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Analysis of the symmetry of a stressed medium using nonlinear elasticity

Rodrigo Felicio Fuck' and llya Tsvankin?

ABSTRACT

Velocity variations caused by subsurface stress changes
play an important role in monitoring compacting reservoirs
and in several other applications of seismic methods. A gener-
al way to describe stress- or strain-induced velocity fields is
by employing the theory of nonlinear elasticity, which oper-
ates with third-order elastic (TOE) tensors. These sixth-rank
strain-sensitivity tensors, however, are difficult to manipu-
late because of the large number of terms involved in the al-
gebraic operations. Thus, even evaluation of the anisotropic
symmetry of a medium under stress/strain proves to be a
challenging task. We employ a matrix representation of TOE
tensors that allows computation of strain-related stiffness
perturbations from a linear combination of 6 X 6 matrices
scaled by the components of the strain tensor. In addition to
streamlining the numerical algorithm, this approach helps to
predict strain-induced symmetry using relatively straightfor-
ward algebraic considerations. For example, our analysis
shows that a transversely isotropic (TI) medium acquires
orthorhombic symmetry if one of the principal directions of
the strain tensor is aligned with the symmetry axis. Other-
wise, the strained TI medium can become monoclinic or even
triclinic.

INTRODUCTION

Monitoring subsurface stress/strain fields and their time-lapse
variations is an important research area with applications in velocity
model building (e.g., Sengupta and Bachrach, 2008) and reservoir
geophysics (e.g., Fuck et al., 2009). For example, the pore-pressure
drop due to hydrocarbon production leads to reservoir compaction,
which produces excess stress and strain not only in the reservoir it-
self, but also in the surrounding rock mass.

Seismic velocities can help monitor subsurface stress and strain

fields because numerous laboratory experiments have demonstrated
that the stiffness tensor changes under stress/strain (Eberhart-Phil-
lips etal., 1989; Prasad and Manghnani, 1997). In the elastic regime,
stress stiffens grain contacts and closes fractures, making rocks
more rigid and increasing P- and S-wave velocities. Therefore, some
theoretical models describe the stress/strain sensitivity of seismic
velocities through the stiffening of grain contacts (e.g., Gassman and
Hertz-Mindlin models discussed in Mavko et al., 1998) while others
relate the velocity variation to closing (or opening) of microcracks
(e.g., Mavkoetal., 1995; Sayers, 2006).

An alternative approach that has been successtully applied to this
problem is based on the nonlinear theory of elasticity (e.g., Sinha and
Kostek, 1996; Winkler et al., 1998; Sinha and Plona, 2001). In con-
trast to Hertz-Mindlin theory, it employs a Taylor series expansion
that yields the full elastic tensor of the strained medium (Thurston,
1974, p.276). Unlike fracture-based models, nonlinear elasticity op-
erates not with the fracture orientations and compliances, but with a
third-order elastic (TOE) tensor responsible for the strain sensitivity
of the rock mass.

We start by reviewing the nonlinear theory of elasticity and appli-
cation of TOE tensors to model stress- or strain-induced velocity
changes. Then we use Voigt notation to represent TOE tensors as
6 X 6 X 6 matrices and analyze the structure of these matrices for
several common symmetry classes. This matrix representation natu-
rally leads to an algebraic method to predict the anisotropic symme-
try of the strained medium from the symmetry of the TOE tensor and
the structure of the strain tensor. We use the proposed method to
study the symmetry of a wide range of velocity models obtained by
combining triclinic, monoclinic, orthorhombic, hexagonal, and iso-
tropic TOE tensors with several types of the strain tensor.

PHYSICAL MEANING OF TOE TENSORS

The nonlinear theory of elasticity (e.g., Thurston, 1974; Prioul et
al., 2004), provides a general way to model strain-induced velocity
changes. The effective stiffness coefficients c¢;;, (each index runs
from 1 to 3) of a medium under stress/strain can be expressed in
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terms of the stiffnesses (c7;,) of the undeformed medium and the ap-
plied strains (Ae;;) and stresses (As;; = cf-jk,Aek,):3

Cijet = Cijpg F CijkimnDenn + Aspdjy + Aey, + ¢jpiliey,

(1)

where the summation convention over repeated indices is implied,
and & is Kronecker’s symbol. The elements c¢;j,,, form the TOE
tensor, which appears in the Taylor series expansion of the strain-en-
ergy function W:

Cijpk

1
R 1 I 4
W=W"+sje;+ 5 Ciin€ij ki + ¢ Ciiktmn €1} €Ki €mn + 0(e;)).

()

Because of the structure of the third, fourth, and fifth terms on the
right-hand side of equation 1, the effective coefficients c;;, lose some
of the symmetries of an elastic stiffness tensor (e.g., ¢1313 % C3131)-
Nevertheless, ultrasonic experiments in rocks have shown that typi-
cally As;; < ¢;ju < ¢ijumn (Johnson and Rasolofosaon, 1996; Prioul et
al., 2004), so the largest perturbation term in equation 1 is the one
that contains the tensor ¢;jy,,,. Therefore, equation 1 can be simpli-
fied to

Cijkt = Cijpr + Cijkimn Aen = Cijg + Acjpy. (3)
The symmetry properties of the effective stiffness tensor ¢y in
equation 3 (¢, = Cjiy = ¢y = Cyj) coincide with those of the stiff-
ness tensor for undeformed media. According to approximation 3,
the symmetry of the tensor ¢, depends on symmetries of the back-
ground medium (cj;,) and the TOE tensor ¢, as well as on the
structure of the strain tensor Ae,,,..

The large number of terms in equation 3 obscures the influence of
the TOE and strain tensors on the stiffness perturbation Ac;j,. To fa-
cilitate analysis of strain-induced anisotropy, below we use a matrix
representation of the main symmetry groups of the TOE tensor and
recast equation 3 as a matrix-vector expression.

SYMMETRY OF THE TOE TENSOR

By analogy with the geometric symmetry of crystals, elastic ten-
sors can be classified into different symmetry groups in accordance
with the invariance of their components with respect to certain rota-
tions of the coordinate frame (e.g., Helbig, 1994). Because of the
symmetry of the strain and stress tensors, the coefficients c;j,, are
invariant with respect to the permutation of indices i and j, k and /,
and m and n. Hence, TOE tensors can be represented using Voigt no-
tation, which maps every pair of indices ij into a single index « vary-
ing from 1 to 6:

a=id;+©O—i— -3y, (4)
which yields

11—>1; 22—2; 33—3.

12—6; 13—5; 23+—4. (5)
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In addition, because the strain-energy function W is invariant with
respect to coordinate transformations, the coefficients ¢;j,,, remain
the same if pairs ij, k/, and mn are interchanged. In Voigt notation,
these symmetries can be succinctly written as

Capy = Cpya = Cypa= Cpay- (6)

Application of Voigt notation to second-order elastic (SOE) tensors
c;u helps replace them by symmetric 6 X 6 matrices (e.g., Helbig,
1994). Likewise, TOE tensors expressed in Voigt notation are repre-
sented by 6 X 6 X 6 matrices or a six-element vector composed of
6 X 6 matrices:

_ T
Cagy) = (Ci(gy)Cap7C3(87)Caigy»Cs(p7)Cotar)
(7)

Fumi (1951, 1952) and Hearmon (1953) describe the linearly in-
dependent elements of the TOE tensor for all possible symmetry
classes. Here, we use their results to construct the matrix representa-
tion for several symmetries relevant in the context of exploration
geophysics. We proceed from the lowest possible symmetry (triclin-
ic), which is characterized by the absence of any symmetry elements
(i.e., symmetry axes or planes), to the isotropic tensor, which is in-
variant with respect to any coordinate transformation. A more de-
tailed analysis of the matrices C,z., for various symmetry classes can
be found in Appendix A.

aBy

Triclinic symmetry

Although the triclinic TOE tensor contains no symmetry ele-
ments, only 56 out of a total of 3¢ = 729 elements are independent
(equation 6). All six matrices that form the vector C,(4,) in equation
7 are symmetric because the indices 8 and y can be interchanged:

Cait Caiz Caiz Cas Cats Cate
Carz Cam Cazz Cana Cazs Cang
Catp = Caiz Cazz Cazz Caza Cazs Case
Cats Caos Cuazs Cass Cass Cass
Cats Cazs Caszs Cass Cass Case
Cats Caz Cazs Cass Case Cass

(8)
a=12...6.

Monoclinic symmetry

The matrix representation of monoclinic TOE tensors can be de-
rived from equation 8 by defining either a plane of mirror symmetry
or a two-fold symmetry axis (Winterstein, 1990).* The independent
elements C,gz, are invariant with respect to rotation by 6 ==
around the symmetry axis; the same set of independent C,z, can be
obtained by using a symmetry plane perpendicular to this axis. If the
horizontal plane [x;,x,] is the plane of symmetry, the monoclinic
TOE matrices for @ = 1,2, 3, and 6 have the following form (Appen-
dix A):

3Equation 1 is derived from the wave equation (Thurston, 1974), assuming that strains are measured from the undeformed state, because we wish to measure the
velocity changes caused by deformation. Of course, strains could be measured in relation to other set of coordinates, for example, those describing the material
points after the deformation. That would cause equation 1 to be slightly different (e.g., Sinha, 1982).
Adirection is called a k-fold symmetry axis when a tensor is invariant with respect to rotations by # = 2/ k around it (Helbig, 1994).
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Catt Caiz Caiz O 0 Cas 0 0 0 Cu O 0
Catn Caxr Cao3 0 0 Cax 0 0 0 Cuy O 0
c _ | Cars Cazs Cazz 0 0 Cas c | 0 0 0 Gy 0 0
L0 00 0 Caw Cas 0| W Claa G Ce 0 0 0]
0 0 0 Cus Cups O 0 0 0 0 0 Cyuse
Cats Cazs Cazs O 0 Caes 0 0 0 0 Cu6 O
) (12)
Whena =4 or?5, 0 0 0 0 c 0
155
00 s R
355
0 0 0 Cay Cas O Csgy) = 0 0 0 0 0 Cus |
0 0 0 Cazq Ca3s O
Capy) = ‘ Ciss Cps5 C 0 0 0
) Cats Cans Coza 0 0 Cass (1)55 (2)55 855 c o 0
CalS Ca25 Ca35 0 0 Ca56 456
0 0 0 Cug Cuss O (19
(10) and
Interestingly, the matrices described by equation 9 have the same
> . . 0 0 0 0 0 Cig
structure (i.e., the same nonzero elements) as the matrix representing
the monoclinic SOE tensor (e.g., Helbig, 1994). The matrices in 0 0 0 0 0 Cu
equation 10, however, contain nonzero elements in place of the van- c _ 0 0 0 0 0 Csee
ishing elements in equation 9. According to equations 9 and 10, the 6(8y) 0 0 0 0 Cu O
:otél r;t;mber of independent elements C,,, for monoclinic symme- 0 0 0 Ciue O 0
ry is 32.
Ciss Ca6 C36 0 0 0
(14)

Orthorhombic symmetry

Orthorhombic symmetry is characterized by three orthogonal
two-fold symmetry axes, or correspondingly, by three orthogonal
mirror-symmetry planes (Helbig, 1994). Because orthorhombic
symmetry is a special case of the monoclinic model, the matrix rep-
resentation of the orthorhombic TOE tensor can be obtained from
equations 9 and 10 by requiring invariance with respect to rotations
by 6 = m around the x,- and x,-axes. These constraints reduce the
number of independent elements to 20, and when @ = 1,2, and 3, the
orthorhombic matrices C,g, can be written as (see Appendix A)

Catt Carz Coz 0 0 0
Catn Caxp Cao3 0 0 0
Catz3 Cazz Cazz 0 0 0
Crn=l 0 0 0 Cu 0 0
0 0 0 0 Cu 0
0 0 0 0 0 Cu

(11)

Fora =4,5,and 6,

As was the case for monoclinic symmetry, the matrices C )
with @ = 1, 2, and 3 have the same structure (i.e., the same nonzero
elements) as the orthorhombic SOE matrix.

Hexagonal symmetry

According to Hearmon (1953), there are two types of TOE tensors
with hexagonal symmetry. The first type is defined by a six-fold
symmetry axis perpendicular to a mirror-symmetry plane. The sec-
ond (higher symmetry) type is obtained from the orthorhombic mod-
el by introducing a six-fold symmetry axis perpendicular to one of
the three orthogonal symmetry planes. Hereafter, we consider only
TOE tensors of the second type.

The independent elements C,gz, for type two hexagonal symme-
try can be found by requiring that the matrix elements in equations
11-14 remain invariant with respect to a 27r/3 rotation around the
sixfold symmetry axis, here assumed to point in the x;-direction
(more details are given in Appendix A). Note that if a certain element
is invariant with respect to rotations of both = 7 (which is the case
for the orthorhombic TOE tensor) and 6 = 27/3 around the same
axis, then it is also invariant with respect to rotations of § = 27/6
= /3.

Except for the matrix Csg,), all the other matrices representing the
TOE tensor with hexagonal symmetry have the same structure as
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those in equations 11-14. For hexagonal symmetry, however, the
number of independent elements reduces to ten. The additional con-
straints are as follows:

Ci12= Ci11 = Cie6 = 3Coss; (15)
Cina = Ci11 = 2C 66 — 2Co¢6 (16)
Cop = Cp1 + Cre6 — Cagss (17)
Cyz=Ci3;5 (18)
Coa3 = Ciz3; (19)
Ci3 = C13 = 2C366; (20)
Corag = Cys5 = Ciag + 2Cys6; (21)
Coss = Cras; (22)
and
Ci55 = C3ys.. (23)

Equations 15-23 include nine independent elements of the TOE ten-
sor; the tenth independent element is C;33. Despite these constraints,
Ci(gy) and Cyg,) still retain the structure of the SOE matrix with
orthorhombic symmetry. The matrix Csg,), on the other hand, has
the VTI (transversely isotropic with a vertical symmetry axis) form:

Ciz Ciiz3 Ciz3 0 0 0
Cis Ciz Gz 0 0 0
| Cisz Ciz3 Gz 0 0 0
Capy) =
0 0 0 Cyy O 0
0 0 0 0 Ciy O
0 0 0 0 0 Csg
(24)
Thus, C;4,) does not have the same structure as Cy(g,) and Cyz,), as
was the case for the lower symmetries. It should be emphasized that
in contrast to hexagonal SOE tensors, TOE tensors considered here
are not “transversely isotropic” in the sense that they are not invari-
ant with respect to arbitrary rotations around the six-fold symmetry
axis.
A similar pattern of matrix structures holds for & = 4,5, and 6. Al-
though Cgs,) has the form described by equation 14, constraints

21-23 show that Cyg,) in equation 12 and Csg,) in equation 13 can
be obtained from each other by permutation of columns and rows:

Cspy) = RiCyp Ry, (25)

(PO
RI_( 0P, ) (26)

Here, 0 is a 3 X 3 matrix of zeros and P, is a permutation matrix that

where

Fuck and Tsvankin

interchanges the first and second columns or rows of any 3 X 3 ma-
trix:

(27)

=
I
S = O
[ e
- O O

Isotropic TOE

The isotropic TOE tensor is described by three linearly indepen-
dent elements (e.g., Barsch and Chang, 1968), here chosen to be
C\23, Cias, and Cys6 (see Appendix A). The complete C, 5, matrix for
isotropic media can be expressed through just two matrices, C )
and Cyg,):

Cit Ciip Cip 00 O

Ciz Cip Cip3 0 0 0

Cuigy = Cip Ci3 Cip 00 0
0 0 0 Cau 0 0

0 0 0 0 Cu 0

0 0 0 0 0 Ciss

(28)
and
O 0 0 Cu 0 O
0 0 0 Cs 0 0
0 0 0 Css 0 0
=l C Cis Ciss 0 00 |
144 Ciss Ciss
0 0 0 0 0 Cu
0 0 0 0 Cg O
(29)
where (Thurston and Brugger, 1964)
Ci11 = Cra3 + 6C 44 + 8Cys6, (30)
Cii=Cia3 +2C 44, (31)
and
Ciss = Craq + 2Cys6.- (32)

The remaining matrices can be obtained from the following permu-
tations:

Copy) =R CigyRi, Cipy) =Ry Ci(gy) Ry, (33)

and
Csigy) = RiCygy)Ri, Copy) =Ry CypyRy. (34)

The matrix R, has the same block structure as R, from equation 26,
but with P, substituted by P,, a matrix that interchanges the first and
third rows or columns of 3 X 3 matrices:

SThese constraints are obtained from the scheme of Fumi (1952), as discussed in Appendix A.
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SYMMETRY OF THE DEFORMED MEDIUM

The matrix representation of the TOE tensor helps devise an alge-
braic procedure to evaluate the symmetry of a medium under stress/
strain. Using Voigt notation, equation 3 can be expressed in terms of
the TOE matrix C,z,:

Cp

y = C,By + Coz,B‘yAEa’ (36)

where the vector AE, = (ey1,e1,633,2¢2,2€13,2¢1,) T is obtained
from the symmetric strain tensor Ae,,, by applying Voigt notation.
Hereafter, the strain tensor with vanishing off-diagonal components
AE,, AEs, and AEg will be called diagonal. If the elements AE |, AE,,
and AE; of a diagonal strain tensor are equal, such a tensor represents
volumetric strain change (Fuck et al., 2009).

Each perturbation stiffness element ACg, = C,g5,AE, in equa-
tion 36 is obtained as a linear combination of the elements C,,)
scaled by the components of the vector AE,,. Because of the signifi-
cant difference in the structure of the matrices Cyg,) for @ = 1,2,3
and
a =4,5,6, it is possible to separate the contributions of the normal
(diagonal) and shear (off-diagonal) strain components in equation
36. Next, we analyze the symmetry of the perturbation matrix AC,»
using the results of the previous section. The structure of the result-
ing stiffness matrix Cg, is defined by the stiffnesses of the unde-
formed medium and the nonzero elements of ACg,,.

Isotropic TOE tensor

When the TOE tensor is isotropic, the symmetry of the matrix
AC, is entirely controlled by the structure of the strain tensor. This
can be proved by substituting the matrix representation of the isotro-
pic TOE tensor into equation 36.

For a volumetric strain change (AE, = AE, = AE;; AE, = AE;
= AE¢=0), the term C,z, AE, reduces to the sum of the matrix
C\ (g from equation 28 and its two permutations, Cyg,) and Csg),
multiplied by the normal strain AE,. The resulting tensor AC, is
isotropic:

AC| | =ACy»=AC3;3=(Cyy; +2C ) AE;, (37)

ACyy = ACs5=ACq6 = (Ciys + 2C155) AE;,  (38)
and
AC]Z = AC13 = AC23 = AC” - 2AC44
= (Cip3 +2Cyyy) AE;. (39)

This confirms our expectation that any object undergoing volumet-
ric change will remain just a scaled version of itself by conserving its
original shape or symmetry.

If the applied strain is uniaxial, then the stiffness perturbation
from equation 36 is transversely isotropic (TT). For example, the ver-
tical strain AE; yields the tensor AC,,z with VTI symmetry:

ACy; =ACy, = Cyy, AE3; (40)

wBa83
ACy; = Cyyy AE3; (41)
AC4y = ACss = C55 AE5; (42)
ACes = Ci44 AE3; (43)
ACj; =AC,; = 2ACq = Cip3 AE3; (44)
and
AC;3=ACy = C, 1, AE;. (45)

When the strain tensor is diagonal, each matrix C,g,)
(a = 1,2,3) is multiplied with a different normal strain component,
which results in the stiffness perturbation that has orthorhombic
symmetry:

AC,, ACy,, AC;3 O 0

0 0 0 ACy O

0 0 0 0 ACss O

0 0 0 0 0 ACk

ACaﬁ =

o O O O

(46)

Furthermore, if the TOE tensor is isotropic, the symmetry of AC, 4
is always orthorhombic or higher, with the principal directions of the
strain tensor defining the two-fold symmetry axes of the deformed
medium. For example, a nonzero component AE, causes a rotation
of the principal directions of the strain tensor around the x;-axis of
the Cartesian coordinate system. In addition to Cy(g,), Cy(,), and
Cs (g the stiffness perturbation for AE¢ # 0 also depends on the ma-
trix Cy(g,) (equation 36):

AC, AC, AC;; 0 0 ACy
AC;, ACy ACy; 0 0 ACy
AC,, AC, AC;; 0 0 ACsy
0 0 0 ACy, ACys 0
0 0 0 ACs ACss 0
ACs ACy ACyy 0 0 ACk

ACaﬁ =

(47)

The matrix AC, in equation 47 describes an orthorhombic medi-
um rotated around the x;-axis because AC s, ACys, AC36, and AC;s
are linear combinations of stiffness perturbations in the unrotated
coordinate system. For instance, the element AE; in the coordinate
systemrotated by the angle 6 around the x;-axis is given by

AEg=2Ae, =2(AE, — AE|) sinf cos 0,  (48)

where AE| and AE), denote the components of the strain tensor in the
unrotated coordinate system. Using equation 48, we find that

ACy5 = (AC); — AC|3) sin 6 cos 0, (49)

where AC}; are the components of the perturbation stiffness tensor in
the unrotated coordinate system. Thus, the orientation of the vertical
symmetry planes of the orthorhombic medium described by the ma-
trix AC g is determined by the element AE;.
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Fuck etal. (2009) give a numerical example of the stiffness pertur-
bation AC,z, which has orthorhombic symmetry resulting from
the combination of a purely isotropic TOE tensor and an arbitrary
(nondiagonal) strain tensor. In their model, a pore-pressure drop in-
side a rectangular reservoir embedded in a homogeneous isotropic
host rock induces stress/strain changes throughout the medium
(Figure 1). The spatially varying stiffness perturbations caused by
the excess stress/strain field are computed from equation 36. As il-
lustrated by Figure 2, the compaction-related strain makes the reser-
voir and surrounding medium both heterogeneous and anisotropic.
In the vertical symmetry plane [ x,,x;] shown in Figures 1 and 2, the
perturbation matrix AC,; corresponds to a transversely isotropic
medium with elliptical P-wave anisotropy (i.e., Thomsen parame-
ters & and & are equal; Figure 2a). The accumulation of shear stress/
strain near the corners of the reservoir causes a significant tilt of the
symmetry axis from the vertical (Figure 2b).

Hexagonal TOE tensor

If the six-fold symmetry axis is parallel to the x;-direction, the ma-
trix Cs(g,) of the hexagonal TOE tensor has VTI symmetry, whereas
Ci(gy and Cyg,, are orthorhombic (equations 11 and 24). There-

AU33

B
3
<
°
[
[a]
(MPa)
-3 -2 -1 0 1 2 3
Distance (km)
Aals
B
=3
<
=
[]
[a]

(MPa)

-3 -2 -1 0 1 2 3

Distance (km)
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fore, a uniaxial strain applied in the symmetry-axis direction (i.e.,
AE;#0) yields a stiffness perturbation with VTI symmetry. If a
uniaxial strain is parallel to the x,- or x,-axis, the stiffness perturba-
tion inherits the orthorhombic symmetry of either the C g, or the
C,(5,) matrix. Furthermore, any diagonal strain tensor also produces
AC, with orthorhombic symmetry.

Volumetric strain (AE, = AE, = AE;) leads to VTI symmetry of
the matrix AC,z, because summation of the matrices Cyg,), Cag,)
and C;g,) results in the well-known VTT relationships:

AC, =ACy, = (2C111 — Cig6 — 3Co66 + C113) AE,,
(50)

AC;, =AC|; —2ACe = (Ci1p+ Cipp + Ci23) AE,
(51)

ACi3=ACy;=(Ci;3+ Cin3+ Ci33) AE;,  (52)

and

0.2

-0.2
(MPa)
-3 -2 -1 0 1 2 3
Distance (km)
Ae n
0
0
1
-2
I
2
-4
x1 0_5
3
-3 -2 -1 0 1 2 3

Distance (km)

Figure 1. Two-dimensional stress and strain changes arising from a drop of 5 MPa in pore pressure inside a compacting rectangular reservoir
(after Fuck et al., 2009). The top row shows the normal deviatoric stresses, Ao 3 is the shear deviatoric stress, and Aey, is the trace
of the strain tensor. Negative values imply compression for stress and contraction (shortening) for strain. Inside the reservoir, the maximum
stresses are Ao33 = — 2.2 MPaand Ao, = 1.7 MPa, whereas the volumetric change is constant: Aey, = — 4.6 X 10~%. The plots were clipped

for better visualization.
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Figure 2. Anisotropy parameters and the symmetry-axis orientation of the strain-induced TI medium for the reservoir model from Figure 1 (after
Fuck etal., 2009). (a) Anisotropy parameter § = ¢ (scale is clipped); (b) contours of the angle between the symmetry axis and the vertical (posi-
tive angles correspond to clockwise axis rotation) near the right edge of the reservoir (gray rectangle). Inside the reservoir 8 = — 0.18, whereas
the tilt of the symmetry axis at the reservoir corners (where the shear strains become infinite) approaches +45° (for more details, see Fuck et al.,

2009).

ACy=ACss = (Ciyy+ Cis5+ Caag) AE;. (53)
If the only nonvanishing shear strain is AE; = 2Ae,, the matrix
AC, still has orthorhombic symmetry, but its vertical symmetry
planes are rotated with respect to the axes x; and x,. This can be veri-
fied by showing that the elements AC,s and ACs (i = 1,2,3) are not
linearly independent (e.g., equation 49 remains valid). The presence
of nonzero shear strains defined in planes that are not perpendicular
to the sixfold symmetry axis of the TOE tensor lowers the symmetry
of the stiffness perturbation. For instance, when AEs#0 (AE,
= AE¢ = 0), AC,sno longer represents a linear combination of ACg
and AC,, because

ACu5# (ACg — ACyy) sin 0 cos 6. (54)
Then the symmetry of the perturbation AC,; becomes monoclinic
with the [ x,, x;] symmetry plane. Similarly, if AE, is the only nonze-
ro strain element, the perturbation stiffness tensor is also monoclin-
ic, but the symmetry plane is [ x,, x3]. If both AE, and AE are nonze-
ro, the perturbation AC, has triclinic symmetry.

Lower TOE symmetries

The summation in equation 36 produces the stiffness perturbation
that cannot have a higher symmetry than that of the TOE tensor.
‘When the TOE tensor is orthorhombic or monoclinic, the symmetry
of AC,; depends on the structure of the strain tensor only if shear
strains are nonzero. The combination of diagonal strain and the TOE
tensor with orthorhombic or monoclinic symmetry always generates
an orthorhombic or monoclinic stiffness perturbation AC,4, respec-
tively.

When the TOE tensor is orthorhombic, a single nonzero shear-
strain component produces perturbation AC,, with monoclinic
symmetry (equations 12—14). If two or three shear strains are nonze-
ro, the resulting perturbation tensor is triclinic. Likewise, for a mon-
oclinic TOE tensor, any shear strain not defined in the symmetry
plane (i.e., in the plane perpendicular to the two-fold symmetry axis)

produces a triclinic perturbation AC,s. Therefore, misalignment of
the principal strain directions with the symmetry elements of the
TOE tensor lowers the symmetry of AC 4.

Finally, if the TOE tensor is triclinic (i.e., with no symmetry axes
or planes), the stiffness perturbation always has triclinic symmetry
as well, regardless of the structure of the strain tensor.

Symmetry of the resulting stiffness tensor

The above discussion was focused on the symmetry of the pertur-
bation stiffness matrix ACy, = Cop,AE, in equation 36. Once this
matrix has been obtained, it is straightforward to evaluate the sym-
metry of the effective elastic tensor C,z which describes the medium
after deformation. In principle, the symmetry of the strained medium
should not be higher than that of either C’, 5 0r AC, 5. There might be
situations, however, in which some of the off-diagonal terms in
(o s and AC, cancel out, resulting in the deformed medium with a
higher symmetry than those of the background model and the stiff-
ness perturbation. Although this issue should be studied further, such
strain-induced compensation of intrinsic anisotropy seems unlikely.

CONCLUSIONS

Using the theory of nonlinear elasticity based on third-order elas-
tic (TOE) tensors, we analyzed the symmetry of a medium under
stress/strain. Application of Voigt notation leads to a convenient rep-
resentation of the TOE tensor c¢;j, in terms of a 6 X 6 X 6 matrix
C.p,- Then the strain-induced stiffness perturbation ACy, is ob-
tained by summing 6 X 6 TOE submatrices scaled by the compo-
nents of the strain tensor. This formalism provides a direct way to as-
sess the contribution of each strain component to the stiffness pertur-
bation for a given symmetry of the TOE tensor. In particular, our ap-
proach helps separate the influence of the normal and shear strains
on the symmetry of the perturbed medium.

In the simplest case of a purely isotropic TOE tensor, the perturba-
tion ACy, always has orthorhombic or higher symmetry with the
two-fold symmetry axes defined by the principal directions of the
strain tensor. When the strain is uniaxial, the stiftness perturbation is
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transversely isotropic, and the symmetry axis is parallel to the strain
direction. The deformed medium remains isotropic only if an isotro-
pic TOE tensor is combined with volumetric strain (i.e., the strain
tensor has only identical diagonal elements).

When the TOE tensor is hexagonal (transversely isotropic), a
uniaxial strain applied in the direction of the symmetry axis con-
serves TI symmetry. If the strain tensor is diagonal or a uniaxial
strain is confined to the plane orthogonal to the symmetry axis, the
stiffness perturbation becomes orthorhombic. Influence of the off-
diagonal (shear) strains can lower the symmetry of AC, to mono-
clinic or even triclinic.

On the whole, our algebraic procedure significantly facilitates ap-
plication of TOE tensors to analysis of strain-induced velocity per-
turbations. The formalism introduced here is as intuitive as that de-
scribing the strain sensitivity of seismic velocities through closing or
opening of microcracks. Our results should be helpful in modeling
and inversion of anisotropic velocity fields caused by excess
strains/stresses near salt bodies and compacting hydrocarbon reser-
voirs.
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APPENDIX A

INDEPENDENT ELEMENTS
OF THE TOE TENSOR

We follow Fumi (1951, 1952) and Hearmon (1953) to describe
the independent elements of the third-order elastic tensor for several
common symmetry classes. Independent elements c;j,,, for a given
class should remain invariant with respect to rotations around a sym-
metry axis or reflections through a symmetry plane. According to the
definition of a sixth-rank Cartesian tensor, such invariance implies
that any independent element c;j,,,, should satisfy the following set
of equations:

Cijklmn - CpqrsuvRipquerRlsRmuan = 0’ (A'l)

where R;; is the unitary matrix describing the transformation of the
tensor ¢, caused by a coordinate change. Equation A-1is used be-
low to identify the set of independent elements for triclinic, mono-
clinic, orthorhombic, hexagonal, and isotropic TOE tensors starting
with the lower symmetries.6

Triclinic symmetry

The number N of independent elements C,g,, for triclinic media
can be found from the symmetry properties in equation 6 by taking
into account that each index changes from 1 to 6 (Toupin and Bern-

stein, 1961):
6+3—1 8!
N = =—=156. (A-2)

Fuck and Tsvankin

These 56 independent elements populate six full 6 X 6 symmetric
matrices (equation 8).

Monoclinic symmetry

For monoclinic media, only a subset of the 56 elements C,, is in-
dependent. Because monoclinic symmetry has one mirror-symme-
try plane, the independent elements are the solutions of equation A-1
written for a reflection with respect to this plane. Assuming that the
symmetry plane is horizontal, the matrix R;; in equation A-1 is

0
0 (A-3)

=

Il
[
S = O

-1

Substituting equation A-3 into equation A-1, we find that each of the
56 equations reduces to:

Cijklmn = ( - l)pcijklmn’ (A'4)

where p is the number of times that the index 3 appears in ¢; ;-
Hence, only elements ¢y, with an even number of indices 3 satisfy
equation A-4. The nonzero elements C,z, for monoclinic symmetry
with a horizontal symmetry plane are listed in equations 9 and 10.

Orthorhombic symmetry

Orthorhombic models are characterized by three orthogonal sym-
metry planes or, alternatively, by three orthogonal two-fold symme-
try axes. To identify the independent elements C,z,, one can start
with the monoclinic TOE tensor analyzed above and require invari-
ance for reflection with respect to both vertical planes ([x;,x3] or
[x2,x3]). For example, the matrix R;; for reflection with respect to the
[x1, x3]-plane is

1 0 0
R={0 —1 0]. (A-5)
0 0 1

Substitution of equation A-5 into equation A-1 yields 32 equations
(one for each independent element of the monoclinic tensor ¢;j)-
These equations have the form of expression A-4, but the exponent p
now stands for the number of times the index 2 appears in ¢;jun-
Therefore, the independent elements C,g, for orthorhombic sym-
metry should have an even number of indices 2 and 3. A similar pro-
cedure is applied to reflection with respect to the [x,, x3]-plane. The
resulting matrix C,g,, given in equations 11-14, has 20 independent
elements.

aBys

Hexagonal symmetry

To find out which components of the hexagonal tensor ¢, are
independent, we require that the elements c;j,,, for orthorhombic
media remain invariant with respect to rotation by # = 27r/3 around

6Helbig (1994) uses the same approach to identify the independent elements of SOE tensors.
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the axis x;. The corresponding rotation matrix can be written as
(Goldstein, 1980)

cosf sinf O
R=| —sinf cosé O |. (A-6)
0 0 1

Because matrix R has nonzero off-diagonal elements, equations A-1
no longer reduce to a simple form similar to that of equation A-4. In-
stead, one needs to solve systems of equations that relate certain
groups of nonzero elements C,z,. These systems can be obtained by
transposing equations A-1-A-10 of Hearmon (1953).”

From equations A-1, A-3, and A-5-A-7 of Hearmon (1953), one
can deduce the constraints given in equations 15-23 above. Finally,
we note that for any rotation around the x;-axis, Cs3; always remains
the same. Hence, it is the tenth (and last) independent element of the
hexagonal TOE tensor.

Isotropy

A simple way of making the TOE tensor isotropic is to require that
the 10 independent elements of the hexagonal tensor remain un-
changed for arbitrary rotation around any axis. For example, ¢;jm,
should stay the same when we interchange any two indices. Hence,

Ciip = Cyp = Caa33 (A-7)
Ciin=Ci33=Cp3=Ci;3=Cipn= Cy3; (A_8)
Cias = Crs5 = C3e65 (A-9)

Ciss = Cos6 = C344 = Ci6 = Coas = C3ss} (A-10)

Taking into consideration the constraints in equations 15-23, the
identities in equations A-7—A-10 also imply that

Ciip=Cip3+2C 44, (A-11)

Ci11 = Cip3 + 6C 44 + 8Cys6. (A-12)

Therefore, the isotropic TOE tensor is completely defined by three
independent constants (C |13, C144, and Cysg), as shown in several pub-
lications (e.g., Barsch and Chang, 1968). The matrix representation
of the isotropic TOE tensor is given in equations 28—34.
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