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Role of the inhomogeneity angle in anisotropic attenuation analysis

Jyoti Behura' and llya Tsvankin?

ABSTRACT

The inhomogeneity angle (the angle between the real and
imaginary parts of the wave vector) is seldom taken into account
in estimating attenuation coefficients from seismic data. Wave
propagation through the subsurface, however, can result in rela-
tively large inhomogeneity angles &, especially for models with
significant attenuation contrasts across layer boundaries. Here
we study the influence of the angle £ on phase and group attenua-
tion in arbitrarily anisotropic media using the first-order pertur-
bation theory verified by exact numerical modeling. Application
of the spectral-ratio method to transmitted or reflected waves
yields the normalized group attenuation coefficient A,, which is
responsible for amplitude decay along seismic rays. Our analytic
solutions show that for a wide range of inhomogeneity angles,
the coefficient A, is close to the normalized phase attenuation
coefficient A computed for € =0° (Al;—¢). The coefficient

Al¢—¢ can be inverted directly for the attenuation-anisotropy

parameters, so no knowledge of the inhomogeneity angle is re-
quired for attenuation analysis of seismic data. This conclusion
remains valid even for uncommonly high attenuation with the
quality factor Q less than 10 and strong velocity and attenuation
anisotropy. However, the relationship between group and phase
attenuation coefficients becomes more complicated for relatively
large inhomogeneity angles approaching so-called “‘forbidden
directions.” We also demonstrate that the velocity function re-
mains practically independent of attenuation for a wide range
of small and moderate angles £. In principle, estimation of the
attenuation-anisotropy parameters from the coefficient Al;_
requires computation of the phase angle, which depends
on the anisotropic velocity field. For moderately anisotropic
models, however, the difference between the phase and group
directions should not significantly distort the results of attenua-
tion analysis.

INTRODUCTION

In attenuative media, the direction of maximum attenuation of a
plane wave can differ from the propagation direction. This implies
that the real part of wave vector kX (propagation vector) deviates
from the imaginary part k’ (attenuation vector), as illustrated in Fig-
ure 1. The angle between the vectors k® and k! is called the inhomo-
geneity angle, denoted here by §. When ¢ = 0°, the plane wave is of-
ten characterized as “homogeneous;” when & # 0°, it is called “‘in-
homogeneous.” For plane-wave propagation, & represents a free pa-
rameter except for certain “forbidden directions” (Krebes and Le,
1994; Carcione and Cavallini, 1995; Cerven)’/ and PSencik, 2005a,
b), where solutions of the wave equation do not exist. If the wave-
field is excited by a point source, the inhomogeneity angle is deter-
mined by the medium properties, including the boundary conditions
(Zhu, 2006; Vavrycuk, 2007).

Alternatively, the wave vector in attenuative media can be param-
eterized in terms of the inhomogeneity parameter D (Boulanger and
Hayes, 1993; Declercq et al., 2005; Cerven}’f and PSencik, 2005a):

k = w(on +iDm), (1)
such that
m-n=0, (2)
where D is real, whereas o is complex. The vector n specifies the di-
rection of wave propagation and the vector m is orthogonal to it. The
main advantage of this parameterization is that it eliminates forbid-
den directions from the solutions of the Christoffel equation (Cer-
veny and PSencik, 2005a).

Many results on attenuation analysis are obtained under the as-
sumption that the inhomogeneity angle can be ignored (Hauge,
1981; Dasgupta and Clark, 1998; Zhu et al., 2007). For point-source
radiation in homogeneous media, the influence of the inhomogene-
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ity angle is indeed small, unless the medium is anomalously attenua-
tive and anisotropic (Zhu, 2006; Vavrycuk, 2007).

During wave propagation in layered media, however, the angle ¢
can attain significant values. For the model in Figure 2, the wave
vector in the elastic cap rock is real, whereas that in the attenuative
reservoir is complex. Because the projections of the incident (real)
and transmitted (complex) wave vectors onto the interface must be
the same according to Snell’s law, the imaginary part k! of the wave
vector in the reservoir is orthogonal to the interface. This implies that
the inhomogeneity angle of the transmitted wave is equal to the
transmission angle, which can reach 90°. It is also clear that the inho-
mogeneity angle of the wave reflected from the base of the reservoir
can be large as well. This situation, for example, is always encoun-
tered in soft absorbing sediments beneath the ocean bottom.

Existing measurements of the inhomogeneity angle are limited to
laboratory studies (Deschamps and Assouline, 2000; Huang et al.,
1994). Indeed, although the angle & can be significant, its estimation
from seismic data is extremely difficult. It seems natural to expect
that the inhomogeneity angle should influence attenuation along the
raypath (group attenuation), which is the only relevant attenuation
measurement in seismic processing.

Attenuation analysis becomes particularly involved in anisotropic
media where the ray might deviate significantly from both the phase
direction and the direction of maximum attenuation. When the medi-
um is anisotropic, the relationship between the angle ¢ and the atten-
uation coefficients is obscured by the complexity of the exact equa-

llf
k')
v

kR

Figure 1. Plane wave with a nonzero inhomogeneity angle &. The
wave propagates in the direction k¥ (perpendicular to the planes of
constant phase) and attenuates most rapidly in the direction k.

Elastic
cap rock

Attenuative
reservoir

Figure 2. Illustration of the reflection/transmission problem at the in-
terface between a purely elastic cap rock and an attenuative reser-
voir. The real and imaginary parts of the wave vector of the transmit-
ted wave are k® and k/, and k*"" and k’™*" correspond to the reflected
wave. As discussed in the text, the inhomogeneity angle & of the
transmitted wave is equal to transmission angle 6.
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tions. It can be inferred from the results of Gajewski and PSencik
(1992) that in weakly attenuative media, the group attenuation coef-
ficient yields the quality factor of the medium. Numerical modeling
by Deschamps and Assouline (2000) also shows that group attenua-
tion reflects the intrinsic viscoelasticity of the material. The analytic
results of Vavry&uk (2008) and Cerveny and Psenéik (2008a) indi-
cate that group attenuation is insensitive to the inhomogeneity pa-
rameter. However, their asymptotic analysis is valid only for weak
attenuation and plane waves with small values of the inhomogeneity
parameter D.

Here we use first-order perturbation theory to study the influence
of the inhomogeneity angle on group and phase attenuation coeffi-
cients. By perturbing an isotropic attenuative background, we obtain
a weakly anisotropic medium with angular dependence of both ve-
locity and attenuation. In contrast to the methodology of Cerveny
and PSencik (2008a) and Vavrycuk (2008), our approach allows for
arbitrarily large attenuation and strongly inhomogeneous waves.
Therefore, this perturbation scheme helps us analyze wave propaga-
tion for a wide range of angles § including the vicinity of forbidden
directions. First, we develop closed-form linearized expressions for
group and phase attenuation in arbitrarily anisotropic media, which
provide useful physical insight into the influence of the angle §.
Then the general equations are simplified for the special case of TI
media by expressing them through Thomsen-style anisotropy pa-
rameters. Finally, we corroborate the conclusions drawn from the
analytic expressions by exact numerical modeling.

PHASE AND GROUP ATTENUATION
COEFFICIENTS

The Christoffel equation, which describes plane-wave propaga-
tion in anisotropic media, can be solved for the real (k*) and imagi-
nary (k') parts of the wave vector. The ratio k’/ k¥ yields the phase
attenuation per wavelength, which is called the normalized phase-at-
tenuation coefficient A (Zhu and Tsvankin, 2006):

kl
A= ok (3)

For a nonzero inhomogeneity angle &, the coefficient A is a mea-
sure of attenuation along the vector k' rather than k*. Also, in seismic
data processing, attenuation is measured along the raypath, which
deviates from the phase direction k¥ when the medium is anisotrop-
ic.

Typically, attenuation is computed from seismic data using the
spectral-ratio method (e.g., Johnston and Toksoz, 1981; Tonn,
1991), which has been extended to anisotropic media (Zhu et al.,
2007). If two receivers record the same event at two different loca-
tions along a raypath, the attenuation coefficient can be estimated
from the ratio S of the measured amplitude spectra:

In§ =1InG — kj1, )

where G contains the reflection/transmission coefficients, source/re-
ceiver radiation patterns, and geometrical spreading along the ray-
path, ki, is the average group attenuation coefficient, and / is the dis-
tance between the two receivers. Assuming that the medium be-
tween the receivers is homogeneous, equation 4 can be rewritten in
terms of the group velocity V, and traveltime ¢:
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InS =1InG — k,V,t,
=InG — wA,t, (5

where  is the angular frequency and A, = kL/k5 = ki/(w/V,) is
the normalized group attenuation coefficient. It follows from equa-
tion 5 that by estimating the slope of In S expressed as a function of
w, we can compute the group attenuation along the raypath, if the
traveltime ¢ is known. Therefore, A, is the measure of attenuation
obtained from seismic data.

If the medium is anisotropic (or isotropic, but the inhomogeneity
angle is large, as discussed below), the group-velocity vector V, de-
viates from the phase direction parallel to k¥. To simplify the analyt-
ic development, we choose a coordinate frame in which kX coincides
with the axis x; and k’is confined to the [ x,, x;]-plane (Figure 3). The
group attenuation coefficient k, can be found by projecting the phase
attenuation vector k’ onto the group direction:

1
kh=—(k'"V,), (6)
8 Vg 8
= k!(cos & cos i + sin & sin i cos @), (7)

where ¢ is the angle between k¥ and V,, (group angle) and ¢ is the
azimuth of V, withrespect to the [ x,, x;]-plane (Figure 3). For isotro-
pic media and symmetry planes in anisotropic media, V, lies in the
plane formed by vectors k¥ and k! (i.e., ¢ = 0), and k } is given by

k; =klcos(& — o). (8)

Using equation 7, the normalized group attenuation coefficient A,
can be represented as

1 k{g k'cos &cos ¢ (1 + tan £ tan i cos ¢) ©)
—Neel—— . 9
fokR !V,

The group velocity can be obtained from the well-known relation
(e.g., Cerveny and Piencik, 2006)

1
—kkv, =1, (10)
w

or
w
— = kR ) 11
v, cos i (11)

Substituting equation 11 into equation 9 yields

I
Ag=:—Rcos§(1 + tan & tan ¢ cos ¢). (12)

Equation 12 can be used to compute the exact coefficient A, for arbi-
trarily anisotropic, attenuative media and any angle &. If the group-
velocity vector is confined to the plane formed by kX and k/ (see
above), cos ¢ = 1 and equation 12 becomes

_ K cos(E— )

£ kR cosy (13)

For a zero inhomogeneity angle, the coefficient A, reduces to
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1

ALE=09= 5
8 kR £=0°

= Alg—oe. (14)

Equation 14 demonstrates that even for arbitrary anisotropy, the
group attenuation coefficient coincides with the phase attenuation
coefficient computed for & = 0° (Zhu, 2006). However, it is unclear
how A, is related to phase attenuation for a nonzero ¢ and what role
is played by the inhomogeneity angle in the estimation of the attenu-
ation coefficient.

ISOTROPIC MEDIA

To evaluate the influence of the inhomogeneity angle on velocity
and attenuation in isotropic media, we obtain the real and imaginary
parts of the vector k from the wave equation. The derivation,
discussed in Appendix A, shows that the solution exists only if
k®-k’ > 0, which means that the inhomogeneity angle in isotropic
media should be smaller than 90° (we assume that & > 0° because
positive and negative inhomogeneity angles are equivalent in the ab-
sence of anisotropy). Therefore, the attenuation vector k/ cannot de-
viate from k¥ by 90° or more, and angles & =90° correspond to for-
bidden directions. Note that for isotropic nonattenuative media, the
inhomogeneity angle of an evanescent (inhomogeneous) plane wave
is always equal to 90°, which explains the properties of surface and
nongeometric modes (Tsvankin, 2005).

The squared magnitudes of the vectors k¥ and k’ for ¢ < 90° (Ap-
pendix A) are given by

R\2 wz_ 1 |
(k)=2—v2 1+m+l, (15)

2
A _r
(k") el 1+ (0cosé)? 1_, (16)

where V = \fa_gg is the real part of the medium velocity and a;; is the
density-normalized stiffness tensor. The only approximation used to
derive equations 15 and 16 is that quadratic and higher-order terms
in the inverse quality factor 1/Q (but not in 1/(Q cos £)) can be ne-

and

Figure 3. Plane wave propagating along the coordinate axis x; in an
anisotropic attenuative medium. The group angle ¢ is the deviation
of the group-velocity vector V, from the real part k* of the wave vec-
tor. The azimuth of the vector V,, with respect to the plane formed by
kFfand k! is denoted by ¢.
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glected compared to unity. Equivalent solutions for k% and k' in iso-
tropic media are given in Cerveny and PSencik (2005a).

Small and moderate inhomogeneity angles

The dependence of the wave vector on the inhomogeneity angle is
controlled by the product (Q cos ¢). If the angle £ is not close to 90°
and the medium does not have uncommonly strong attenuation, we
can assume that (Q cos &) > 1 and simplify equations 15 and 16 to
(see Appendix A)

kR =—, (17)

<le

(O]

9
2VQcosé’

(18)

According to equation 17, for (Qcos&)>>1 the velocity of wave
propagation is equal to V and is independent of the inhomogeneity
angle and of attenuation. Using equations 17 and 18, we find the nor-
malized phase attenuation coefficient A as

a)

180°

90°

b) 180°

0°

Figure 4. Exact (a) P-wave and (b) S-wave coefficient A|;_ - (equa-
tion 3, gray curve) and the normalized group attenuation A, (equa-
tion 12, black curve) in isotropic media as a function of the inhomo-
geneity angle ¢ (numbers on the perimeter). The quality factors are

Op=0Qs=5.
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k]
A:k_R:

1

20cosé’ (19)

In general, the inhomogeneity angle also changes the group veloc-
ity and group angle. For (Q cos £) > 1, however, the influence of £ is
negligible (Appendix A):

t tang <1 (20)
ny=——"-<1,
=0

and V, =~ V. The normalized group attenuation coefficient A, (equa-
tion 12) then becomes

klcosé
A, = 1)
k
If the wave vector is described by equations 17 and 18, equation
21 yields

1
Ag:E: A|§:0°. (22)

Therefore, for a wide range of common inhomogeneity angles, the
group attenuation coefficient A, does not depend on the angle ¢ and
is close to the phase attenuation coefficient A computed for § = 0°.
Later we demonstrate that this result remains valid for much more
complicated models with anisotropic velocity and attenuation func-
tions. Equation 22 also shows that seismic attenuation measure-
ments (i.e., the coefficient A,) for isotropic media provide a direct
estimate of the quality factor Q. This conclusion applies to both P-
and S-waves and a wide range of angles & (Figure 4).

Large inhomogeneity angles

For large inhomogeneity angles approaching 90°, the assumption
(Qcos &)>> 1, used to derive equations 17 and 18, is no longer satis-
fied. In the limit of (Qcos &) < 1 (£ —90°), equations 15 and 16
give completely different approximate solutions for the wave vector
(Appendix A):

KR = —2 <1+QC°S§), (23)
V\2Qcos & 2
and
Kl = — (1—QC°S§>. (24)
VV2Qcos & 2
Dropping quadratic and higher-order terms in (Q cos £), we find
kl
A=ﬁ=1—Qcos§. (25)

The velocity of wave propagation, determined primarily by the de-
nominator of the expression for k¥ (equation 23), is proportional to
YO cos & and goes to zero when the inhomogeneity angle approaches
90°.

When ¢ —90°, the influence of the inhomogeneity angle on the
group quantities ¢, V,, and A, is no longer negligible. The group an-
gle for large inhomogeneity angles becomes (see Appendix A)
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tan ¢ = é —cosé. (26)

Equation 26 demonstrates that for strong attenuation (small Q) the
group-velocity vector deviates from the phase direction toward the
attenuation vector when & — 90°. Note that despite the medium be-
ing isotropic, the group and phase directions differ because of nonze-
ro values of &.

The coefficient A, for large angles ¢ can be obtained by substitut-
ing equations 25 and 26 into equation 12:

A, =(1 - Qcosf){cosg + (é — cosf)sinf].

(27)
Linearizing equation 27 in cos ¢ yields
Ag=l—cos§. (28)
Q

Equation 28 shows that the group attenuation coefficient A, for large
inhomogeneity angles reduces to just tan ¢ (see equation 26). There-
fore, whereas the real and imaginary parts of the wave vector (equa-
tions 23 and 24) become infinite as & —90°, the group attenuation
coefficient approaches 1/Q and is about twice as large as A|;_-
(Figure 4). Hence, for large angles & close to 90°, seismic attenua-
tion measurements in isotropic media do not provide a direct esti-
mate of the quality factor because A, rapidly increases with & from
and 1/(2Q)to 1/Q.

Although the presence of anisotropy makes treatment of wave
propagation in attenuative media much more complicated, several
key conclusions drawn above prove to be valid for models with an-
isotropic velocity and attenuation functions.

ANISOTROPIC MEDIA

The dependence of attenuation on the inhomogeneity angle & in
anisotropic media is influenced by the angular variation of the phase
quantities and by the difference between the group and phase direc-
tions. Using the Christoffel equation B-1, the phase attenuation coef-
ficient A can be computed for arbitrary values of the angle £. Then
general group-velocity equations (e.g., Tsvankin, 2005) can be em-
ployed to obtain the group attenuation coefficient. It would be use-
ful, however, to develop analytic expressions for phase and group at-
tenuation that provide physical insight into the contribution of the in-
homogeneity angle. To derive analytic expressions for k¥, k/, and A,
in arbitrarily anisotropic media, we use first-order perturbation theo-
ry, as discussed in Appendix A. The analytic development is sup-
ported by numerical modeling based on exact solutions.

Perturbation of the complex wave vector

We consider an isotropic, attenuative background medium, which
is perturbed to obtain anisotropic velocity and attenuation functions.
The real and imaginary parts of the wave vector in the background
are denoted by k*? and k', respectively. We choose the coordinate
frame in which k*? coincides with the x;-axis and k*° lies in the
[x1,x3]-plane. The angle £ is kept fixed, so the real and imaginary
parts of the perturbed wave vector k = k® — /k! remain parallel to
the corresponding parts of the background vector k°.
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First, we obtain linearized expressions for the perturbations Ak®
and Ak’ in arbitrarily anisotropic media using the coordinate frame
defined by k* and k’ (equations B-15-B-20 in Appendix B). To ex-
press Ak® and AK! in a fixed coordinate frame, one has to rotate the
perturbation density-normalized stiffness tensor Aa;;; accordingly.
For example, to derive Ak® and Ak’ for TI media as a function of the
phase angle 6 (the angle between k¥ and the symmetry axis), the ten-
sor Aa;;, in equations B-15-B-20 is rotated about the x,-axis by the
angle 6.

For the special case of P-wave propagation in TI media, the per-
turbations Ak® and Ak’ take the form

Ak§ s 2 2 in?
R0 = —(5sin*fcos* 6 + sin*H) (29)
P
and
Akj
Tg =dy sin6 cos?6 + stin40 — (85sin*6cos’6
kp

+ esin*0) — [6 + 2(e — 8)sin®#]sin260 tan &,
(30)

where € and 6 are Thomsen velocity-anisotropy parameters, and g,
and & are Thomsen-style attenuation-anisotropy parameters (Zhu
and Tsvankin, 2006). The parameter ¢, determines the fractional dif-
ference between the P-wave phase attenuation coefficients Al _ o
in the horizontal and vertical directions, and &, controls the coeffi-
cient Al in the vicinity of the symmetry axis. Equations 29 and
30 are derived for the attenuation vector k/ confined to the plane de-
fined by k¥ and the symmetry axis. Similar expressions for SV- and
SH-waves in TI media are given in Appendix C (equations
C-1-C-4).

Note that the real part Ak® of the linearized perturbation in the
wave vector in equations 29, C-1, and C-3 is independent of the in-
homogeneity angle and is governed entirely by velocity anisotropy.
This conclusion is corroborated by the numerical example in Figure
5. As the inhomogeneity angle varies from 0° to 70°, there is no no-
ticeable change in k® even in the presence of velocity anisotropy
(Figure 5c and d) and attenuation anisotropy (Figure 5e and f). The
“isotropic” behavior of k in Figure Se and f indicates that attenua-
tion anisotropy has little influence on the velocity function, which is
controlled by the velocity-anisotropy parameters (Figure 5c¢ and d).
Whereas equations 29, C-1, and C-3 remain accurate for a wide
range of & (Figure 5b, d, and f) and strong attenuation anisotropy,
they break down for the angle £ approaching 90°.

The attenuation vector k’ (equations 30, C-2, and C-4), on the oth-
er hand, is influenced by both velocity and attenuation anisotropy, as
well as by the inhomogeneity angle ¢. The increase in & from 0° to
70° in Figure 6 causes a substantial change in k?, both for isotropic
and TT media. Figure 6d-i illustrates the dependence of k! on the ve-
locity- and attenuation-anisotropy parameters. It is interesting to
note that for small &, the contribution of velocity and attenuation an-
isotropy to k' (equations 30, C-2, and C-4) is of the same order. With
increasing &, however, the influence of velocity anisotropy (Figure
6f) becomes more pronounced compared to that of attenuation an-
isotropy (Figure 6i) because the tan¢-term in equation 30 depends
juston e and &. Figure 6 also demonstrates that equation 30 deviates
from the exact k only for large angles &, with the error controlled
primarily by the velocity-anisotropy parameters.
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Normalized group attenuation coefficient

As discussed above, for a zero inhomogeneity angle, the normal-
ized group attenuation coefficient A, coincides with Al; ¢ (equa-
tion 14). This conclusion, which is valid for all wave modes, is sup-
ported by Figure 7a and b, in which the coefficients A|;—o- (gray
curve) and A, (black) practically coincide when & = 0°.

To examine the influence of the angle ¢ on A,, we linearize equa-
tion 12 in terms of perturbations of the wave vector:

k0 + Ak!
¢ 7 kRO L AKR

k"0 Ak" AkR
= RO l+m—m cos &(1 + tan € tan ¢ cos ¢b).

(31

A cos (1 + tan & tan ¢ cos ¢)

Taking into account that K0/ k®0 = 1/(2Q°cos &) (equation 19), we
find

a){=0° 180°

b) {=70° 180°

d) =700 180°

e) =0 180°

0° 0°

Figure 5. Exactreal part k¥ (in 100 m~") of the P-wave vectork (sol-
id lines) and approximate k*® = k*° 4+ AkR from equation 29 (dashed
lines) for (a), (c), and (e) € = 0° and (b), (d), and (f) £ =70° as a
function of the phase angle (numbers on the perimeter). The model
in (a) and (b) is isotropic; in (c) and (d) it is anisotropic in terms of ve-
locity but has isotropic attenuation; and in (e) and (f) it has isotropic
velocity and anisotropic attenuation (Table 1). The frequency is
30 Hz.

Behuraand Tsvankin

1 AKT AKR
PG

.= 2_Q0 + 0 W)(l + tan tany cos ¢).

(32)

Equation 32 is valid in arbitrarily anisotropic media for all wave
modes. Substituting equations B-15 and B-16 for Ak® and Ak’ and
equation B-26 for the product tan¢s cos ¢ into equation 32, we obtain
the group attenuation coefficient for P-waves linearized in Aa;;:

1 1 [ AdL, )
A= — ( S (33)
P 20p 2Vio\ Opo .

where QOpj and Vp, are the P-wave quality factor and velocity, respec-
tively, in the background. Similar expressions for S;- and S,-waves
are given in Appendix B (equations B-30 and B-31).

Below, we analyze equation 33 for the special case of P-wave
propagation in TI media with arbitrary symmetry-axis orientation.
As mentioned earlier, to express A, through the phase angle § with
the symmetry axis, the tensor Aa;;, in equation 33 has to be rotated
around the x,-axis. Then we linearize A, in the velocity- and attenua-
tion-anisotropy parameters to obtain

1
Agp=—(1+ 5Qsin2000s20 + stin40). (34)
20p

Similar approximate expressions for the group attenuation coeffi-
cient of SV- and SH-waves are given in Appendix C (equations C-10
and C-11).

Therefore, the inhomogeneity angle has no influence on the ap-
proximate group attenuation coefficient. Furthermore, as discussed
below, A, p in equation 34 coincides with the linearized P-wave

Table 1. Medium parameters used in the numerical tests.
For all models, the P- and S-wave symmetry-direction
velocities (Vp, and V) are 2800 m/s and 1700 m/s,
respectively.

Figure 3 e 0 v Ow Own & 6o Yo
5a, b 0°, 70° 0O 0 O 10 10 0 O 0
5c, d 0°, 70° 03 02 0 10 10 0 O 0
Se, f 0°, 70° 0O 0 O 10 10 0.6 04 0

6a, b, c 0°,45°, 70°
6d, e, f 0°,45° 70°
6g, h,i 0°, 45° 70°

Same as in Figure 5a and b
Same as in Figure 5c and d
Same as in Figure 5e and f

Ta 0° 03 02 0 10 10 0.6 04 0
7b 0° 0 0 03 10 10 0 O 0.5
8 — 03 02 0 5 5 06 04 0
9a 60° 0O 0 O 10 10 0 O 0
9b 60° 03 02 0 10 10 0 O 0
9¢ 60° 06 04 0 10 10 0 O 0
9d 60° 0O 0 O 10 10 0.6 04 0
10a, b 60° 06 04 0 10 10 0.6 04 0
10c, d 60° 0 0 05 10 10 0 O 0.5
11 — 0O 0 03 5 5 0 0 0.5
12a — 0 0 1 5 50 0 -05
12b — 0 0 03 0 0 -—=05
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phase attenuation coefficient for a zero inhomogeneity angle
(Al¢=¢) derived by Zhu and Tsvankin (2006). Equation 34 notice-
ably deviates from the exact A, only when the angle ¢ approaches
forbidden directions (Figure 8); the behavior of A, for large inhomo-
geneity angles is analyzed in more detail below.

Note that the linearized A, (equations 34, C-10, and C-11) is con-
trolled by attenuation anisotropy and does not depend on velocity-
anisotropy parameters. This conclusion is confirmed by the exact
modeling results in Figure 9a and b, where the coefficient A, re-
mains insensitive even to strong velocity anisotropy with € = 0.6
and 8 = 0.4 when & = 60° (Figure 9¢). The presence of attenuation
anisotropy, on the other hand, results in a substantial change in A,
(Figure 9d).

Relationship between group and phase attenuation

The normalized phase attenuation coefficient .A| ¢—o° can be ob-
tained from the Christoffel equation and expressed through attenua-
tion-anisotropy parameters (Zhu and Tsvankin, 2006). As shown
above, the coefficient A, coincides with A|;_- for a wide range of
£ in isotropic media and for & = 0° in anisotropic media (equation
14).

Using perturbation analysis, we obtained closed-form expres-
sions for coefficient Al;_- in arbitrarily anisotropic media linear-
izedin Aa;; (Appendix B). For P-waves,

a) £ =0°

A|§ =0°P

(except for values close to 90°; see below), the
linearized coefficient A, coincides with Al ..
This conclusion is also valid for S;- and S,-waves
(compare equations B-30 and B-31 with equa-
tions B-24 and B-25).

The approximate P-wave phase attenuation co-
efficient for TI media can be found as a simple
function of attenuation-anisotropy parameters
(Zhu and Tsvankin, 2006):

1
Alg—gep=—(1 + 8, sin*@ cos’6
ET0P T 20, ¢

+ &g sin*6). (36)

Zhu and Tsvankin (2006) also provide similar
linearized expressions for SV- and SH-waves re-
produced in Appendix B. As is the case for arbi-
trary ansisotropy, the coefficient Al;_: in equa-
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also are close for SV- and SH-waves, which confirms the analytic re-
sults of Appendix C (Figure 10c and d).

Group attenuation for large inhomogeneity angles

The above conclusions about the influence of the inhomogeneity
angle on phase velocity and attenuation no longer hold for large in-
homogeneity angles approaching forbidden directions. As shown
above for isotropic media, when (Qcos £) < 1, the group attenua-
tion coefficient varies with the angle & and differs from A\ £=00-

To study the influence of large ¢ analytically, we follow the same
perturbation-based approach (Appendix B) but with different back-
ground values of the wave vector, group velocity, and group angle
(equations 23-26). For simplicity, here we analyze only the special
case of elliptical anisotropy in TI media (i.e., SH-waves); more gen-
eral solutions for shear waves in arbitrarily anisotropic media are
given in Appendix D. Numerical tests demonstrate that our conclu-
sions remain valid for all wave modes and any anisotropic symme-
try.

According to equation D-6, the coefficient .A, for large inhomoge-
neity angles becomes a function of £ and cannot serve as a measure
of intrinsic attenuation. As is the case for isotropy, A, in anisotropic

b) £¢=45 1g0° €) £=70° 180°

1 1 (Aa§3 A )
= — — Aax, . o 135° _135° 135° _135° 135°
2 33 -135 135 135
20p)  2Vpy\ Opo

(35) . o onp .

-90° 90°-90 90°-90 90
Similar expressions for S;- and S,-waves are
given in Appendix B. Comparison of equations

33 and 35 shows that for a wide range of angles & -45° 45° —45° 45 —45° 45

tion 36 coincides with A, in equation 34.

Figure 10a and b demonstrate that the maxi-
mum difference between the exact coefficients
A, and Al does not exceed 10% even for
strong attenuation (Qs; = 10) and uncommonly
large anisotropy parameters (¢ = g, = 0.6 and
8 = 8, =0.4). The coefficients A, and Al

dc

Figure 6. Exact imaginary part k’ of the P-wave vector k (solid lines) and approximate
k= k" + Ak’ (in 100 m~") from equation 30 (dashed lines) for (a), (d), and (g) &€ = 0°,
(b), (e), and (h) ¢ = 45°, and (c), (f), and (i) £ = 70° as a function of the angle between k’
and the symmetry axis. In (a), (b), and (c), both velocity and attenuation are isotropic; in
(d), (e), and (f), only velocity varies with angle, whereas attenuation is isotropic; in (g),
(h), and (i), attenuation varies with angle, whereas velocity is isotropic. The model pa-
rameters are given in Table 1. The frequency is 30 Hz.
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media is always finite (and does not go to zero), even though the real
and imaginary parts of the wave vector (equation D-3) become infi-
nite.

When the medium is isotropic, a physical solution of the wave
equation exists only for —90° < ¢ < 90° (equation A-5; also see
Cerveny and Pgencik, 2005a). The bounds for the inhomogeneity an-
gle in arbitrarily anisotropic media depend on both velocity and at-
tenuation anisotropy and can be derived from equation D-3 using the
inequalities k® > 0 and &’ > 0. For the special case of elliptical an-
isotropy (equation D-4), the inhomogeneity angle should satisfy

ysin26 Yo 0826

cosé + Tsmf > 10y (37)
which yields the following bounds for §:
—-B-—a< < B—a, (38)
where
a=tanl(Lin26) (39)
2
and

a) 180°

90°

b) 180°

90°

OO

Figure 7. Exact (a) P-wave and (b) SH-wave coefficients Al;_o
(gray curves) and A, (black curves) in TI media as a function of the
phase angle for ¢ = 0°. Because A, = Al¢~ ¢, the gray curves prac-
tically coincide with the black curves. The model parameters are giv-
eninTable 1.

Behuraand Tsvankin

Bzcos_l(%(m) (40)
S0

Equivalent expressions for the bounds on & for SH-wave propaga-
tion in the symmetry plane of a monoclinic medium are given by
Cerveny and PSenéik (2005a) in terms of the inhomogeneity param-
eter D.

For wave propagation along the symmetry axis or perpendicular
to it (6 = 0° or 90°), the angle & = 0° and the bounds on ¢ are sym-
metric with respect to £ = 0° (equations 38 and 40; Figure 11). It is
also clear from equation 40 that 8=~ 90° because the ratio y,/ Qs
typically is small. Hence, for & = 0° and 90°, anisotropy does not
significantly change the bounds on ¢, which remain close to +90°.
As is the case for isotropic media, when the angle ¢ approaches the
forbidden directions, the group attenuation coefficient .4, rapidly in-
creases with | €| and reaches values approximately twice as large as

Al o (Figure 11).

For oblique propagation angles, « does not vanish, and the
bounds on ¢ become asymmetric with respect to ¢ = 0°. This asym-
metry is controlled by velocity-anisotropy coefficient y and reaches
its maximum for the phase angle # = 45° (equation 39). The model
in Figure 12a, taken from Carcione and Cavallini (1995), has an un-
commonly large parameter y equal to unity, and for § = 45°, the in-
homogeneity angle can vary only between —64° and 116°. There-
fore, strong velocity anisotropy might result in forbidden directions
for angles | £ much smaller than 90°.

Still, the range of possible inhomogeneity angles (23) remains
close to 180° because the parameter 8 = 90° (Figure 12a). For more-
common, smaller values of parameter y, the bounds on ¢ become
more symmetric with respect to ¢ = 0° and do not differ significant-
ly from *90° (Figure 12b). The behavior of the coefficient A, for
large angles ¢ in Figure 12 is similar to that in isotropic media.

DISCUSSION

Our analytic and numerical results prove that the normalized
group attenuation coefficient A, measured from seismic data is prac-
tically independent of the inhomogeneity angle (except for angles &
approaching the forbidden directions) and

180°

90°

Figure 8. Exact P-wave group attenuation coefficient A, » (solid
line) and approximate A, p from equation 34 (dashed line) in TI me-
dia for 6 = 45° as a function of the angle £ (numbers on the perime-
ter). The model parameters are given in Table 1.
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is close to the normalized phase attenuation coefficient .Al;—o-. Be-
hura and Tsvankin (2008) corroborate this conclusion by applying
attenuation layer stripping and the spectral-ratio method to full-
waveform P-wave synthetic data generated by a point source in lay-
ered anisotropic models. The interval coefficients A, and Al;_ - es-

a) 180° b) 180°

0° 0°
Figure 9. Exact P-wave group attenuation coefficient A, for § = 60°
in (a) isotropic and (b), (c), and (d) TI media. In (b) and (c) only ve-
locity varies with angle, whereas attenuation is isotropic; in (d) at-

tenuation varies with angle, and velocity is isotropic. The model pa-
rameters are given in Table 1.

a) 180° b) 180°

-90°

0°

Figure 10. Exact (a) P-wave and (c) SH-wave coefficients A|;_
(gray curve) and A, (black curve) and (b) and (d) the percentage dif-
ference | A, — Al¢—¢| in TI media as a function of the phase angle 0
for ¢ = 60°. The model parameters are listed in Table 1.

WB185

timated by Behura and Tsvankin (2008) from reflection amplitudes
practically coincide, even at large offsets where the inhomogeneity
angle reaches 45°.

The coefficient A|§:0a in TI and orthorhombic media can be in-
verted for Thomsen-style attenuation-anisotropy parameters using
the formalism developed by Zhu and Tsvankin (2006, 2007). Note
that estimation of attenuation-anisotropy parameters from .Al;_o
requires computation of the corresponding phase angle, which de-
pends on the anisotropic velocity field. Even in strongly anisotropic
models, however, the influence of attenuation on velocity is of the
second order (see above), which implies that velocity analysis can be
performed using existing methods. Then the reconstructed velocity
field can be employed to recompute the known group direction into
the phase direction needed in the inversion for attenuation-anisotro-
py parameters. Furthermore, given the large uncertainty of ampli-
tude measurements, the difference between the phase and group di-
rections for moderately anisotropic models should not substantially
distort the results of attenuation analysis.

a) 180°

Figure 11. Exact SH-wave coefficients Al;—(: (gray curve) and A,
(black curve) in TI media for propagation in the directions (a)
6 = 0° and (b) § = 90°, plotted as a function of the inhomogeneity
angle ¢ (numbers on the perimeter). The black dashed line marks the
bounds of £ computed from equations 38—40. The model parameters
are listed in Table 1.
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a) 180°

90°

Figure 12. Exact SH-wave coefficients Al;_ - (gray curve) and A,
(black) as a function of ¢ (numbers on the perimeter) for 8 = 45°,
vo= —0.5and (a) y = 1.0; and (b) y = 0.3. The black dashed line
marks the bounds of ¢ computed from equations 38—40. The model
parameters are listed in Table 1.

CONCLUSIONS

We applied first-order perturbation theory to study the influence
of the inhomogeneity angle on velocity and attenuation in arbitrarily
anisotropic media. By adopting an attenuative, isotropic background
medium, we were able to specify a background wave vector with an
arbitrary inhomogeneity angle &. Perturbation analysis yields con-
cise analytic expressions for the complex wave vector K, the phase
attenuation coefficient Al e, and the group attenuation coefficient
A, in terms of perturbations of the complex stiffness coefficients. To
gain physical insight into the influence of the inhomogeneity angle,
we also derived closed-form expressions for TI media by linearizing
the general solutions in dimensionless velocity- and attenuation-an-
isotropy parameters.

For a wide range of small and moderate angles ¢, the phase-veloc-
ity function is practically independent of attenuation, while the
group attenuation coefficient A,, which is measured from seismic
data, is insensitive to the inhomogeneity angle. Furthermore, A,
practically coincides with the phase attenuation coefficient Al _ e,
which is proportional to the angle-dependent inverse quality factor
in anisotropic media. This conclusion remains valid even for uncom-
monly high attenuation (Q = 10) and strong velocity and attenuation
anisotropy. The negligible difference between A, and Al; ¢ sug-

Behuraand Tsvankin

gests that seismic data can be inverted for the attenuation-anisotropy
parameters without knowledge of the inhomogeneity angle.

However, for larger angles ¢ approaching the forbidden direc-
tions (i.e., the directions of the attenuation vector k’ for which solu-
tions of the wave equation do not exist) the inhomogeneity angle has
a strong influence on both attenuation and phase velocity. Whereas
for isotropic media the inhomogeneity angle can vary between
—90° and 90°, velocity anisotropy makes the bounds on the inhomo-
geneity angle asymmetric with respect to § = 0°. In the vicinity of
the forbidden directions, the coefficient A, rapidly increases with | £
and reaches values approximately twice as large as A|;_q.. The
range of such anomalous inhomogeneity angles, where .4, no longer
represents a direct measure of the intrinsic attenuation, becomes
wider for highly attenuative models.
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APPENDIX A

COMPLEX WAVE VECTOR FOR ISOTROPIC
ATTENUATIVE MEDIA

We consider a harmonic plane wave with an arbitrary inhomoge-
neity angle £ propagating in isotropic attenuative media:

A(X,t) _ Aoei(wtfk-x)’ (A—l)

where w is the angular frequency and k = k® — /k! is the complex
wave vector responsible for the velocity and the attenuation coeffi-
cient. Substitution of the plane wave A-1 into the acoustic wave
equation results in

2

0}
2 i)
VAaALl+ —
Q
where V is the real part of the medium velocity, and Q is the quality

factor. Dropping quadratic and higher-order terms in 1/Q, we re-
write equation A-2 as

ki + ks + ks = (A-2)

(kR)2—2ikR~k'—(k’)2=w—2<l _L) (A—3)
V2 )’

k® =|KkF| and k' = |Kk/|. Equation A-3 can be separated into the real
and imaginary parts:

2
w
(%) = (k)2 = 5, (A-4)
and
2
w
kR-k' = Vg (A-5)
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When the medium is nonattenuative and 1/ Q = 0, the right side of
equation A-5 vanishes. Then, the vectors k¥ and k’ of an inhomoge-
neous (evanescent) plane wave have to be orthogonal, with the rela-
tionship between k* and k! determined by equation A-4.

Because the factor Q responsible for attenuation is positive, equa-
tion A-5 can be satisfied only if kR-k/ > 0, which requires that
cosé >0 and € < 90°. (We make the assumption that ¢ > 0 be-
cause the solutions of equations A-4 and A-5 do not depend on the
sign of £.) With the inhomogeneity angle smaller than 90°, equation
A-5 allows us to express k'’ through k ® as

2
b ()

= V2 geose” (A-6)

Substitution of k' into equation A-4 yields a quadratic equation for
(k*®)2, which has only one positive solution:

w? 1
(k®)? = 2—‘/2{ \/1+ (Qoost)? + 1]. (A-7)

The corresponding imaginary part k/ can be obtained from either
equation A-4 or A-6:

2
n_ @ _ -
(k") —2V2{\/1+ QcosE)? 1}. (A-8)

For typical large values of the quality factor, the product
(Qcos &) > 1, unless the inhomogeneity angle is close to 90°. Ex-
panding the radical in equations A-7 and A-8in 1/(Q cos &)?, we find

R_© 1 _
k _V{1+8(QCOS§)2}’ (A9
and
I 0} B 1 ]
k _ZVQcosg[1 8(Qcos§)2]‘ (A-10)

Equations A-9 and A-10 can be simplified further by neglecting the
small (compared to unity) term 1/[8(Q cos &)

w

kR=;, (A-11)

w
k= ———. A-12
2VQcosé ( )

Large inhomogeneity angles

Although equations A-11 and A-12 are sufficiently accurate for
a wide range of inhomogeneity angles, they break down when
£—90°. For (Qcos £) < 1, equations A-7 and A-8 can be approxi-
mated by

o — (1+QC°S§), (A-13)
VN2Qcos é 2

A (1—QCOS§). (A-14)
VV2Qcos & 2

The phase attenuation coefficient A can be found from equations
A-13and A-14:

wB187

(A-15)
here, we have dropped the term quadratic in (Q cos £).

Group angle

In elastic isotropic media, the group- and phase-velocity vectors
are always parallel. However, if the medium is strongly attenuative
and ¢ # 0°, the group direction might deviate from the phase direc-
tion. The group-velocity vector in arbitrarily anisotropic, attenuative
media can be computed from (Cerveny and Psenéik, 2006)

S; _ (aijklgkgfpl)R
S- PR (aijklgkg;kpl)Rpf ’

(V)i = (A-16)

where S is the energy flux, a;;, is the density-normalized stiffness
tensor, p is the slowness vector, and g is the polarization vector. The
superscripts R and * represent the real part and complex conjugate,
respectively.

For isotropic media, equation A-16 yields the following compo-
nents of V.

w k'siné
Vo=%l"7%—""7 01| (A-17)
k™[ k"O + k'cos &
From equation A-17, we find the group angle ¢:
k'sin &
t =—aF". A-18
any k®O + k'cosé ( )

To obtain the group angle for small and moderate inhomogeneity an-
gles, we substitute equations A-11 and A-12 into equation A-18,
yielding

an tan & <l
an = 5 .
1 +20°

(A-19)
For angles & approaching 90°, we substitute equation A-15 into
equation A-18 and linearize the result in cos & to get

tan ¢ = é —cosé. (A-20)

It is clear that for large inhomogeneity angles and strongly attenua-
tive media, angle ¢ might not be negligible.

APPENDIX B

PERTURBATION ANALYSIS

Here, we derive analytic expressions for the real and imaginary
parts of the wave vector in arbitrarily anisotropic, attenuative media
using first-order perturbation theory. A homogeneous, isotropic, at-
tenuative full space is taken as the background medium (Figure
B-1a). The inhomogeneity angle & between the real (k*°) and imag-
inary (k'°) parts of the wave vector in the background can be arbi-
trarily large. The background medium is perturbed to make it aniso-
tropic in terms of both velocity and attenuation (Figure B-1b), which
results in perturbations of the real (Ak*) and imaginary (Ak’) parts
of the wave vector. Because the inhomogeneity angle ¢ is a free pa-
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rameter, we choose not to perturb it when making the medium aniso-
tropic. This implies that the vectors kX and k*, as well as k’ and k",
are parallel.

We choose Kk such that k®° coincides with the axis x; and k*° lies
in the [x,x3]-plane (Figure B-1a and B-1b). This approach differs
from the one adopted by Jech and PSenéik (1989), Cerveny and
Psencik (2008b), and Vavrycuk (2008), who used a fixed reference
frame. To compute perturbations for a different vector Kk in the same
medium, we rotate the coordinate frame such that k¥ coincides with
the axis x; and K lies in the [ x,,x;]-plane. This approach involves the
rotation of the density-normalized stiffness tensor a,;, but obviates
the need to introduce two additional angles needed to define the ori-
entations of kR and k'.

Real and imaginary parts of the wave vector
We start with the Christoffel equation in the perturbed medium:
(G — 0wk =0, (B-1)
where Gy = a,j, p; p,is the Christoffel matrix, p is the complex slow-

ness vector, and g is the polarization vector of the plane wave. Per-
turbation of equation B-1 yields

(G + MGy — 8)(g) + Agd) =0, (B-2)
which can be linearized to obtain

a)

Figure B-1. (a) Isotropic attenuative background medium is per-
turbed to make it (b) anisotropic. The real and imaginary parts of the
wave vector in the background are k®? and k’?, and k® = k*? + AkF
and k! = k** 4+ Ak’ form the wave vector in the perturbed medium; &
is the inhomogeneity angle. The vectors k®? and k¥ are parallel to the
vertical x;-direction, and k"* and k! are confined to the [ x, x;]-plane.
VYis the group velocity in the background; i is the polar group angle
after the perturbation, and ¢ is the azimuth of the perturbed vector
V, with respect to the [ x,,x;]-plane.

Behuraand Tsvankin

(Gy— Su)Ag, + AGy g, =0, (B-3)

where g is the plane-wave polarization in the background and Ag is
the perturbation of the polarization vector. The polarization g° de-
fines whether the wave mode is P, SV, or SH. The mode obtained by
perturbing the SV-wave will be denoted S;, and the perturbed SH-
wave will be denoted S,. Multiplying equation B-3 with g (Jech and
PSencik, 1989) reduces equation B-3 to

AGugi g =0, (B-4)
with
AGy = Dayyp] p) + 2a5,Ap;p}, (B-5)

where a?jk, and p° are defined in the isotropic background, and Aa;y
and Ap are the perturbations. The tensors a?,-,(, and Aa;y are given by

i
0 _ RO, : 10 _ RO
aijkl_aijkl+laijkl_aijkl<1 + -5 )’ (B-6)
ijki

Aaijkl = Aaikl + iAafjkl, (B-7)

where the superscripts R and / denote the real and imaginary parts,
and Q7 is the ratio af)/a},. The background slowness p° and its

perturbation Ap can be expressed as

p’ =[—ip"¥sing, 0, p*° — ip"cos&],  (B-8)

Ap =[ — iAp'siné, 0, ApR — iApcos€],  (B-9)

where p*?, p¥ and Ap®, Ap! are the magnitudes of the real and imag-
inary parts of p° and Ap, respectively.

Assuming (Q°cos ) > 1, we solve equation B-4 for Ak® = wApR
and Ak' = wAp':

AkR x® X sec’é
—T =Ll ==, (B-10)
kR 2 20 2

Akl XR

;m=—E+Q°C (B-11)

where x® and y! are the real and imaginary parts of
X = Aayy pj-) pYe?g?. The above analysis is valid for all three modes
(P-, S;-, and S,-waves). By choosing the corresponding k° and y, we
can compute the perturbations of the complex wave vector for any of
the three modes. The term y for P-, S,-, and S,-waves has the form

X L(AaR i Ady; | 2Adj;s )
P 33

= + —tané
Vo Opo Opo
1 Aa® 2Aa
+i—2<— 33+Aa§3— 35tan§>,
Vo Opo PO
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1 Aa® Ad®. — Aa
+iv_2<_ st Aaés— 15 35 §>’
SO S0 S0
(B-13)
and
1 Ad Adl
Xs, 3 (Aaf4 4 6y §>
50 Oso S0
1 Aa® ak
+i—2(——44+Aa£4— 46tan§);
Vso Oso Oso
(B-14)

Opo and Qg are the P- and S-wave quality factors in the background
medium. Substituting equations B-12-B-14 into equations B-10 and
B-11 and retaining only the terms linear in Ag;; yields

Ak 1 Ad%,  Ad, sec’ ¢ Ad}s
RO T 2 + 1= + tané |,
kp Veol 2 Oro 4 Opo
(B-15)
Ak} 1 (3Ad
kT,(l;” - V_2<—2 3 _ QPOAa§3 + 2Aa§5tan §>,
P PO
(B-16)
Akgl _ L{Aa?s N Aa§5(1 B seczg)
kg]o Vil 2 Oso 4
Ad's — Ad}
—a,;Q L tanf}, (B-17)
S0
Aks 1 (3Adf
kL0 == V_éo( > 2 — OgoAdls + (Adfs — Adf)tang |,
1
(B-18)
Aklsezz 3 L{Aaf& N Aan(l 3 se02§> N Aaﬁé tanf}
kgf Vil 2 Oso 4 2050 ’
(B-19)
and
Ak 1 (3Ad
k1,02 = — V_Z( 5 4 QSOAan + Aaffétang).
S, S0

(B-20)

Normalized phase attenuation coefficient

We linearize the normalized phase attenuation coefficient A for
& = 0° by retaining only the first-order terms:

kI

KO+ Ak!
o _

= —o % B-21
fmoe kRO AKR (B-21)

g=0°

A|§:0°:
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1 ( Ak’ AkR>
2Q0 k1,0 kR,O .
By substituting Ak® and Ak’ from equations B-15-B-20 into equa-

tion B-22, we obtain Al;_- in arbitrarily anisotropic media for all
three modes:

(B-22)

1 1 (Adf
Alggop= - ( 3 _ Ad! ) (B-23)
0 20 2Vio\ Oro ?
1 1 [Ad®
A|§=0°,s] = -~ ( s Aa§5>,
2050 2V \ Oso
(B-24)
1 1 [ Adf
Alscpeg = — ( “_Ad )
e 52 2050 2V \ Oso "
(B-25)

Normalized group attenuation coefficient

To obtain the normalized group attenuation from equation 32, we
find the product (tan ¢ cos ¢) = V,,/ V,; from equation A-16:

2Ad%s
tan p cos pp = —5,
Vo

(B-26)

R
tan s, cos s = , (B-27)
and

R

Aa
tan s cos s = V;‘G, (B-28)
SO

where only the leading-order terms are retained.

Next, we substitute Ak® and Ak’ from equations B-15-B-20 and
tan ¢ from equations B-26—B-28 into equation 32 and retain only the
terms linear in Aa;;:

1 1 (Adf

A, p= - ( 3 _ Adl ) (B-29)

&7 208 2V \ Opo .

1 1 [Ad®

Ags, = -— ( 2 _ AaéS), (B-30)
2050 2V Oso

and

1 1 [Ad®

Ags, = T 52 ( - Aafm)- (B-31)
2050  2Vg\ Oso
APPENDIX C

SHEAR-WAVE PHASE AND GROUP
QUANTITIES IN TI MEDIA

Here, we present closed-form expressions for the shear-wave pa-
rameters Ak®, Ak, A, and A, in TI media. Note that all equations in
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Appendix A are derived for the coordinate frame defined by the vec-
tors k® and k’. Therefore, in order to obtain Ak, Ak/, A, and A, asa
function of the phase angle 6 (the angle between kX and the x;-axis),
one needs to rotate tensor Aa;;y accordingly. Because k' is assumed
to lie in the plane defined by k¥, Aa;;,in Appendix A is rotated by the
phase angle 6 around the x,-axis.

By linearizing the rotated tensor Aa;;, in the velocity-anisotropy
parameters €, 8, and y and in the attenuation-anisotropy parameters
€0, 80, and ¥, (Zhu and Tsvankin, 2006), we obtain the real (k*) and
imaginary (k’) parts of the wave vector from equations B-17-B-20:

Ak§
TS(;/= — o sin’@cos’ 0, (C-1)
k 5
3%
Ak 2 2-3
% =(gg— 5Q)g—sin20c0520 +o 90 sin” 6 cos? 0
kgy 90 90
— osin260cos26tané, (C-2)
Ak§
kT,S(? = — ysin®#, (C-3)
SH
and
AkISH .2 .2 .
kT = ypsin~ @ — ysin“ 6 — ysin20tan ¢, (C-4)
SH

where g = Vpy/ Vs, the parameter o = g*(e — &) controls the SV-
wave phase velocity, §o = Qpo/ Oso, and the parameters y and y, are
responsible for the SH-wave velocity and attenuation anisotropy, re-
spectively (Zhu and Tsvankin, 2006).

The normalized SV- and SH-wave phase attenuation coefficients
for & = 0° can be found from equations B-24 and B-25:

1
Alg—gesv=——(0+ (rQsin20 cos’f), (C-5)
205

and

1
Als o sy = —(1 + y,sin’0), C-6
|§—O,SH 2Qso( Y oS ) ( )

where the parameter o, (Zhu and Tsvankin, 2006) controls the SV-
wave attenuation coefficient:

1
0

To obtain the linearized shear-wave group angles in TI media, we
use equations B-27 and B-28 (see also Tsvankin, 2005):

tan gy cos gy = o sin26 cos26 (C-8)
and
tan gy cOS gy = ¥ sin26. (C-9)

Substituting the anisotropy parameters into equations B-30 and
B-31 yields the following group attenuation coefficients:

Behuraand Tsvankin

Agsv=7—(1+ o psin’*6 cos*6), (C-10)
205
and
Ay = (1 + ygsin®6) (C-11)
eSH™ 500 Yosin®6). }
APPENDIX D

ATTENUATION FOR LARGE
INHOMOGENEITY ANGLES

Here we develop closed-form expressions for the wave vector k
and group attenuation coefficient A, for large angles &. For simplici-
ty, we analyze only S,-waves; expressions for P- and S;-waves can
be derived using the same procedure. The development follows the
approach described in Appendix B. However, the group angle ¢ in
the background does not vanish (equation 26), and the background
vector kK = k*? — /K0 is given by equations 23 and 24. (Note that
for small and moderate angles ¢ considered in Appendix B, the
group angle /° was zero.) For large &, the real (k%) and imaginary
(k'9) parts of the background wave vector are related by (equation
25)

10
W: 1 —Q%osé, (D-1)

and the group angle ¢ is expressed as (equation 26)
o 1
tan " = @ —cos ¢, (D-2)

where Q° is the background quality factor. Perturbation produces a
change in both the wave vector (Ak® — jAk’) and the group direc-
tion.

First, we obtain k® and k’ by solving equation B-4 and linearizing
the result in Aqg;;. Eliminating terms quadratic or higher-order in
(Qcos &) and those proportional to (Aa;Q°cos &), as well as setting
terms quadratic in sin ¢ to unity, we find

R 1
k k
5 _ 5

RO — .10 2
ks2 kS2 2V

1 Aa® AdR
T 2—<Aaﬁ4— U pgl 4 2966 )
4Vigocosé Oso Oso
(D-3)
For the special case of TI media, the S,-mode becomes the SH-wave,
and equation D-3 (after eliminating terms proportional to v/ Q%, and
Yo/ Q3) takes the form
Yoc0s260 1
RO — 10 ang — ‘
k S, k S, 2 4QSO Cos g
(D-4)

The product tan i cos ¢ needed to find A, can be obtained from
equation A-16:
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1 1 | 2Ad),
tangcosp = —— —cosé — —
Oso 4Vl Oso

3Aaf,  AdR
(ﬂ s Adl, — SAaéé)sinf .
QSO QSO

- 6Aa§6

(D-5)

The group attenuation coefficient .4, is found by substituting
equations D-1-D-5 into equation 31:

A, = L cosé — L_| 3Adi, + Aags + Adl,
f 00 4Vl Oso Oso
2Ad,
—5Aak, + (ﬁ - 6Aa§6> sin§ |; (D-6)

equation D-6 is linearized in Aa;; and (Qs, cos &), and terms propor-
tional to (Aa;; Qsocos &) have been eliminated. The range of & for
which equation D-6 is valid is set by the assumption (Qg,cos &) < 1,
which ensures that A, is positive. For the special case of TI media,
A, takes a simpler form after linearization in the anisotropy parame-
ters:

1 3ysin26 2ycos26
A= g 3oIn20 | 2yc0s20
Oso 2 Oso
Yoc0s26 'chos20 (D-7)
40g 40g
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