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Abstract
This paper is devoted to pre-stack amplitude analysis of reflection seismic data from
anisotropic (e.g., fractured) media. Geometrical-spreading correction is an important
component of amplitude-variation-with-offset (AVO) analysis, which provides high-resolution
information for anisotropic parameter estimation and fracture characterization. Here, we
extend the algorithm of moveout-based anisotropic spreading correction (MASC) to
mode-converted PSV-waves in VTI (transversely isotropic with a vertical symmetry axis)
media and symmetry planes of orthorhombic media. While the geometrical-spreading
equation in terms of reflection traveltime has the same form for all wave modes in laterally
homogeneous media, reflection moveout of PS-waves is more complicated than that of
P-waves (e.g., it can become asymmetric in common-midpoint geometry). Still, for models
with a horizontal symmetry plane, long-spread reflection traveltimes of PS waves can be well
approximated by the Tsvankin–Thomsen and Alkhalifah–Tsvankin moveout equations, which
are widely used for P-waves. Although the accuracy of the Alkhalifah–Tsvankin equation is
somewhat lower, it includes fewer moveout parameters and helps to maintain the uniformity of
the MASC algorithm for P- and PS-waves. The parameters of both moveout equations are
obtained by least-squares traveltime fitting or semblance analysis and are different from those
for P-waves. Testing on full-waveform synthetic data generated by the reflectivity method for
layered VTI media confirms that MASC accurately reconstructs the plane-wave conversion
coefficient from conventional-spread PS data. Errors in the estimated conversion coefficient,
which become noticeable at moderate and large offsets, are mostly caused by the
offset-dependent transmission loss of PS-waves.

Keywords: reflection seismology, anisotropic media, transverse isotropy, converted waves,
amplitude variation with offset, nonhyperbolic moveout

(Some figures in this article are in colour only in the electronic version)

Introduction

Amplitude analysis is widely used in reflection seismology for
purposes of hydrocarbon detection, lithology discrimination,
3 Present address: ExxonMobil Upstream Research Company, Houston, TX
77252, USA.

etc. The main advantage of amplitude methods compared
to traveltime inversion is their high vertical resolution,
which makes amplitude-variation-with-offset (AVO) analysis
applicable to relatively thin reservoirs. AVO inversion plays
an important role in the presence of velocity anisotropy
because it can provide essential information for anisotropic
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parameter estimation and fracture characterization (e.g., Rüger
2002).

In particular, the azimuthally varying AVO response
measured on wide-azimuth data acquired above fractured
reservoirs can help to estimate the dominant fracture direction
and identify ‘sweet spots’ of intense fracturing (Rüger and
Tsvankin 1997, Neves et al 2003). However, inversion
of the P-wave AVO response for the pertinent anisotropy
parameters is generally ambiguous even for the simple HTI
(transversely isotropic with a horizontal symmetry axis)
medium formed by a system of vertical, penny-shaped
cracks in isotropic host rock (Rüger and Tsvankin 1997,
Bakulin et al 2000a, Rüger 2002). Furthermore, adequate
description of most fractured formations requires using lower
(i.e., more complicated) orthorhombic symmetry (Bakulin
et al 2000b, Grechka et al 2005).

In principle, the nonuniqueness of AVO analysis can be
overcome by combining the P-wave AVO gradient determined
from the initial slope of the reflection coefficient with the
normal-moveout (NMO) ellipse (e.g., Bakulin et al 2000a),
but this approach has serious limitations. First, the NMO
ellipse can be reconstructed only for relatively thick reservoirs;
second, the difference in vertical resolution between amplitude
and traveltime methods can lead to distorted estimates for
heterogeneous reservoir formations (Xu and Tsvankin 2007).

For surveys with multicomponent acquisition, the AVO
response of P-waves can be supplemented with that of mode-
converted PS-waves. The main advantage of combining P and
PS amplitude signatures is that they are determined by rock
properties on the same scale near the top or bottom of the
reservoir. Bakulin et al (2000a) showed that the azimuthally
varying AVO gradients of P- and PS-waves reflected from
an HTI medium constrain both the normal and tangential
compliances of the fractures. The compliances can then be
related to such physical properties as fracture density and fluid
infill. Although this technique was introduced for boundaries
between isotropic and HTI media, it remains valid for the
lower symmetry orthorhombic model that describes a vertical
fracture system in a VTI background matrix (Bakulin et al
2000b). A more general methodology for the joint inversion
of the long-offset, wide-azimuth AVO responses of P-waves
and split PS-waves in azimuthally anisotropic media was
developed by Jı́lek (2002).

Since shear-wave (and, therefore, converted-wave)
amplitudes are highly sensitive to the presence of anisotropy
along the raypath, robust estimation of PS-wave reflection
(conversion) coefficients for the target horizon is impossible
without an accurate geometrical-spreading correction. As
discussed by Tsvankin (1995, 2005) and Xu et al (2005),
geometrical spreading of SV-waves in TI media is controlled
primarily by the parameter σ ≡ (

V 2
P 0

/
V 2

S0

)
(ε − δ), which

is typically much larger than the Thomsen parameters ε and
δ responsible for P-wave amplitudes (VP 0 and VS0 are the
symmetry-direction P- and S-wave velocities, respectively).

To correct AVO signatures for amplitude distortions in
the overburden, it is convenient to represent geometrical
spreading through reflection traveltimes. Following paraxial
ray theory, Červený (2001) and Xu et al (2005) obtained

geometrical spreading of pure reflection modes (P or S)
in layered, arbitrarily anisotropic media as a function of
traveltime derivatives. Although this equation is strictly valid
only for laterally homogeneous models, it remains sufficiently
accurate in the presence of moderate dips and mild lateral
velocity variation (Xu 2006).

By combining this geometrical-spreading formulation
with a 3D extension of the Alkhalifah–Tsvankin (1995)
nonhyperbolic moveout equation, Xu and Tsvankin (2006a)
developed a practical and robust algorithm for moveout-based
anisotropic spreading correction (‘MASC’). They expressed
the traveltime derivatives needed in the geometrical-spreading
computation through the moveout coefficients, which are
estimated by nonhyperbolic semblance analysis. The accuracy
of MASC for wide-azimuth, long-spread P-wave data from
layered orthorhombic media was confirmed by dynamic
ray tracing and full-waveform synthetic modelling (Xu and
Tsvankin 2006b). The synthetic tests demonstrate that if the
azimuthal variation of geometrical spreading is not negligible,
MASC cannot be replaced by empirical gain corrections even
in qualitative AVO analysis. The method was also successfully
applied to azimuthal AVO analysis of P-wave data acquired
above a fractured reservoir at Rulison field in Colorado, USA
(Xu and Tsvankin 2007).

Here, the methodology of MASC is applied to PS-
waves converted at the reflector (so-called ‘C-waves’) in
laterally homogeneous, anisotropic media. First, we discuss
the equivalence of traveltime-based geometrical-spreading
equations for converted and pure modes. Second, by
employing the Tsvankin–Thomsen (1994) and Alkhalifah–
Tsvankin (1995) moveout equations, the MASC algorithm is
implemented for PSV-waves acquired in vertical symmetry
planes of layered TI and orthorhombic media. Finally,
we conduct a full-waveform synthetic study to evaluate the
accuracy of MASC in estimating the conversion coefficient
and compare its performance with that of empirical gain
corrections used in practice.

Moveout-based geometrical-spreading equation for
PS-waves

One of the most significant differences between P and PS
reflected events is the asymmetry of the raypath and moveout
of mode conversions. If the medium is laterally heterogeneous
or anisotropic without a horizontal symmetry plane, the
traveltime of PS-waves does not remain the same when
the source and receiver are interchanged (Thomsen 1999,
Tsvankin and Grechka 2000, Dewangan 2004). Because of
this moveout asymmetry, the PS-wave reflection traveltime
on common-midpoint (CMP) gathers may not be an even
function of offset and cannot be described by conventional
moveout equations for P-waves. Therefore, the two key
components of MASC (i.e., the geometrical-spreading and
moveout equations) have to be revisited for converted waves.

The general traveltime-based expression for geometrical
spreading of pure modes is derived in appendix A of Xu et al
(2005). Although the derivation assumes reflection moveout
to be symmetric (i.e., independent of the sign of offset), the
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Geometrical spreading for PS-waves

final result is valid for converted waves. The ray-theory
representation of geometrical spreading at the earth’s surface
(Červený 2001) includes traveltime derivatives with respect to
four variables—the horizontal coordinates of the source and
the receiver. If the medium is laterally homogeneous, the
number of independent variables can be reduced to two (offset
x and azimuth α), even for arbitrary anisotropic symmetries.
For pure reflection modes, the azimuth varies only from 0◦

to 180◦ because their traveltime remains the same when the
source and receiver are interchanged.

The only modification required to account for the
asymmetric moveout of converted waves is extension of the
range of azimuths to 360◦. Then the definition of azimuth
(equation (A-3) of Xu et al 2005) takes the form

α = tan−1

[
xr

2 − xs
2

xr
1 − xs

1

] (
xr

1 − xs
1 > 0

)
, (1)

α = tan−1

[
xr

2 − xs
2

xr
1 − xs

1

]
+ π

(
xr

1 − xs
1 < 0

)
, (2)

where xs
1,2 and xr

1,2 are the horizontal source and receiver
coordinates, respectively. Compared to the original definition
for pure modes, equation (2) contains an additional constant
(π), which does not change the traveltime derivatives.

Hence, the moveout-based geometrical-spreading
equation given by Xu et al (2005) is entirely valid for
converted waves:

L(x, α) = (cos φs cos φr)1/2

×
[

∂2T

∂x2

∂T

∂x

1

x
+

∂2T

∂x2

∂2T

∂α2

1

x2
−

(
∂T

∂α

)2 1

x4

]−1/2

, (3)

where T is the traveltime, and φs and φr are the angles between
the ray and the vertical at the source and receiver locations,
respectively. Equation (3) can be used for any reflected
wave (pure or converted) in laterally homogeneous, arbitrarily
anisotropic media. Application of this equation to events with
asymmetric moveout, however, requires certain care because
the traveltime derivatives are different for ‘reciprocal’ source–
receiver pairs with azimuths α ± π .

Note that the only source of moveout asymmetry for
converted waves in laterally homogeneous media is the
presence of anisotropic layers that do not have a horizontal
symmetry plane. Next, we verify that our formalism accurately
describes the geometrical spreading of PS-waves in the
simplest model of this type, which includes a homogeneous TI
layer with a tilted symmetry axis (TTI; see figure 1). The TTI
parameters used in our test are taken from the physical model
of Dewangan et al (2006).

Figure 1 shows the traveltime surface of the fast PS-
wave (i.e., wave PS1) computed by anisotropic ray tracing.
In the vertical plane that contains the symmetry axis (called
the ‘symmetry-axis plane’), the fast S-wave has in-plane
polarization and, therefore, represents the SV mode. Since
the horizontal plane in this model is not a plane of symmetry,
the traveltime surface in the CMP geometry is asymmetric with
respect to the global minimum. Also, the minimum traveltime
is shifted from the common midpoint to an offset that exceeds
0.5 km.

Figure 1. Traveltime surface of the fast PS-wave computed for a
horizontal TTI layer in the common-midpoint (CMP) geometry.
The model parameters are VP 0 = 2.6 km s−1, VS0 = 1.38 km s−1,
ε = 0.46, δ = 0.11 and γ = 0. The tilt of the symmetry axis from
the vertical is ν = 70◦, the layer’s thickness is 1 km. Note the
asymmetry of the surface with respect to the global traveltime
minimum, which does not correspond to zero offset.

Figure 2. Comparison of the PS-wave geometrical spreading
computed from equation (3) (dashed line) and ray tracing (solid
line) in the symmetry-axis plane of the model in figure 1. The
‘jitters’ in the output of MASC are caused by local errors in
approximating the traveltime surface.

Because it is difficult to approximate this traveltime
surface with a Taylor series, we employed a cubic-spline
function. Substituting the traveltime derivatives obtained
from this function into equation (3), we computed the
spreading for the PSV-wave in the symmetry-axis plane.
Comparison with dynamic ray tracing in figure 2 confirms the
accuracy of equation (3) for converted waves with asymmetric
moveout. Except for the discrepancies at large x →
±3 km and zero offset, which are caused by numerical
problems in estimating the second-order traveltime derivatives,
the spreading computed by our method is close to that obtained
by ray tracing.

Although this test shows that MASC can handle
asymmetric moveout functions, the rest of the paper is focused
on models with a horizontal symmetry plane, in which PS-
wave moveout is symmetric.

MASC algorithm for PS-waves

Outside the symmetry planes of azimuthally anisotropic
media, a P-wave incident upon a horizontal reflector excites
two split PS-waves which have to be separated using
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polarization analysis. To avoid this complication and facilitate
AVO processing, we assume that the acquisition line is
confined to a vertical symmetry plane of the model. Then a
P-wave source generates only a P-to-SV conversion polarized
in the incidence plane. The goal of this section is to extend
the MASC methodology of Xu and Tsvankin (2006a) to PSV-
waves recorded in vertical symmetry planes of horizontally
layered VTI, HTI and orthorhombic media. Note that
equation (3) includes derivatives of the traveltime with respect
to azimuth, which are determined by traveltime variations
outside the incidence plane.

Estimation of the group angles φs and φr from surface
reflection data requires knowledge of the velocity in the
subsurface layer. Following the approach suggested by Xu and
Tsvankin (2006a) for pure modes, first we compute the time
slopes (horizontal slownesses) on common-shot and common-
receiver gathers of the PS-wave. Then the angles φs and φr are
obtained from the horizontal slownesses under the assumption
that the subsurface layer is locally isotropic near the source
and receiver locations.

As is the case for P-waves, the key issue in implementing
equation (3) for mode conversions is to find a smooth,
relatively simple traveltime approximation that can be used for
a wide range of offsets and azimuths. Long-spread reflection
moveout of P-waves in layered VTI media is well described
by the Tsvankin–Thomsen (1994) nonhyperbolic equation:

T 2(x) = T 2
0 + A2x

2 +
A4x

4

1 + Ax2
, (4)

where T0 is the zero-offset time, A2 = V −2
nmo controls

hyperbolic moveout (Vnmo is the normal-moveout velocity),
and A4 is the quartic coefficient responsible for nonhyperbolic
moveout at large offsets. The parameter A depends on the
horizontal velocity and is introduced to make T (x) convergent
at x → ∞. With an appropriate substitution of the moveout
parameters, equation (4) gives sufficient accuracy for PS-
wave traveltimes in horizontally layered VTI media (Tsvankin
2005).

By taking into account the azimuthal variation of the
moveout parameters A2, A4 and A, Al-Dajani et al (1998)
extended equation (4) to P-waves in orthorhombic media:

T 2(x, α) = T 2
0 + A2(α)x2 +

A4(α)x4

1 + A(α)x2
; (5)

A2(α) = A
(1)
2 sin2 α + A

(2)
2 cos2 α, (6)

A4(α) = A
(1)
4 sin4 α + A

(2)
4 cos4 α + A

(x)
4 sin2 α cos2 α. (7)

The dependence of A2 on the azimuth α is described by the
NMO ellipse (Grechka and Tsvankin 1998), and equation (7)
for A4 is derived by Al-Dajani et al (1998) for a horizontal
orthorhombic layer. (Note that HTI can be treated as a special
case of the more general orthorhombic model.) It is assumed
in equations (5)–(7) that α = 0 corresponds to the symmetry
plane [x1, x3], so A

(1,2)
2 and A

(1,2)
4 are the symmetry-plane

moveout coefficients, while A
(x)
4 contributes to nonhyperbolic

moveout in off-symmetry directions. Because of the
difficulties in treating split PS-waves outside the symmetry
planes, equation (5) has not been applied to mode conversions.

Table 1. Parameters of a medium that includes a VTI layer
sandwiched between two isotropic layers (model 1). The velocities
and anisotropy parameters of the VTI layer are taken from the
measurements for Dog Creek shale listed in Thomsen (1986).

Layer 1 Layer 2 Layer 3

Symmetry type ISO VTI ISO
Thickness (km) 0.5 1.0 ∞
Density (g cm−3) 2.0 2.1 2.2
VP 0 (km s−1) 1.7 2.2 2.2
VS0 (km s−1) 0.8 1.1 1.0
ε 0 0.23 0
δ 0 0.10 0
γ 0 0.10 0

η 0 0.10 0
σ 0 0.64 0

Alkhalifah and Tsvankin (1995) proposed a simpler
nonhyperbolic moveout equation for P-waves in VTI media
which depends on only two parameters, the velocity Vnmo and
anellipticity coefficient η ≡ (ε − δ)/(1 + 2δ):

T 2(x) = T 2
0 +

x2

V 2
nmo

− 2ηx4

V 2
nmo

[
T 2

0 V 2
nmo + (1 + 2η)x2

] . (8)

Equation (8) is widely used to correct long-spread data
for nonhyperbolic moveout and estimate the key anisotropy
parameter η, which is responsible for time processing of P-
wave data in VTI media. The 3D version of the Alkhalifah–
Tsvankin equation provides a close approximation to wide-
azimuth P-wave traveltimes in orthorhombic or HTI media
(Vasconcelos and Tsvankin 2006):

T 2(x, α) = T 2
0 +

x2

V 2
nmo(α)

− 2η(α)x4

V 2
nmo(α)

[
T 2

0 V 2
nmo(α) + (1 + 2η(α))x2

] , (9)

V −2
nmo(α) = sin2 α(

V
(1)

nmo
)2 +

cos2 α(
V

(2)
nmo

)2 , (10)

η (α) = η(1) sin2 α + η(2) cos2 α − η(3) sin2 α cos2 α. (11)

Equation (10), which is equivalent to equation (6) discussed
above, describes the NMO ellipse with the semi-axes V (1)

nmo
and V (2)

nmo; η(1,2,3) are the anellipticity parameters in the three
mutually orthogonal symmetry planes of the model. Xu
and Tsvankin (2006a, 2006b) employed equations (9)–(11) to
compute the geometrical spreading of P-waves in horizontally
layered, azimuthally anisotropic media from equation (3).

Although equations (8) and (9) were originally designed
for P-waves, it is worthwhile to test them for PS-waves.
While the analytic form of the moveout parameters is not
expected to be the same for P- and PS-waves, the geometrical-
spreading correction operates with the coefficients obtained
from semblance analysis or traveltime fitting (if traveltimes
have been picked). Therefore, we need to verify if
equations (8) and (9) with the best-fit parameters V̂nmo and
η̂ provide sufficient accuracy for long-spread converted-wave
moveout.
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Figure 3. Geometrical spreading of PSV-waves reflected from the
bottom of the VTI layer in model 1 (table 1). Our method was
applied with the Tsvankin–Thomsen equation (4) (diamonds) and
with the Alkhalifah–Tsvankin equation (8) (dashed line); the solid
line is computed by dynamic ray-tracing code ANRAY (Gajewski
and Pšenčı́k 1987).

First, we conducted a test for a PSV reflection from the
bottom of a VTI layer sandwiched between two isotropic
half-spaces (figure 3 and table 1). After computing exact
traveltimes of the PS-wave by anisotropic ray tracing, we
applied the least-squares method to estimate the parameters of
equations (4) and (8). The best-fit moveout parameters were
then substituted into the geometrical-spreading equation (3).
In agreement with the results of Tsvankin (2005), equation (4)
provides an excellent approximation for PSV-wave moveout
and yields a geometrical-spreading factor that is almost
identical to that computed by dynamic ray tracing (figure 3).
Although the performance of the Alkhalifah–Tsvankin
equation (8) is somewhat inferior, it has the advantage of being
consistent with the P-wave formalism while still providing
adequate accuracy. It should be mentioned that the best-
fit parameter η̂ for PSV-waves is different from its analytic
definition (η ≡ (ε − δ)/(1 + 2δ) in a single VTI layer) for
P-waves.

Next, the moveout approximations and the MASC
methodology were applied to a model that includes an
orthorhombic layer (figure 4 and table 2). Note that P-waves
are coupled to two different split S-waves in the symmetry
planes [x1, x3] and [x2, x3] (Tsvankin 2005). Indeed, if the
fast shear wave S1 is polarized in the x1-direction at vertical
incidence, it represents the SV mode (which will produce P-
to-SV conversion) in the [x1, x3]-plane. Then the slow shear
wave S2 will be responsible for the converted PSV-wave in the
[x2, x3]-plane.

Since the symmetry planes of orthorhombic models are
kinematically equivalent to VTI, the traveltime fit provided
by the moveout approximations in the incidence plane is
the same as in VTI media. Geometrical spreading in
azimuthally anisotropic media (equation (3)), however, also
depends on azimuthal traveltime variations away from the
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Figure 4. Geometrical spreading of PSV-waves reflected from the
bottom of the orthorhombic layer in model 2 (table 2). The azimuths
α = 0◦ and α = 90◦ correspond to the symmetry planes [x1, x3] and
[x2, x3], respectively. Our method was applied with the 3D
Tsvankin–Thomsen equation (5) (stars) and with the 3D
Alkhalifah–Tsvankin equation (9) (dashed lines); the solid lines are
computed by dynamic ray tracing.

Table 2. Parameters of a medium composed of VTI, orthorhombic
and isotropic layers (model 2). Orthorhombic symmetry can be
described by the two vertical velocities (VP 0 for P-waves and VS0 for
the S-wave polarized in the x1-direction) and seven anisotropy
parameters (ε(1), ε(2), δ(1), δ(2), δ(3), γ (1) and γ (2)); the parameter
values are based on the measurements of Wang (2002). The
anellipticity parameters η(1), η(2), η(2) control P-wave nonhyperbolic
moveout, while σ (1) and σ (2) are largely responsible for the moveout
of SV-waves in the vertical symmetry planes. For a detailed
explanation of the notation, see Tsvankin (2005).

Layer 1 Layer 2 Layer 3

Symmetry type VTI ORTH ISO
Thickness (km) 0.5 1.0 ∞
Density (g cm−3) 2.1 2.1 2.2
VP 0 (km s−1) 2.2 2.2 2.2
VS0 (km s−1) 1.1 1.1 1.0
ε(1) 0.23 0.317 0
δ(1) 0.10 −0.054 0
γ (1) 0.10 0.513 0
ε(2) 0.23 0.121 0
δ(2) 0.10 0.046 0
γ (2) 0.10 0.138 0
δ(3) 0 0.1 0

η(1) 0.1 0.42 0
η(2) 0.1 0.07 0
η(3) 0 0.05 0
σ (1) 0.64 1.48 0
σ (2) 0.64 0.31 0

incidence plane (Tsvankin 2005, Xu et al 2005). Therefore,
the accuracy of our method depends on the performance of
the 3D versions of the moveout equations in the vicinity
of the symmetry planes. As was the case for VTI media,
the error of our method with the 3D Tsvankin–Thomsen
equation (5) is almost negligible, while the 3D Alkhalifah–
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Tsvankin equation (9) produces some deviations from the ray-
tracing result, especially at far offsets (figure 4). Still, given
relatively large uncertainty in amplitude measurements, the
accuracy of equation (9) should be acceptable for purposes of
AVO analysis.

Application to AVO analysis of synthetic data

In addition to potential problems with moveout
approximations, the accuracy of amplitude corrections
designed to estimate the reflection coefficient may be
influenced by several other factors. Here, we do not consider
PS-wave amplitudes in the anomalous areas near shear-wave
cusps (triplications) and singularities, where AVO analysis
is not practical. Still, the high sensitivity of S-waves to the
presence of anisotropy may lead to rapid amplitude variations
along PS wave fronts that are not adequately described
by ray theory and, therefore, by MASC (Tsvankin 2005).
Also, even for models with a horizontal symmetry plane, the
asymmetry of the PS raypath (i.e., the difference between the
P- and S-legs) can result in a significant angular variation of
transmission loss and related errors in AVO analysis. Hence,
it is essential to test the performance of MASC for PS-waves
on 3D full-waveform synthetic data, as was done by Xu and
Tsvankin (2006b) for P-waves.

The main question to be answered in this section is
how accurately MASC can reconstruct plane-wave conversion
coefficients in layered anisotropic media. In particular, we
evaluate the magnitude of transmission loss (which is not
included in MASC) and the related distortions of the PS-wave
AVO response. Also, an important practical issue is whether
or not MASC can be replaced by empirical gain corrections in
qualitative AVO analysis.

Due to the difficulties in modelling exact PS-wave
amplitudes for layered orthorhombic media, we carried out
amplitude processing only for model 1 (table 1) composed
of isotropic and VTI layers. Synthetic seismograms were
computed with the reflectivity code (ANISYNPA), which
generates exact 3D wave fields for horizontally layered
anisotropic media (e.g., Fryer and Frazer 1984). A shot gather
of the vertical displacement from a vertical force for model
1 is shown in figure 5. The processing sequence is similar
to that for P-waves described by Xu and Tsvankin (2006b).
First, we apply the nonhyperbolic moveout equation (4) to the
PS reflection from the bottom of the VTI layer to estimate
the parameters A2, A4 and A, which serve as the input to the
geometrical-spreading correction. To emulate processing of
field data, the parameters were obtained from nonhyperbolic
semblance analysis described by Vasconcelos and Tsvankin
(2006) and Xu and Tsvankin (2006a). Second, the raw
amplitudes are picked along the traveltime curve defined by
equation (4) with the best-fit parameters. Third, MASC
(equation (3)) is employed to correct the picked amplitudes
for anisotropic geometrical spreading. Fourth, the source and
receiver directivity factors are removed using local estimates
of the horizontal slowness.

To calibrate the P-wave AVO response, we matched
the corrected amplitude at normal incidence with the exact

Figure 5. Synthetic shot gather for model 1 (table 1) computed by
the anisotropic reflectivity method. The top layer is specified as a
half-space to eliminate the influence of the free surface. The arrow
marks the target PS reflection converted at the bottom of the VTI
layer. The ellipse highlights the area of interference between the
target event and the SS reflection from the top of the VTI layer.

reflection coefficient (Xu and Tsvankin 2006b). This approach
is not suitable for PS-waves because the conversion coefficient
at normal incidence for the model at hand goes to zero. Since
the source radiation factor should be the same for both P- and
PS-waves, we calibrated PS-wave amplitudes using the scaling
factor estimated for the corresponding P-wave reflection.

The high accuracy of MASC with the Tsvankin–Thomsen
moveout equation for the model in figure 5 was confirmed by
the test in the previous section (see figure 3). Still, the VTI
layer has a significant value of the parameter σ , which is
primarily responsible for SV-wave velocity anisotropy and
angle-dependent geometrical spreading. Strong amplitude
variations along the wave front of the PS-wave may cause
errors in the ray-theory equations employed in our method.
Nevertheless, the conversion coefficient estimated by MASC
is close to the exact values for a relatively wide range of
horizontal slownesses (figure 6).

In contrast, application of the conventional t-gain
correction results in unacceptable errors for the whole offset
range. (The accuracy of the t2-gain correction, not shown
here, is even lower.) Clearly, anisotropy significantly
distorts geometrical spreading of PS-waves in typical TI
models. Hence, AVO analysis for converted waves cannot
be implemented without a robust anisotropic spreading
correction.

The conversion coefficient reconstructed by MASC
deviates from the exact values with increasing offset. This
deviation is caused by the combined influence of the
transmission loss and interference of the target PS event with
the SS reflection from the top of the VTI layer (see the ellipse
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Figure 6. Conversion coefficient at the bottom of the VTI layer in
model 1. The estimates obtained with MASC (dashed line) and the
t-gain correction (dotted) are compared with the exact conversion
coefficient (solid). The incidence angle of the downgoing P-wave
corresponding to the maximum horizontal slowness (0.3 s km−1) is
30◦; for the upgoing SV-wave, the corresponding reflection angle is
15◦.

Figure 7. Transmission loss for the target PS-wave from figure 5.
The loss is computed by subtracting from unity the product of the
plane-wave transmission coefficients along the raypath.

in figure 5). Amplitude distortions caused by the interference
with the SS-wave become especially severe for horizontal
slownesses exceeding 0.3 s km−1, which forced us to restrict
the slowness range used in figure 6.

The transmission coefficients for the upgoing and
downgoing segments of reflected P-rays compensate for each
other in such a way that their product (which determines
transmission loss) is almost invariant with the offset. For
mode conversions, however, the upgoing and downgoing ray
segments correspond to different modes, and this raypath
asymmetry leads to an increase of the transmission loss for
our model with the offset (figure 7). Since the geometrical-
spreading correction does not account for transmission
coefficients, this offset-dependent transmission loss distorts
the reconstructed conversion coefficient in figure 6.

Discussion and conclusions

Amplitude-variation-with-offset (AVO) analysis, which is
designed to operate with the plane-wave reflection coefficient
at the target horizon, has to include a robust correction
for geometrical spreading in the overburden. Geometrical
spreading of shear and mode-converted waves typically
is more strongly distorted by anisotropy than that of P-
waves. Here, we showed that the moveout-based anisotropic
spreading correction (MASC), previously developed for P-
wave reflections, can be applied to PS-waves as well. For
horizontally layered models, the geometrical-spreading factor
of P- and PS-waves can be obtained from the same equation
that involves the group (ray) angles at the surface and
traveltime derivatives with respect to the offset and the
azimuth. This equation remains valid even for models without
a horizontal symmetry plane, such as tilted transverse isotropy,
in which reflection moveout of PS-waves becomes asymmetric
(i.e., traveltime does not stay the same when the source and
receiver are interchanged).

Because of the difficulty in dealing with split PS-waves in
azimuthally anisotropic media, our implementation of MASC
for mode conversions is restricted to VTI media and symmetry
planes of orthorhombic and HTI media. To compute the
traveltime derivatives required by MASC, we employed the
Tsvankin–Thomsen nonhyperbolic moveout equation, which
is used almost exclusively for P-waves. Still, numerical testing
proves that this equation gives a close approximation for PSV-
wave moveout both in layered VTI media and in the vicinity
of the vertical symmetry planes of orthorhombic media.
The best-fit parameters of the Tsvankin–Thomsen equation
serve as the input to the geometrical-spreading computation.
Comparison with dynamic ray tracing shows that the accuracy
of MASC for PS-waves is almost as high as that for P-waves.

Furthermore, for purposes of geometrical-spreading
correction PS-wave traveltimes can be adequately described
by the simpler Alkhalifah–Tsvankin equation4. Whereas
the analytic form of that equation is valid only for P-
waves, it can be applied to mode conversions with fitted
moveout parameters. The Alkhalifah–Tsvankin equation has
the important advantage of making the MASC algorithm for
PS-waves fully consistent with that for P-waves at the expense
of a somewhat lower quality of the traveltime fit.

Application of MASC to full-waveform synthetic data
from layered VTI media yields accurate estimates of the
plane-wave conversion coefficients for conventional-length
spreads. The main complication in the reconstruction of
conversion coefficients from surface data is caused by offset-
dependent transmission loss of PS-waves. The product of
the transmission coefficients along the asymmetric PS-wave
raypath varies with incidence angle and, therefore, with offset.
This variation, which is almost negligible for P-waves, is
not accounted for in the geometrical-spreading correction and
can produce significant distortions of the AVO response at
moderate and large offsets.

4 The Alkhalifah–Tsvankin equation includes one less parameter than the
Tsvankin–Thomsen equation.
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Our results demonstrate that even qualitative AVO
analysis of PS-waves in the presence of anisotropic overburden
requires application of the moveout-based anisotropic
spreading correction. An important direction for future studies
is to extend MASC to split PS-waves outside the symmetry
planes of azimuthally anisotropic media. Such an extension
is essential for developing robust AVO algorithms operating
with wide-azimuth mode-converted data.
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