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ole of the inhomogeneity angle in anisotropic attenuation analysis
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ABSTRACT

The inhomogeneity angle �the angle between the real and
imaginary parts of the wave vector� is seldom taken into account
in estimating attenuation coefficients from seismic data. Wave
propagation through the subsurface, however, can result in rela-
tively large inhomogeneity angles � , especially for models with
significant attenuation contrasts across layer boundaries. Here
we study the influence of the angle � on phase and group attenua-
tion in arbitrarily anisotropic media using the first-order pertur-
bation theory verified by exact numerical modeling. Application
of the spectral-ratio method to transmitted or reflected waves
yields the normalized group attenuation coefficient Ag, which is
responsible for amplitude decay along seismic rays. Our analytic
solutions show that for a wide range of inhomogeneity angles,
the coefficient Ag is close to the normalized phase attenuation
coefficient A computed for � �0° ��A�� �0°�. The coefficient
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A�� �0° can be inverted directly for the attenuation-anisotropy
arameters, so no knowledge of the inhomogeneity angle is re-
uired for attenuation analysis of seismic data. This conclusion
emains valid even for uncommonly high attenuation with the
uality factor Q less than 10 and strong velocity and attenuation
nisotropy. However, the relationship between group and phase
ttenuation coefficients becomes more complicated for relatively
arge inhomogeneity angles approaching so-called ‘‘forbidden
irections.’’ We also demonstrate that the velocity function re-
ains practically independent of attenuation for a wide range

f small and moderate angles � . In principle, estimation of the
ttenuation-anisotropy parameters from the coefficient �A�� �0°

equires computation of the phase angle, which depends
n the anisotropic velocity field. For moderately anisotropic
odels, however, the difference between the phase and group

irections should not significantly distort the results of attenua-
ion analysis.
INTRODUCTION

In attenuative media, the direction of maximum attenuation of a
lane wave can differ from the propagation direction. This implies
hat the real part of wave vector kR �propagation vector� deviates
rom the imaginary part kI �attenuation vector�, as illustrated in Fig-
re 1. The angle between the vectors kR and kI is called the inhomo-
eneity angle, denoted here by � . When � �0°, the plane wave is of-
en characterized as ‘‘homogeneous;’’ when � �0°, it is called ‘‘in-
omogeneous.’’For plane-wave propagation, � represents a free pa-
ameter except for certain “forbidden directions” �Krebes and Le,
994; Carcione and Cavallini, 1995; Červený and Pšenčík, 2005a,
�, where solutions of the wave equation do not exist. If the wave-
eld is excited by a point source, the inhomogeneity angle is deter-
ined by the medium properties, including the boundary conditions

Zhu, 2006; Vavryčuk, 2007�.
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Alternatively, the wave vector in attenuative media can be param-
terized in terms of the inhomogeneity parameter D �Boulanger and
ayes, 1993; Declercq et al., 2005; Červený and Pšenčík, 2005a�:

k����n� i D m�, �1�
uch that

m ·n�0, �2�
here D is real, whereas � is complex. The vector n specifies the di-

ection of wave propagation and the vector m is orthogonal to it. The
ain advantage of this parameterization is that it eliminates forbid-

en directions from the solutions of the Christoffel equation �Čer-
ený and Pšenčík, 2005a�.

Many results on attenuation analysis are obtained under the as-
umption that the inhomogeneity angle can be ignored �Hauge,
981; Dasgupta and Clark, 1998; Zhu et al., 2007�. For point-source
adiation in homogeneous media, the influence of the inhomogene-
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WB178 Behura and Tsvankin
ty angle is indeed small, unless the medium is anomalously attenua-
ive and anisotropic �Zhu, 2006; Vavryčuk, 2007�.

During wave propagation in layered media, however, the angle �
an attain significant values. For the model in Figure 2, the wave
ector in the elastic cap rock is real, whereas that in the attenuative
eservoir is complex. Because the projections of the incident �real�
nd transmitted �complex� wave vectors onto the interface must be
he same according to Snell’s law, the imaginary part kI of the wave
ector in the reservoir is orthogonal to the interface. This implies that
he inhomogeneity angle of the transmitted wave is equal to the
ransmission angle, which can reach 90°. It is also clear that the inho-

ogeneity angle of the wave reflected from the base of the reservoir
an be large as well. This situation, for example, is always encoun-
ered in soft absorbing sediments beneath the ocean bottom.

Existing measurements of the inhomogeneity angle are limited to
aboratory studies �Deschamps and Assouline, 2000; Huang et al.,
994�. Indeed, although the angle � can be significant, its estimation
rom seismic data is extremely difficult. It seems natural to expect
hat the inhomogeneity angle should influence attenuation along the
aypath �group attenuation�, which is the only relevant attenuation
easurement in seismic processing.
Attenuation analysis becomes particularly involved in anisotropic
edia where the ray might deviate significantly from both the phase

irection and the direction of maximum attenuation. When the medi-
m is anisotropic, the relationship between the angle � and the atten-
ation coefficients is obscured by the complexity of the exact equa-

kR
k I

igure 1. Plane wave with a nonzero inhomogeneity angle � . The
ave propagates in the direction kR �perpendicular to the planes of

onstant phase� and attenuates most rapidly in the direction kI.

kR

kI

kI, refl

kR, reflT

T

igure 2. Illustration of the reflection/transmission problem at the in-
erface between a purely elastic cap rock and an attenuative reser-
oir. The real and imaginary parts of the wave vector of the transmit-
ed wave are kR and kI, and kR,refl and kI,refl correspond to the reflected
ave. As discussed in the text, the inhomogeneity angle � of the

ransmitted wave is equal to transmission angle � .
T
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ions. It can be inferred from the results of Gajewski and Pšenčík
1992� that in weakly attenuative media, the group attenuation coef-
cient yields the quality factor of the medium. Numerical modeling
y Deschamps and Assouline �2000� also shows that group attenua-
ion reflects the intrinsic viscoelasticity of the material. The analytic
esults of Vavryčuk �2008� and Červený and Pšenčík �2008a� indi-
ate that group attenuation is insensitive to the inhomogeneity pa-
ameter. However, their asymptotic analysis is valid only for weak
ttenuation and plane waves with small values of the inhomogeneity
arameter D.

Here we use first-order perturbation theory to study the influence
f the inhomogeneity angle on group and phase attenuation coeffi-
ients. By perturbing an isotropic attenuative background, we obtain
weakly anisotropic medium with angular dependence of both ve-

ocity and attenuation. In contrast to the methodology of Červený
nd Pšenčík �2008a� and Vavryčuk �2008�, our approach allows for
rbitrarily large attenuation and strongly inhomogeneous waves.
herefore, this perturbation scheme helps us analyze wave propaga-

ion for a wide range of angles � including the vicinity of forbidden
irections. First, we develop closed-form linearized expressions for
roup and phase attenuation in arbitrarily anisotropic media, which
rovide useful physical insight into the influence of the angle � .
hen the general equations are simplified for the special case of TI
edia by expressing them through Thomsen-style anisotropy pa-

ameters. Finally, we corroborate the conclusions drawn from the
nalytic expressions by exact numerical modeling.

PHASE AND GROUP ATTENUATION
COEFFICIENTS

The Christoffel equation, which describes plane-wave propaga-
ion in anisotropic media, can be solved for the real �k R� and imagi-
ary �k I� parts of the wave vector. The ratio k I /k R yields the phase
ttenuation per wavelength, which is called the normalized phase-at-
enuation coefficient A �Zhu and Tsvankin, 2006�:

A�
k I

k R . �3�

For a nonzero inhomogeneity angle � , the coefficient A is a mea-
ure of attenuation along the vector kI rather than kR.Also, in seismic
ata processing, attenuation is measured along the raypath, which
eviates from the phase direction kR when the medium is anisotrop-
c.

Typically, attenuation is computed from seismic data using the
pectral-ratio method �e.g., Johnston and Toksöz, 1981; Tonn,
991�, which has been extended to anisotropic media �Zhu et al.,
007�. If two receivers record the same event at two different loca-
ions along a raypath, the attenuation coefficient can be estimated
rom the ratio S of the measured amplitude spectra:

lnS� lnG�k g
I l, �4�

here G contains the reflection/transmission coefficients, source/re-
eiver radiation patterns, and geometrical spreading along the ray-
ath, k g

I is the average group attenuation coefficient, and l is the dis-
ance between the two receivers. Assuming that the medium be-
ween the receivers is homogeneous, equation 4 can be rewritten in
erms of the group velocity V and traveltime t:
g

EG license or copyright; see Terms of Use at http://segdl.org/
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Analysis of inhomogeneity angle WB179
lnS� lnG�k g
I Vg t,

�lnG��Ag t, �5�

here � is the angular frequency and Ag�k g
I /k g

R�k g
I / �� /Vg� is

he normalized group attenuation coefficient. It follows from equa-
ion 5 that by estimating the slope of lnS expressed as a function of
, we can compute the group attenuation along the raypath, if the

raveltime t is known. Therefore, Ag is the measure of attenuation
btained from seismic data.

If the medium is anisotropic �or isotropic, but the inhomogeneity
ngle is large, as discussed below�, the group-velocity vector Vg de-
iates from the phase direction parallel to kR. To simplify the analyt-
c development, we choose a coordinate frame in which kR coincides
ith the axis x3 and kI is confined to the �x1, x3�-plane �Figure 3�. The
roup attenuation coefficient k g

I can be found by projecting the phase
ttenuation vector kI onto the group direction:

k g
I �

1

Vg
�kI ·Vg�, �6�

�k I �cos� cos� �sin� sin� cos��, �7�

here � is the angle between kR and Vg �group angle� and � is the
zimuth of Vg with respect to the �x1, x3�-plane �Figure 3�. For isotro-
ic media and symmetry planes in anisotropic media, Vg lies in the
lane formed by vectors kR and kI �i.e., � �0�, and k g

I is given by

k g
I �k I cos�� �� � . �8�

sing equation 7, the normalized group attenuation coefficient Ag

an be represented as

Ag�
k g

I

k g
R

�
k I cos� cos� �1� tan� tan� cos��

� /Vg

. �9�

he group velocity can be obtained from the well-known relation
e.g., Červený and Pšenčík, 2006�

1

�
kR ·Vg�1, �10�

r

�

Vg
�k R cos� . �11�

Substituting equation 11 into equation 9 yields

Ag�
k I

k R cos� �1� tan� tan� cos�� . �12�

quation 12 can be used to compute the exact coefficient Ag for arbi-
rarily anisotropic, attenuative media and any angle � . If the group-
elocity vector is confined to the plane formed by kR and kI �see
bove�, cos� �1 and equation 12 becomes

Ag�
k I

k R

cos�� �� �
cos�

. �13�

or a zero inhomogeneity angle, the coefficient A reduces to
g
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Ag�� �0°��� k I

k R�
� �0°

� �A�� �0°. �14�

quation 14 demonstrates that even for arbitrary anisotropy, the
roup attenuation coefficient coincides with the phase attenuation
oefficient computed for � �0° �Zhu, 2006�. However, it is unclear
ow Ag is related to phase attenuation for a nonzero � and what role
s played by the inhomogeneity angle in the estimation of the attenu-
tion coefficient.

ISOTROPIC MEDIA

To evaluate the influence of the inhomogeneity angle on velocity
nd attenuation in isotropic media, we obtain the real and imaginary
arts of the vector k from the wave equation. The derivation,
iscussed in Appendix A, shows that the solution exists only if
R ·kI � 0, which means that the inhomogeneity angle in isotropic
edia should be smaller than 90° �we assume that � � 0° because

ositive and negative inhomogeneity angles are equivalent in the ab-
ence of anisotropy�. Therefore, the attenuation vector kI cannot de-
iate from kR by 90° or more, and angles � �90° correspond to for-
idden directions. Note that for isotropic nonattenuative media, the
nhomogeneity angle of an evanescent �inhomogeneous� plane wave
s always equal to 90°, which explains the properties of surface and
ongeometric modes �Tsvankin, 2005�.

The squared magnitudes of the vectors kR and kI for � 	 90° �Ap-
endix A� are given by

�k R �2�
�2

2V 2��1�
1

�Q cos� �2 �1	, �15�

nd

�k I �2�
�2

2V 2��1�
1

�Q cos� �2 �1	, �16�

here V��a33
R is the real part of the medium velocity and aij is the

ensity-normalized stiffness tensor. The only approximation used to
erive equations 15 and 16 is that quadratic and higher-order terms
n the inverse quality factor 1 /Q �but not in 1 / �Q cos� �� can be ne-

k I

x 3

x 2

x 1

Vg

Ψξ

φ

kR

igure 3. Plane wave propagating along the coordinate axis x3 in an
nisotropic attenuative medium. The group angle � is the deviation
f the group-velocity vector Vg from the real part kR of the wave vec-
or. The azimuth of the vector Vg with respect to the plane formed by
R and kI is denoted by �.
EG license or copyright; see Terms of Use at http://segdl.org/
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WB180 Behura and Tsvankin
lected compared to unity. Equivalent solutions for kR and kI in iso-
ropic media are given in Červený and Pšenčík �2005a�.

mall and moderate inhomogeneity angles

The dependence of the wave vector on the inhomogeneity angle is
ontrolled by the product �Q cos� �. If the angle � is not close to 90°
nd the medium does not have uncommonly strong attenuation, we
an assume that �Q cos� ��1 and simplify equations 15 and 16 to
seeAppendix A�

k R�
�

V
, �17�

k I�
�

2VQ cos�
. �18�

ccording to equation 17, for �Q cos� ��1 the velocity of wave
ropagation is equal to V and is independent of the inhomogeneity
ngle and of attenuation. Using equations 17 and 18, we find the nor-
alized phase attenuation coefficient A as

180°

135°

90°

45°

0°

–45°

–90°

–135°

0:05
0:1

0:150:2

a)

180°

135°

90°

45°

0°

–45°

–90°

–135°

0:04
0:08

0:12
0:16

b)

igure 4. Exact �a� P-wave and �b� S-wave coefficient �A�� �0° �equa-
ion 3, gray curve� and the normalized group attenuation Ag �equa-
ion 12, black curve� in isotropic media as a function of the inhomo-
eneity angle � �numbers on the perimeter�. The quality factors are

�Q �5.
P S
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A�
k I

k R �
1

2Q cos�
. �19�

In general, the inhomogeneity angle also changes the group veloc-
ty and group angle. For �Q cos� ��1, however, the influence of � is
egligible �Appendix A�:

tan� �
tan�

1�2Q2 �1, �20�

nd Vg 
V. The normalized group attenuation coefficient Ag �equa-
ion 12� then becomes

Ag�
k I cos�

k R . �21�

If the wave vector is described by equations 17 and 18, equation
1 yields

Ag�
1

2Q
� �A�� �0°. �22�

herefore, for a wide range of common inhomogeneity angles, the
roup attenuation coefficient Ag does not depend on the angle � and
s close to the phase attenuation coefficient A computed for � �0°.
ater we demonstrate that this result remains valid for much more
omplicated models with anisotropic velocity and attenuation func-
ions. Equation 22 also shows that seismic attenuation measure-

ents �i.e., the coefficient Ag� for isotropic media provide a direct
stimate of the quality factor Q. This conclusion applies to both P-
nd S-waves and a wide range of angles � �Figure 4�.

arge inhomogeneity angles

For large inhomogeneity angles approaching 90°, the assumption
Q cos� ��1, used to derive equations 17 and 18, is no longer satis-
ed. In the limit of �Q cos� ��1 �� →90° �, equations 15 and 16
ive completely different approximate solutions for the wave vector
Appendix A�:

k R�
�

V�2Q cos�
�1�

Q cos�

2
�, �23�

nd

k I�
�

V�2Q cos�
�1�

Q cos�

2
� . �24�

ropping quadratic and higher-order terms in �Q cos� �, we find

A�
k I

k R �1�Q cos� . �25�

he velocity of wave propagation, determined primarily by the de-
ominator of the expression for kR �equation 23�, is proportional to
Q cos� and goes to zero when the inhomogeneity angle approaches
0°.

When � →90°, the influence of the inhomogeneity angle on the
roup quantities � , Vg, and Ag is no longer negligible. The group an-
le for large inhomogeneity angles becomes �seeAppendix A�
EG license or copyright; see Terms of Use at http://segdl.org/
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tan� �
1

Q
�cos� . �26�

quation 26 demonstrates that for strong attenuation �small Q� the
roup-velocity vector deviates from the phase direction toward the
ttenuation vector when � →90°. Note that despite the medium be-
ng isotropic, the group and phase directions differ because of nonze-
o values of � .

The coefficient Ag for large angles � can be obtained by substitut-
ng equations 25 and 26 into equation 12:

Ag� �1�Q cos� ��cos� �� 1

Q
�cos��sin�	 .

�27�

Linearizing equation 27 in cos� yields

Ag�
1

Q
�cos� . �28�

quation 28 shows that the group attenuation coefficient Ag for large
nhomogeneity angles reduces to just tan� �see equation 26�. There-
ore, whereas the real and imaginary parts of the wave vector �equa-
ions 23 and 24� become infinite as � →90°, the group attenuation
oefficient approaches 1 /Q and is about twice as large as �A�� �0°

Figure 4�. Hence, for large angles � close to 90°, seismic attenua-
ion measurements in isotropic media do not provide a direct esti-

ate of the quality factor because Ag rapidly increases with � from
nd 1 / �2Q� to 1 /Q.

Although the presence of anisotropy makes treatment of wave
ropagation in attenuative media much more complicated, several
ey conclusions drawn above prove to be valid for models with an-
sotropic velocity and attenuation functions.

ANISOTROPIC MEDIA

The dependence of attenuation on the inhomogeneity angle � in
nisotropic media is influenced by the angular variation of the phase
uantities and by the difference between the group and phase direc-
ions. Using the Christoffel equation B-1, the phase attenuation coef-
cient A can be computed for arbitrary values of the angle � . Then
eneral group-velocity equations �e.g., Tsvankin, 2005� can be em-
loyed to obtain the group attenuation coefficient. It would be use-
ul, however, to develop analytic expressions for phase and group at-
enuation that provide physical insight into the contribution of the in-
omogeneity angle. To derive analytic expressions for kR, kI, and Ag

n arbitrarily anisotropic media, we use first-order perturbation theo-
y, as discussed in Appendix A. The analytic development is sup-
orted by numerical modeling based on exact solutions.

erturbation of the complex wave vector

We consider an isotropic, attenuative background medium, which
s perturbed to obtain anisotropic velocity and attenuation functions.
he real and imaginary parts of the wave vector in the background
re denoted by kR,0 and kI,0, respectively. We choose the coordinate
rame in which kR,0 coincides with the x3-axis and kI,0 lies in the
x1,x3�-plane. The angle � is kept fixed, so the real and imaginary
arts of the perturbed wave vector k�kR� ikI remain parallel to
he corresponding parts of the background vector k0.
Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to S
First, we obtain linearized expressions for the perturbations 
kR

nd 
kI in arbitrarily anisotropic media using the coordinate frame
efined by kR and kI �equations B-15–B-20 in Appendix B�. To ex-
ress 
kR and 
kI in a fixed coordinate frame, one has to rotate the
erturbation density-normalized stiffness tensor 
aijkl accordingly.
or example, to derive 
kR and 
kI for TI media as a function of the
hase angle � �the angle between kR and the symmetry axis�, the ten-
or 
aijkl in equations B-15–B-20 is rotated about the x2-axis by the
ngle � .

For the special case of P-wave propagation in TI media, the per-
urbations 
kR and 
kI take the form


kP
R

kP
R,0 ���� sin2� cos2� �� sin4� � �29�

nd


kP
I

kP
I,0 �� Q sin2� cos2� ��Q sin4� � �� sin2� cos2�

�� sin4� �� �� �2���� � sin2� � sin2� tan� ,

�30�

here � and � are Thomsen velocity-anisotropy parameters, and �Q

nd � Q are Thomsen-style attenuation-anisotropy parameters �Zhu
nd Tsvankin, 2006�. The parameter �Q determines the fractional dif-
erence between the P-wave phase attenuation coefficients �A�� �0°

n the horizontal and vertical directions, and � Q controls the coeffi-
ient �A�� �0° in the vicinity of the symmetry axis. Equations 29 and
0 are derived for the attenuation vector kI confined to the plane de-
ned by kR and the symmetry axis. Similar expressions for SV- and
H-waves in TI media are given in Appendix C �equations
-1–C-4�.
Note that the real part 
k R of the linearized perturbation in the

ave vector in equations 29, C-1, and C-3 is independent of the in-
omogeneity angle and is governed entirely by velocity anisotropy.
his conclusion is corroborated by the numerical example in Figure
. As the inhomogeneity angle varies from 0° to 70°, there is no no-
iceable change in k R even in the presence of velocity anisotropy
Figure 5c and d� and attenuation anisotropy �Figure 5e and f�. The
isotropic” behavior of k R in Figure 5e and f indicates that attenua-
ion anisotropy has little influence on the velocity function, which is
ontrolled by the velocity-anisotropy parameters �Figure 5c and d�.

hereas equations 29, C-1, and C-3 remain accurate for a wide
ange of � �Figure 5b, d, and f� and strong attenuation anisotropy,
hey break down for the angle � approaching 90°.

The attenuation vector k I �equations 30, C-2, and C-4�, on the oth-
r hand, is influenced by both velocity and attenuation anisotropy, as
ell as by the inhomogeneity angle � . The increase in � from 0° to
0° in Figure 6 causes a substantial change in k I, both for isotropic
nd TI media. Figure 6d-i illustrates the dependence of k I on the ve-
ocity- and attenuation-anisotropy parameters. It is interesting to
ote that for small � , the contribution of velocity and attenuation an-
sotropy to k I �equations 30, C-2, and C-4� is of the same order. With
ncreasing � , however, the influence of velocity anisotropy �Figure
f� becomes more pronounced compared to that of attenuation an-
sotropy �Figure 6i� because the tan� -term in equation 30 depends
ust on � and � . Figure 6 also demonstrates that equation 30 deviates
rom the exact k I only for large angles � , with the error controlled
rimarily by the velocity-anisotropy parameters.
EG license or copyright; see Terms of Use at http://segdl.org/
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WB182 Behura and Tsvankin
ormalized group attenuation coefficient

As discussed above, for a zero inhomogeneity angle, the normal-
zed group attenuation coefficient Ag coincides with �A�� �0° �equa-
ion 14�. This conclusion, which is valid for all wave modes, is sup-
orted by Figure 7a and b, in which the coefficients �A�� �0° �gray
urve� and Ag �black� practically coincide when � �0°.

To examine the influence of the angle � on Ag, we linearize equa-
ion 12 in terms of perturbations of the wave vector:

Ag�
k I,0�
k I

k R,0�
k R cos� �1� tan� tan� cos��

�
k I,0

k R,0�1�

k I

k I,0 �

k R

k R,0 �cos� �1� tan� tan� cos�� .

�31�

aking into account that k I,0 /k R,0�1 / �2Q0 cos� � �equation 19�, we
nd

a) b)

c) d)

e) f)

ξ = 0o ξ = 70o

ξ = 0o ξ = 70o

ξ = 0o ξ = 70o

igure 5. Exact real part kR �in 100 m�1� of the P-wave vector k �sol-
d lines� and approximate kR�kR,0�
kR from equation 29 �dashed
ines� for �a�, �c�, and �e� � �0° and �b�, �d�, and �f� � �70° as a
unction of the phase angle �numbers on the perimeter�. The model
n �a� and �b� is isotropic; in �c� and �d� it is anisotropic in terms of ve-
ocity but has isotropic attenuation; and in �e� and �f� it has isotropic
elocity and anisotropic attenuation �Table 1�. The frequency is
Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to S
Ag�
1

2Q0�1�

k I

k I,0 �

k R

k R,0 ��1� tan� tan� cos�� .

�32�

quation 32 is valid in arbitrarily anisotropic media for all wave
odes. Substituting equations B-15 and B-16 for 
kR and 
kI and

quation B-26 for the product tan� cos� into equation 32, we obtain
he group attenuation coefficient for P-waves linearized in 
aij:

Ag,P�
1

2QP0
�

1

2V P0
2 �
a33

R

QP0
�
a33

I �, �33�

here QP0 and VP0 are the P-wave quality factor and velocity, respec-
ively, in the background. Similar expressions for S1- and S2-waves
re given inAppendix B �equations B-30 and B-31�.

Below, we analyze equation 33 for the special case of P-wave
ropagation in TI media with arbitrary symmetry-axis orientation.
s mentioned earlier, to express Ag through the phase angle � with

he symmetry axis, the tensor 
aijkl in equation 33 has to be rotated
round the x2-axis. Then we linearize Ag in the velocity- and attenua-
ion-anisotropy parameters to obtain

Ag,P�
1

2QP0
�1�� Q sin2� cos2� ��Q sin4� � . �34�

imilar approximate expressions for the group attenuation coeffi-
ient of SV- and SH-waves are given inAppendix C �equations C-10
nd C-11�.

Therefore, the inhomogeneity angle has no influence on the ap-
roximate group attenuation coefficient. Furthermore, as discussed
elow, Ag,P in equation 34 coincides with the linearized P-wave

able 1. Medium parameters used in the numerical tests.
or all models, the P- and S-wave symmetry-direction
elocities (VP0 and VS0) are 2800 m Õs and 1700 m Õs,
espectively.

igure � � �  QP0 QS0 �Q � Q  Q

a, b 0°, 70° 0 0 0 10 10 0 0 0

c, d 0°, 70° 0.3 0.2 0 10 10 0 0 0

e, f 0°, 70° 0 0 0 10 10 0.6 0.4 0

a, b, c 0°, 45°, 70° Same as in Figure 5a and b

d, e, f 0°, 45°, 70° Same as in Figure 5c and d

g, h, i 0°, 45°, 70° Same as in Figure 5e and f

a 0° 0.3 0.2 0 10 10 0.6 0.4 0

b 0° 0 0 0.3 10 10 0 0 0.5

— 0.3 0.2 0 5 5 0.6 0.4 0

a 60° 0 0 0 10 10 0 0 0

b 60° 0.3 0.2 0 10 10 0 0 0

c 60° 0.6 0.4 0 10 10 0 0 0

d 60° 0 0 0 10 10 0.6 0.4 0

0a, b 60° 0.6 0.4 0 10 10 0.6 0.4 0

0c, d 60° 0 0 0.5 10 10 0 0 0.5

1 — 0 0 0.3 5 5 0 0 0.5

2a — 0 0 1 5 5 0 0 �0.5

2b — 0 0 0.3 5 5 0 0 �0.5
0 Hz.
EG license or copyright; see Terms of Use at http://segdl.org/
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Analysis of inhomogeneity angle WB183
hase attenuation coefficient for a zero inhomogeneity angle
�A�� �0°� derived by Zhu and Tsvankin �2006�. Equation 34 notice-
bly deviates from the exact Ag only when the angle � approaches
orbidden directions �Figure 8�; the behavior of Ag for large inhomo-
eneity angles is analyzed in more detail below.

Note that the linearized Ag �equations 34, C-10, and C-11� is con-
rolled by attenuation anisotropy and does not depend on velocity-
nisotropy parameters. This conclusion is confirmed by the exact
odeling results in Figure 9a and b, where the coefficient Ag re-
ains insensitive even to strong velocity anisotropy with ��0.6

nd � �0.4 when � �60° �Figure 9c�. The presence of attenuation
nisotropy, on the other hand, results in a substantial change in Ag

Figure 9d�.

elationship between group and phase attenuation

The normalized phase attenuation coefficient �A�� �0° can be ob-
ained from the Christoffel equation and expressed through attenua-
ion-anisotropy parameters �Zhu and Tsvankin, 2006�. As shown
bove, the coefficient Ag coincides with �A�� �0° for a wide range of
in isotropic media and for � �0° in anisotropic media �equation

4�.
Using perturbation analysis, we obtained closed-form expres-

ions for coefficient �A�� �0° in arbitrarily anisotropic media linear-
zed in 
aij �Appendix B�. For P-waves,

�A�� �0°,P�
1

2QP0
�

1

2V P0
2 �
a33

R

QP0
�
a33

I � .

�35�

Similar expressions for S1- and S2-waves are
iven in Appendix B. Comparison of equations
3 and 35 shows that for a wide range of angles �
except for values close to 90°; see below�, the
inearized coefficient Ag coincides with �A�� �0°.
his conclusion is also valid for S1- and S2-waves

compare equations B-30 and B-31 with equa-
ions B-24 and B-25�.

The approximate P-wave phase attenuation co-
fficient for TI media can be found as a simple
unction of attenuation-anisotropy parameters
Zhu and Tsvankin, 2006�:

�A�� �0°,P�
1

2QP0
�1�� Q sin2� cos2�

��Q sin4� � . �36�

Zhu and Tsvankin �2006� also provide similar
inearized expressions for SV- and SH-waves re-
roduced in Appendix B. As is the case for arbi-
rary ansisotropy, the coefficient �A�� �0° in equa-
ion 36 coincides with Ag in equation 34.

Figure 10a and b demonstrate that the maxi-
um difference between the exact coefficients
g and �A�� �0° does not exceed 10% even for

trong attenuation �Q33�10� and uncommonly
arge anisotropy parameters ����Q�0.6 and
�� Q�0.4�. The coefficients Ag and �A�� �0°

ξ

–135°

–90°

–45°

= 0°

1

–135°

–90°

–45°

ξ = 0°

1

–135°

–90°

–45°

ξ = 0°

a)

d)

g)

Figure 6. Exa
kI�kI,0�
k
�b�, �e�, and �h
and the symm
�d�, �e�, and �f
�h�, and �i�, at
rameters are g
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lso are close for SV- and SH-waves, which confirms the analytic re-
ults ofAppendix C �Figure 10c and d�.

roup attenuation for large inhomogeneity angles

The above conclusions about the influence of the inhomogeneity
ngle on phase velocity and attenuation no longer hold for large in-
omogeneity angles approaching forbidden directions. As shown
bove for isotropic media, when �Q cos� ��1, the group attenua-
ion coefficient varies with the angle � and differs from �A�� �0°.

To study the influence of large � analytically, we follow the same
erturbation-based approach �Appendix B� but with different back-
round values of the wave vector, group velocity, and group angle
equations 23–26�. For simplicity, here we analyze only the special
ase of elliptical anisotropy in TI media �i.e., SH-waves�; more gen-
ral solutions for shear waves in arbitrarily anisotropic media are
iven in Appendix D. Numerical tests demonstrate that our conclu-
ions remain valid for all wave modes and any anisotropic symme-
ry.

According to equation D-6, the coefficient Ag for large inhomoge-
eity angles becomes a function of � and cannot serve as a measure
f intrinsic attenuation. As is the case for isotropy, Ag in anisotropic

180°

–135°

–90°

–45°

0°

135°

90°

45°

1
2

2

135°

90°

45°

135°

90°

45°

2

135°

90°

45°

2

180°

–135°

–90°

–45°

0°

135°

90°

45°

1
2

ξ = 45°

ξ = 45°

180°

–135°

–90°

–45°

0°

135°

90°

45°

1
2

ξ = 45°

180°

–135°

–90°

–45°

0°

135°

90°

45°

1
2

ξ = 70°

180°

–135°

–90°

–45°

0°

135°

90°

45°

1
2

ξ = 70°

180°

–135°

–90°

–45°

0°

135°

90°

45°

1
2

ξ = 70°

b) c)

e) f)

h) i)

inary part kI of the P-wave vector k �solid lines� and approximate
0 m�1� from equation 30 �dashed lines� for �a�, �d�, and �g� � �0°,
5°, and �c�, �f�, and �i� � �70° as a function of the angle between kI

is. In �a�, �b�, and �c�, both velocity and attenuation are isotropic; in
velocity varies with angle, whereas attenuation is isotropic; in �g�,
on varies with angle, whereas velocity is isotropic. The model pa-
Table 1. The frequency is 30 Hz.
1

180°

0°

80°

0°

1

80°

0°

1

ct imag
I �in 10
� � �4
etry ax
�, only
tenuati
iven in
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WB184 Behura and Tsvankin
edia is always finite �and does not go to zero�, even though the real
nd imaginary parts of the wave vector �equation D-3� become infi-
ite.

When the medium is isotropic, a physical solution of the wave
quation exists only for �90° 	 � 	 90° �equation A-5; also see
ervený and Pšenčík, 2005a�. The bounds for the inhomogeneity an-
le in arbitrarily anisotropic media depend on both velocity and at-
enuation anisotropy and can be derived from equation D-3 using the
nequalities kR � 0 and kI � 0. For the special case of elliptical an-
sotropy �equation D-4�, the inhomogeneity angle should satisfy

cos� �
 sin2�

2
sin� �

 Q cos2�

4QS0
, �37�

hich yields the following bounds for � :

�� �� 	 � 	 � ��, �38�

here

� � tan�1�� sin2�

2
� �39�

nd

a)

b)

igure 7. Exact �a� P-wave and �b� SH-wave coefficients �A�� �0°

gray curves� and Ag �black curves� in TI media as a function of the
hase angle for � �0°. Because Ag� �A�� �0°, the gray curves prac-
ically coincide with the black curves. The model parameters are giv-
n in Table 1.
Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to S
� �cos�1� Q cos2�

4QS0
� . �40�

Equivalent expressions for the bounds on � for SH-wave propaga-
ion in the symmetry plane of a monoclinic medium are given by
ervený and Pšenčík �2005a� in terms of the inhomogeneity param-
ter D.

For wave propagation along the symmetry axis or perpendicular
o it �� �0° or 90°�, the angle � �0° and the bounds on � are sym-

etric with respect to � �0° �equations 38 and 40; Figure 11�. It is
lso clear from equation 40 that � 
90° because the ratio  Q /QS0

ypically is small. Hence, for � �0° and 90°, anisotropy does not
ignificantly change the bounds on � , which remain close to �90°.
s is the case for isotropic media, when the angle � approaches the

orbidden directions, the group attenuation coefficient Ag rapidly in-
reases with �� � and reaches values approximately twice as large as
A�� �0° �Figure 11�.

For oblique propagation angles, � does not vanish, and the
ounds on � become asymmetric with respect to � �0°. This asym-
etry is controlled by velocity-anisotropy coefficient  and reaches

ts maximum for the phase angle � �45° �equation 39�. The model
n Figure 12a, taken from Carcione and Cavallini �1995�, has an un-
ommonly large parameter  equal to unity, and for � �45°, the in-
omogeneity angle can vary only between �64° and 116°. There-
ore, strong velocity anisotropy might result in forbidden directions
or angles �� � much smaller than 90°.

Still, the range of possible inhomogeneity angles �2� � remains
lose to 180° because the parameter � 
90° �Figure 12a�. For more-
ommon, smaller values of parameter  , the bounds on � become
ore symmetric with respect to � �0° and do not differ significant-

y from �90° �Figure 12b�. The behavior of the coefficient Ag for
arge angles � in Figure 12 is similar to that in isotropic media.

DISCUSSION

Our analytic and numerical results prove that the normalized
roup attenuation coefficient Ag measured from seismic data is prac-
ically independent of the inhomogeneity angle �except for angles �
pproaching the forbidden directions� and

igure 8. Exact P-wave group attenuation coefficient Ag,P �solid
ine� and approximate Ag,P from equation 34 �dashed line� in TI me-
ia for � �45° as a function of the angle � �numbers on the perime-
er�. The model parameters are given in Table 1.
EG license or copyright; see Terms of Use at http://segdl.org/
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Analysis of inhomogeneity angle WB185
s close to the normalized phase attenuation coefficient �A�� �0°. Be-
ura and Tsvankin �2008� corroborate this conclusion by applying
ttenuation layer stripping and the spectral-ratio method to full-
aveform P-wave synthetic data generated by a point source in lay-

red anisotropic models. The interval coefficients Ag and �A�� �0° es-

)

)

b)

d)

igure 9. Exact P-wave group attenuation coefficient Ag for � �60°
n �a� isotropic and �b�, �c�, and �d� TI media. In �b� and �c� only ve-
ocity varies with angle, whereas attenuation is isotropic; in �d� at-
enuation varies with angle, and velocity is isotropic. The model pa-
ameters are given in Table 1.

) b)

d))

igure 10. Exact �a� P-wave and �c� SH-wave coefficients �A�� �0°

gray curve� and Ag �black curve� and �b� and �d� the percentage dif-
erence �Ag� �A�� �0°� in TI media as a function of the phase angle �
or � �60°. The model parameters are listed in Table 1.
Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to S
imated by Behura and Tsvankin �2008� from reflection amplitudes
ractically coincide, even at large offsets where the inhomogeneity
ngle reaches 45°.

The coefficient �A�� �0° in TI and orthorhombic media can be in-
erted for Thomsen-style attenuation-anisotropy parameters using
he formalism developed by Zhu and Tsvankin �2006, 2007�. Note
hat estimation of attenuation-anisotropy parameters from �A�� �0°

equires computation of the corresponding phase angle, which de-
ends on the anisotropic velocity field. Even in strongly anisotropic
odels, however, the influence of attenuation on velocity is of the

econd order �see above�, which implies that velocity analysis can be
erformed using existing methods. Then the reconstructed velocity
eld can be employed to recompute the known group direction into

he phase direction needed in the inversion for attenuation-anisotro-
y parameters. Furthermore, given the large uncertainty of ampli-
ude measurements, the difference between the phase and group di-
ections for moderately anisotropic models should not substantially
istort the results of attenuation analysis.

a)

b)

igure 11. Exact SH-wave coefficients �A�� �0° �gray curve� and Ag

black curve� in TI media for propagation in the directions �a�
�0° and �b� � �90°, plotted as a function of the inhomogeneity

ngle � �numbers on the perimeter�. The black dashed line marks the
ounds of � computed from equations 38–40. The model parameters
re listed in Table 1.
EG license or copyright; see Terms of Use at http://segdl.org/
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CONCLUSIONS

We applied first-order perturbation theory to study the influence
f the inhomogeneity angle on velocity and attenuation in arbitrarily
nisotropic media. By adopting an attenuative, isotropic background
edium, we were able to specify a background wave vector with an

rbitrary inhomogeneity angle � . Perturbation analysis yields con-
ise analytic expressions for the complex wave vector k, the phase
ttenuation coefficient �A�� �0°, and the group attenuation coefficient

g in terms of perturbations of the complex stiffness coefficients. To
ain physical insight into the influence of the inhomogeneity angle,
e also derived closed-form expressions for TI media by linearizing

he general solutions in dimensionless velocity- and attenuation-an-
sotropy parameters.

For a wide range of small and moderate angles � , the phase-veloc-
ty function is practically independent of attenuation, while the
roup attenuation coefficient Ag, which is measured from seismic
ata, is insensitive to the inhomogeneity angle. Furthermore, Ag

ractically coincides with the phase attenuation coefficient �A�� �0°,
hich is proportional to the angle-dependent inverse quality factor

n anisotropic media. This conclusion remains valid even for uncom-
only high attenuation �Q
10� and strong velocity and attenuation

nisotropy. The negligible difference between A and �A� sug-

a)

b)

igure 12. Exact SH-wave coefficients �A�� �0° �gray curve� and Ag

black� as a function of � �numbers on the perimeter� for � �45°,
Q��0.5 and �a�  �1.0; and �b�  �0.3. The black dashed line
arks the bounds of � computed from equations 38–40. The model

arameters are listed in Table 1.
g � �0°

Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to S
ests that seismic data can be inverted for the attenuation-anisotropy
arameters without knowledge of the inhomogeneity angle.

However, for larger angles � approaching the forbidden direc-
ions �i.e., the directions of the attenuation vector kI for which solu-
ions of the wave equation do not exist� the inhomogeneity angle has
strong influence on both attenuation and phase velocity. Whereas

or isotropic media the inhomogeneity angle can vary between
90° and 90°, velocity anisotropy makes the bounds on the inhomo-

eneity angle asymmetric with respect to � �0°. In the vicinity of
he forbidden directions, the coefficient Ag rapidly increases with �� �
nd reaches values approximately twice as large as �A�� �0°. The
ange of such anomalous inhomogeneity angles, where Ag no longer
epresents a direct measure of the intrinsic attenuation, becomes
ider for highly attenuative models.
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APPENDIX A

COMPLEX WAVE VECTOR FOR ISOTROPIC
ATTENUATIVE MEDIA

We consider a harmonic plane wave with an arbitrary inhomoge-
eity angle � propagating in isotropic attenuative media:

A�x,t��A0 ei��t�k·x�, �A-1�

here � is the angular frequency and k�kR� ikI is the complex
ave vector responsible for the velocity and the attenuation coeffi-

ient. Substitution of the plane wave A-1 into the acoustic wave
quation results in

k1
2�k2

2�k3
2�

�2

V 2�1�
i

Q
� , �A-2�

here V is the real part of the medium velocity, and Q is the quality
actor. Dropping quadratic and higher-order terms in 1 /Q, we re-
rite equation A-2 as

�k R �2�2i kR ·kI� �k I �2�
�2

V 2�1�
i

Q
�; �A-3�

R� �kR� and k I� �kI�. Equation A-3 can be separated into the real
nd imaginary parts:

�k R �2� �k I �2�
�2

V 2 , �A-4�

nd

kR ·kI�
�2

2V 2Q
. �A-5�
EG license or copyright; see Terms of Use at http://segdl.org/
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Analysis of inhomogeneity angle WB187
When the medium is nonattenuative and 1 /Q�0, the right side of
quation A-5 vanishes. Then, the vectors kR and kI of an inhomoge-
eous �evanescent� plane wave have to be orthogonal, with the rela-
ionship between kR and kI determined by equation A-4.

Because the factor Q responsible for attenuation is positive, equa-
ion A-5 can be satisfied only if kR ·kI � 0, which requires that
os� � 0 and � 	 90°. �We make the assumption that � � 0 be-
ause the solutions of equations A-4 and A-5 do not depend on the
ign of � .� With the inhomogeneity angle smaller than 90°, equation
-5 allows us to express k I through k R as

k I�
�2

2 kR V 2 Q cos�
. �A-6�

ubstitution of kI into equation A-4 yields a quadratic equation for
k R�2, which has only one positive solution:

�k R �2�
�2

2V 2��1�
1

�Q cos� �2 �1	 . �A-7�

he corresponding imaginary part k I can be obtained from either
quation A-4 or A-6:

�k I �2�
�2

2V2��1�
1

�Q cos� �2 �1	 . �A-8�

For typical large values of the quality factor, the product
Q cos� ��1, unless the inhomogeneity angle is close to 90°. Ex-
anding the radical in equations A-7 andA-8 in 1 / �Q cos� �2, we find

k R
�

V
�1�

1

8�Q cos� �2	, �A-9�

nd

k I
�

2VQ cos�
�1�

1

8�Q cos� �2	 . �A-10�

quations A-9 and A-10 can be simplified further by neglecting the
mall �compared to unity� term 1 / �8�Q cos� �2�:

k R�
�

V
, �A-11�

k I�
�

2VQ cos�
. �A-12�

arge inhomogeneity angles

Although equations A-11 and A-12 are sufficiently accurate for
wide range of inhomogeneity angles, they break down when
→90°. For �Q cos� ��1, equations A-7 and A-8 can be approxi-
ated by

k R�
�

V�2Q cos�
�1�

Q cos�

2
�, �A-13�

k I�
�

V�2Q cos�
�1�

Q cos�

2
� . �A-14�

The phase attenuation coefficient A can be found from equations
-13 andA-14:
Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to S
A�
k I

k R �1�Q cos� ; �A-15�

ere, we have dropped the term quadratic in �Q cos� �.

roup angle

In elastic isotropic media, the group- and phase-velocity vectors
re always parallel. However, if the medium is strongly attenuative
nd � �0°, the group direction might deviate from the phase direc-
ion. The group-velocity vector in arbitrarily anisotropic, attenuative

edia can be computed from �Červený and Pšenčík, 2006�

�Vg�i�
Si

S ·pR �
�aijkl gk g

j
* pl�R

�aijkl gk g
i
* pl�Rpj

R , �A-16�

here S is the energy flux, aijkl is the density-normalized stiffness
ensor, p is the slowness vector, and g is the polarization vector. The
uperscripts R and � represent the real part and complex conjugate,
espectively.

For isotropic media, equation A-16 yields the following compo-
ents of Vg:

Vg�
�

k R� k I sin�

k RQ�k I cos�
, 0, 1	 . �A-17�

rom equation A-17, we find the group angle � :

tan� �
k I sin�

k RQ�k I cos�
. �A-18�

o obtain the group angle for small and moderate inhomogeneity an-
les, we substitute equations A-11 and A-12 into equation A-18,
ielding

tan� �
tan�

1�2Q2 �1. �A-19�

or angles � approaching 90°, we substitute equation A-15 into
quation A-18 and linearize the result in cos� to get

tan� �
1

Q
�cos� . �A-20�

t is clear that for large inhomogeneity angles and strongly attenua-
ive media, angle � might not be negligible.

APPENDIX B

PERTURBATION ANALYSIS

Here, we derive analytic expressions for the real and imaginary
arts of the wave vector in arbitrarily anisotropic, attenuative media
sing first-order perturbation theory. A homogeneous, isotropic, at-
enuative full space is taken as the background medium �Figure
-1a�. The inhomogeneity angle � between the real �k R,0� and imag-

nary �k I,0� parts of the wave vector in the background can be arbi-
rarily large. The background medium is perturbed to make it aniso-
ropic in terms of both velocity and attenuation �Figure B-1b�, which
esults in perturbations of the real �
k R� and imaginary �
k I� parts
f the wave vector. Because the inhomogeneity angle � is a free pa-
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ameter, we choose not to perturb it when making the medium aniso-
ropic. This implies that the vectors kR and kR,0, as well as kI and kI,0,
re parallel.

We choose k0 such that kR,0 coincides with the axis x3 and kI,0 lies
n the �x1, x3�-plane �Figure B-1a and B-1b�. This approach differs
rom the one adopted by Jech and Pšenčík �1989�, Červený and
šenčík �2008b�, and Vavryčuk �2008�, who used a fixed reference
rame. To compute perturbations for a different vector k in the same
edium, we rotate the coordinate frame such that kR coincides with

he axis x3 and kI lies in the �x1,x3�-plane. This approach involves the
otation of the density-normalized stiffness tensor aijkl but obviates
he need to introduce two additional angles needed to define the ori-
ntations of kR and kI.

eal and imaginary parts of the wave vector

We start with the Christoffel equation in the perturbed medium:

�Gik�� ik�gk�0, �B-1�

here Gik�aijkl pj pl is the Christoffel matrix, p is the complex slow-
ess vector, and g is the polarization vector of the plane wave. Per-
urbation of equation B-1 yields

�Gik
0 �
Gik�� ik��gk

0�
gk��0, �B-2�

hich can be linearized to obtain

kR,0

kI,0

V
g
0

kR

kI

Vg

π/2 φ–

a)

b)

igure B-1. �a� Isotropic attenuative background medium is per-
urbed to make it �b� anisotropic. The real and imaginary parts of the
ave vector in the background are kR,0 and kI,0, and kR�kR,0�
kR

nd kI�kI,0�
kI form the wave vector in the perturbed medium; �
s the inhomogeneity angle. The vectors kR,0 and kR are parallel to the
ertical x3-direction, and kI,0 and kI are confined to the �x1, x3�-plane.
g
0 is the group velocity in the background; � is the polar group angle

fter the perturbation, and � is the azimuth of the perturbed vector
with respect to the �x ,x �-plane.
g 1 3
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�Gik
0 �� ik�
gk�
Gik gk

0�0, �B-3�

here g0 is the plane-wave polarization in the background and 
g is
he perturbation of the polarization vector. The polarization g0 de-
nes whether the wave mode is P, SV, or SH. The mode obtained by
erturbing the SV-wave will be denoted S1, and the perturbed SH-
ave will be denoted S2. Multiplying equation B-3 with gi

0 �Jech and
šenčík, 1989� reduces equation B-3 to


Gik gi
0 gk

0 �0, �B-4�

ith


Gik�
aijkl pj
0 pl

0 �2aijkl
0 
pj pl

0, �B-5�

here aijkl
0 and p0 are defined in the isotropic background, and 
aijkl

nd 
p are the perturbations. The tensors aijkl
0 and 
aijkl are given by

aijkl
0 �aijkl

R,0� iaijkl
I,0 �aijkl

R,0�1�
i

Qijkl
0 �, �B-6�


aijkl�
aijkl
R � i
aijkl

I , �B-7�

here the superscripts R and I denote the real and imaginary parts,
nd Qijkl

0 is the ratio aijkl
R,0 /aijkl

I,0 . The background slowness p0 and its
erturbation 
p can be expressed as

p0� �� ipI,0 sin� , 0, pR,0� ipI,0 cos� �, �B-8�


p� �� i
pI sin� , 0, 
pR� i
pI cos� �, �B-9�

here pR,0, pI,0 and 
pR, 
pI are the magnitudes of the real and imag-
nary parts of p0 and 
p, respectively.

Assuming �Q0 cos� ��1, we solve equation B-4 for 
kR��
pR

nd 
kI��
pI:


k R

k R,0 ��
� R

2
�

� I

2Q0�1�
sec2�

2
�, �B-10�


k I

k I,0 ��
� R

2
�Q0� I, �B-11�

here � R and � I are the real and imaginary parts of
�
aijkl pj

0 pl
0 gi

0 gk
0. The above analysis is valid for all three modes

P-, S1-, and S2-waves�. By choosing the corresponding k0 and � , we
an compute the perturbations of the complex wave vector for any of
he three modes. The term � for P-, S1-, and S2-waves has the form

� P�
1

V P0
2 �
a33

R �

a33

I

QP0
�

2
a35
I

QP0
tan��

� i
1

V P0
2 ��


a33
R

QP0
�
a33

I �
2
a35

R

QP0
tan��,

�B-12�

� S1
�

1

V S0
2 �
a55

R �

a55

I

QS0
�


a15
I �
a35

I

QS0
tan��
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� i
1

V S0
2 ��


a55
R

QS0
�
a55

I �

a15

R �
a35
R

QS0
tan��,

�B-13�

nd

� S2
�

1

V S0
2 �
a44

R �

a44

I

QS0
�


a46
I

QS0
tan��

� i
1

V S0
2 ��


a44
R

QS0
�
a44

I �

a46

R

QS0
tan��;

�B-14�

P0 and QS0 are the P- and S-wave quality factors in the background
edium. Substituting equations B-12–B-14 into equations B-10 and
-11 and retaining only the terms linear in 
aij yields


k P
R

k P
R,0 
�

1

V P0
2 �
a33

R

2
�


a33
I

QP0
�1�

sec2 �

4
��


a35
I

QP0
tan�	,

�B-15�


k P
I

k P
I,0 
�

1

V P0
2 �3
a33

R

2
�QP0
a33

I �2
a35
R tan��,

�B-16�


k S1

R

k S1

R,0 
�
1

V S0
2 �
a55

R

2
�


a55
I

QS0
�1�

sec2 �

4
�

�

a15

I �
a35
I

2QS0
tan�	, �B-17�


k S1

I

k S1

I,0 
�
1

V S0
2 �3
a55

R

2
�QS0
a55

I � �
a15
R �
a35

R � tan��,

�B-18�


k S2

R

k S2

R,0 
�
1

V S0
2 �
a44

R

2
�


a44
I

QS0
�1�

sec2 �

4
��


a46
I

2QS0
tan�	,

�B-19�

nd


k S2

I

k S2

I,0 
�
1

V S0
2 �3
a44

R

2
�QS0
a44

I �
a46
R tan�� .

�B-20�

ormalized phase attenuation coefficient

We linearize the normalized phase attenuation coefficient A for
�0° by retaining only the first-order terms:

�A�� �0°�� k I

k R�
� �0°

�� k I,0�
k I

k R,0�
k R�
� �0°

�B-21�
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�
1

2Q0
�1�


k I

k I,0 �

k R

k R,0 � . �B-22�

y substituting 
kR and 
kI from equations B-15–B-20 into equa-
ion B-22, we obtain �A�� �0° in arbitrarily anisotropic media for all
hree modes:

�A�� �0°,P�
1

2QP0
�

1

2V P0
2 �
a33

R

QP0
�
a33

I �, �B-23�

�A�� �0°,S1
�

1

2QS0
�

1

2V S0
2 �
a55

R

QS0
�
a55

I �,

�B-24�

�A�� �0°,S2
�

1

2QS0
�

1

2V S0
2 �
a44

R

QS0
�
a44

I � .

�B-25�

ormalized group attenuation coefficient

To obtain the normalized group attenuation from equation 32, we
nd the product �tan� cos���Vg1 /Vg3 from equation A-16:

tan� P cos�P�
2
a35

R

V P0
2 , �B-26�

tan� S1
cos�S1

�

a15

R �
a35
R

V S0
2 , �B-27�

nd

tan� S2
cos�S2

�

a46

R

V S0
2 , �B-28�

here only the leading-order terms are retained.
Next, we substitute 
kR and 
kI from equations B-15–B-20 and

an� from equations B-26–B-28 into equation 32 and retain only the
erms linear in 
aij:

Ag,P�
1

2QP0
�

1

2V P0
2 �
a33

R

QP0
�
a33

I �, �B-29�

Ag,S1
�

1

2QS0
�

1

2V S0
2 �
a55

R

QS0
�
a55

I �, �B-30�

nd

Ag,S2
�

1

2QS0
�

1

2V S0
2 �
a44

R

QS0
�
a44

I � . �B-31�

APPENDIX C

SHEAR-WAVE PHASE AND GROUP
QUANTITIES IN TI MEDIA

Here, we present closed-form expressions for the shear-wave pa-
ameters 
kR, 
kI, A, and A in TI media. Note that all equations in
g
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ppendix A are derived for the coordinate frame defined by the vec-
ors kR and kI. Therefore, in order to obtain 
kR, 
kI, A, and Ag as a
unction of the phase angle � �the angle between kR and the x3-axis�,
ne needs to rotate tensor 
aijkl accordingly. Because kI is assumed
o lie in the plane defined by kR, 
aijkl inAppendix A is rotated by the
hase angle � around the x2-axis.

By linearizing the rotated tensor 
aijkl in the velocity-anisotropy
arameters �, � , and  and in the attenuation-anisotropy parameters
Q, � Q, and  Q �Zhu and Tsvankin, 2006�, we obtain the real �kR� and
maginary �kI� parts of the wave vector from equations B-17–B-20:


k SV
R

k SV
R,0 ��� sin2 � cos2 � , �C-1�


k SV
I

k SV
I,0 � ��Q�� Q�

g2

gQ
sin2 � cos2 � ��

2–3gQ

gQ
sin2 � cos2 �

�� sin2� cos2� tan� , �C-2�


k SH
R

k SH
R,0 �� sin2 � , �C-3�

nd


k SH
I

k SH
I,0 � Q sin2 � � sin2 � � sin2� tan� , �C-4�

here g�VP0 /VS0, the parameter � �g2���� � controls the SV-
ave phase velocity, gQ�QP0 /QS0, and the parameters  and  Q are

esponsible for the SH-wave velocity and attenuation anisotropy, re-
pectively �Zhu and Tsvankin, 2006�.

The normalized SV- and SH-wave phase attenuation coefficients
or � �0° can be found from equations B-24 and B-25:

�A�� �0°, SV�
1

2QS0
�1�� Q sin2� cos2� �, �C-5�

nd

�A�� �0°, SH�
1

2QS0
�1� Q sin2� �, �C-6�

here the parameter � Q �Zhu and Tsvankin, 2006� controls the SV-
ave attenuation coefficient:

� Q�
1

gQ
�2� �1�gQ��g2��Q�� Q�� . �C-7�

To obtain the linearized shear-wave group angles in TI media, we
se equations B-27 and B-28 �see also Tsvankin, 2005�:

tan� SV cos�SV�� sin2� cos2� �C-8�

nd

tan� SH cos�SH� sin2� . �C-9�

ubstituting the anisotropy parameters into equations B-30 and
-31 yields the following group attenuation coefficients:
Downloaded 07 Oct 2009 to 138.67.12.60. Redistribution subject to S
Ag, SV�
1

2QS0
�1�� Q sin2� cos2� �, �C-10�

nd

Ag, SH�
1

2QS0
�1� Q sin2� � . �C-11�

APPENDIX D

ATTENUATION FOR LARGE
INHOMOGENEITY ANGLES

Here we develop closed-form expressions for the wave vector k
nd group attenuation coefficient Ag for large angles � . For simplici-
y, we analyze only S2-waves; expressions for P- and S1-waves can
e derived using the same procedure. The development follows the
pproach described in Appendix B. However, the group angle � 0 in
he background does not vanish �equation 26�, and the background
ector k0�kR,0� ikI,0 is given by equations 23 and 24. �Note that
or small and moderate angles � considered in Appendix B, the
roup angle � 0 was zero.� For large � , the real �k R,0� and imaginary
k I,0� parts of the background wave vector are related by �equation
5�

k I,0

k R,0 �1�Q0 cos� , �D-1�

nd the group angle � 0 is expressed as �equation 26�

tan� 0�
1

Q0 �cos� , �D-2�

here Q0 is the background quality factor. Perturbation produces a
hange in both the wave vector �
kR� i
kI� and the group direc-
ion.

First, we obtain kR and kI by solving equation B-4 and linearizing
he result in 
aij. Eliminating terms quadratic or higher-order in
Q0 cos� � and those proportional to �
aijQ0 cos� �, as well as setting
erms quadratic in sin� to unity, we find

k S2

R

k S2

R,0 �
k S2

I

k S2

I,0 �1�
1

2V S0
2 �
a46

R �

a46

I

QS0
� tan�

�
1

4V S0
2 cos�

�
a44
I �


a44
R

QS0
�
a66

I �

a66

R

QS0
� .

�D-3�

or the special case of TI media, the S2-mode becomes the SH-wave,
nd equation D-3 �after eliminating terms proportional to  /QS0

2 and
Q /QS0

2 � takes the form

k S2

R

k S2

R,0 �
k S2

I

k S2

I,0 
1�
 sin2�

2
tan� �

 Q cos2�

4QS0

1

cos�
.

�D-4�

he product tan� cos� needed to find Ag can be obtained from
quation A-16:
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tan� cos� �
1

QS0
�cos� �

1

4V S0
2 �2
a46

I

QS0
�6
a46

R

��3
a44
R

QS0
�


a66
R

QS0
�
a44

I �5
a66
I �sin�	 .

�D-5�

The group attenuation coefficient Ag is found by substituting
quations D-1–D-5 into equation 31:

Ag�
1

QS0
�cos� �

1

4V S0
2 �3
a44

R

QS0
�


a66
R

QS0
�
a44

I

�5
a66
I ��2
a46

I

QS0
�6
a46

R �sin�	; �D-6�

quation D-6 is linearized in 
aij and �QS0 cos� �, and terms propor-
ional to �
aij QS0 cos� � have been eliminated. The range of � for
hich equation D-6 is valid is set by the assumption �QS0 cos� ��1,
hich ensures that Ag is positive. For the special case of TI media,
g takes a simpler form after linearization in the anisotropy parame-

ers:

Ag�
1

QS0
�cos� �

3 sin2�

2
sin� �

2 cos2�

QS0

�
 Q cos2�

4QS0
�

 Q cos2�

4QS0
. �D-7�
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