeman & Co.

14



Alkhalifah, T. and Tsvankin, I., 1995. Velocity analysis in transversely isotropic

media. Geophysics, 60: 1550–1566.

Brekhovskikh, L. M., 1980. Waves in Layered Media. Academic Press.

Carcione, J. M., 2001. Wave Fields in Real Media: Wave propagation in Anisotropic,

Anelastic, and Porous media. Pergamon Press.
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APPENDIX A–LINEARIZED RELATIONSHIP BETWEEN THE

SLOWNESSES OF EVANESCENT WAVES

The horizontal slowness m1 of evanescent waves can be expressed as a function

of the imaginary part m3 of the vertical slowness (m3 represents the frequency-

normalized decay factor) by solving eq. (18). To develop the weak-anisotropy approx-

imation for the function m1(m3), it is convenient to replace the stiffness coefficients

in eq. (18) by the parameters ε and δ:

c11 = V 2
P0 ρ (1 + 2ε) , (A-1)

c33 = V 2
P0 ρ , (A-2)

c55 = V 2
S0 ρ , (A-3)

(c13 + c55)
2 = V 4

P0 ρ2 f (2δ + f) , (A-4)

where f ≡ 1 − V 2
S0/V

2
P0 is a useful parameter combination introduced by Tsvankin

(2005).

The isotropic solutions for m1(m3) are obtained by setting ε = δ = 0 and substi-

tuting eqs. (A-1)–(A-4) into eq. (18):

m2
1 =

1

V 2
+ m2

3 , (A-5)

with the medium velocity V equal to VP0 for P-waves and VS0 for S-waves.

The weak-anisotropy approximation can be derived by perturbing the isotropic

expression (A-5). For P-waves, such a perturbation can be written as

m2
1 =

1

V 2
P0

+ m2
3 + ∆(m2

1) , (A-6)

where ∆(m2
1) is a linear function of ε and δ. Substituting m2

1 from eq. (A-6) into

eq. (18) and keeping only the linear terms in the anisotropy parameters yields

17



∆(m2
1) = −2ε

(1 + m2
3 V 2

P0)
2

V 2
P0

+ 2δ m2
3 (1 + m2

3 V 2
P0) . (A-7)

The linearized approximation for m2
1 is then obtained from eq. (A-6) as

m2
1 =

1

V 2
hor

+ m2
3 (1 − 4ε + 2δ) − 2m4

3 V 2
P0 (ε − δ) ; (A-8)

Vhor = VP0

√
1 + 2ε is the P-wave horizontal velocity. The term 1/V 2

hor is not linearized

in ε to keep the horizontal slowness exact for m3 = 0.
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FIGURES

FIG. 1. Asymptotic “raypaths” of the pseudospherical wave P* and leaking wave

P̄ generated at the boundary between two acoustic halfspaces with the velocities c

and c
1

(c > c
1
). The amplitudes of both nongeometrical waves decay exponentially

between the source and the boundary. The traveltime of the P̄-wave almost coincides

with that of the conventional transmitted P-wave, while the wave P* forms a later

arrival (after Tsvankin, 1995).

FIG. 2. Comparison of the exact function m1(m3) from eq. 18 (solid curves) with the

weak-anisotropy approximation 19 (dashed) for elliptical (a) and non-elliptical (b)

VTI models. The error of the approximation becomes larger with increasing values of

ε − δ. Both slowness components are multiplied with the velocity VP0 to make them

dimensionless.

FIG. 3. Comparison of the exact (solid curves) and approximate (dashed) functions

m1(m3) for two models with strong velocity anisotropy.

FIG. 4. Influence of anisotropy on the relationship between the horizontal and ver-

tical slownesses for the models from Fig. 2. The exact slowness m1 computed from

eq. 18 is normalized by the isotropic value that corresponds to ε = δ = 0. The shape

of the normalized curves is qualitatively described by the weak-anisotropy approxi-

mation 21.

19



FIG. 1. Asymptotic “raypaths” of the pseudospherical wave P* and leaking wave P̄

generated at the boundary between two acoustic halfspaces with the velocities c and c
1

(c > c
1
). The amplitudes of both nongeometrical waves decay exponentially between the

source and the boundary. The traveltime of the P̄-wave almost coincides with that of the

conventional transmitted P-wave, while the wave P* forms a later arrival (after Tsvankin,

1995).
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FIG. 2. Comparison of the exact function m1(m3) from eq. 18 (solid curves) with the

weak-anisotropy approximation 19 (dashed) for elliptical (a) and non-elliptical (b) VTI

models. The error of the approximation becomes larger with increasing values of ε−δ. Both

slowness components are multiplied with the velocity VP0 to make them dimensionless.
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FIG. 3. Comparison of the exact (solid curves) and approximate (dashed) functions

m1(m3) for two models with strong velocity anisotropy.
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FIG. 4. Influence of anisotropy on the relationship between the horizontal and vertical

slownesses for the models from Fig. 2. The exact slowness m1 computed from eq. 18

is normalized by the isotropic value that corresponds to ε = δ = 0. The shape of the

normalized curves is qualitatively described by the weak-anisotropy approximation 21.
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