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heory of traveltime shifts around compacting reservoirs:
D solutions for heterogeneous anisotropic media
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ABSTRACT

Time-lapse traveltime shifts of reflection events recorded
above hydrocarbon reservoirs can be used to monitor produc-
tion-related compaction and pore-pressure changes. Existing
methodology, however, is limited to zero-offset rays and cannot
be applied to traveltime shifts measured on prestack seismic data.
We give an analytic 3D description of stress-related traveltime
shifts for rays propagating along arbitrary trajectories in hetero-
geneous anisotropic media. The nonlinear theory of elasticity
helps to express the velocity changes in and around the reservoir
through the excess stresses associated with reservoir compac-
tion. Because this stress-induced velocity field is both heteroge-
neous and anisotropic, it should be studied using prestack travel-
times or amplitudes. Then we obtain the traveltime shifts by first-
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rder perturbation of traveltimes that accounts not only for the
elocity changes but also for 3D deformation of reflectors. The
esulting closed-form expression can be used efficiently for nu-
erical modeling of traveltime shifts and, ultimately, for recon-

tructing the stress distribution around compacting reservoirs.
he analytic results are applied to a 2D model of a compacting

ectangular reservoir embedded in an initially homogeneous and
sotropic medium. The computed velocity changes around the
eservoir are caused primarily by deviatoric stresses and produce
transversely isotropic medium with a variable orientation of the
ymmetry axis and substantial values of the Thomsen parameters
and � . The offset dependence of the traveltime shifts should

lay a crucial role in estimating the anisotropy parameters and
ompaction-related deviatoric stress components.
INTRODUCTION

Traveltime shifts �differences�, measured between two or more
ime-lapse seismic reflection surveys, have become an important
ool for dynamic reservoir characterization. Production-related
ore-pressure changes and compaction inside the reservoir cause ac-
umulation of stress throughout the section. This excess stress modi-
es the elastic properties of rocks inside and around the reservoir,
nd the corresponding velocity changes can be estimated using re-
ection traveltimes recorded in time-lapse surveys.Analysis of trav-
ltime shifts can help to map compaction throughout a reservoir, and
herefore optimize infill drilling and hydrocarbon production by
dentifying compartments and pressure cells inside the producing
nits.

The stress dependence of traveltime shifts is well understood for
ertically propagating waves and horizontal layers �i.e., for zero-off-
et data�. Traveltime shifts estimated on stacked seismic data from
orizontally layered media have been used successfully to delineate
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ompartments in reservoirs �e.g., Landrø and Stammeijer, 2004;
atchell and Bourne, 2005�. However, this theory breaks down in

he presence of dip and cannot be applied to prestack data, as demon-
trated by data from SouthArne field in the North Sea �Herwanger et
l., 2007�. Røste et al. �2006� analyzed offset-dependent traveltime
hifts, but their theory is restricted to horizontally layered isotropic
edia. Herwanger et al. �2007� used nonlinear elasticity to model

he offset variation of traveltime shifts, but they do not present ex-
licit expressions relating shifts to the stress field.

Here we provide an analytic 3D description of traveltime shifts
round a compacting reservoir embedded in a heterogeneous, lay-
red, anisotropic medium. Taking heterogeneity and anisotropy into
ccount is necessary for an adequate physical description of travel-
ime shifts. Indeed, the excess stress field created by compaction is
nisotropic �in general, it is triaxial� and heterogeneous because the
agnitude of stress depends on reservoir geometry and varies spa-

ially around the reservoir.

20August 2008; published online 17 December 2008.
A. E-mail: rfuck@dix.mines.edu; ilya@dix.mines.edu.
U.S.A.; presently WesternGeco, Houston, Texas, U.S.A. E-mail: abakulin



e
c
c
t
s

e
s
s
m
p
i
2
t
n

b
i
b
s
e
l
2
d

s
�
c
R
s
P
e
m
t
p
p
d
o
o
p
i

o
l
e
t
i
d
v

i
u
t
t
w

t
i

t
i
t
l
e
i

w
b
v
c
i
t
p
Č

w
i

t
p
t
r
t
t
s
e

T

m
c
t
r
a
r
C
b
c
p

w
�
i

t
f

D26 Felício Fuck et al.
Our analysis of traveltimes shifts in and around a compacting res-
rvoir involves two main steps. We start by expressing the velocity
hanges through the excess stress and strain fields created by the
ompaction. Then the first-order perturbation of traveltimes is used
o obtain a linearized analytic approximation for the traveltime
hifts.

To describe stress-related velocity changes, we apply the nonlin-
ar theory of elasticity �e.g., Thurston and Brugger, 1964�, which has
everal advantages over more conventional approaches to model
tress-sensitivity of velocity fields. First, it does not rely on a specific
icromechanical model, and therefore it is more general than ap-

roaches based on stiffening of grain contacts and closing or open-
ng of specific microcrack distributions �Shapiro and Kaselow,
005�. Second, nonlinear elasticity yields the full stiffness tensor of
he deformed medium needed to compute traveltimes and other sig-
atures for arbitrarily anisotropic media.

Third, all possible mechanisms of stress sensitivity are absorbed
y a small number of third-order elastic coefficients. For instance, an
sotropic third-order strain-sensitivity tensor is defined completely
y three parameters. In contrast, fracture models include at least two
ets of penny-shaped fractures, with each set defined by three param-
ters. Fourth, third-order elastic coefficients can be measured direct-
y in laboratory or wellbore experiments �e.g., Sinha and Plona,
001�, whereas the fracture weaknesses must be inverted from field
ata �Sayers, 2006�.

The nonlinear theory has been applied successfully to estimate
tress-induced anisotropy and the corresponding stress-sensitivity
or strain-sensitivity� tensor in sandstones and shales. Examples in-
lude ultrasonic velocity experiments on rock samples �Johnson and
asolofosaon, 1996; Sarkar et al., 2003; Prioul et al., 2004� and in-

itu stress estimation in boreholes �Winkler et al., 1998; Sinha and
lona, 2001�. Unfortunately, measurements of third-order elastic co-
fficients �which represent elements of a sixth-rank tensor� for sedi-
entary rocks are rare, with most existing results obtained for crys-

als and man-made materials. This is an inherent limitation of our ap-
roach, but we expect more data to be available in the near future, in
articular because of the straightforward way of measuring third-or-
er coefficients in the laboratory or boreholes. In addition, the results
f Prioul et al. �2004� indicate that detailed knowledge of the sixth-
rder elasticity tensor is not critical, and for most applications in ex-
loration and reservoir geophysics that tensor can be assumed to be
sotropic.

We start by describing the variational problem related to the first-
rder perturbation of traveltimes. Then perturbation theory and non-
inear elasticity are used to express traveltime shifts in terms of the
xcess stresses and volumetric strains caused by reservoir compac-
ion. Synthetic tests for a 2D reservoir model confirm that the stress-
nduced velocity field is anisotropic and illustrate the offset depen-
ence of traveltime shifts for reflectors above and below the reser-
oir.

P-WAVE TRAVELTIME SHIFTS
FROM FIRST PRINCIPLES

Assuming that reservoir compaction produces only small changes
n the traveltimes of seismic waves propagating through the medi-
m, such traveltime shifts can be expressed through small perturba-
ions of the model parameters. The deformation caused by compac-
ion changes the relative positions of the boundaries between layers,
hile the extra stress alters the elastic properties. Therefore, travel-
ime shifts depend on perturbations of the geometry of the medium
nterfaces and elastic �stiffness� moduli.

To obtain first-order traveltime perturbations, we apply Hamil-
on’s principle of least action to traveltimes computed for rays traced
n an unperturbed background medium. For simplicity, we consider
his background medium to be isotropic, with smoothly varying ve-
ocity and density, and restrict the analysis to P-waves. Then the trav-
ltime shifts � t are described by the following equation well known
n classical mechanics �e.g., Lanczos, 1986�:

� t � p · � x�� 1

� 2� � �
� 1

� 2

�Hd� , �1�

here p is the slowness vector of the reference ray traced in the
ackground medium, � x is the first-order variation of the position
ector of the reference ray in 3D Cartesian coordinates, �H is the
orresponding variation of the system’s Hamiltonian, and � is the
ntegration parameter along the reference ray. The Hamiltonian H of
he system is the scaled eikonal equation, in which the integration
arameter � represents the traveltime along the reference ray �e.g.,
ervený, 2001�:

H�x,p� �
1

2
�V2�x,p�pkpk �1� � 0, �2�

here V�x,p� is the phase velocity; summation over repeated indices
s implied throughout the paper.

Equation 1 provides important insights into the nature of travel-
ime shifts caused by reservoir compaction. First, in the linear ap-
roximation the contributions of geometric and velocity changes to
raveltimes are independent. Second, the changes of the ray trajecto-
y �i.e., geometric changes� contained in the term p ·� x do not con-
ribute to first-order traveltime perturbations, unless they occur at
he endpoints. Third, the influence of the velocity changes is repre-
ented by the perturbed Hamiltonian �H, which should be integrat-
d along the reference ray.

raveltime shifts in layered media

Equation 1 is designed for rays traced in smoothly heterogeneous
edia �Figure 1a�. If the medium is stratified, it is necessary to ac-

ount for deformation of the reflectors that move the reflection/
ransmission points along the ray. This can be done by dividing the
eference ray into segments, applying equation 1 to each of them,
nd then summing up the results �Farra and Le Bégat, 1995�. For the
ay in Figure 1b, equation 1 is applied to segments SA, AB, BC, and
R separately, with subsequent summation of the individual contri-
utions. Therefore, extension of equation 1 to layered media ac-
ounts for the movement of all N scattering �reflection/transmission�
oints along the raypath:

� ti � �p̀ � ṕ�i · � xi �i � 1,2, . . . N� , �3�

here p̀ and ṕ are the slowness vectors of the incident and scattered
reflected or transmitted� rays, respectively. Note that each scatter-
ng point i belongs to two ray segments.

By separating the contribution of the endpoints �� te� from that of
he scattering points �i � 1,2, . . .N�, equation 1 can be generalized
or any number of layers arbitrarily deformed in 3D space:
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Traveltime shifts around compacting reservoirs D27
� t � � te � �
i�1

N

� ti � �
� 1

� 2

�Hd� , �4�

here

� te � p · � x�� 1

� 2, � ti � �p̀ � ṕ� · � x . �5�

Equation 4 can be simplified further by taking Snell’s law into
onsideration. Because the projection of the slowness vector onto
he interface is conserved, the only nonzero component of vector �p̀

ṕ� is that orthogonal to the interfaces. If layer boundaries are hori-
ontal, the traveltime shifts depend on just the vertical components
f the vector �p̀ � ṕ�. For interfaces with arbitrary orientation, the
nit normal vector �i.e., the vector perpendicular to the interface� at
he reflection/transmission point x is given by the gradient of the un-
erturbed interface f�x� � 0:

N�x� �
� f�x�

� � f�x��
. �6�

o find the component of the vector �p̀ � ṕ� in the direction of N�x�,
e use the projection operator A�x�:

A �
NNT

NTN
. �7�

pplying equation 7 to each term �p̀ � ṕ� ·� x in equation 4 gives

�p̀ � ṕ�� xi � Aij�p̀ � ṕ�� xi. �8�

raveltime shifts in heterogeneous anisotropic media

As discussed above, reservoir compaction causes the velocity
eld around the reservoir to become both heterogeneous and aniso-

ropic. Note that equation 1 involves no assumptions regarding the
eterogeneity or anisotropy of the Hamiltonian or its perturbation
H. The generality of equation 1 helps to construct ray-tracing solu-

ions for heterogeneous, arbitrarily anisotropic media �e.g., Jech and
šenčík, 1989; Chapman and Pratt, 1992; Červený, 2001�. The per-

urbation �H � �V/V is obtained from equation 2 for the reference
ay with the components pi held constant. Perturbing the Christoffel
quation for P-waves leads to the following expression for the term
V under the assumption that reference rays are traced in an isotro-
ic medium �Červený, 2001�:

�H �
1

2

�aijkl�x�ninjnknl

V2�x�
, �9�

here �aijkl are perturbations of the density-normalized stiffness co-
fficients, and ni are components of the unit slowness vector.

3The qualifier “nonlinear” comes from the inclusion of the tensor c into
ijklmn
RELATING VELOCITY CHANGES
TO EXCESS STRESSES

Equations 4 and 9 provide the basis for analytic description of
ompaction-induced traveltime shifts. The next step is to express the
ensity-normalized stiffnesses �aijkl in terms of the strains and ex-
ess stresses caused by reservoir compaction.As discussed in the in-
roduction, we apply the nonlinear theory of elasticity to describe the
tress sensitivity of the stiffness coefficients. The two main assump-
ions used here are that the strain-sensitivity tensor is isotropic and
tress-induced anisotropy is weak.

onlinear elasticity

According to Prioul et al. �2004�, the effective stiffness coeffi-
ients cijkl of an elastic medium deformed under stress can be written
n terms of the predeformation stiffnesses �cijkl

0 � and the deformation-
nduced changes of the stress ��Sij� and strain ��eij� tensors:

cijkl � cijkl
0 � �Sik� jl � cijklmn�emn � cijpl

0 �ekp

� cipkl
0 �ejp, �10�

here � ij is Kronecker’s symbol, and cijklmn is a sixth-rank tensor
ith no more than 56 independent elements �Hearmon, 1953�3. Pro-
ided that deformation is small and elastic, equation 10 represents a
uitable local linear approximation for the changes in the stiffness el-
ments, similar to a Taylor series expansion around cijkl

0 . We reduce
he number of independent components of cijklmn to three by assum-
ng that this tensor is isotropic, as suggested by Prioul et al. �2004�.

For typical magnitudes of compaction-related stress changes
2–10 MPa inside the reservoir and one-tenth of that outside�,
quation 10 can be simplified further by dropping relatively small
erms. Indeed, laboratory measurements have shown that typically

’s law �Thurston and Brugger, 1964�.

S R

S R

A

B

C

a)

b)

igure 1. Equation 1 is valid for rays traced in a smoothly heteroge-
eous medium �a�. For layered media �b�, it is necessary to account
or the movement of reflection �B� and transmission �A, C� points
see equation 4�.
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Sij�cijkl�cijklmn �e.g., Johnson and Rasolofosaon, 1996�, which
llows us to neglect the terms �Sik� jl, cijpl

0 �ekp, and cipkl
0 �ejp in equa-

ion 10 �Prioul et al., 2004�:

cijkl � cijkl
0 � cijklmn�emn. �11�

quation 11 shows that the tensor cijklmn is a measure of the sensitivi-
y of the stiffnesses cijkl to deformation. Indeed, the definition of
ijklmn in terms of the strain-energy function W �e.g., Hearmon, 1953�
orroborates equation 11:

cijklmn 	
� 3W

�eij�ekl�emn
�

�cijkl

�emn
. �12�

If the medium density � is assumed to be constant, equation 11
ields the changes in the density-normalized stiffnesses �aijkl need-
d in equation 9:

�aijkl � ��1�cijkl

�emn
�emn � ��1cijklmn�emn. �13�

valuation of the term cijklmn�emn is discussed in Appendix A. In the
rst-order approximation, we can follow Sarkar et al. �2003� and use

inear Hooke’s law to relate �eij to �Sij:

�aijkl � ��1cijklmn�cmnpq
0 ��1�Spq. �14�

raveltime shifts resulting from compaction

A concise expression for traveltime shifts can be derived by sub-
tituting equation 14 into equation 9 for the perturbation of the
amiltonian. Using the results of Appendix B �equation B-9�, we
nd:

�H �
1

2
�B1�ekk � B2�nT��n�� , �15�

B1 �
1

3C33
o �C111 � 2C112�, B2 � 2

C155

C33
0 C44

0 , �16�

here �ekk is the trace of the strain tensor, and �� is the tensor of de-
iatoric stress. The constants C111, C112, and C155 are elements of the
sotropic sixth-order tensor cijklmn written in Voigt notation, whereas

33
0 and C44

0 are the stiffnesses of the background isotropic medium.
he traveltime shifts given by equation 4 then can be rewritten as

� t � � te � �
i�1

N

� ti

geom

�
1

2
�
� 1

� 2

�B1�ekk � B2�nT��n��d�

vel

,

�17�
here “geom” and “vel” refer to contributions of the geometric and
elocity changes.

Except for the possible influence of tides on offshore 4D surveys,
ypically the “geometric” term is relatively small. Indeed, for the
eometric changes to produce a traveltime shift of at least 1 ms, an
nlikely set of conditions must take place: the displacements should
e on the order of meters; for layered models, the slowness contrasts
annot be smaller than 10�2 s/km; and summation should include
rom 10 to as many as 100 scattering points. When elastic deforma-
ion is caused by depletion, however, displacements throughout the
ection are on the order of centimeters, consistent with the annual
ubsidence rates observed in fields such as Valhall �Herwanger and
orne, 2005�. In addition, for layered models, there is little room to

ncrease the number of reflection/transmission points without reduc-
ng the slowness contrasts.

According to equation 17, the velocity-related traveltime shifts
re given by the arithmetic average of the isotropic �B1�ekk� and an-
sotropic �B2nT��n� terms computed along the raypath. In our sign
onvention, negative strains denote contraction, whereas positive
trains denote extension. �Likewise, negative stresses imply com-
ression.� This means that the coefficient C155 and combination C111

2C112 should be negative. Then, according to equations 15–17,
ompression leads to increase in velocity, which results in negative
raveltime shifts. In contrast, traveltime shifts caused by extension
re positive.

To clarify how equation 17 generalizes existing results, inAppen-
ix C it is reduced to the equation for zero-offset data from Hatchell
nd Bourne �2005�. In addition to extending the results of Hatchell
nd Bourne �2005� to nonzero offsets and dipping reflectors, equa-
ion 17 provides useful insight into the meaning of different terms.
he result of Hatchell and Bourne �2005� for two-way traveltime
hifts has the form

� t � 2�
0

Z

�1 � R�
�ezz

V�z�
dz . �18�

ccording to equation 17, the ratio R from equation 18 can be writ-
en as

� t � 2�
0

Z


1 �
1

2
�R1 � R2���ezz

V�z�
dz , �19�

here

�ezzR1 � �B1�ekk; �ezzR2 � �B2�� 33. �20�

ence, the ratio R represents the average of two terms related to the
olumetric strain and vertical deviatoric stress changes. If the reser-
oir thickness is much smaller than the reservoir depth, the volumet-
ic changes are expected to be small. Then the ratio R can be used to
stimate �� 33 using reflectors at or above the reservoir. On the other
and, for reservoirs with comparable depth and thickness, R is likely
o reflect both volumetric and deviatoric stress changes.

MODELING OF TRAVELTIME SHIFTS

In this section, we use equation 17 to study the influence of reflec-
or deformation and velocity changes on traveltime shifts. First we
btain an analytic expression for traveltime shifts caused by the
ovement of reflectors in a simple horizontally layered medium.
hen we compute and discuss the spatial distribution of traveltime
hifts in shot and common-midpoint �CMP� gathers for a 2D model
f a compacting reservoir.

pecial case: Reflector deformation in a layered
edium

We consider a ray that travels from the surface to the bottom of a
odel composed of two horizontal isotropic layers. The layers are
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ssumed to have been deformed uniaxially in the z-direction so that
he thickness of layer 1 was increased by � z1 and that of layer 2 by
z2 �Figure 2�.
To study the influence of geometric changes, velocities in the lay-

rs �v1 and v2� are kept constant after the deformation. Therefore, the
xact one-way traveltime from the top to the bottom of the model af-
er the deformation can be written as

t �
z1 � � z1

v1 cos� 1
�

z2 � � z2

v2 cos� 2
, �21�

here � 1 and � 2 are the angles between the ray and the vertical in the
rst and second layers, respectively. Hence, the exact traveltime dif-
erence resulting from the deformation is

�tex �
� z1

v1 cos� 1
�

� z2

v2 cos� 2
. �22�

xpressing �tex in equation 22 in terms of the vertical components
i � cos� i/vi of the slowness vector and the propagation angle � i�i
1,2�, we find that

�tex � � z1q1�1 � tan2 � 1� � � z2q2�1 � tan2 � 2� .

�23�

Applying equation 17 to the reference ray traced before the defor-
ation �the ray in Figure 2 with the same takeoff angle � 1� yields an

pproximation ��tpert� for �tex:

� te � �� z1 � � z2�q2,

� ti � � z1�q1 � q2� , �24�

�tpert � � te � � ti � � z1q1 � � z2q2.

or propagation angles in the range of 25°–30°, equations 23 and 24
ive similar results because tan2 � 	1. In particular, for zero-offset
ays �� 1 � � 2 � 0�, equation 24 is exact. Note that multiplying
quations 23 and 24 by a factor of two yields two-way traveltime
hifts for a reference ray with the source located at position s and re-
eiver at r � s � 2X �X � z1 tan� 1 � z2 tan� 2� on the surface of
he model.

raveltime shifts resulting from velocity changes

To illustrate the distribution of traveltime shifts in prestack data,
e applied equation 17 to a 2D model that includes a rectangular res-

rvoir embedded in a homogeneous isotropic half-space �Figure 3�.

θ1

θ2

z = 0

z = z1

z = z2

δz1

δz1 + δz2

igure 2. Model of two horizontal layers above a compacting reser-
oir. The compaction increases the thickness of layer 1 by � z1 and
hat of layer 2 by � z2. The velocities remain constant after the defor-

ation.
n such a model, traveltime shifts can be attributed to velocity chang-
s only, because geometric terms will cause shifts not exceeding
0�2 ms. The pore-pressure variation occurs only in the reservoir,
nd the resulting excess stress, strain, and displacement were com-
uted using analytic expressions adapted from Hu �1989�. The strain
as confined to the incidence plane �x,z�, with no deformation in the

y-direction �e12 � e22 � e23 � 0�.
Figure 4 shows the spatial distribution of deviatoric stresses and

olumetric strains generated by the pore-pressure drop inside the
eservoir. For the plane strain problem treated here, the stress tensor
s triaxial, so the 3D stress-induced velocity field has orthorhombic
ymmetry. The velocity function in the �x,z�-plane, however, can be

x1

x3

0

1.5 km

2 km

0.1 km ∆p = 5 MPa�

igure 3. A 2D model of a rectangular reservoir embedded in an iso-
ropic homogeneous medium. The pressure drop inside the reservoir
s 5 MPa. The medium parameters are taken from the laboratory re-
ults of Sarkar et al. �2003� for Berea sandstone: VP � 2.3 km/s,
P/VS � 1.58, � � 2.14 g/cm3, C111 � �13904 GPa, C112 � 533
Pa, and C155 � �3609 GPa. To compute the excess stress, we set

he Biot-Willis coefficient 
 to 0.85 �the closer 
 is to unity, the more
tress is generated by reducing pore pressure in the reservoir�. To
imulate the static stiffness coefficients, VP was reduced by 10%,
hich yields the typical difference between the static and dynamic

tiffnesses for well-consolidated rocks with low porosity �Yale and
amieson, 1994�.
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igure 4. Stress and strain changes for the model from Figure 3
aused by the reservoir compaction. The top row shows changes in
he vertical ��� 33� and horizontal ��� 11� normal deviatoric stresses.
he shear deviatoric stress ��� 13� and the trace of the strain tensor
ekk are shown in the second row. Negative values imply compres-

ion for stress and contraction �shortening� for strain. Outside the
eservoir, �� 11���� 33. Inside the reservoir, the maximum stress
alues are �� 33 ��2.2 MPa and �� 11 � 1.7 MPa, whereas the
olumetric change is constant: �ekk � �4.6�10�4 �the plots were
lipped for better visualization�.
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escribed by a heterogeneous transversely isotropic �TI� model with
tilted symmetry axis because this vertical plane represents a sym-
etry plane of the orthorhombic medium.
Using the perturbations of the stiffness coefficients, we computed

he stress-related Thomsen parameters � and � and rotation angle of
he symmetry axis from the vertical �Figure 5�. Because the strain-
ensitivity tensor and background medium are isotropic, the result-
ng velocity anisotropy is elliptical �� � � �. The absolute � -values
n and near the reservoir reach 0.18, which indicates that the stress-
nduced anisotropy is nonnegligible even for the relatively small
ressure drop �5 MPa� used in the test. The similarity between � and
he normal deviatoric stress components ��� 11 and �� 33� is ex-
lained by the fact that for our model, �� 11���� 33. Then, for lo-
ations where �� 13 is small and the symmetry axis is close to verti-
al, � is given by �Sarkar et al., 2003�

4The medium symmetry can be verified by setting e � e � e � 0 in e
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igure 5. Reservoir compaction makes the medium heterogeneous
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igure 6. Comparison between traveltime shifts in CMP geometry
omputed by ray tracing �solid lines� and from mation 17 �dashed�.
he CMP is located above the center of the reservoir �x � 0 km in
igure 3�. The depths of imaginary reflectors are �a� 1 km �gray� and
.45 km �black�; �b� 1.55 km �gray� and 2 km �black�. For this ge-
metry, X � 1/2�s � r�, where s and r denote the source and receiv-
r positions.
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2�� 11C155

C33
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0 . �25�

Close to the corners of the reservoir, accumulation of the shear
tress �� 13 causes rotation of the symmetry axis �Figure 5b�. Hence,
n 3D, the stress-induced anisotropy is described by a tilted ortho-
hombic model.4

Approximate and exact �ray-traced� traveltime shifts are com-
ared in Figure 6. The noticeable discrepancy for reflectors beneath
he reservoir is caused by the large velocity change inside the reser-
oir �as high as 27% for the P-wave vertical velocity�. For deep re-
ectors, the linearized approximation 17 is more accurate in models
ith lower velocity sensitivity inside the reservoir.
The offset variation of traveltime shifts in Figure 6 is controlled

y the spatial distribution of deviatoric stress and volumetric chang-
s as well as by the incidence angle �see equation 17�. Because
tress-induced velocity changes are concentrated mostly inside and
ear the reservoir, traveltime shifts are largest for rays that probe the
mmediate vicinity of the reservoir. We observe two distinct trends
or traveltime shifts depending on the CMP location with respect to
he reservoir. For common midpoints within the projection of the
eservoir onto the surface, traveltime shifts tend to decrease by abso-
ute value with offset �Figures 6 and 7a�. In contrast, the magnitude
f traveltime shifts for CMP locations outside the reservoir projec-
ion generally increases with offset �Figure 7b�. Likewise, traveltime
hifts in shot gathers become confined mostly to longer offsets as the
ource is moved away from the reservoir center �Figure 8�.

For a fixed CMP or shot location, the offset dependence of travel-
ime shifts is governed largely by the term �� ij ninj in equation 17.
or instance, the reflectors above the reservoir in Figure 7 show an

ncrease rather than a decrease in the magnitude of the shifts for larg-
r offsets.

Ultimately, this variation of traveltime shifts with incidence angle
i.e., with direction n� might help to estimate components of the de-
iatoric stress tensor from prestack seismic data. Therefore, it is im-
ortant to analyze the relative magnitude of traveltime shifts caused
y isotropic and anisotropic velocity changes. For the homogeneous
nd isotropic background model used in the test, volumetric �i.e.,
sotropic� changes are significant only inside the reservoir �see Fig-
re 4�. Thus, traveltime shifts above the reservoir are produced pri-

s A-16–A-33.
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igure 7. Traveltime shifts in CMP geometry for common midpoints
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maginary reflectors above the reservoir at depths 1 km �dashed� and
.45 km �solid�. The black lines correspond to reflectors below the
eservoir at 1.55 km �dashed� and 2 km �solid�. Expression X/Z is
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Traveltime shifts around compacting reservoirs D31
arily by deviatoric stress �i.e., anisotropic� changes, whereas volu-
etric changes make a nonnegligible contribution for reflectors at

nd below the reservoir level �see Figure 9�.
Still, the character of the offset variation of traveltime shifts is

ontrolled largely by the anisotropic terms even for deep reflectors,
specially for common midpoints close to the center of the reservoir
Figure 10�. For CMP locations inside the reservoir projection onto
he surface, the isotropic and anisotropic components of the travel-
ime shifts have slopes of opposite sign �Figure 10a-d�. In contrast,
he slopes have the same sign for common midpoints outside the res-
rvoir projection �Figure 10e and f�. Therefore, if the volumetric
erm is neglected in an inversion scheme, deviatoric stress changes
econstructed from traveltime shifts will be underestimated for CMP
ocations inside the reservoir projection and overestimated for those
utside it. The sharp variations of small-offset shifts near the reser-
oir edges �x��1 km� in Figure 10 are caused by singularities in the
nalytic solutions for stress used in the modeling.
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Figure 11 demonstrates that the vertical stress change ��� 33� gov-
rns small-offset traveltime shifts, whereas contributions of the hori-
ontal and shear stresses gradually increase with offset. Indeed, for
ur 2D model the term �� ij ninj in equation 17 takes the form

�� ij ninj � �� 33 cos2 � � 2�� 13 cos � sin �

� �� 11 sin2 � , �26�

here � , as before, is the incidence angle. Clearly, the sensitivity of
raveltime shifts to the components �� 13 and �� 11 increases with
ffset.

Equation 26 and Figure 11 indicate that, in principle, the horizon-
al and shear stress changes can be estimated from the offset depen-
ence of traveltime shifts. Reconstruction of the stress components,
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owever, is complicated by the strong heterogeneity of the excess
tress field around the reservoir. As illustrated by Figure 12a, for a
elatively shallow reflection event recorded above the center of the
eservoir, the slope of the function � t up to relatively long offsets is

igure 10. Traveltime shifts in CMP geometry for three midpoints x
each row corresponds to a midpoint� and two reflector depths z. �a�
� 0 km, z � 1.55 km; �b� x � 0 km, z � 2 km; �c� x � 1 km, z

1.55 km; �d� x � 1 km, z � 2 km; �e� x � 2 km, z � 1.55 km;
nd �d� x � 2 km, z � 2 km. The total shifts �solid black lines� are
lotted along with the shifts resulting from the volumetric changes
dashed gray� and deviatoric stress changes �dashed black�.
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igure 11. Contributions of the three deviatoric
tress components to traveltime shifts for the shot
t x � 2 km �asterisk� from Figure 8. The shift re-
ulting from �a� the total deviatoric stress change
�� 11 � �� 13 � �� 33�; �b� �� 11; �c� �� 13; and
d� �� 33.
overned mostly by �� 11. However, when the CMP is located above
he edge of the reservoir �Figure 12b�, the offset variation of travel-
ime shifts is dominated by �� 13 with contributions from �� 33 and
� 11.
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CONCLUSIONS

Our analytic description of compaction-related traveltime shifts is
ased on three main assumptions. First, a closed-form expression for
raveltime shifts was obtained using first-order traveltime perturba-
ions. Anisotropic ray tracing for a 2D model of a compacting reser-
oir confirms that the first-order approximation reproduces the gen-
ral behavior of traveltime shifts. The approximate solution produc-
s substantial errors for deep reflectors when the velocity changes in-
ide the reservoir are large �30% or so�. However, case studies of
ompaction-related traveltime shifts suggest that the model likely
xaggerates the strain sensitivity inside the reservoir. Second, we
sed an isotropic sixth-order strain-sensitivity tensor to describe the
nfluence of stress on the stiffness coefficients. Although this as-
umption limits the stress-induced anisotropic model to the special
ase of tilted orthorhombic symmetry5, it also reduces the number of
odel parameters and helps to derive concise expressions for travel-

ime shifts.
Third, deformation was assumed to be purely elastic, which is not

lways appropriate for velocity changes inside a compacting reser-
oir �or within a reactivated fault zone outside it� where the contribu-
ion of anelastic processes might be substantial. We believe, howev-
r, that the physical insight provided by our relatively simple equa-
ions justifies neglecting plastic deformation. Also, experimental
tudies confirm that elastic theory adequately describes a wide range
f deformation processes caused by reservoir depletion in various
eologic settings.

The main result of our analytic development is equation 17, which
eneralizes the expressions for zero-offset traveltime shifts and
hose for offset-dependent traveltime shifts in isotropic media. The
imple structure of equation 17 helped us to gain valuable insight
nto the behavior of compaction-related traveltime shifts in CMP
nd shot gathers.

Traveltime shifts are caused by two factors — geometric and ve-
ocity changes. Analysis of equation 17 indicates that the geometric
omponent of the traveltime shifts typically is at least an order of
agnitude smaller than the contribution of the velocity changes.
raveltime shifts resulting from velocity changes could be separated
urther into two components, one of which is related to volumetric
hanges and the other to deviatoric stresses. Significant volumetric
hanges are restricted to the reservoir and to the vicinity of the model
urface. The deviatoric stress term, which is related to changes in
onhydrostatic stress, controls the velocity anisotropy of the de-
ormed elastic medium. Equations 16 and 17 also reveal the role of

5In each of the symmetry planes, the stress-induced anisotropy is elliptical.
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igure 12. Contributions of the three deviatoric stress components to
raveltime shifts in CMP geometry for �a� x � 0 km, z � 1 km; and
b� x � 1.1 km, z � 1.45 km. The shifts resulting from the total de-
iatoric stress change �solid black lines� are plotted along with the
ontributions of �� 11 �dashed�, �� 13 �dash-dotted�, and �� 33 �solid
ray�.
ifferent components of the strain-sensitivity tensor. In particular,
he combination C111 � 2C112 is responsible for the isotropic
-wave velocity changes, whereas �in agreement with previously
ublished results� C155 governs the magnitude of the stress-induced
elocity anisotropy.

Although the numerical results are obtained for a simple 2D mod-
l, they illustrate several important properties of stress-induced vari-
tions in reflection traveltimes. First, traveltime shifts for reflectors
t and above the reservoir are associated primarily with the devia-
oric stress components �i.e., with stress-induced anisotropy�. Be-
ause anisotropy parameters should be estimated from offset-depen-
ent traveltimes, it would be highly beneficial to include prestack
ata in time-lapse analysis.

Second, the magnitude of the anisotropy parameters might be sub-
tantial, and the orientation of the symmetry axis rapidly varies in
pace around the reservoir corners �similar variation also is observed
or ellipsoidal reservoir models close to the points of maximum cur-
ature�. Third, the modeling helps to understand the complex spatial
istribution of traveltime shifts caused by the interplay between the
ropagation direction and different stress components. On the
hole, adding an extra dimension �offset� to time-lapse analysis

hould help to constrain better the geomechanical changes around
epleting blocks and improve interpretation of 4D seismic data.

One of the main practical difficulties in modeling and interpreta-
ion of compaction-related traveltime shifts is their dependence on
he sixth-order strain-sensitivity tensor. Our analytic results, ob-
ained under the simplifying assumption that this tensor is isotropic,
nclude two independent strain-sensitivity elements. Reliable con-
traints on these two elements can be provided by laboratory mea-
urements of stress sensitivity of reservoir and overburden rocks
imilar to those already described in the literature.

Further development of the theory presented here could involve
everal possible directions. The first is to incorporate second-order
henomena, especially those related to the influence of lithostatic
nd regional stress fields and of plastic deformation. Then it might be
ossible to evaluate whether the contributions of compressive and
ensile stress changes are indeed asymmetrical. Note that existing

easurements of traveltime shifts indicate that velocity is much
ore sensitive to tensile than to compressive stress. Indeed, velocity

hanges observed inside reservoirs are relatively small despite the
trong compression of reservoir rocks. The second topic for future
esearch is to derive similar equations for traveltime shifts of con-
erted modes and pure shear waves. Time-lapse prestack shear-
ave data should provide additional constraints on parameters of the

tress field. Third, our analytic results can be extended to incorporate
ntrinsic anisotropy, while keeping the strain-sensitivity tensor iso-
ropic.
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APPENDIX A

ELEMENTS OF THE MATRIX �C��

Here, we give a brief derivation of the perturbations of the stiff-
ess coefficients obtained from the equation �cijkl � cijklmn�emn. To
implify the summation over repeated indices, we take advantage of
he following symmetries of the tensor cijklmn �e.g., Thurston and
rugger, 1964�:

cijklmn � cjiklmn � cijlkmn � cijklnm � cklijmn � cmnklij .

�A-1�

These symmetries make it possible to use Voigt notation, which
educes the number of independent elements from 729 to 56. These
lements are distributed in 6�6�6 matrices, and the summation is
ccomplished by multiplying each cube face by the 6�1 vector
ormed by the element �eij of the excess strain tensor:

�C

 � C

 ��E� , �A-2�

here

�E� � ��e11,�e22,�e33,2�e23,2�e13,2�e12�T.

�A-3�

The indices 
, 
 , and � run from 1 through 6.
Application of equation A-2 is simplified greatly if the C

 � ma-

rices are formed by isotropic tensors, because such a tensor includes
nly 20 nonzero elements �Hearmon, 1953�:

C111 � C222 � C333, �A-4�

C144 � C255 � C366, �A-5�

C112 � C223 � C133 � C113 � C122 � C233, �A-6�

C155 � C244 � C344 � C166 � C266 � C355, �A-7�

C123, �A-8�

C456. �A-9�

The isotropic symmetry of the sixth-order tensor implies that
nly three of the components listed above are linearly independent.
ollowing the convention adopted in Thurston and Brugger �1964�,
onzero elements C

 � for isotropic media can be expressed through
inear combinations of three Lamé-type parameters � i:

C111 � �1 � 6�2 � 8�3, �A-10�

C112 � �1 � 2�2, �A-11�

C123 � �1, �A-12�

C144 � �2, �A-13�

C � � � 2� , �A-14�
155 2 3
C456 � �3. �A-15�

Using the tensor symmetries A-1 and equations A-4–A-9, the
erturbations �C

 from equation A-2 can be written as

�C11 � C111�E1 � C112��E2 � �E3� , �A-16�

�C22 � C111�E2 � C112��E1 � �E3� , �A-17�

�C33 � C111�E3 � C112��E1 � �E2� , �A-18�

�C44 � C144�E1 � C155��E2 � �E3� , �A-19�

�C55 � C144�E2 � C155��E1 � �E3� , �A-20�

�C66 � C144�E3 � C155��E1 � �E2� , �A-21�

�C12 � C123�E3 � C112��E1 � �E2� , �A-22�

�C13 � C123�E2 � C112��E1 � �E3� , �A-23�

�C23 � C123�E1 � C112��E2 � �E3� , �A-24�

�C14 � C144�E4, �A-25�

�C15 � �C35 � C155�E5, �A-26�

�C16 � �C26 � C155�E6, �A-27�

�C24 � �C34 � C155�E4, �A-28�

�C25 � C144�E5, �A-29�

�C36 � C144�E6, �A-30�

�C45 � C456�E6, �A-31�

�C46 � C456�E5, �A-32�

�C56 � C456�E4. �A-33�

APPENDIX B

PERTURBATION OF THE HAMILTONIAN

To derive the perturbation of the Hamiltonian in equation 9 of the
ain text, we use equation 14 and assume that the strain-sensitivity

ensor is isotropic �seeAppendix A�. First we evaluate the numerator
of equation 9:

B � �aijkl ninjnknl, �B-1�

here �aijkl are the density-normalized stiffness perturbations, and
is the unit slowness vector. Using Voigt notation to replace �aijkl by

he 6�6 matrix �A �
 and 
 run from 1 through 6�, we find that
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� �A11n1
4 � �A22n2

4 � �A33n3
4 � 2��A12

� 2�A66�n1
2n2

2 � 2��A13 � 2�A55�n1
2n3

2

� 2��A23 � 2�A44�n2
2n3

2 � 4��A16n1
2

� �A26n2
2�n1n2 � 4��A15n1

2 � �A35n3
2�n1n3

� 4��A24n2
2 � �A34n3

2�n2n3 � 4��A14

� 2�A56�n1
2n2n3 � 4��A25 � 2�A46�n1n2

2n3

� 4��A36 � 2�A45�n1n2n3
2. �B-2�

Note that �A

 � ��1�C

 , where �C

 are given by equations
-16–A-33. Substituting equations A-16–A-33 into equation B-2

nd taking into consideration equations A-10–A-15 leads to

B � �C111�E1 � C112��E2 � �E3��n1
4 � �C111�E2

� C112��E1 � �E3��n2
4 � �C112��E1 � �E2�

� C111�E3�n3
4 � 2�C112�E3 � �C112 � 2C155���E1

� �E2��n1
2n2

2 � 2�C112�E2 � �C112 � 2C155���E1

� �E3��n1
2n3

2 � 2�C112�E1 � �C112 � 2C155���E2

� �E3��n2
2n3

2 � 4C155n1n2n3��E4n1 � �E5n2

� �E6n3� � 4C155��E6n1n2�n1
2 � n2

2�

� �E5n1n3�n1
2 � n3

2� � �E4n2n3�n2
2 � n3

2�� . �B-3�

ombining the terms containing C111, C112, and C155 in equation B-3
ields

�B � �C111 � C112���E1n1
4 � �E2n2

4 � �E3n3
4�

� C112ekk � 4C155��E1�n1
2 � n1

4� � �E2�n2
2 � n2

4�

� �E3�n3
2 � n3

4� � �E6n1n2 � �E5n1n3

� �E4n2n3� , �B-4�

here �ekk is the trace of the excess strain tensor �eij � �E� .
It follows from equations A-10–A-15 that C111 � C112 � 4C155,

hich allows us to obtain B as

�B � C112�ekk � 4C155��E1n1
2 � �E6n1n2 � �E2n2

2

� �E5n1n3 � �E4n2n3 � �E3n3
2� . �B-5�

n tensor notation, equation B-5 becomes

�B � C112�ekk � 4C155�eijninj . �B-6�

he contribution of the quadratic form �eijninj to the stiffness per-
urbations in equation B-6 causes the resulting velocity anisotropy to
e elliptical.

Another interesting property of equation B-6 is that B is com-
osed of two terms, one of which is controlled by the volumetric
hanges �i.e., by �ekk�. The strain tensor �eij can be represented
hrough its deviatoric ���ij� and dilational ��ekk� components as

�eij � ��ij �
1

3
�ekk� ij , �B-7�

nd equation B-6 takes the form
�B �
1

3
�3C112 � 4C155��ekk � 4C155��ijninj . �B-8�

Using equations A-10–A-15, we find that 3C112 � 4C155 � C111

2C112. Linear Hooke’s law helps to express the deviatoric strain
hrough the deviatoric stress as ��ij � �� ij/�2C44�, which leads to
he following expression for the term B:

�B �
1

3
�C111 � 2C112��ekk � 2

C155

C44
�� ijninj . �B-9�

quation B-9 represents B as the sum of the contributions of the vol-
metric changes �ekk and deviatoric stress changes �� ij.

APPENDIX C

COMPARISON WITH EQUATIONS
FOR ZERO-OFFSET DATA

Here we compare our equation 17 with the equation of Hatchell
nd Bourne �2005� for zero-offset traveltime shifts. We consider ze-
o-offset rays reflected from a horizontal interface in an isotropic ho-
ogeneous background medium. In addition, displacements are as-

umed to be vertical. Therefore, the only nonzero components of the
lowness and displacement vectors in equation 17 are p3 and � x3:

� t � p3u3�� 1

� 2 � �
� 2

� 1

�V

V
d� , �C-1�

here � x3 � u3. Bringing the endpoint contributions under the inte-
ral, we obtain

� t � �
� 1

� 2 
d�p3u3�
d�

�
�V

V
�d� . �C-2�

xpanding the derivative in the integrand and changing variables
d� � dz/V� yields the two-way traveltime shift:

� t � 2�
0

Z


Vp3
du3

dz
� Vu3

dp3

dz
�

�V

V
�dz

V
. �C-3�

he integration is carried out from the surface �z � 0� to the reflec-
or depth Z. From the eikonal equation, it follows that p3 � 1/V, and

� t � 2�
0

Z


du3

dz
� Vu3

dp3

dz
�

�V

V
�dz

V
. �C-4�

ecause the reference ray is traced in a homogeneous medium,
p3/dz � 0. In addition, according to the definition of the strain ten-
or, �ezz � du3/dz. Hence,

� t � 2�
0

Z


�ezz �
�V

V
�dz

V
. �C-5�
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Equation C-5 is equivalent to the zero-offset result of Hatchell
nd Bourne �2005�, who rewrite � t as follows:

� t � 2�
0

Z

�1 � R�
�ezz

V
dz , �C-6�

here

R � �
�V

V

1

�ezz
. �C-7�

he equivalence of equations C-5 and C-6 confirms that equation 17
epresents a generalization of previously published results.
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