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ABSTRACT

Plane-wave reflection coefficients (PWRCs) are routinely
used in amplitude-variation-with-offset analysis and for generat-
ing boundary data in Kirchhoff modeling. However, the geomet-
rical-seismics approximation based on PWRCs becomes inade-
quate in describing reflected wavefields at near- and postcritical
incidence angles. Also, PWRCs are derived for plane interfaces
and break down in the presence of significant reflector curvature.
Here, we discuss effective reflection coefficients (ERCs) de-
signed to overcome the limitations of PWRCs for multicompo-
nent data from heterogeneous anisotropic media. We represent
the reflected wavefield in the immediate vicinity of a curved in-
terface by a generalized plane-wave decomposition, which ap-
proximately reduces to the conventional Weyl-type integral com-
puted for an apparent source location. The ERC then is obtained

as the ratio of the reflected and incident wavefields at each point
of the interface. To conduct diffraction modeling, we combine
ERCs with the tip-wave superposition method (TWSM), extend-
ed to elastic media. This methodology is implemented for curved
interfaces that separate an isotropic incidence half-space and a
transversely isotropic (TI) medium with the symmetry axis or-
thogonal to the reflector. If the interface is plane, ERCs generally
are close to the exact solution, sensitive to the anisotropy param-
eters and source-receiver geometry. Numerical tests demonstrate
that the difference between ERCs and PWRCs for typical TI
models can be significant, especially at low frequencies and in
the postcritical domain. For curved interfaces, ERCs provide a
practical approximate tool to compute the reflected wavefield.
We analyze the dependence of ERCs on reflector shape and dem-
onstrate their advantages over PWRCs in 3D diffraction model-
ing of PP and PS reflection data.

INTRODUCTION

Plane-wave reflection and transmission coefficients provide the
basis for ray-theory treatment of seismic wavefields in layered me-
dia. In the geometrical-seismics approximation, which represents
the leading term of the ray-series expansion, the amplitude of any
wave mode is proportional to the product of the reflection/transmis-
sion coefficients along the raypath (Brekhovskikh, 1980; Cerveny,
2001). For example, the well-known geometrical-seismics expres-
sion for a wave reflected from the bottom of a homogeneous layer in-
cludes the plane-wave reflection coefficient (PWRC) multiplied by
the source radiation function and divided by the geometrical-spread-
ing factor.

However, geometrical-seismics approximations become inaccu-
rate for near- and postcritical incidence angles or when the source
and/or receiver is close (compared to the predominant wavelength)
to the reflector (Brekhovskikh, 1980; Tsvankin, 1995). Deviations
from the geometrical-seismics approximation become much more
pronounced in the presence of even moderate seismic anisotropy
(Tsvankin, 2005). Also, because PWRCs are derived for plane inter-
faces, they cannot be used for ray-theory modeling in the presence of
significant reflector curvature.

The limitations of the geometrical-seismics approximation pose
serious problems for dynamic ray tracing and Kirchhoff integral
modeling techniques (Frazer and Sen, 1985; Hanyga and Helle,
1995; Ursin and Tygel, 1997, Cerveny, 2001; Ursin, 2004). In partic-
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ular, the boundary data used in conventional Kirchhoff modeling are
obtained by multiplying the amplitude of the incident wave (which
generally has a curved wavefront) by the PWRC. This approach pro-
duces artificial diffractions on synthetic data because of the discon-
tinuous slope of the PWRC at the critical angle (Kampfmann, 1988;
Wenzel et al., 1990; Sen and Frazer, 1991).

Another practically important method based on geometrical-seis-
mics techniques is amplitude-variation-with-offset (AVO) analysis,
which operates with PWRCs estimated from surface reflection data.
Furthermore, because of the complexity of exact reflection coeffi-
cients, PWRCs used in AVO processing often are linearized in the
velocity and density contrasts across the reflector. The weak-con-
trast approximation of PWRCs is given by Shuey (1985) for isotro-
pic media and extended by Thomsen (1993) and Riiger (1997) to
transversely isotropic models with a vertical symmetry axis (VTI).
The VTI expressions involve an additional linearization in the aniso-
tropy parameters on both sides of the interface, which helps to sepa-
rate the reflection coefficient into isotropic and anisotropic terms.
Riiger (1997, 2002) generalizes the weak-contrast, weak-anisotropy
PWRC equations for azimuthally anisotropic models and discusses
their application in fracture characterization using wide-azimuth re-
flection data.

Whereas PWRCs often are defined through the magnitude of the
displacement vector, Chapman (1994) introduces reflection coeffi-
cients obtained from the ratio of the energy flux for reflected and in-
cident waves. Schleicher et al. (2001) derive linearized approxima-
tions of these coefficients for general anisotropic media. They show
that application of the energy-normalized coefficients in Kirchhoff
modeling produces reciprocal reflected wavefields. Klimes (2003)
provides general expressions for the weak-contrast energy-normal-
ized reflection and transmission coefficients in arbitrary anisotropic
media. Stovas and Ursin (2003) extend the energy-normalized re-
flection coefficients to viscoelastic VTI media.

However, the linearized approximations lose accuracy with in-
creasing incidence angle and break down near the critical ray. To
overcome this problem, Downton and Ursenbach (2006) express the
reflection coefficient as a function of the averaged incidence and
transmission angles and develop an analytic continuation of the lin-
earized PWRC in the postcritical domain. For weak parameter con-
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Figure 1. 2D sketch of the model. The isotropic incidence medium is
separated from the reflecting TI half-space by a curved interface.
The symmetry axis of the TI medium is orthogonal to the reflector.
Dashed lines indicate the local orientation of the isotropy plane for
the TI layer.
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trasts across the interface, their approximation remains close to the
exact PWRC for postcritical angles.

Still, even exact PWRCs used in the geometrical-seismics ap-
proximation cannot describe the postcritical reflected wavefield,
which includes the interfering head and reflected waves. To make
PWRGCs suitable for amplitude analysis in the postcritical domain,
van der Baan and Smit (2006) propose applying the 7-p transform to
wide-angle reflection data. Although the transformed wavefield ex-
hibits a better fit to the corresponding PWRC, the 7-p technique is
not strictly valid for laterally heterogeneous media with curved in-
terfaces. Also, seismic data are acquired with finite aperture and of-
ten on a sparse spatial grid, which limits the applicability of the 7-p
transform.

Brekhovskikh (1980) describes the exact wavefield generated by
a point source and reflected from a plane interface through plane-
wave decomposition. Cerveny and Hron (1961) introduce spherical-
wave reflection coefficients as the three components of the reflected
wavefield at the receiver divided by the geometrical-spreading fac-
tor. They show that the new coefficients adequately reproduce the
amplitude of the reflected waves and incorporate near-critical and
postcritical effects, in particular head waves. However, their meth-
odology is restricted to plane horizontal reflectors and homogeneous
media.

Ayzenberg et al. (2007) introduce effective reflection coefficients
(ERCs) for reflection of acoustic waves at curved interfaces between
inhomogeneous media and demonstrate their advantages in Kirch-
hoff modeling. Unlike spherical-wave reflection coefficients, ERCs
are defined in the vicinity of the reflector. They are designed to gen-
eralize PWRCs for wavefields from point sources at curved interfac-
es and are not limited to small incidence angles and weak parameter
contrasts across the reflector. In particular, Kirchhoff modeling with
ERCs removes the critical-angle artifacts mentioned above and cor-
rectly reproduces the amplitudes of the reflected and head waves.

The goal of this paper is to extend ERCs to curved reflectors in
heterogeneous anisotropic models and to implement the new for-
malism for an interface between isotropic and transversely isotropic
(TT) media. We begin the paper by defining ERCs through a general-
ized plane-wave decomposition similar to the one proposed by
Klem-Musatov et al. (2004) for the acoustic problem. Although this
solution involves integration over a curved reflecting surface, ERCs
can be obtained approximately from Weyl-type integrals computed
for apparent spherical waves and locally plane interface segments.
Then we conduct numerical tests to evaluate the difference between
ERCs and PWRC:s for a plane interface and study the dependence of
ERCs on the anisotropy parameters, frequency, and local reflector
shape. Finally, using the tip-wave superposition method (TWSM),
we implement ERCs in 3D elastic diffraction modeling. Tests for
curved interfaces of different shapes confirm our algorithm’s ability
to model reflected wavefields in the presence of multipathing and
caustics. Appendices A—F contain the necessary theoretical details.

EFFECTIVE REFLECTION COEFFICIENTS FOR
ANISOTROPIC MEDIA

Wavefield representation using surface integrals

We consider the wavefield reflected from a smooth curved inter-
face S that separates two homogeneous half-spaces — isotropic and
TI (Figure 1). The point explosive source, located in the isotropic
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medium, excites a spherical P-wave. The symmetry axis of the TI
half-space is assumed to be locally orthogonal to the reflector. The
isotropic medium is described by the P-wave velocity V{", the
S-wave velocity V{", and density p". The TI medium is described
by the symmetry-direction velocities of P- and S-waves V2 and V2,
density p®, and Thomsen anisotropy parameters & and J. Another
anisotropy parameter, y, influences only SH-waves, which are de-
coupled from P- and SV-waves in our model.

We analyze only the primary P- and SV-wave reflections from the
interface and neglect higher-order scattering. Using the representa-
tion theorem (Pao and Varatharajulu, 1976; Aki and Richards,
2002), the total reflected wavefield can be described by the surface
integral

U(X)=fj[U(X’)-T(X’,X)—t(X’)'G(X’,X)]dS(X’), (1)
N

where u(x’) and t(x’) are the displacement and traction vectors at
the interface, and G(x’,x) and T(x’,x) are the Green’s displacement
and traction tensors.

To evaluate integral 1, we use TWSM and split the reflector into
small rhombic elements. As discussed in Appendix A, the reflected
wavefield can be computed as the sum of tip-wave beams excited by
each rhombic element in accordance with Huygens’ principle. The
PP-wave displacement is obtained in equations A-15 and A-16,
which represent an extension of TWSM to elastic media:

upp(%) = 2 ABppij (%), 2)

where ABpp;j(x) is the vector contribution of the jth surface ele-
ment, given by

agP(X ' 9X)

iw
ABPPU](X) N WIPU](X)JJAH [ an'
P [/

- gP(X',X)dz,PP(X’)}dS’~ (3)

dl,PP(X,)

Here, AIlj; is the area of the surface element, lpj;(x)
= Vep(x(1:%)/| V gp(x},;,
function, d; pp(x’) and d, pp(x’) are the scalar boundary values of the
reflected PP-wave at the interface, and n’ is the normal to the reflec-
tor directed into the upper medium. Equation A-14 expresses the
boundary data d; pp and d, pp through the incident wavefield and the
PP-wave ERC introduced below.

Each beam ABpp; in equation 3 expresses the contribution of a
rhombic element AIlj; to the total reflected wavefield at receiver x.
From the computational standpoint, it is important to note that the
wavefield upp(x) is formed primarily by beams generated inside the
Fresnel zone for the specular ray. The contribution of rhombic ele-
ments outside the Fresnel zone is relatively small because of destruc-
tive interference of the corresponding beams, whose traveltimes are
much larger than those of near-specular beams.

Likewise, we show in Appendix A that the reflected PS-wave can
be represented as the sum of the tip-wave beams described by equa-
tion A-25:

ups(%) = ) ABpsj1(%), )

J
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where ABpgj;i(x) is the wavefield produced by the jth surface ele-
ment,

ABPS[}](X) f f
A

X(V’Xups(x’))Xn(x’)}dS’; (5)

{agS(" ) s(x) = g5(x' %)

)|

gs(x’,x) is the scalar S-wave Green’s function, and ups(x’) and
(V' Xupg(x')) X n(x’) are the vector boundary values, which ex-
press the reflected PS-wavefield at the interface.

To evaluate integrals 3 and 5, we use the approximation originally
developed by Aizenberg (1992, 1993a, 1993b) for acoustic waves.
Here, we generalize the scalar version of his approach for elastic
waves. Each vector beam ABpp;(x) or ABpg;1(X) is represented by
three scalar Cartesian components. Using Stokes’ theorem, the inte-
gral representation for each component is reduced to the sum of the
reflected wave and a contour integral, also known as the Maggi-Ru-
binowitz contour integral (Baker and Copson, 1953). The contour
integral can be approximated by the sum of four edge waves emitted
by the edges of the element and eight tip waves emitted by the verti-
ces of the element. Within the boundary layer but outside the vicinity
of the edge, the edge waves are described by the Fresnel integral. The
tip waves then are described by the generalized Fresnel integral.

Wavefield at the interface in terms of the ERC

In conventional Kirchhoff modeling, it is assumed that the reflect-
ed wavefield upg(x’) (subscript Q stands for P or S) at the interface
can be approximately written as

upo(x') =Rpo(0(x")) [up(x')-hy (x)Thg (x),  (6)

Where Rpo(0(x")) is the PWRC, #(x’) is the incidence angle, and

h; (x’) and h{(x’) are the unit polarization vectors of the incident P-
wave and the reﬁected PQ-wave, respectively. This approach, which
is based on the geometrical-seismics approximation, assumes that
the wavefront curvature at the reflector can be ignored, the reflector
is plane, and the medium near the reflector is homogeneous. Howev-
er, equation 6 is adequate only for subcritical incidence angles (if the
frequency is sufficiently high) and causes artificial diffractions be-
cause of the discontinuous slope of the PWRC at the critical angle, as
discussed by Kampfmann (1988), Wenzel et al. (1990), and Sen and
Frazer (1991). These papers provide modeling examples that clearly
show the drawbacks of using PWRCs in Kirchhoff modeling.

For a plane interface between homogeneous media, the wavefront
curvature can be taken into account by representing the incident
wave in the form of the Weyl integral over plane waves (Aki and Ri-
chards, 2002; Tsvankin, 1995). Each elementary plane wave in the
integrand is multiplied by the corresponding PWRC to obtain an ex-
actintegral expression for the reflected wavefield.

To handle curved reflectors in heterogeneous media, Klem-Musa-
tov et al. (2004) introduce a rigorous theory of reflection and trans-
mission for interfaces of arbitrary shape in acoustic models. They
show that the boundary data in the acoustic Kirchhoff integral can be
represented by a generalized plane-wave decomposition called the
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“reflection operator.” This decomposition is local and must be evalu-
ated separately for each individual point at the interface. Ayzenberg
et al. (2007) prove that the exact action of the reflection operator on
the incident wavefield can be approximately described by multiply-
ing the incident wavefield by the corresponding ERC for each point
at the interface. This formalism incorporates the local interface cur-
vature into the reflection response and is not limited to small inci-
dence angles and weak parameter contrasts across the reflector.

Here we extend the reflection operator to curved interfaces be-
tween isotropic and TI media. In Appendix B, we demonstrate that in
the immediate vicinity of a curved interface, there exist local solu-
tions of the wave equation in the form of generalized plane waves.
Using these solutions as the basis, in Appendix C we introduce spec-
tral integrals that describe the decomposition of the displacement
field into the generalized plane P-, S;-, and S,-waves propagating to
and from the interface. These generalized spectral integrals satisfy
the boundary conditions (i.e., the continuity of displacement and
traction across the interface) and are invariant with respect to the in-
terface shape. In Appendix D, we represent the boundary conditions
through reflection and transmission operators for anisotropic media.

As shown in Appendix D, the generalized plane-wave decomposi-
tion for the displacement component j of the PQ-mode reflected
from a curved interface can be written as

—+o00 400
, )
Uupq j(51,52,0:5x") = ffRPQ(p h x')
—0 —® P.j

X uir?,;(Pth,O;x’)e"“’(p”l *P9)dp dp,,

(7

where (s,,s,) are the curvilinear Chebychev coordinates that cover
the interface S, (p;,p,) are the projections of the slowness vector
onto the plane tangential to the interface at point X', p = \pf + p3,
Rpo(p:x’) is the PWRC at point X', and /i (x’) and h{ (x') are the
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h PP, effective
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) Source
0
08 uPS, spurious
h=== ‘UPS tan
|
|
1
PS, norm' UPS, effective

Figure 2. Effective and spurious components of (a) the reflected PP-
wave and (b) the PS-wave. The ERC is defined through the projec-
tion of the displacement vector onto the geometrical polarization di-
rection (see Appendix F).
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components of the unit polarization vectors of the incident P-wave
and reflected PQ-wave, respectively. Graebner (1992) and Riiger
(2002) give the exact PWRC Rpq(p;x’) for a plane interface between
two VTI media. In Appendix E, we reproduce the derivation of the
amplitude-normalized PWRC in our notation and correct typos in
the published solutions.

For arbitrary interface geometry, the spectrum ui*(p,,p,,0;x’) of
the incident wave must be evaluated using the Fourier transform in
the Chebychev coordinates (s,,s,):

+o0c 400

inc ’ 1 inc
up (p19p2’0;x ) = ;J f (S[,Sz,o X )

—00 —oo

Xe—iw(p1S1+P252)dslds2. (8)

The generalized plane-wave decomposition in equation 7 is local
and must be computed at each point x'. It is valid within an infinitely
thin layer near the interface and can be used only for calculating the
reflection response in the immediate vicinity of the reflector.

In the special case of a plane interface, equation 7 reduces to the
known Weyl integral over conventional plane waves (Tsvankin,
1995; Aki and Richards, 2002). For a horizontal reflector, the curvi-
linear coordinates (s;,s,) coincide with the ordinary Cartesian coor-
dinates (x,,x,). Also, the spectrum u™(p,,p,,0;x’) of the incident
wave in equation 8 is a known analytic function that does not depend
on positionX’.

If the reflector is curved, numerical evaluation of the decomposi-
tion in equation 7 is prohibitively expensive, particularly because
the spectrum ui must be computed locally in the curvilinear coordi-
nates. To avoid the fourfold integration in equations 7 and 8, we pro-
pose an approximate solution for the reflected wavefield
upq j(51,52,0;X") by representing it in a form similar to the geometri-
cal-seismics approximation in equation 6. However, instead of the
PWRCs used in equation 6, we introduce the ERCs as the ratios of
the displacements of the reflected PQ-wave (projected onto the re-
flected ray; see Figure 2) and the incident P-wave (Appendix F):

Upp norm(X')c0s O(X") + upp ,(x")sin 6(x")

XPP(X,) = 1 eikPR B
ikp -
R/ R

)

and

— Ups norm(X')sin Og(X") + upg 15n(X")cos Og(x")

Xps(x') = ( 1 )eikPR
lkp -
R/ R

(10)

The reflection S-wave angle #5(x’) is obtained from Snell’s law as
Os(x’) = sin"'[(V/ ViY)sin §(x’)]. As demonstrated in Appendix
F, the division by the displacement of the incident wave in equations
9 and 10 helps approximately compute the ERCs for an apparent
plane reflector located at distance R™ from the source (Figure 3):
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XPP(H(X,) L(x"))

(x")cos O(x') + uPP wn(X)sin O(x")

1 elkPR* ’ (1 1)
(ikp - E) R*

PP norm

XPS(G(X,) L(x"))

_ U, norm(X )sin fs(x") + uPS [an(x')cos 0s(x’)
B ( 1 ) lkpR ’
T
l P R* R*
(12)
and
2 —sin® A(x)
R*(x') = R(x’ ,
(x") (x )2 — sin? 0(x') — 2R(x")H(x')cos O(x")
(13)

where R(x’) is the distance between the source and point x’ at the
interface, H(x') is the mean interface curvature, and L(x’)
= wR*(x")/ V" is a dimensionless, frequency-dependent parameter
(Ayzenberg et al., 2007). The reflected wavefield in equations 11 and
12 is computed from the Fourier-Bessel integrals for the apparent
plane interface (Brekhovskikh, 1980; Aki and Richards, 2002):

—+0o0
hg .
u;Q,norm(X,) - a)zf RPQ(p) —,normelwlpPS Jo(er)PdP,
P,norm
0
00
zwlp P3
PQ tam(X )= —w fRPQ(p)Lh Ji(rop)p?dp.
0 Ptan PP3

(14)

Here Jo(rwp) and J,(rop) are the zero-order and first-order
Bessel functions, respectively, pps = [ Vi']2 — p? is the vertical
P-wave slowness, [ = R*(x")cos 8(x’), and r = R* (x")sin 6(x’).
For the reflected PP-wave, g,/ hpporm = — 1 and hg /by = 1.
For the PS-wave, Agom/Apnom (V(SI)Q)/(V(”p(”) g an! P an
= (Vi'p)/(ViVp), and pss = [ V'] 2 — p2is the vertical S-wave
slowness.

Then, for a typical seismic-frequency range, the reflected wave-
field near the interface (equation 7) can be expressed in the following
form thatis similar to the geometrical-seismics equation 6:

upo(x') = xpo(0(x),L(x")[up(x')-hy (x") g (x'),
(15)

with the effective reflection coefficient ypq determined by equations
11 and 12. Evaluation of the displacement upq using equation 15 in-
volves computing the single Fourier-Bessel integrals 14 instead of
the fourfold integrals 7 and 8, which makes ERC-based diffraction
modeling feasible.

wB37

The ERCs defined in equations 11 and 12 generalize the PWRC
used in equation 6 by taking into account the curvatures of the inci-
dent wavefront and the reflector. Whereas PWRCs depend only on
the stiffness and density contrasts across the boundary and the inci-
dence angle #(x’), the ERCs also are controlled by the dimension-
less parameter L(x'), which incorporates the interface curvature. In
the zero-order stationary-phase approximation applied to homoge-
neous incident waves (Tsvankin, 1995), ERCs reduce to the corre-
sponding PWRC:s. In contrast to the PWRCs, the ERCs correctly de-
scribe reflection phenomena at near-critical and postcritical inci-
dence angles (see the numerical examples below).

Equation 13 shows how the local reflector curvature is incorporat-
ed into the ERCs. If the reflector is locally plane, then H(x’) = 0 and
the apparent distance R* (x’) coincides with R(x'). For particular pa-
rameter combinations, R” (x’) may go to infinity, which means that
the incident P-wave appears to be locally plane; in that case, the ERC
reduces to the PWRC. For certain values of the product R(x")H(x'),
the distance R* (x') may become negative. Then the apparent source
represents the focus of an apparent converging spherical wave, and
the ERC becomes complex conjugate.

PARAMETER SENSITIVITY STUDY AND
3D DIFFRACTION MODELING

Numerical study of ERCs

As follows from the formalism discussed above, ERCs provide a
practical approximate tool for computing the reflected wavefield ata
curved reflector for a typical seismic-frequency range. Here, we
study the ERCs for an interface between isotropic and TI media as a
function of the parameter L, Thomsen anisotropy parameters of the
reflecting half-space, and the local interface geometry incorporated
into the apparent distance R” . If the reflected wavefield is well de-
scribed by geometrical seismics, the ERCs reduce to the correspond-
ing PWRCs. Therefore, the difference between the effective and
plane-wave reflection coefficients helps estimate the error of the
geometrical-seismics approximation.

Influence of L

First, we examine the dependence of ERCs computed for a plane
interface on the parameter L = wR" / V" (where w is the angular
frequency and R™ is the distance from the apparent source to point x’
at the interface). Figure 4 compares the ERCs for PP- and PS-waves
computed for a wide range of L with the corresponding PWRCs. For

Actual
source
Apparent
source
R
= *
0 R
0

Figure 3. ERCs for a curved reflector can be approximately comput-
ed for an apparent plane reflector located at distance R™ from the
source. The incidence angle 6 remains the same.
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both modes, the difference between the ERCs and PWRCs decreases
for larger values of L (i.e., for larger frequency w or distance R").
However, in contrast to PWRCs, ERCs oscillate in the postcritical
domain even for L = 103 because of the interference of the reflected
and head waves.

For the relatively small L = 10, the ERC (especially the one for
PS-waves) deviates substantially from the PWRC, even at subcriti-
cal incidence angles. This means that for low values of L, geometri-
cal-seismics approximations can be used only for near-vertical inci-
dence (i.e., small source-receiver offsets). Indeed, it is well known
that the accuracy of the geometrical-seismics approximation strong-
ly depends on the source-interface distance normalized by the pre-
dominant wavelength (Tsvankin, 1995). If the source (in our case,
the apparent source) is close to the interface, the reflected wavefield
is influenced by the curvature of the incident wavefront and cannot
be accurately described by geometrical-seismics expressions.

Influence of the anisotropy parameters

The contribution of the anisotropy parameters € and & to the
ERC:s for PP- and PS-waves increases at near- and postcritical inci-
dence angles (Figures 5 and 6). The critical angle is controlled by
the horizontal P-wave velocity in the TI medium that depends on
e(V1P(90) = V21 + 2¢). Figures 5a and 6a confirm that the criti-
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Figure 4. Dependence of the magnitude of the (a) PP-wave and (b)
PS-wave ERCs on the parameter L. The corresponding PWRCs are
shown for comparison. The reflector is a horizontal plane 1 km be-
low the source. The parameters of the incidence isotropic medium
are V{1V =2 km/s, V{" = 1.2 km/s, and p¥) = 2.15 g/cm?; for the
reflecting TI medium, they are V,2' = 2.4 km/s, V{¥ = 1.4 km/s,
p? =235¢g/cm’, e =02,and 5 = 0.1.
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cal angle decreases for larger values of &, which causes a horizontal
shift of the ERC curves. Also, the PS-wave ERC in the postcritical
domain increases noticeably with €. In general, the reflectivity of
PS-waves is more sensitive to the anisotropy parameters than is that
of PP-waves, likely because shear-wave signatures are controlled
primarily by the relatively large parameter oo = (V13)/V2)*(e
— 8)]. Typically, the magnitude of o exceeds || and | §| significant-
ly; in our model, o varies from —2.94t02.94.

Because ERCs at postcritical incidence angles include the contri-
butions of the reflected waves and the head waves, Figures 5 and 6 do
not provide conclusive information to predict the influence of & and
6 on the time-domain wavefield. The long-offset synthetic seismo-
grams discussed below help to separate the reflected and head waves
and evaluate their dependence on the anisotropy parameters of the
reflecting medium.

Influence of the reflector shape

Here, we generate ERCs for a curved interface that has a flexural
shape governed by the parameter Az (Figure 7). When the reflector
degenerates into a horizontal plane (Az = 0), the apparent distance
R* reduces to the actual source-reflector distance R, which has no
singular points. The offset dependence of R* becomes more compli-
cated with increasing reflector curvature (Figure 7b).

i
-
-
N

J

o
®
L

Magnitude of x,,
o
i

Incidence angle ( °)

Figure 5. Dependence of the PP-wave ERC on the anisotropy param-
eters. (a) 5 =0.1ande =0,0.1,and 0.2; (b) e =0.2and § = —0.1,
0.1, and 0.3. The interface is a horizontal plane 1 km below the
source. The medium parameters are V" =2km/s, V{
=1.2km/s, p =215 g/cm?, V@=2.4 km/s, V¥ = 1.4 km/s,
p® = 2.35 g/cm?; the frequency fis 32 Hz.
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Figure 8 displays the ERCs for PP- and PS-waves for three values
of Az. We observe a rapid change in both ERCs near an offset of
0.75 km, where the distance R* exhibits sharp spikes associated
with the flexural segment of the reflector.

Tip-wave superposition method for elastic media

To model reflected wavefields for curved interfaces, we evaluate
the tip-wave beams (equations 3 and 5) for PP- and PS-waves. We
obtain the seismic-frequency approximation of the integral using
TWSM (Klem-Musatov and Aizenberg, 1985; Klem-Musatov et al.,
1993, 2008). The published version of the method is designed for
modeling 3D wavefields in layered acoustic media with complex in-
terface geometries. The main assumption of the method is that the
source-interface, receiver-interface, and interface-interface distanc-
es obey the Rayleigh principle (i.e., they are of the order of several
wavelengths or larger).

In Appendix A, we extend TWSM to elastic isotropic media be-
cause the upper half-space in our model is isotropic. The TWSM
generates the reflection response by superposition of tip-diffracted
waves excited at the reflector in accordance with Huygens’ princi-
ple. As Figure 9 shows, a tip-wave beam is formed by the reflected
wave, four edge-diffracted waves, and eight tip-diffracted waves.
The tip-diffracted waves make the most prominent contribution to
the beam, which explains the method’s name.

Our implementation of TWSM involves splitting the reflector into
rhombic elements that conform to the Chebychev coordinates intro-
duced earlier. Each element acts as a secondary source emitting a tip-

a)

067 ] - £=0.1
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Magnitude of x ¢

0.0

=2
-

0.6
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0.0 4= , - . ,

Incidence angle (°)

Figure 6. Dependence of the PS-wave ERC on the anisotropy param-
eters for the model from Figure 5. Plot (a) shows the influences of &
and plot (b) the influence of &.
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wave beam toward the receiver array, and the beams form the “re-
ceiver matrix.” We compute the boundary data using the ERC or the
PWRC, and form the source matrix for all rhombic elements at the
interface. Then we multiply the two matrices element by element to
generate the reflected wavefield and sum the reflection responses at
eachreceiver.

TWSM uses specific approximations of the surface propagators
and the reflection and transmission operators for the seismic-fre-
quency range. Our implementation of the propagators is based on the
Fresnel approximation in the coordinate domain. Implementation of
the reflection and transmission operators is based on a boundary-lay-
er approximation in the domain of spatial frequencies. Both approxi-
mations cause negligible errors within the seismic-frequency range.
The error in the ERCs increases for high frequencies, and the error in
the tip-wave beam approximations increases for low frequencies.
Ayzenberg et al. (2007) discuss the accuracy of TWSM. Where pos-
sible, we use independent methods to show that TWSM produces
correct traveltimes and the amplitude error does not exceed a few
percent. In particular, for plane reflectors, we used reflectivity mod-
eling for a trace-by-trace comparison of the modeling results.

With PWRCs, TWSM is inexpensive computationally but re-
quires storage of large matrices that contain information about tip
waves. Although storing the data might present a logistical problem,
it allows minor changes to the model to be incorporated without re-
calculating all tip-wave beams. This advantage of TWSM becomes
particularly valuable for layered models and in survey design. Appli-
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Figure 7. (a) Model with a curved reflector. (b) The corresponding
apparent distance R” . The source is at the surface and an array of 101
receivers is at a depth of 585 m with a 50-m step. The reflector is de-
scribed by the equation x;= —1.185 + Az tanh[27(x; — 0.75)].
The parameter Az is marked on the plot.
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Figure 8. Offset-dependent magnitude of the (a) PP-wave
and (b) PS-wave ERCs for the model from Figure 7. The medium pa-
rameters are Vi =2 km/s, V{)=1.2km/s, piV=2.15 g/cm?,
Vid =24 km/s, Vi@ = 1.4 km/s, p@ =235 g/cm?, £ = 0.2, and
6=0.1.
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tip-wave beam contains the main reflection, four edge-diffracted
waves, and eight tip-diffracted waves.
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cation of ERCs in TWSM involves computing the Fourier-Bessel in-
tegrals for the entire frequency range of the initial wavelet instead of
the simple, closed-form PWRC expressions. Also, disk-space re-
quirements become even more demanding because the tip-wave ma-
trices must be stored separately for each frequency.

Having introduced our implementation of TWSM, we now briefly
review the main limitations of our modeling methodology. First, the
current version of the algorithm does not account for multiple scat-
tering at curved reflectors. Second, we assume that the medium does
not contain shadow zones in which geometrical rays do not propa-
gate. Modeling reflections in such zones would involve generalizing
tip-wave beams for areas in which the reflected wavefield is formed
by the diffracted incident wave. Third, the seismic-frequency ap-
proximation used to combine TWSM with ERCs loses its accuracy
for short (relative to the wavelength) distances between the reflector
and the receivers.

Modeling results

As the numerical tests above illustrate, ERCs are sensitive to the
elastic parameters and the shape of the interface. Here, we combine
ERCs with TWSM to generate the time-domain wavefield and ana-
lyze its behavior for different reflector shapes.

In all numerical tests below, we use the Puzyrev wavelet:

t_to
T

F(f) = —e 7™ sinp, p=2m , (16)

where T = 0.032 sis the period and 7, = 0.064 s (Figure 10).
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Figure 10. (a) Puzyrev wavelet and (b) its spectrum. The dominant
periodis 0.032 s, and the dominant frequency is 32 Hz.
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Influence of anisotropy parameters

The seismograms in Figures 11-14 are computed for a curved re-
flector described by the function x; = — 1 + 0.3 exp( — 8x7 — 8x3).
The reflector has a 0.3-km-high Gaussian-shaped anticline directly
below the source. The reflection traveltimes of PP- and PS-waves
exhibit a wide triplication (cusp) at the far offsets, which corre-
sponds to the caustic produced at the anticlinal part of the reflector.
We observe slight aliasing at small offsets because of the element
size. There also is a weak coherent artifact formed by two diffracted
waves interfering on the zero-offset trace. This artifact is generated
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Figure 11. Influence of & on the vertical displacement of the PP-wave
reflected from a curved interface. The source and an array of 101
receivers are placed at the surface. The reflector is described by
x3= —1+ 0.3 exp( —8x? — 8x3), so that the cap of the Gaussian an-
ticline is at a depth of 0.7 km below the source. The medium parame-
ters are ViV = 2 km/s, V{" = 1.2 km/s, pV = 2.15 g/cm?, V2
=24 km/s, V& = 1.4 km/s, p@ =235 g/cm?; the values of &
and & are marked on the plots.

at the edges of the model and is not suppressed completely by the ab-
sorbing boundaries, which are designed to diminish the edge effects
(Ayzenbergetal., 2007).

In agreement with the ERC in Figure 5a, the PP-wave reflection
amplitude at long offsets rapidly increases with & (Figure 11). The
amplitude at the largest offset (2.5 km) is approximately four times
higher for € = 0.2 than for € = 0. In contrast, the near-offset reflec-
tions are weakly sensitive to €. The influence of 6 on PP-wave am-
plitudes is most visible at moderate offsets between 1.5 and 1.7 km
(Figure 12). For the maximum offset, the amplitude increases ap-
proximately by 15% when & increases by 0.2. However, the near-
offset reflections are almost insensitive to &.

Figures 13 and 14 show the PS wavefield for a range of € and &
values. The influence of both anisotropy parameters on the reflected
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Figure 12. Influence of § on the PP-wave vertical displacement for
the model from Figure 11.
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wave can be predicted from the corresponding ERC in Figure 6. In
particular, the moderate- and far-offset reflection amplitudes in-
crease noticeably with €. The amplitude at the largest offset becomes
six to eight times higher when & changes from zero to 0.1, and two
times higher when & changes from 0.1 to 0.2. Interestingly, for the
same change in &, the amplitude of the PPS head wave decreases
only by a factor of four. (Because it has a very small amplitude, we
mark its arrival on the rightmost trace with an arrow.) Although the
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Figure 13. Influence of € on the PS-wave vertical displacement for
the model from Figure 11. The head-wave arrival on the rightmost
trace is marked with an arrow.

Ayzenbergetal.

influence of & is less pronounced, a 0.4 increase in ¢ reduces the
maximum-offset amplitude of the reflected PS-wave and the head
wave by 50%.

Influence of the reflector shape

Figure 15 displays synthetic PP-wave seismograms computed for
a flexural reflector with variable mean curvature (Figure 7). Hanyga
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Figure 14. Influence of 6 on the PS-wave vertical displacement for
the model from Figure 11. The head-wave arrival on the rightmost
trace is marked with an arrow.
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and Helle (1995) use the isotropic 2D version of this model to test fi-
nite-difference and generalized ray-tracing algorithms. As the value
of Az increases, the flexure produces a strong caustic loop formed
near zero offset. The head waves cannot be identified clearly because
of the limited length of the receiver array, which extends only to the
interference zone of the reflected and head waves.
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Figure 15. PP-wave vertical displacement computed with the
ERCs for the model from Figures 7 and 8. The source is placed
at the surface and an array of 101 receivers is located at a depth of
585 m with a 50-m step. The reflector is described by the equation x;3

= —1.185 + Az tanh[ 27 (x, — 0.75)]; the parameter Az is marked
on the plots. The medium parameters are V" = 2 km/s, V{V = 1.2

km/s, pV=2.15 g/cm?, V2 = 2.4 km/s, V& = 1.4 km/s, p®?
=235g/cm’, e =0.2,and 6 =0.1.
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For a plane reflector (Az = 0), we compared our modeling results
with the exact wavefield computed by the reflectivity method. As ex-
pected, the elastic version of TWSM based on the superposition of
tip-wave beams accurately reproduces traveltimes for the whole off-
set range. The amplitudes in Figure 15 are only a few percent higher
than those produced by the reflectivity algorithm.

To evaluate the errors of the conventional Kirchhoff modeling
technique, we also computed the wavefield using the PWRC in
TWSM (Figure 16). The discontinuous slope of the PWRC at the
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Figure 16. PP-wave vertical displacement computed with the PWRC
for the model from Figure 15.
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critical angles causes artificial diffractions for plane (Az = 0) and
curved reflectors. Additionally, the reflection amplitudes for near-
and postcritical offsets are higher than those obtained with the ERC
in Figure 15.

Similar conclusions can be drawn from the PS-wave seismograms
for the same model in Figures 17 and 18. The PS reflection also ex-
hibits a caustic loop that becomes more prominent for Az = 0.2 km.
The critical offset for the converted (PPS) head wave is smaller than
that for the corresponding PPP-wave, which explains the separation
of the head wave (marked with an arrow for the leftmost receiver)

Il
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PPS 2.0
head

wave -2 -1 0 1 2
Offset (km)

Figure 17. PS-wave vertical displacement computed with the ERCs
for the model from Figure 15. The head-wave arrival on the leftmost
trace is marked with an arrow.

Ayzenbergetal.

and reflected wave at the far offsets in Figure 17. Although the artifi-
cial diffractions caused by the PWRC in Figure 18 are less pro-
nounced than those for PP-waves, application of the ERC (Figure
17) yields a cleaner gather.

Our 3D modeling results obtained with TWSM agree well kine-
matically with the wavefields computed by finite differences and
generalized ray tracing for the corresponding isotropic 2D model
(Hanyga and Helle, 1995). However, the amplitudes are not the same
because of different geometrical spreading in two and three dimen-
sions and the influence of anisotropy in our model.
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Figure 18. PS-wave vertical displacement computed with the
PWRC:s for the model from Figure 15.
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CONCLUSIONS

Effective reflection coefficients (ERCs) provide a practical tool
for modeling near- and postcritical reflected wavefields and for tak-
ing the interface curvature into account. By extending a formalism
suggested previously for the acoustic problem, we gave a complete
analytic description of ERCs for curved reflectors in anisotropic me-
dia. The reflected wavefield can be expressed through a generalized
plane-wave decomposition, which includes the local spatial spec-
trum of the incident wave expressed through an integral over the
whole interface.

Although this decomposition gives an accurate wavefield repre-
sentation near a reflector of arbitrary shape, its computational cost
for 3D anisotropic models is prohibitive. Therefore, we suggested
obtaining the reflected wavefield approximately from the conven-
tional Weyl-type integral computed for an apparent source location,
which depends on the incidence angle and the mean reflector curva-
ture. Then the ratio of the reflected and incident wavefields yields the
spatially varying ERC along the reflector. To incorporate ERCs in
3D diffraction modeling, we used the tip-wave superposition meth-
od (TWSM), generalized for elastic wave propagation. The superpo-
sition of the tip-wave beams that correspond to rhombic interface
segments produces correct reflection traveltimes, whereas the accu-
racy of amplitudes depends on the validity of the seismic-frequency
approximation used in TWSM and in computing ERCs. TWSM also
can model multipathing and caustics produced by curved segments
of the reflector.

We implemented this formalism and studied the properties of
ERC:s for an interface separating isotropic and TI media. The sym-
metry axis in the reflecting TI half-space was assumed to be orthogo-
nal to the reflector, which is typical for anisotropic shale layers. For
the special case of a plane interface, the ERC represents the frequen-
cy-dependent exact wavefield governed by the velocity and density
contrasts, Thomsen anisotropy parameters, and source-receiver ge-
ometry. Numerical tests show that the ERC for PP-waves at post-
critical incidence angles is particularly sensitive to the parameter &,
responsible for near-horizontal P-wave propagation in the TI half-
space.

The ERC deviates substantially from the corresponding plane-
wave reflection coefficient (PWRC) in the postcritical domain,
where the displacement field is influenced by the head wave. At low
frequencies, the difference between ERC and PWRC can be signifi-
cant even for subcritical incidence angles. These results confirm the
limitations of the geometrical-seismics approximation, which is
based on the PWRC, in describing point-source radiation in layered
media.

Our synthetic examples illustrated the importance of properly ac-
counting for the reflector curvature when computing ERCs. When
the reflector is curved, the ERC can change rapidly along the inter-
face in accordance with variations of the local interface shape, thus
influencing synthetic modeling.

The methodology developed here can be used to generate accurate
boundary data for 3D Kirchhoff modeling in anisotropic media. In
particular, our synthetic examples confirm that ERCs eliminate the
artifacts produced by PWRCs and provide more accurate amplitudes
for large incidence angles and in the presence of significant reflector
curvature. Our results also can be applied to anisotropic AVO analy-
sis of long-offset PP and PS reflection data.
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APPENDIX A

TIP-WAVE SUPERPOSITION METHOD FOR
ISOTROPIC ELASTIC MEDIA

Here, we generalize the tip-wave superposition method (TWSM)
for elastic media to model the PP- and PS-wavefields reflected from
a curved interface. First, we rewrite integral 1 in a form similar to
equation 20 of Pao and Varatharajulu (1976):

u(x) =p(”[Vél)]sz[(V’~G)(u'n’) —(G-n")
N

(V" -u)]dS(x") +p“)[Vs“)]sz[(n’><u)
S

(V' XG)+ (n' X (V' xXu)-G]dS(x"), (A-1)

where V' = (d/dx',0/dy’,d/dz’) and n’ is the normal to the reflec-
tor at point x'. The reflected displacement field can be separated into
the PP- and PS-modes (Ben-Menahem and Singh, 1998):

u(x) = upp(x) + upg(x), (A-2)
which satisfy the equations
[VEVPVLV upp(x)] + 0’upp(x) =0 (A-3)
and
— [VEVPV X[V X ups(x)] + wups(x) = 0. (A-4)

Likewise, the Green’s displacement tensor can be split into the P-
and S-wave components:

G(x',x) = Gp(x',x) + Gg(x',x), (A-5)

where

1
Gp(x' %) = —5575 Ver(x' )V,
pw

1
Gs(x'.x) = —575 V X [gs(x" x)I] X V'
pw

= 1 : (X, X) V (X/ X) '
8s X)I 8s > V 5
p(l) 2 [V(Sl)]z

(A-6)

and
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. (1)
m)R/VQ

. R=| Q=PS. (A-7)

x'.x) =
gQ( ) 47R

Substituting equations A-2 and A-5 into equation A-1, we obtain the
reflected PP-wavefield as

upp(x) =

Oy J j [(V'-Gp)(upp-n’)
S

— (Gp-n')-(V"-upp) ] dS’". (A-8)
For the PS-wavefield,

ups(x) = p [V f f [(n' X ups)- (V' X Gg)
S

- ((V,XUPs)XnI)'GS:I dS, (A'g)

Next, we rewrite the terms involving G, in equation A-8 (see details
in Ben-Menahem and Singh, 1998; their section 4.1 and Appendix
A):

1
V,'Gp: - VGp: - mAgPV,

1 1
— sV =~ T Ve
p VLV P p ULV
(A-10)
and
! 1 ! I
Gp-n' = p(l)wzngV : ])[ (1)]2V[(n -V")gpl.

(A-11)

Substituting equations A-10 and A-11 into equation A-8 yields

upp(X) = JJ [c?gp(x X)dl pp(x’)

- gp(X’,X)dz,pp(X’)}dS(X’), (A-12)

where

[V “)]2
dl,PP(X,): — 5[V upp(x')],

d2,PP(X,) = upp(x’)-n’. (A-13)

The terms d, pp and d, pp can be expressed through the incident wave-
field and ERC ypp using approximation F-6:

[V (”]2

dy pp(x') = — xpp(x )V {[up(x") - hp (x)Thp (x")}

= xpp(x’ )ng(X, X),
dy pp(x) = xpp(x")up“(x)-hp (x")[h{ (x')-n'],

where ui(x') = V'gi*(x’ ,x).
Because the integral in equation A-12 coincides with the acoustic
surface integral 7 analyzed in Ayzenberg et al. (2007), we can use

(A-14)

Ayzenbergetal.

their methodology (TWSM) to split the reflector into small rhombic
elements. To extend TWSM to elastic media, we represent the PP-
wavefield (equation A-12) in a form similar to equations 11 and 12
from Ayzenberg et al. (2007):

upp(%) = 2 ABppj(x), (A-15)

where ABppp;1(x) is the vector contribution of the surface element

AH[/]Z
lP[]](X)ff |:agP(X, X) dl,PP(X/)
Al

- gP(X/9X)d2,PP(X/)j|dS,;

ABpp1(x) =

(A-16)

Allj;; is the area of the surface element lpy(x)
= Vgp(x(;;,%)/| V gp(x;;.X)|. To evaluate the integrand in equation
A-16, we use the approximation 16 from Ayzenberg et al. (2007).

To develop a similar expression for the PS-wavefield (equation
A-9), we rewrite the terms involving Gs (see Ben-Menahem and

Singh, 1998; their section 4.1 and Appendix A):

V,XGS: _VXGS

1 3 ,
_VX{ ) 2|:[V(1 ]2gSI VgSV :|}

= — ————V X(gI)
pUIvg P
! (IX Vg
I 2s),
S Vs
Oy Rm’ x V' XGg) = — (n' Xupg)- (IX Vgo)
p S Upg) - ( s) n X upg 8s
= —[(n" Xupg)-I] X Vgg = Vgg X (n' Xupg)
=V X[gs(n' Xupg)], (A-17)
and
pDIVEVPA((V! X ups) Xn') - Gg
_ v ”]2 W’ ,
= (V' Xupg) Xn')- v ]2851 VsV
[Vs(l)]z

—5—((V' Xupg) Xn')-[ =V -(Vgg)I + V Vgg]

(D72
S T G Vs X (V" X upg) X))

Vs (”]2

—==V XV X[gs((V' Xupg) Xn")]. (A-18)

Substituting equations A-17 and A-18 into equation A-9, we find
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upg(x) = V Xff gs(x',x)n’ Xupg(x')dS(x")
S

[vs"P? , ,
- 22 V XV X gs(x",X)(V' X upg)
S

xn'dS(x'). (A-19)

Next, we apply a series of vector identities to the term gs(n’
X ups) (see Ben-Menahem and Singh, 1998; their Appendix A):

P ]

gs(n' X upg) V- (Vgs)(n' Xupg)

[VS(I)]Z

- T[V X ((n" Xupg) X Vgg) + (n’

Xups) -V Vgs]

[Vs(l)]Z
— VX (Vg X (' X upg) + (0

><llps)' VVgs]

= [ ] 5[V X (n"(ups-V'gs)

—ups(n’-V'gg)) + (n' Xupg)- VVgs]
v ]2 [Vsl)]2

VX[(n"-V'gs)ups] — [V

X (n'(ups-V'gs)) + (n' Xupg)- VVgs].
(A-20)

Thus, equation A-19 can be rewritten as the sum of two surface inte-
grals:

(1)72 ’
upg(x) = — @V XV Xff [Mups(x’)
w S an

— &s(x" . x)(V' Xups(x")) X n(X’)]dS(X’)

()72
- MV Xf J [V (upg(x')-V'gg(x',x)) X1’
w S

+ (0" Xups(x'))- VVgs(x',x)]dS(x").  (A-21)
In the Fresnel-zone approximation, the second integral in equation
A-21 is negligibly small compared with the first one. Taking into ac-
count equation A-4 and keeping only the first integral in equation
A-21yields

Upg(x) = ff [&gZ(X, ) upg(x') — gs(x",x)(V' Xups(x'))

X n(x’)}dS(x'). (A-22)

Expressing the reflected PS-wave at the interface through the

wB47

corresponding ERC (equation F-6), we obtain the boundary values
inequation A-22 as

Upg(x') = XPS(X')[UIDC(X')'h;(X,)]hg(X'),

(V" Xupg(x")) Xn(x")

= xps(x)V' X {[up(x')-hp (') Thg (x)}.
(A-23)

The PS reflected wavefield (equation A-22) can be evaluated using
the elastic version of TWSM described for PP-waves in equations
A-15andA-16:

Upg(x) = E ABpgp;(x), (A-24)

J

where ABpg(;is the vector contribution of the surface element AIT;:

ABPS[}](X) ff |:(7gs(9(x, X) PS(X,)
All)

— gs(x",x)(V' Xupg(x")) Xn(x") |dS".

(A-25)

The integrand in equation A-25 (as well as the one in the PP-wave
equation A-16) is computed in the approximation by following the
approach of Ayzenberg et al. (2007).

APPENDIX B

GENERALIZED PLANE WAVES

The conventional plane-wave decomposition of point-source ra-
diation (the Weyl integral) can be used to obtain the reflected or
transmitted wavefield for a plane interface between two homoge-
neous media. Here, we define generalized plane waves, which help
extend the principle of plane-wave decomposition to interfaces of
arbitrary shape and to account for local heterogeneity.

Consider wave propagation in a medium with a smooth curved
interface S that separates two heterogeneous, arbitrarily anisotropic
half-spaces D'V and D'?. Each medium (superscript m) is described
by the stiffness tensor C(x) = [¢!})(x)] and density p®; the unit
vector n normal to the interface points toward D™,

We define the curvilinear coordinates (s,,5,,53) in the immediate
vicinity of the interface S inside D™, such that (s,,s,) form the Che-
bychev coordinate mesh along the interface and the axis s; is normal
to the interface and points inside D). Additionally, we define the lo-
cal Cartesian coordinates (y;,y,,y3) with the origin at point x’. The
axis y; coincides with s;, whereas y; and y, are tangential to the
curves s; and s, atx’.

In the vicinity of point x’, the Chebychev and local Cartesian co-
ordinates are related as (Weatherburn, 1930; do Carmo, 1976; Klem-
Musatov et al., 2004; Ayzenberg et al., 2007)

51(71Y2y3) = ¥1 + 067,
$(01.y2:93) = 2 + 0G°),
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1
2 2
s3(y1-y2:y3) =3 — E[CI(X,)yl + G (x")y3]1+ 0(°), (B-1)
where C,(x’) and C,(x’) are the local curvatures of the interface
along s, and s,. The local and global Cartesian coordinates are relat-
ed by the linear transform

yi(xli-x2’x3) = bij(X,)-x" (B_z)

where b;;(x') are the elements of the linear transform matrix, which
is specified, for example, in Cerveny (2001).

We introduce a generalized plane wave in the vicinity of the inter-
face as

2
u(m)(sl,sz,sg) — a(m)[h(m) + iv(m)ﬁ}eiw(plsﬁpm +p3S3)’
‘ 2

(B-3)

where p; and p, can be treated as the components of the slowness
vector tangential to the interface. The normal slowness p;, amplitude
factor @™, polarization vector h"” and its perturbation v”) must be
found. At the interface where s; = 0 and the term proportional s3
vanishes, equation B-3 describes a conventional plane wave (Cer-
veny, 2001).

The unknown parameters of the generalized plane wave can be
determined by substituting equation B-3 for a point X’ into the wave
equation in the frequency domain (the stationary wave equation).
First, we rewrite the stationary-wave equation in the two-index nota-
tion C\(x) = [c{)(x")] (Kennett, 1994):

2 (m) C(m) &u(m)
C(m) ’ "+ il <’ %'
()0731() ax’()&xl()
+ pw 2ZuM(x') = (B-4)

Substituting the generalized plane wave (equation B-3) into equa-
tion B-4 and taking the coordinate transformations B-1 and B-2 into
account yields

~ o [C X )pipi = p"TT M — i [@D"(x" )R

+ CHE V] =0, (B-5)

where C{”(x") = bi(x")bu(x")CY’(x’) is the local stiffness tensor,
and  D)(x') = p C/(x)C(x) + Co(x)CH(x)] = p(aC/
dy;)(x’) is the matrix that contains information about the local inter-
face curvature. Both the real and imaginary parts of the left side of
equation B-5 must go to zero. The real part of equation B-5 reduces
to the well-known Christoffel equation (Cerveny, 2001):

[CY (" )pipx — pP™ITh™ = 0. (B-6)

(m)

The slowness components pg?(py,p,:x’) of waves Q =P, S, and S,
are obtained from the equation det[ C}"(x")p;p. — p"1I] = 0. By
substituting p{?(p;,p2:x’) into equation B-6, we find the mutually
orthogonal unit polarization vectors h(’”)(x ). Note that the slow-
nesses pQ3 )(p1,p2:X’) and polarization vectors h )(x') are functions
of the medium parameters at point X’ but do not depend on the local
interface curvature.

The imaginary part of equation B-5 constrains the perturbation
vectors:

Ayzenbergetal.

Vg () = o[ €PN D) B (B-7)

In the special case of a plane interface and homogeneous media, the
derivatives [&é}j")(x’)]/ﬁyj and curvatures C;(x') and C,(x') are
equal to zero. Then the term D™ (x') and the perturbation V(Qm)(X')
also vanish.

To solve the reflection/transmission problem, it is necessary to
separate waves traveling toward the interface [u(’”) (1,52,53) ] from
those traveling away from it [u$” " (s,,5,,55)] (Cerveny, 2001; Aki
and Richards, 2002). We assume that sorting is done according to the
orientation of the group velocity vector. If the slownesses pQ”g ~and
p m+ correspond to waves traveling toward and away from the inter-
face, respectively, the generalized plane wave equation B-3 can be
represented as

ud” " (51,52,53:x") = ag” = | hG" = (x") + ivg"* (x! )

X el@P151 +I’2Y2+P(m) (x")s3) (B-8)

APPENDIX C

GENERALIZED PLANE-WAVE DECOMPOSITION
AT THE INTERFACE

Here we introduce the generalized spectral integrals designed to
decompose the displacement at the interface into the generalized
plane P-, S;-, and S,-waves described in Appendix B. The total dis-
placement inside D can be expressed as the sum of the waves trav-
eling toward and away from the interface (equation B-8):

(Sl,Sz’S%,X )
(C-1)

ulm )(51,52,S3) =u" (51 §2,83:X") + u

with the displacements represented by the generalized plane-wave
decomposition

400 00

2 2
o f f Hm= 4 jym =53
T 2

—0 —00

u* (51,50,53:X") =

X E(m) + (53) a(m) ieiw(plsl +posy) dpldpz

(C-2)

Equation C-2 is a generalization of the conventional Weyl-type inte-
gral for curved interfaces and locally heterogeneous media. Whereas
the Weyl decomposition is valid everywhere in the half-space D™,
the generalized expression C-2 is restricted to an infinitely thin layer
covering the interface. Therefore, our formalism can be used to cal-
culate the reflection response only in the immediate vicinity of the
reflector.

The orthogonal polarization matrices H"* are similar to those
introduced by Cerveny (2001; his equation 5.4.110):

H(m)i(x/) _ [h{Dm)i(X/) h(snll)r(xl) h(sm)i(X/)],
VO (x') = [v" = (x') v = (x )V(m)+(X’)] (C-3)

are the perturbation matrices and

Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Effective reflection coefficients in T media

E(m) + (Sg;X,) — diag[eioupgg)i (x')S3;

(m) =

eiwpsl,3 (x’)‘v3;eiwp<s’;‘$)3i (x')h]. (C-4)
The vectors a™* = (ag*,a* ,af*)" contain the unknown am-
plitudes of the generalized plane waves.

The generalized plane-wave decomposition C-2 is valid for inter-
faces of arbitrary shape in heterogeneous anisotropic media. If the
interface is plane, the curvatures C;(x") and C,(x') go to zero and the
curvilinear coordinates (s,5,,53) coincide with the local Cartesian
coordinate system. If in addition the medium near the interface is ho-
mogeneous, the normal components of the slownesses and the polar-
ization vectors do not depend on the reference point x'. Then integral
C-2 reduces to the well-known Weyl decomposition over conven-
tional plane waves (Tsvankin, 1995, 2005; Cerven}’/, 2001; Aki and
Richards, 2002).

At the interface (53— 0), equation C-2 reduces to the inverse
Fourier integral,

+0o0 4 o

w?
U (51,55, 00%) = 2 J f H*q)
2

—0 — o0

X el@P151+P2s) dp,dp,. (C-5)

APPENDIX D

REFLECTION AND TRANSMISSION OPERATORS
IN ANISOTROPIC MEDIA

The results of Appendix C make it possible to introduce the gen-
eralized plane-wave representation of the reflected wavefield at the
interface. We assume that a point dislocation source is located in the
upper half-space D" and that no sources exist in the lower half-
space D). Then equations C-1 and C-5 can be written for DV as

u(s1,55,0) = uM* (51,8,,0:x") + u " (5,,5,,0:x"),
(D-1)
where uV = (s4,5,,0;x’) and u'V * (s,,5,,0;x’) may be considered as
the incident and reflected wavefields, respectively, at the interface.

The reflected displacement u®*(s,,s,,0;x’) is represented by the
generalized spectral integral

—+0oo 400

o2
u V" (5,,8,,0:x") = ;j fH(l)J“a(l)Jr

X e!@P151+p2s)) dp,dp,. (D-2)
The amplitudes of the reflected [aV * ] and incident[aV ~] waves are

related by the matrix R(p;x’) of the generalized plane-wave reflec-
tion and transmission coefficients:

a* =R(pix')al)", (D-3)

where p = Vp? + p2and

WwB49

Rpp RSIP RSZP

R(p:x') = | Rps, Rss, Rs,s

58, (D-4)
Rps, Rss, Rspys,

The matrix D-4 coincides with the one introduced by Cerveny

(2001) if the stiffness coefficients are fixed at location x’ and the

plane interface is tangential to the actual reflector at x’.

Because the matrix HV~ is orthogonal, it satisfies the equality
[HO-]-'=[H®W-]". From equation C-5, it follows that
u = (p,p2,0;x") = HY~aM -~ which allows us to obtain the ampli-
tude vector of the incident wave in the form

a~ =[HY 1"aV (p,,p,0:x"). (D-5)

Taking into account equations D-3 and D-5, the reflected wavefield
(equation D-2) can be represented as

+0o0 400
(1)2
ul" (51,50,0:x") = —f JH““R(p;X’)[H“)‘]T
21
w7 (py,py,0:x")
P dp dp,, (D-6)

where the spatial spectrum of the incident wavefield is expressed by
the generalized Fourier integral over the curved interface:

—+00 400

1
U(l)_(PpPz,O;X/) = Ef Ju(l)_(spsz,oéx/)

Xe TP tr)gs ds,.  (D-7)

For the incident spherical P-wave excited by a point source,
uV(s1,5,,0;x’) = ul " (s,,5,,0:x’). The polarization matrix H®*
can be separated into the matrices for P- and S-waves:

HO*(x) =HY " (x') + HY' " (x') (D-8)
and

Hy " (x') = [hy"*(x") 0 0],

H(sl)+(xf):[0 h(sr:t)i(xf) h(sr;t)i(x/)]‘ (D-9)

The reflected wavefield (equation D-6) can be decomposed into the
displacements of PP-waves and split PS-waves. The spectral repre-
sentation for PP-waves (Q = P) or converted PQ-waves (Q = S, or
S,) at the interface is given by

+oo 40
(1) + w? 1)+
o (51:9207) = EJ J Hy "R(pix)[H T
.ugl)i(phpbo;xl)
Xeiw(Plsl +p2S2) dpldpz (D-lo)

The displacement component orthogonal to the interface is
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400 400
Hgnom(X')
MSQ norm(sl’SZ’O X ) f fRPQ(p X ) (l)nirm( ,)
Pnorm

Pnorm(pl’pbo X )
X el OPis1+03) gy dp,. (D-11)

For the two displacement components (j = 1,2) tangential to the in-
terface, we have

+ o0 400
.- h(l +(X
ug)Q)j(slssbox)__f fRPQ@X) (1)7(

X MSJ)'7 (p1.D2,0:x")e P14 02%2) dp dp,
(D-12)

APPENDIX E

PLANE-WAVE REFLECTION COEFFICIENTS FOR
VTI MEDIA

Here, we reproduce the derivation of the amplitude-normalized
PWRC in our notation and correct typos in the published solutions.

The symmetry axis of the reflecting TI medium in our model is
assumed to be orthogonal to the interface. Therefore, the PWRCs in
equations D-10-D-12 coincide with those for a horizontal interface
between isotropic and VTI media. Also, for purposes of computing
the reflection coefficient, the slowness vectors of the incident, re-
flected, and transmitted waves can be confined to the (x,, x3) plane.
The vertical slowness components ¢ are obtained from the eigen-
values of the Christoffel equation:

. (C(nll)pZ + C(M)(q(m))Z _ p(m)

() + c)pg™ ) L
(e + g™ P

(g™ + p? —
(E-1)

The vertical slownesses of P- and SV-waves are given by

1
i = LK R

1
0§ = VK KT AKTRY L (E2)

K — P(m) ﬂ_(c({f) ng) (C(m)+C(m))2) 2
1 W T ’

K =p? - m : (E-3)
€33

The eigenvectors of the Christoffel equation E-1 yield the direction-
al cosines of the polarization vectors:

Ayzenbergetal.

2 2

(C(m) + CSS )q(m)Z + (C(m) (m))p _ 2p(m) ’

(m) (m)2 (m) 2 m)

. :\/ g'">q§;" (m)pz_p)
’ (c§’§>+c<m>)q<'">2+<c§'1'>+c§’2>>p - 29"

l(,,,) _ 5 4s Y2 P
S (C(;gl) + C(m))q(m)2 + (c(m) (m))p (m) ’
m(m) _ \/ qS (m)pZ (m)
S (c3’§’) + c<5"51))q('")2 + (C(m) (m))p (m) ’
(E-4)

Next, we introduce a4 X 4 matrix with the following elements:

1 1 2 2
mnzlg)’ m12=m(s), my3 = _lg)’ myy = _m(s )’

1 1 2 2
ms = mg)), Mz = — l(s ), ms3 = m; ), M3y = — 1§ ),

iy = pIDeh) 4 gDV,
gy = pmet) — giDe),

My = —pl(z) q§)2) (2)6(323)’

Mg = pm@cd — gP1Pc2),

may = pmPell) + g,
My = —ple) 1 gl >m<1>c<1>’

my3 = pmi,z)c(szs) + q(2)l(2)c(525), (E-5)

(2 2) (2) (2
may = —plPc? + gPmPc?.

(Note the misprint in the equivalent definition of the elements m;; in
Riiger [2002, p. 51-52]. In his notation, the normalized stiffnesses
a;; should be replaced with ¢;;.)

The cofactors of the matrix m;; are

My = myy(mszmyy — magmyz) — moz(mapigy — msumyy)
+ myy(mspmyz — myzmy,),

My = —myp(mszmyy — magmys) + myz(mzmgy
— Mayiyy) — myy(mapmys — ms3myp),

My = myp(mozmyy — mogmys) — mys(Mmopigy — Mogiiy,)
+ myg(mypmys — myzimyy,),

My = —myp(mazmay — moygmss) + my3(mpmay
— Mogmszy) — myy(Mypmsz — Myzms,),

My = —my (mszmyy — magmys) + moz(ms myy
— Miggiiyy) — Moy(ma mys — Mizzmy),

My, = my(mszmyy — magmys) — my3(ms may — magy,)

+ myy(myymyz — myzmy,),

My = —myy(mozmay — mogmys) + my3(myymay

— Mggmyy) — myg(my mys — Moyzimyy),
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M g = myy(mozmsy — moumss) — my3(myymsy — mogms;)
+ myg(myymsz — myzms). (E-6)
Then the plane-wave reflection coefficients Rpp(p) and Rps(p) can be
found as
—myMy — my My + my Mz + my My,
my My + mpMy + misMiz+ mgMy
(E-7)

RPP(P) =

and

—my My — my My + m3 Msy + my My,

myMyy +mpMiy + misMi3 4+ maMy
(E-8)

Rps(p) =

APPENDIX F

EFFECTIVE REFLECTION COEFFICIENTS FOR
CURVED INTERFACES

For arbitrary interface geometry and heterogeneity, evaluation of
integral 7 is complicated because it involves generating the curvilin-
ear mesh (s,,5,) and applying it in the computation of the spectrum
ul’ " (p,,p,,0:x") by means of the Fourier transform 8. However, the
integration in equation 7 is performed over the tangential slowness
plane (p,,p,) and is not explicitly related to the geometry of the mesh
(1,5,). This fact can be used to represent these integrals in the form
similar to equation 6:

upo(x') = [xpo(x") ha (x) + epg(x’) eq(x")]
[up(x)-hp (x)], (F-1)

where xpo(x') are the ERCs, epg(X’) are the spurious reflection coef-
ficients, and eq(x’) are the unit vectors orthogonal to the polarization
vectors h{,(x"). We define the effective and spurious reflection coef-
ficients as

"N uPQ(X,)'hé(X,) i
XPQ(X ) ugc(x’)h;(x') (F-2)
and
epolx) = Upg(x')-eq(x") (F-3)

ub(x')-hy (x')

The ERC in equation F-2 is expressed through the projection of
the displacement of the reflected PQ-mode onto the polarization vec-
tor of the corresponding plane wave. Therefore, ERCs generalize
PWRC:s for point sources and curved interfaces. In the seismic fre-
quency range, ERCs describe the main component of the reflected
wavefield. Spurious reflection coefficients represent diffraction cor-
rections, which are much smaller in magnitude and can be neglected
inequation F-1.

For acoustic wave propagation, integrals similar to those in equa-
tions D-11 and D-12 can be computed approximately in the domi-
nant-frequency approximation for an apparent source location and a
plane interface tangential to the actual reflector at point x’ (Ayzen-
bergetal.,2007). Then the problem reduces to the evaluation of Fou-

WB51

rier-Bessel integrals similar to the ones for a plane interface. The
same approach can be applied to elastic media because it is based en-
tirely on the geometry of the incident P-wave. The incidence angle
0(x') stays the same and the actual source moves along the ray to a
new position at distance R” (x’) from the plane interface:

2 —sin® 6(x")
— sin® 6(x') — 2R(x")H(x")cos O(x")’
(F-4)

R*(x)) =R(x’)2

where H(x') is the mean curvature of the interface. If the reflector is
locally plane and H(x') = 0, the distance R (x’) reduces to R(x’).

Adapting the results by Ayzenberg et al. (2007) for scalar inte-
grals similar to integral 7, we replace the actual incident P-wave
ui™(sy,5,,0;X’) in equation 8 with an apparent spherical wave
u;(s1,5,,05x") and assume that the mesh (sy,5,) belongs to the plane
tangential to the actual reflector at point x’. Then the ERC in equa-
tion F-2 becomes

XPQ(X,) 2)(PQ(H(X/),L(X’)) = M

uy(x') by ()
(F-5)

where L(x’) = wR" (x")/ V" is a dimensionless frequency-depen-
dent parameter. Unlike integral 8, equation F-5 does not involve in-
tegration over the curvilinear mesh. For each point x’ at the curved
reflector, the displacement u, (x') is given by the conventional
Weyl-type integral, whereas uj(x’) describes the apparent incident
P-wave in the plane tangential to the reflector at point x’.

Neglecting the term containing epo(Xx’), we rewrite equation F-1
as

upo(x) = xpo(0(x),L(x")) [up(x')-hp (x')Thg (x').

(F-6)
The apparent incident P-wave is described by
o keR*
*
uP(sl’s29S3;X,) = grad R*
) N
P T Eriet
T\ TR RS R
xS* s xS* s T
2~ P23 T3
BT (F-7)
R R

9 S Sy Sy . .
where x5+ = (xl*,xz*,x3 ) are the apparent source coordinates in the

global Cartesian system, R* =P+ 72 [=|x]"—s|, and r
= \/(xf* —5)*+ (x;* — 5,)2 Hereafter, (s,,5,) are the local Carte-
sian coordinates in the plane tangential to the actual reflector at point
x’. Note that the product u;(x’) - h (x') from equation F-5 is

oikeR*

Y P
u:(s],sz,s3;x’)-hp (X)=<lkP_I;) R (F-8)

The plane-wave decomposition of the displacement of the appar-
ent incident P-wave has the form (Aki and Richards, 2002)
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400 40

letwlpP3
u (Sl,Sz,Sg,,X )= grad
(1)
Pp3

—00 —®

X' Ps1+P2%2) dp dp, | (F-9)

Interchanging the order of differentiation and integration and setting
s;3 = 0, we obtain

(1)

N em)lp
up(plapZ’O;X/) = -0 (1) (Plan‘P%)Q)r (F-IO)
P3

Thus, the unit polarization vectors of the incident P-wave (h{’~) and
reflected PP-wave (h{")*) are given by

hy) ™ = Vi (p1.ps — po)T = ViV (p cos ¢,p sin ¢,

—pp)",

h; D+ = V(l)(p cos ¢,p sin ¢,pp3)T (F-11)

where i is the polar angle in the plane (p,,p,). Itis straightforward to
show that the polarization of the converted PS-wave is

h$"" = Vi (pl cos .ply sin g, — p)’. (F-12)
Hence, for the PP-wave, hf o/ Ap o = — 1 and A,/ by

P,norm P,tan P, Lan

FOI' the PS wave, hgnorm/hl’,norm - (V“ P)/(Vibl)P%)) and hS,lan/hP.[an
= (Vdp)/ (Vep).

Using equations F-7 and 7, we find the normal to the interface
component of the displacement vector of the reflected PQ-mode:

+0o0 400
. D+ (x')
Qnorm
uPQ,norm(sl’Sz’O;X,) f JRPQ p * ) o )
Y o Pnorm

X eiOlPp i (P151 +p2s2) dp,dp,. (F-13)

In the polar coordinates (p,i) and (r,¢), equation F-13 reduces to
the Fourier-Bessel integral:

+o0
l)+ (X )
M:Q,norm(shsb();xl) = wszPQ(p;X, ) (l)nirm( ’)
Pnorm
0
i)
X el®lPp3 Jo(rop) pdp, (F-14)
where J, is the zero-order Bessel function:
1 2 )
Jo(rop) = —j pirep COS(¢_¢)d¢. (E-15)
2w ),

Ayzenbergetal.

As follows from equation 7, the two tangential displacement compo-
nents of the reflected PQ-wave are

+0o0 400
H )
PQ (51,52,0:x") = — _f fRPQ(pX) (1),( N
zwlp()

X (1) p]ezw(pllerpzsz dpldpz

(F-16)
In the polar coordinates (r,¢),
u:Q’mn(x’) = u;le(x’)cos o+ M:QJ(X,)Sin ,
4o+
h(1)+ (x )
E3
“PQ,tan(Sl,Sz,O;X/) = - _f f Rpqg(p; X' — (1)—( B
eiwlp%)
X —g7p cos(y — @)
Pp3
X el @151 +1’232)dpldp2, (F-17)

Equation F-17 can also be reduced to the Fourier-Bessel integral:

+oo

il
B+ (x') iel“Pvs
* ) = 2 . :
Upq an(51:52:0:X") = — fRPQ(p,x’)

hi) (<) ppd

X J(rwp)p*dp, (F-18)

where J| is the first-order Bessel function:

. 2m
Ji(rop) = — i f cos(i — @)e" P Ny,
0

(F-19)

The normal and tangential to the reflector components of
the polarization vectors can be written as A\ = cos 0(x'),
R =sin 0(x"), and h§)., = —sin O5(x), and Ay, = cosfx',
where 6(x’) is the P-wave incidence angle and 64(x’) is the S-
wave reflection angle determined from Snell’s law as 6g(x’)
= sin "' [V{Y/ VY sin 6(x')].

Finally, substituting the Fourier-Bessel integrals F-14 and F-18
and the polarization components into the definition F-5 of the ERC
yields

XPP(H(X') L(x"))
(x")cos O(x') + uPPtdn(x')sin 0(x")

1 lkPR ’
(lkp - E) R*

(x")sin Og(x") + PS n

1 tkpR*
(lkp - E) R*

PP norm

xps(0(x"),L(x"))

—u (x")cos Gg(x’ )

PS,norm

(F-20)

Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Effective reflection coefficients in Tl media

REFERENCES

Aizenberg, A. M., 1992, A self-similar conformal analog of wave equation in
3D nonhomogeneous space: Russian Geology and Geophysics, 33,
116-121.

, 1993a, Special function of eddy diffusion equation in 3D inhomoge-

neous space: Russian Geology and Geophysics, 34, 107-114.

, 1993b, A system of irregular fundamental solutions to wave equation
in a three-dimensional inhomogeneous medium: Russian Geology and
Geophysics, 34, 105-113.

AKki, K., and P. G. Richards, 2002, Quantitative seismology: University Sci-
ence Books.

Ayzenberg, M. A., A. M. Aizenberg, H. B. Helle, K. D. Klem-Musatov, J. Pa-
jchel, and B. Ursin, 2007, 3D diffraction modeling of singly scattered
acoustic wavefields based on the combination of surface integral propaga-
tors and transmission operators: Geophysics, 72, no. 5, SM19-SM34.

Baker, B. B., and E. T. Copson, 1953, The mathematical theory of Huygens’
principle: Clarendon Press.

Ben-Menahem, A., and S. J. Singh, 1998, Seismic waves and sources: Dover
Publications.

Brekhovskikh, L. M., 1980, Waves in layered media: Academic Press Inc.

Cerveny, V.,2001, Seismic ray theory: Cambridge University Press.

Cerveny, V., and F. Hron, 1961, Reflection coefficients for spherical waves:
Studia Geophysica et Geodaetica, 5, 122-132.

Chapman, C. H., 1994, Reflection/transmission coefficient reciprocities in
anisotropic media: Geophysical Journal International, 161, 498-501.

do Carmo, M. P., 1976, Differential geometry of curves and surfaces: Pren-
tice Hall.

Downton, J. E., and C. Ursenbach, 2006, Linearized amplitude variation with
offset (AVO) inversion with supercritical angles: Geophysics, 71, no. 5,
E49-ESS.

Frazer, L. N., and M. K. Sen, 1985, Kirchhoff-Helmholtz reflection seismo-
grams in a laterally inhomogeneous multi-layered elastic medium — 1.
Theory: Geophysical Journal of the Royal Astronomical Society, 80, 121—
147.

Graebner, M., 1992, Plane-wave reflection and transmission coefficients for
atransversely isotropic solid: Geophysics, 57, 1512-1519.

Hanyga, A., and H. B. Helle, 1995, Synthetic seismograms from generalized
ray tracing: Geophysical Prospecting, 43, 51-75.

Kampfmann, W., 1988, A study of diffraction-like events on DECORP 2-S
by Kirchhoff theory: Journal of Geophysics, 62, 163-174

Kennett, B. L. N., 1994, Representations of the seismic wavefield: Geophysi-
cal Journal International, 118, 344-357.

Klem-Musatov, K. D., and A. M. Aizenberg, 1985, Seismic modelling by
methods of the theory of edge waves: Journal of Geophysics, 57, 90-105.

Klem-Musatov, K. D., A. Aizenberg, H. B. Helle, and J. Pajchel, 1993, Seis-

WB53

mic simulation by the tip wave superposition method in complex 3D geo-

logical models: 55th Conference and Exhibition, EAGE, Extended Ab-

stracts, P103.

, 2004, Reflection and transmission at curvilinear interface in terms of
surface integrals: Wave Motion, 39, 77-92.

Klem-Musatov, K., A. Aizenberg, J. Pajchel, and H. B. Helle, 2008, Edge
and tip diffractions: Theory and applications in seismic prospecting: SEG.

Klimes, L., 2003, Weak-contrast reflection-transmission coefficients in a
generally anisotropic background: Geophysics, 68, 2063-2072.

Pao, Y.-H., and V. Varatharajulu, 1976, Huygens’ principle, radiation condi-
tions, and integral formulas for the scattering of elastic waves: Journal of
the Acoustical Society of America, 59, 1361-1371.

Riiger, A., 1997, P-wave reflection coefficients for transversely isotropic
models with vertical and horizontal axis of symmetry: Geophysics, 62,
713-722.

, 2002, Reflection coefficients and azimuthal AVO analysis in aniso-
tropic media: SEG.

Schleicher, J., M. Tygel, B. Ursin, and N. Bleistein, 2001, The Kirchhoff-
Helmholtz integral for anisotropic elastic media: Wave Motion, 34,
353-364.

Sen, M. K., and L. N. Frazer, 1991, Multifold phase space path integral syn-
thetic seismograms: Geophysical Journal International, 104, 479-487.

Shuey, R. T., 1985, A simplification of the Zoeppritz equations: Geophysics,
50,609-614.

Stovas, A., and B. Ursin, 2003, Reflection and transmission responses of lay-
ered transversely isotropic viscoelastic media: Geophysical Prospecting,
51,447-4717.

Thomsen, L., 1993, Weak anisotropic reflections, in J. P. Castagna and M. M.
Backus, eds., Offset dependent reflectivity — Theory and practice of
AVO: SEG, 103-114.

Tsvankin, 1., 1995, Seismic wavefields in layered isotropic media: Samizdat
Press.

, 2005, Seismic signatures and analysis of reflection data in anisotropic
media: Elsevier.

Ursin, B., 2004, Parameter inversion and angle migration in anisotropic elas-
tic media: Geophysics, 69, 1125-1142.

Ursin, B., and M. Tygel, 1997, Reciprocal volume and surface scattering in-
tegrals for anisotropic elastic media: Wave Motion, 26, 31-42.

van der Baan, M., and D. Smit, 2006, Amplitude analysis of isotropic P-wave
reflections: Geophysics, 71, no. 6, C93-C103.

Weatherburn, C. E., 1930, Differential geometry of three dimensions. vol. II:
Cambridge University Press.

Wenzel, F., K.-J. Stenzel, and U. Zimmermann, 1990, Wave propagation in
laterally heterogeneous layered media: Geophysical Journal International,
103, 675-684.

Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



