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nalysis of the symmetry of a stressed medium using nonlinear elasticity
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ABSTRACT

Velocity variations caused by subsurface stress changes
play an important role in monitoring compacting reservoirs
and in several other applications of seismic methods.Agener-
al way to describe stress- or strain-induced velocity fields is
by employing the theory of nonlinear elasticity, which oper-
ates with third-order elastic �TOE� tensors. These sixth-rank
strain-sensitivity tensors, however, are difficult to manipu-
late because of the large number of terms involved in the al-
gebraic operations. Thus, even evaluation of the anisotropic
symmetry of a medium under stress/strain proves to be a
challenging task. We employ a matrix representation of TOE
tensors that allows computation of strain-related stiffness
perturbations from a linear combination of 6�6 matrices
scaled by the components of the strain tensor. In addition to
streamlining the numerical algorithm, this approach helps to
predict strain-induced symmetry using relatively straightfor-
ward algebraic considerations. For example, our analysis
shows that a transversely isotropic �TI� medium acquires
orthorhombic symmetry if one of the principal directions of
the strain tensor is aligned with the symmetry axis. Other-
wise, the strained TI medium can become monoclinic or even
triclinic.

INTRODUCTION

Monitoring subsurface stress/strain fields and their time-lapse
ariations is an important research area with applications in velocity
odel building �e.g., Sengupta and Bachrach, 2008� and reservoir

eophysics �e.g., Fuck et al., 2009�. For example, the pore-pressure
rop due to hydrocarbon production leads to reservoir compaction,
hich produces excess stress and strain not only in the reservoir it-

elf, but also in the surrounding rock mass.
Seismic velocities can help monitor subsurface stress and strain
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elds because numerous laboratory experiments have demonstrated
hat the stiffness tensor changes under stress/strain �Eberhart-Phil-
ips et al., 1989; Prasad and Manghnani, 1997�. In the elastic regime,
tress stiffens grain contacts and closes fractures, making rocks
ore rigid and increasing P- and S-wave velocities. Therefore, some

heoretical models describe the stress/strain sensitivity of seismic
elocities through the stiffening of grain contacts �e.g., Gassman and
ertz-Mindlin models discussed in Mavko et al., 1998� while others

elate the velocity variation to closing �or opening� of microcracks
e.g., Mavko et al., 1995; Sayers, 2006�.

An alternative approach that has been successfully applied to this
roblem is based on the nonlinear theory of elasticity �e.g., Sinha and
ostek, 1996; Winkler et al., 1998; Sinha and Plona, 2001�. In con-

rast to Hertz-Mindlin theory, it employs a Taylor series expansion
hat yields the full elastic tensor of the strained medium �Thurston,
974, p. 276�. Unlike fracture-based models, nonlinear elasticity op-
rates not with the fracture orientations and compliances, but with a
hird-order elastic �TOE� tensor responsible for the strain sensitivity
f the rock mass.

We start by reviewing the nonlinear theory of elasticity and appli-
ation of TOE tensors to model stress- or strain-induced velocity
hanges. Then we use Voigt notation to represent TOE tensors as
�6�6 matrices and analyze the structure of these matrices for
everal common symmetry classes. This matrix representation natu-
ally leads to an algebraic method to predict the anisotropic symme-
ry of the strained medium from the symmetry of the TOE tensor and
he structure of the strain tensor. We use the proposed method to
tudy the symmetry of a wide range of velocity models obtained by
ombining triclinic, monoclinic, orthorhombic, hexagonal, and iso-
ropic TOE tensors with several types of the strain tensor.

PHYSICAL MEANING OF TOE TENSORS

The nonlinear theory of elasticity �e.g., Thurston, 1974; Prioul et
l., 2004�, provides a general way to model strain-induced velocity
hanges. The effective stiffness coefficients cijkl �each index runs
rom 1 to 3� of a medium under stress/strain can be expressed in
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WB80 Fuck and Tsvankin
erms of the stiffnesses �cijkl
� � of the undeformed medium and the ap-

lied strains ��eij� and stresses ��sij�cijkl
� �ekl�:3

cijkl�cijkl
� �cijklmn�emn��sik� jl�cijpk

� �elp�cipkl
� �ejp,

�1�

here the summation convention over repeated indices is implied,
nd � jl is Kronecker’s symbol. The elements cijklmn form the TOE
ensor, which appears in the Taylor series expansion of the strain-en-
rgy function W:

W�W ��sij eij�
1

2
cijkl eij ekl�

1

6
cijklmn eij ekl emn�O�eij

4 � .

�2�

ecause of the structure of the third, fourth, and fifth terms on the
ight-hand side of equation 1, the effective coefficients cijkl lose some
f the symmetries of an elastic stiffness tensor �e.g., c1313�c3131�.
evertheless, ultrasonic experiments in rocks have shown that typi-

ally �sij�cijkl�cijklmn �Johnson and Rasolofosaon, 1996; Prioul et
l., 2004�, so the largest perturbation term in equation 1 is the one
hat contains the tensor cijklmn. Therefore, equation 1 can be simpli-
ed to

cijkl�cijkl
� �cijklmn �emn�cijkl

� ��cijkl. �3�

he symmetry properties of the effective stiffness tensor cijkl in
quation 3 �cijkl�cjikl�cijlk�cklij� coincide with those of the stiff-
ess tensor for undeformed media. According to approximation 3,
he symmetry of the tensor cijkl depends on symmetries of the back-
round medium �cijkl

� � and the TOE tensor cijklmn, as well as on the
tructure of the strain tensor �emn.

The large number of terms in equation 3 obscures the influence of
he TOE and strain tensors on the stiffness perturbation �cijkl. To fa-
ilitate analysis of strain-induced anisotropy, below we use a matrix
epresentation of the main symmetry groups of the TOE tensor and
ecast equation 3 as a matrix-vector expression.

SYMMETRY OF THE TOE TENSOR

By analogy with the geometric symmetry of crystals, elastic ten-
ors can be classified into different symmetry groups in accordance
ith the invariance of their components with respect to certain rota-

ions of the coordinate frame �e.g., Helbig, 1994�. Because of the
ymmetry of the strain and stress tensors, the coefficients cijklmn are
nvariant with respect to the permutation of indices i and j, k and l,
nd m and n. Hence, TOE tensors can be represented using Voigt no-
ation, which maps every pair of indices ij into a single index � vary-
ng from 1 to 6:

� � i� ij� �9� i� j��1�� ij�, �4�

hich yields

11�1; 22�2; 33�3.

12�6; 13�5; 23�4. �5�

3Equation 1 is derived from the wave equation �Thurston, 1974�, assuming
elocity changes caused by deformation. Of course, strains could be measur
oints after the deformation. That would cause equation 1 to be slightly differ

4Adirection is called a k-fold symmetry axis when a tensor is invariant with
Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to S
n addition, because the strain-energy function W is invariant with
espect to coordinate transformations, the coefficients cijklmn remain
he same if pairs ij, kl, and mn are interchanged. In Voigt notation,
hese symmetries can be succinctly written as

C�� � �C� � � �C� � � �C� �� . �6�

pplication of Voigt notation to second-order elastic �SOE� tensors
ijkl helps replace them by symmetric 6�6 matrices �e.g., Helbig,
994�. Likewise, TOE tensors expressed in Voigt notation are repre-
ented by 6�6�6 matrices or a six-element vector composed of
�6 matrices:

C��� ����C1�� � �,C2�� � �,C3�� � �,C4�� � �,C5�� � �,C6�� � ���.

�7�

Fumi �1951, 1952� and Hearmon �1953� describe the linearly in-
ependent elements of the TOE tensor for all possible symmetry
lasses. Here, we use their results to construct the matrix representa-
ion for several symmetries relevant in the context of exploration
eophysics. We proceed from the lowest possible symmetry �triclin-
c�, which is characterized by the absence of any symmetry elements
i.e., symmetry axes or planes�, to the isotropic tensor, which is in-
ariant with respect to any coordinate transformation. A more de-
ailed analysis of the matrices C�� � for various symmetry classes can
e found inAppendix A.

riclinic symmetry

Although the triclinic TOE tensor contains no symmetry ele-
ents, only 56 out of a total of 36�729 elements are independent

equation 6�. All six matrices that form the vector C��� � � in equation
are symmetric because the indices � and � can be interchanged:

C��� � ���
C�11 C�12 C�13 C�14 C�15 C�16

C�12 C�22 C�23 C�24 C�25 C�26

C�13 C�23 C�33 C�34 C�35 C�36

C�14 C�24 C�34 C�44 C�45 C�46

C�15 C�25 C�35 C�45 C�55 C�56

C�16 C�26 C�36 C�46 C�56 C�66

�;

�8�

�1,2 . . . ,6.

onoclinic symmetry

The matrix representation of monoclinic TOE tensors can be de-
ived from equation 8 by defining either a plane of mirror symmetry
r a two-fold symmetry axis �Winterstein, 1990�.4 The independent
lements C�� � are invariant with respect to rotation by � ��
round the symmetry axis; the same set of independent C�� � can be
btained by using a symmetry plane perpendicular to this axis. If the
orizontal plane �x1, x2� is the plane of symmetry, the monoclinic
OE matrices for � �1, 2, 3, and 6 have the following form �Appen-
ix A�:

ins are measured from the undeformed state, because we wish to measure the
lation to other set of coordinates, for example, those describing the material
, Sinha, 1982�.
t to rotations by � �2� /k around it �Helbig, 1994�.
EG license or copyright; see Terms of Use at http://segdl.org/
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Symmetry of a stressed medium WB81
C��� � ���
C�11 C�12 C�13 0 0 C�16

C�12 C�22 C�23 0 0 C�26

C�13 C�23 C�33 0 0 C�36

0 0 0 C�44 C�45 0

0 0 0 C�45 C�55 0

C�16 C�26 C�36 0 0 C�66

� .

�9�

hen � �4 or 5,

C��� � ���
0 0 0 C�14 C�15 0

0 0 0 C�24 C�25 0

0 0 0 C�34 C�35 0

C�14 C�24 C�34 0 0 C�46

C�15 C�25 C�35 0 0 C�56

0 0 0 C�46 C�56 0

� .

�10�

nterestingly, the matrices described by equation 9 have the same
tructure �i.e., the same nonzero elements� as the matrix representing
he monoclinic SOE tensor �e.g., Helbig, 1994�. The matrices in
quation 10, however, contain nonzero elements in place of the van-
shing elements in equation 9. According to equations 9 and 10, the
otal number of independent elements C�� � for monoclinic symme-
ry is 32.

rthorhombic symmetry

Orthorhombic symmetry is characterized by three orthogonal
wo-fold symmetry axes, or correspondingly, by three orthogonal

irror-symmetry planes �Helbig, 1994�. Because orthorhombic
ymmetry is a special case of the monoclinic model, the matrix rep-
esentation of the orthorhombic TOE tensor can be obtained from
quations 9 and 10 by requiring invariance with respect to rotations
y � �� around the x1- and x2-axes. These constraints reduce the
umber of independent elements to 20, and when � �1, 2, and 3, the
rthorhombic matrices C�� � can be written as �seeAppendix A�

C��� � ���
C�11 C�12 C�13 0 0 0

C�12 C�22 C�23 0 0 0

C�13 C�23 C�33 0 0 0

0 0 0 C�44 0 0

0 0 0 0 C�55 0

0 0 0 0 0 C�66

� .

�11�

or � �4, 5, and 6,
Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to S
C4�� � ���
0 0 0 C144 0 0

0 0 0 C244 0 0

0 0 0 C344 0 0

C144 C244 C344 0 0 0

0 0 0 0 0 C456

0 0 0 0 C456 0

� ,

�12�

C5�� � ���
0 0 0 0 C155 0

0 0 0 0 C255 0

0 0 0 0 C355 0

0 0 0 0 0 C456

C155 C255 C355 0 0 0

0 0 0 C456 0 0

� ,

�13�

nd

C6�� � ���
0 0 0 0 0 C166

0 0 0 0 0 C266

0 0 0 0 0 C366

0 0 0 0 C456 0

0 0 0 C456 0 0

C166 C266 C366 0 0 0

� .

�14�

As was the case for monoclinic symmetry, the matrices C��� � �

ith � �1, 2, and 3 have the same structure �i.e., the same nonzero
lements� as the orthorhombic SOE matrix.

exagonal symmetry

According to Hearmon �1953�, there are two types of TOE tensors
ith hexagonal symmetry. The first type is defined by a six-fold

ymmetry axis perpendicular to a mirror-symmetry plane. The sec-
nd �higher symmetry� type is obtained from the orthorhombic mod-
l by introducing a six-fold symmetry axis perpendicular to one of
he three orthogonal symmetry planes. Hereafter, we consider only
OE tensors of the second type.
The independent elements C�� � for type two hexagonal symme-

ry can be found by requiring that the matrix elements in equations
1–14 remain invariant with respect to a 2� /3 rotation around the
ixfold symmetry axis, here assumed to point in the x3-direction
more details are given inAppendix A�. Note that if a certain element
s invariant with respect to rotations of both � �� �which is the case
or the orthorhombic TOE tensor� and � �2� /3 around the same
xis, then it is also invariant with respect to rotations of � �2� /6

� /3.
Except for the matrix C3�� � �, all the other matrices representing the

OE tensor with hexagonal symmetry have the same structure as
EG license or copyright; see Terms of Use at http://segdl.org/
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WB82 Fuck and Tsvankin
hose in equations 11–14. For hexagonal symmetry, however, the
umber of independent elements reduces to ten. The additional con-
traints are as follows:5

C112�C111�C166�3C266 ; �15�

C122�C111�2C166�2C266 ; �16�

C222�C111�C166�C266 ; �17�

C223�C113 ; �18�

C233�C133 ; �19�

C123�C113�2C366 ; �20�

C244�C155�C144�2C456 ; �21�

C255�C144 ; �22�

nd

C355�C344 . �23�

quations 15–23 include nine independent elements of the TOE ten-
or; the tenth independent element is C333. Despite these constraints,
1�� � � and C2�� � � still retain the structure of the SOE matrix with
rthorhombic symmetry. The matrix C3�� � �, on the other hand, has
he VTI �transversely isotropic with a vertical symmetry axis� form:

C3�� � ���
C113 C123 C133 0 0 0

C123 C113 C133 0 0 0

C133 C133 C333 0 0 0

0 0 0 C344 0 0

0 0 0 0 C344 0

0 0 0 0 0 C366

� .

�24�

hus, C3�� � � does not have the same structure as C1�� � � and C2�� � �, as
as the case for the lower symmetries. It should be emphasized that

n contrast to hexagonal SOE tensors, TOE tensors considered here
re not “transversely isotropic” in the sense that they are not invari-
nt with respect to arbitrary rotations around the six-fold symmetry
xis.

Asimilar pattern of matrix structures holds for � �4, 5, and 6.Al-
hough C6�� � � has the form described by equation 14, constraints
1–23 show that C4�� � � in equation 12 and C5�� � � in equation 13 can
e obtained from each other by permutation of columns and rows:

C5�� � ��R1 C4�� � � R1, �25�

here

R1�� P1 0

0 P1
� . �26�

ere, 0 is a 3�3 matrix of zeros and P1 is a permutation matrix that

5These constraints are obtained from the scheme of Fumi �1952�, as discus
Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to S
nterchanges the first and second columns or rows of any 3�3 ma-
rix:

P1��0 1 0

1 0 0

0 0 1
� . �27�

sotropic TOE

The isotropic TOE tensor is described by three linearly indepen-
ent elements �e.g., Barsch and Chang, 1968�, here chosen to be
123, C144, and C456 �see Appendix A�. The complete C�� � matrix for

sotropic media can be expressed through just two matrices, C1�� � �

nd C4�� � �:

C1�� � ���
C111 C112 C112 0 0 0

C112 C112 C123 0 0 0

C112 C123 C112 0 0 0

0 0 0 C144 0 0

0 0 0 0 C155 0

0 0 0 0 0 C155

�
�28�

nd

C4�� � ���
0 0 0 C144 0 0

0 0 0 C155 0 0

0 0 0 C155 0 0

C144 C155 C155 0 0 0

0 0 0 0 0 C456

0 0 0 0 C456 0

� ,

�29�

here �Thurston and Brugger, 1964�

C111�C123�6C144�8C456 , �30�

C112�C123�2C144 , �31�

nd

C155�C144�2C456 . �32�

he remaining matrices can be obtained from the following permu-
ations:

C2�� � ��R1 C1�� � � R1, C3�� � ��R2 C1�� � � R2, �33�

nd

C5�� � ��R1 C4�� � � R1, C6�� � ��R2 C4�� � � R2. �34�

he matrix R2 has the same block structure as R1 from equation 26,
ut with P1 substituted by P2, a matrix that interchanges the first and
hird rows or columns of 3�3 matrices:

ppendix A.
EG license or copyright; see Terms of Use at http://segdl.org/
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Symmetry of a stressed medium WB83
P2��0 0 1

0 1 0

1 0 0
� . �35�

SYMMETRY OF THE DEFORMED MEDIUM

The matrix representation of the TOE tensor helps devise an alge-
raic procedure to evaluate the symmetry of a medium under stress/
train. Using Voigt notation, equation 3 can be expressed in terms of
he TOE matrix C�� � :

C� � �C� �
° �C�� � �E�, �36�

here the vector �E� � �e11,e22,e33,2e23,2e13,2e12�� is obtained
rom the symmetric strain tensor �emn by applying Voigt notation.
ereafter, the strain tensor with vanishing off-diagonal components
E4, �E5, and �E6 will be called diagonal. If the elements �E1, �E2,
nd �E3 of a diagonal strain tensor are equal, such a tensor represents
olumetric strain change �Fuck et al., 2009�.

Each perturbation stiffness element �C� � �C�� � �E� in equa-
ion 36 is obtained as a linear combination of the elements C��� � �

caled by the components of the vector �E�. Because of the signifi-
ant difference in the structure of the matrices C��� � � for � �1,2,3
nd
�4,5,6, it is possible to separate the contributions of the normal

diagonal� and shear �off-diagonal� strain components in equation
6. Next, we analyze the symmetry of the perturbation matrix �C��

sing the results of the previous section. The structure of the result-
ng stiffness matrix C� � is defined by the stiffnesses of the unde-
ormed medium and the nonzero elements of �C� � .

sotropic TOE tensor

When the TOE tensor is isotropic, the symmetry of the matrix
C�� is entirely controlled by the structure of the strain tensor. This
an be proved by substituting the matrix representation of the isotro-
ic TOE tensor into equation 36.

For a volumetric strain change ��E1��E2��E3; �E4��E5

�E6�0�, the term C�� � �E� reduces to the sum of the matrix
1�� � � from equation 28 and its two permutations, C2�� � � and C3�� � �,
ultiplied by the normal strain �E1. The resulting tensor �C�� is

sotropic:

�C11��C22��C33� �C111�2C112� �E1, �37�

�C44��C55��C66� �C144�2C155� �E1, �38�

nd

�C12��C13��C23��C11�2�C44

� �C123�2C111� �E1. �39�

his confirms our expectation that any object undergoing volumet-
ic change will remain just a scaled version of itself by conserving its
riginal shape or symmetry.

If the applied strain is uniaxial, then the stiffness perturbation
rom equation 36 is transversely isotropic �TI�. For example, the ver-
ical strain �E3 yields the tensor �C�� with VTI symmetry:

�C ��C �C �E ; �40�
11 22 112 3

Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to S
�C33�C111 �E3; �41�

�C44��C55�C155 �E3; �42�

�C66�C144 �E3; �43�

�C12��C11�2�C66�C123 �E3; �44�

nd

�C13��C23�C112 �E3. �45�

When the strain tensor is diagonal, each matrix C��� � �

� �1,2,3� is multiplied with a different normal strain component,
hich results in the stiffness perturbation that has orthorhombic

ymmetry:

�C�� ��
�C11 �C12 �C13 0 0 0

�C12 �C22 �C23 0 0 0

�C13 �C23 �C33 0 0 0

0 0 0 �C44 0 0

0 0 0 0 �C55 0

0 0 0 0 0 �C66

� .

�46�

Furthermore, if the TOE tensor is isotropic, the symmetry of �C��

s always orthorhombic or higher, with the principal directions of the
train tensor defining the two-fold symmetry axes of the deformed
edium. For example, a nonzero component �E6 causes a rotation

f the principal directions of the strain tensor around the x3-axis of
he Cartesian coordinate system. In addition to C1�� � �, C2�� � �, and

3�� � �, the stiffness perturbation for �E6�0 also depends on the ma-
rix C6�� � � �equation 36�:

�C�� ��
�C11 �C12 �C13 0 0 �C16

�C12 �C22 �C23 0 0 �C26

�C11 �C12 �C13 0 0 �C36

0 0 0 �C44 �C45 0

0 0 0 �C45 �C55 0

�C16 �C26 �C36 0 0 �C66

� .

�47�

The matrix �C�� in equation 47 describes an orthorhombic medi-
m rotated around the x3-axis because �C16, �C26, �C36, and �C45

re linear combinations of stiffness perturbations in the unrotated
oordinate system. For instance, the element �E6 in the coordinate
ystem rotated by the angle � around the x3-axis is given by

�E6�2�e12�2��E2���E1�� sin� cos� , �48�

here �E1� and �E2� denote the components of the strain tensor in the
nrotated coordinate system. Using equation 48, we find that

�C36� ��C23� ��C13� � sin� cos� , �49�

here �Cij� are the components of the perturbation stiffness tensor in
he unrotated coordinate system. Thus, the orientation of the vertical
ymmetry planes of the orthorhombic medium described by the ma-
rix �C is determined by the element �E .
�� 6

EG license or copyright; see Terms of Use at http://segdl.org/
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WB84 Fuck and Tsvankin
Fuck et al. �2009� give a numerical example of the stiffness pertur-
ation �C�� , which has orthorhombic symmetry resulting from
he combination of a purely isotropic TOE tensor and an arbitrary
nondiagonal� strain tensor. In their model, a pore-pressure drop in-
ide a rectangular reservoir embedded in a homogeneous isotropic
ost rock induces stress/strain changes throughout the medium
Figure 1�. The spatially varying stiffness perturbations caused by
he excess stress/strain field are computed from equation 36. As il-
ustrated by Figure 2, the compaction-related strain makes the reser-
oir and surrounding medium both heterogeneous and anisotropic.
n the vertical symmetry plane �x1, x3� shown in Figures 1 and 2, the
erturbation matrix �C�� corresponds to a transversely isotropic
edium with elliptical P-wave anisotropy �i.e., Thomsen parame-

ers 	 and � are equal; Figure 2a�. The accumulation of shear stress/
train near the corners of the reservoir causes a significant tilt of the
ymmetry axis from the vertical �Figure 2b�.

exagonal TOE tensor

If the six-fold symmetry axis is parallel to the x3-direction, the ma-
rix C3�� � � of the hexagonal TOE tensor has VTI symmetry, whereas

1�� � � and C2�� � � are orthorhombic �equations 11 and 24�. There-
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ore, a uniaxial strain applied in the symmetry-axis direction �i.e.,
E3�0� yields a stiffness perturbation with VTI symmetry. If a
niaxial strain is parallel to the x1- or x2-axis, the stiffness perturba-
ion inherits the orthorhombic symmetry of either the C1�� � � or the

2�� � � matrix. Furthermore, any diagonal strain tensor also produces
C�� with orthorhombic symmetry.
Volumetric strain ��E1��E2��E3� leads to VTI symmetry of

he matrix �C�� , because summation of the matrices C1�� � �, C2�� � �

nd C3�� � � results in the well-known VTI relationships:

�C11��C22� �2C111�C166�3C266�C113� �E1,

�50�

�C12��C11�2�C66� �C112�C122�C123� �E1,

�51�

�C13��C23� �C113�C123�C133� �E1, �52�

nd
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Symmetry of a stressed medium WB85
�C44��C55� �C144�C155�C344� �E1. �53�

f the only nonvanishing shear strain is �E6�2�e12, the matrix
C�� still has orthorhombic symmetry, but its vertical symmetry
lanes are rotated with respect to the axes x1 and x2. This can be veri-
ed by showing that the elements �C45 and �Ci6 �i�1,2,3� are not

inearly independent �e.g., equation 49 remains valid�. The presence
f nonzero shear strains defined in planes that are not perpendicular
o the sixfold symmetry axis of the TOE tensor lowers the symmetry
f the stiffness perturbation. For instance, when �E5�0 ��E4

�E6�0�, �C46 no longer represents a linear combination of �C66�

nd �C44� because

�C46� ��C66� ��C44� � sin� cos� . �54�

hen the symmetry of the perturbation �C�� becomes monoclinic
ith the �x1, x3� symmetry plane. Similarly, if �E4 is the only nonze-

o strain element, the perturbation stiffness tensor is also monoclin-
c, but the symmetry plane is �x2, x3�. If both �E4 and �E5 are nonze-
o, the perturbation �C�� has triclinic symmetry.

ower TOE symmetries

The summation in equation 36 produces the stiffness perturbation
hat cannot have a higher symmetry than that of the TOE tensor.

hen the TOE tensor is orthorhombic or monoclinic, the symmetry
f �C�� depends on the structure of the strain tensor only if shear
trains are nonzero. The combination of diagonal strain and the TOE
ensor with orthorhombic or monoclinic symmetry always generates
n orthorhombic or monoclinic stiffness perturbation �C�� , respec-
ively.

When the TOE tensor is orthorhombic, a single nonzero shear-
train component produces perturbation �C�� with monoclinic
ymmetry �equations 12–14�. If two or three shear strains are nonze-
o, the resulting perturbation tensor is triclinic. Likewise, for a mon-
clinic TOE tensor, any shear strain not defined in the symmetry
lane �i.e., in the plane perpendicular to the two-fold symmetry axis�

Distance (km)

D
ep

th
(k
m
)

–3 –2 –1 0 1 2 3

0

1

2

3

a)

igure 2. Anisotropy parameters and the symmetry-axis orientation o
uck et al., 2009�. �a�Anisotropy parameter � �	 �scale is clipped�;

ive angles correspond to clockwise axis rotation� near the right edge
he tilt of the symmetry axis at the reservoir corners �where the shear
009�.
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roduces a triclinic perturbation �C�� . Therefore, misalignment of
he principal strain directions with the symmetry elements of the
OE tensor lowers the symmetry of �C�� .
Finally, if the TOE tensor is triclinic �i.e., with no symmetry axes

r planes�, the stiffness perturbation always has triclinic symmetry
s well, regardless of the structure of the strain tensor.

ymmetry of the resulting stiffness tensor

The above discussion was focused on the symmetry of the pertur-
ation stiffness matrix �C� � �C�� � �E� in equation 36. Once this
atrix has been obtained, it is straightforward to evaluate the sym-
etry of the effective elastic tensor C�� which describes the medium

fter deformation. In principle, the symmetry of the strained medium
hould not be higher than that of either C ��

° or �C�� . There might be
ituations, however, in which some of the off-diagonal terms in

��
° and �C�� cancel out, resulting in the deformed medium with a

igher symmetry than those of the background model and the stiff-
ess perturbation.Although this issue should be studied further, such
train-induced compensation of intrinsic anisotropy seems unlikely.

CONCLUSIONS

Using the theory of nonlinear elasticity based on third-order elas-
ic �TOE� tensors, we analyzed the symmetry of a medium under
tress/strain.Application of Voigt notation leads to a convenient rep-
esentation of the TOE tensor cijklmn in terms of a 6�6�6 matrix

�� � . Then the strain-induced stiffness perturbation �C� � is ob-
ained by summing 6�6 TOE submatrices scaled by the compo-
ents of the strain tensor. This formalism provides a direct way to as-
ess the contribution of each strain component to the stiffness pertur-
ation for a given symmetry of the TOE tensor. In particular, our ap-
roach helps separate the influence of the normal and shear strains
n the symmetry of the perturbed medium.

In the simplest case of a purely isotropic TOE tensor, the perturba-
ion �C� � always has orthorhombic or higher symmetry with the
wo-fold symmetry axes defined by the principal directions of the
train tensor. When the strain is uniaxial, the stiffness perturbation is
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WB86 Fuck and Tsvankin
ransversely isotropic, and the symmetry axis is parallel to the strain
irection. The deformed medium remains isotropic only if an isotro-
ic TOE tensor is combined with volumetric strain �i.e., the strain
ensor has only identical diagonal elements�.

When the TOE tensor is hexagonal �transversely isotropic�, a
niaxial strain applied in the direction of the symmetry axis con-
erves TI symmetry. If the strain tensor is diagonal or a uniaxial
train is confined to the plane orthogonal to the symmetry axis, the
tiffness perturbation becomes orthorhombic. Influence of the off-
iagonal �shear� strains can lower the symmetry of �C� � to mono-
linic or even triclinic.

On the whole, our algebraic procedure significantly facilitates ap-
lication of TOE tensors to analysis of strain-induced velocity per-
urbations. The formalism introduced here is as intuitive as that de-
cribing the strain sensitivity of seismic velocities through closing or
pening of microcracks. Our results should be helpful in modeling
nd inversion of anisotropic velocity fields caused by excess
trains/stresses near salt bodies and compacting hydrocarbon reser-
oirs.
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APPENDIX A

INDEPENDENT ELEMENTS
OF THE TOE TENSOR

We follow Fumi �1951, 1952� and Hearmon �1953� to describe
he independent elements of the third-order elastic tensor for several
ommon symmetry classes. Independent elements cijklmn for a given
lass should remain invariant with respect to rotations around a sym-
etry axis or reflections through a symmetry plane.According to the

efinition of a sixth-rank Cartesian tensor, such invariance implies
hat any independent element cijklmn should satisfy the following set
f equations:

cijklmn�cpqrsuv Rip Rjq Rkr Rls Rmu Rnv�0, �A-1�

here Rij is the unitary matrix describing the transformation of the
ensor cijklmn caused by a coordinate change. Equation A-1 is used be-
ow to identify the set of independent elements for triclinic, mono-
linic, orthorhombic, hexagonal, and isotropic TOE tensors starting
ith the lower symmetries.6

riclinic symmetry

The number N of independent elements C�� � for triclinic media
an be found from the symmetry properties in equation 6 by taking
nto account that each index changes from 1 to 6 �Toupin and Bern-
tein, 1961�:

N��6�3�1

3
��

8!

3!5!
�56. �A-2�

6Helbig �1994� uses the same approach to identify the independent elemen
Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to S
hese 56 independent elements populate six full 6�6 symmetric
atrices �equation 8�.

onoclinic symmetry

For monoclinic media, only a subset of the 56 elements C�� � is in-
ependent. Because monoclinic symmetry has one mirror-symme-
ry plane, the independent elements are the solutions of equation A-1
ritten for a reflection with respect to this plane. Assuming that the

ymmetry plane is horizontal, the matrix Rij in equation A-1 is

R��1 0 0

0 1 0

0 0 �1
� . �A-3�

ubstituting equation A-3 into equation A-1, we find that each of the
6 equations reduces to:

cijklmn� ��1�pcijklmn, �A-4�

here p is the number of times that the index 3 appears in cijklmn.
ence, only elements cijklmn with an even number of indices 3 satisfy

quation A-4. The nonzero elements C�� � for monoclinic symmetry
ith a horizontal symmetry plane are listed in equations 9 and 10.

rthorhombic symmetry

Orthorhombic models are characterized by three orthogonal sym-
etry planes or, alternatively, by three orthogonal two-fold symme-

ry axes. To identify the independent elements C�� � , one can start
ith the monoclinic TOE tensor analyzed above and require invari-

nce for reflection with respect to both vertical planes � �x1, x3� or
x2, x3� �. For example, the matrix Rij for reflection with respect to the
x1, x3�-plane is

R��1 0 0

0 �1 0

0 0 1
� . �A-5�

ubstitution of equation A-5 into equation A-1 yields 32 equations
one for each independent element of the monoclinic tensor cijklmn�.
hese equations have the form of expression A-4, but the exponent p
ow stands for the number of times the index 2 appears in cijklmn.
herefore, the independent elements C�� � for orthorhombic sym-
etry should have an even number of indices 2 and 3. A similar pro-

edure is applied to reflection with respect to the �x2, x3�-plane. The
esulting matrix C�� � , given in equations 11–14, has 20 independent
lements.

exagonal symmetry

To find out which components of the hexagonal tensor cijklmn are
ndependent, we require that the elements cijklmn for orthorhombic

edia remain invariant with respect to rotation by � �2� /3 around

E tensors.
EG license or copyright; see Terms of Use at http://segdl.org/
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Symmetry of a stressed medium WB87
he axis x3. The corresponding rotation matrix can be written as
Goldstein, 1980�

R�� cos� sin� 0

�sin� cos� 0

0 0 1
� . �A-6�

ecause matrix R has nonzero off-diagonal elements, equations A-1
o longer reduce to a simple form similar to that of equation A-4. In-
tead, one needs to solve systems of equations that relate certain
roups of nonzero elements C�� � . These systems can be obtained by
ransposing equations A-1–A-10 of Hearmon �1953�.7

From equations A-1, A-3, and A-5–A-7 of Hearmon �1953�, one
an deduce the constraints given in equations 15–23 above. Finally,
e note that for any rotation around the x3-axis, C333 always remains

he same. Hence, it is the tenth �and last� independent element of the
exagonal TOE tensor.

sotropy

Asimple way of making the TOE tensor isotropic is to require that
he 10 independent elements of the hexagonal tensor remain un-
hanged for arbitrary rotation around any axis. For example, cijklmn

hould stay the same when we interchange any two indices. Hence,

C111�C222�C333; �A-7�

C112�C133�C223�C113�C122�C233; �A-8�

C144�C255�C366; �A-9�

C155�C266�C344�C166�C244�C355; �A-10�

aking into consideration the constraints in equations 15–23, the
dentities in equations A-7–A-10 also imply that

C112�C123�2C144, �A-11�

C111�C123�6C144�8C456. �A-12�

herefore, the isotropic TOE tensor is completely defined by three
ndependent constants �C123, C144, and C456�, as shown in several pub-
ications �e.g., Barsch and Chang, 1968�. The matrix representation
f the isotropic TOE tensor is given in equations 28–34.
7This transposition is necessary because in our notation C112�c111122, as in Fumi �1
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