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ABSTRACT

Moveout analysis of wide-azimuth reflection data seldom
takes into account lateral velocity variations on the scale of
spreadlength. However, velocity lenses (such as channels and
reefs) in the overburden can cause significant, laterally varying
errors in the moveout parameters and distortions in data
interpretation. Here, we present an analytic expression for the
normal-moveout (NMO) ellipse in stratified media with lateral
velocity variation. The contribution of lateral heterogeneity
(LH) is controlled by the second derivatives of the interval
vertical traveltime with respect to the horizontal coordinates,
along with the depth and thickness of the LH layer. This
equation provides a quick estimate of the influence of velocity
lenses and can be used to substantially mitigate the lens-induced

distortions in the effective and interval NMO ellipses. To
account for velocity lenses in nonhyperbolic moveout inversion
of wide-azimuth data, we propose a prestack correction algo-
rithm that involves computation of the lens-induced traveltime
distortion for each recorded trace. The overburden is assumed to
be composed of horizontal layers (one of which contains the
lens), but the target interval can be laterally heterogeneous with
dipping or curved interfaces. Synthetic tests for horizontally
layered models confirm that our algorithm accurately removes
lens-related azimuthally varying traveltime shifts and errors in
the moveout parameters. The developed methods should
increase the robustness of seismic processing of wide-azimuth
surveys, especially those acquired for fracture-characterization
purposes.

INTRODUCTION

The NMO (normal-moveout) ellipse obtained from P-wave
conventional-spread data (with the maximum offset-to-depth ratio
close to unity) provides valuable information for fracture interpre-
tation and permeability modeling (e.g., Grechka and Tsvankin,
1999; Lynn, 2004a, b; Tsvankin et al., 2010; Tsvankin and Grechka,
2011). The major axis of the NMO ellipse often coincides with the
dominant fracture azimuth and the direction of the maximum
horizontal stress, while the eccentricity (the fractional difference
between the axes) of the ellipse can be related to fracture density
(Bakulin et al., 2000a; Jenner et al., 2001; Tod et al., 2007).
The NMO ellipse can be obtained by a “global” hyperbolic sem-

blance search using all available offsets and azimuths (Grechka and
Tsvankin, 1999) or by a trace-correlation approach (Jenner et al.,
2001). To remove the influence of reflector dip, Calvert et al.

(2008) apply so-called offset-vector tile binning described by Cary
(1999) and Vermeer (2002), which preserves azimuthal information
in time-migrated data. Application of azimuthal analysis in the
depth-migrated domain is still uncommon, although it is possible
to generate wide-azimuth image gathers after prestack depth migra-
tion (e.g., Melo and Sava, 2009; Sava and Vlad, 2011; Koren and
Ravve, 2011).
With the advent of long-offset acquisition, analysis of the

NMO ellipse has been supplemented by nonhyperbolic moveout
inversion of multiazimuth data. The azimuthally varying quartic
moveout coefficient in orthorhombic and HTI (transversely isotro-
pic with a horizontal symmetry axis) media is controlled by the
anellipticity coefficients ηð1Þ, ηð2Þ, and ηð3Þ (Pech and Tsvankin,
2004; Vasconcelos and Tsvankin, 2006), which are sensitive to frac-
ture compliances and orientations (Bakulin et al., 2000b). Although
the kinematics of P-wave propagation in orthorhombic media with a
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fixed symmetry-plane orientation are controlled by six parameters
(Tsvankin, 1997, 2005), only five of them (the symmetry-plane
NMO velocities Vð1;2Þ

nmo and ηð1;2;3Þ) influence P-wave long-spread
moveout (Vasconcelos and Tsvankin, 2006; Xu and Tsvankin,
2006). Vasconcelos and Tsvankin (2006) develop an efficient
semblance-based algorithm to estimate the symmetry-plane orien-
tation and five effective moveout parameters using the generalized
Alkhalifah-Tsvankin nonhyperbolic equation. A stable technique to
obtain the interval moveout parameters of orthorhombic media is
presented by Wang and Tsvankin (2009), who implement the
velocity-independent layer-stripping method (VILS) of Dewangan
and Tsvankin (2006).
Anisotropic moveout analysis, however, is sensitive to

correlated traveltime errors caused by near-surface heterogeneity
or velocity lenses associated with channels and carbonate reefs
(Luo et al., 2007; Jenner, 2009; Takanashi et al., 2009b). An
analytic expression for the NMO ellipse in a horizontal layer with
lateral velocity variation, introduced by Grechka and Tsvankin
(1999), shows that the influence of lateral heterogeneity can be
expressed through the curvature of the vertical traveltime surface.
2D modeling for layered VTI media in Takanashi and Tsvankin
(2011) demonstrates that a velocity lens above the reflector can
cause substantial, laterally varying errors in the NMO velocity
and the anellipticity parameter η. In the presence of a lens, nonhy-
perbolic moveout inversion tends to produce even larger errors in
Vnmo than does conventional analysis based on the hyperbolic move-
out equation.
To correct for the influence of velocity lenses, Jenner (2010) sug-

gests to use 3D tomographic inversion for laterally heterogeneous,
azimuthally anisotropic models. Such an approach, however, is not
only time-consuming but also requires accurate estimates of the
overburden parameters. A 2D correction algorithm introduced in
Takanashi and Tsvankin (2011) needs less a priori information,
provided the lens is embedded in a horizontally layered overburden.
Their algorithm computes lens-induced traveltime distortions for
each trace separately using VILS.
Here, we study the influence of laterally varying velocity on

azimuthal moveout analysis and develop correction algorithms
for accurate anisotropic model-building. First, using the results
of Grechka and Tsvankin (1999), we propose an approach designed
to quickly estimate and remove the lens-related term in the effective
and interval NMO ellipses. To mitigate lens-induced distortions in
nonhyperbolic moveout inversion, we then extend the correction
algorithm of Takanashi and Tsvankin (2011) to wide-azimuth
data. Synthetic tests for layered HTI and orthorhombic media de-
monstrate that our techniques effectively restore the moveout func-
tion in the reference (laterally homogeneous) medium and provide
accurate estimates of the background moveout parameters.

NMO ELLIPSE IN STRATIFIED LATERALLY
HETEROGENEOUS MEDIA

Azimuthal variation of NMO velocity for pure (nonconverted)
modes is typically elliptical, even if the medium is anisotropic
and heterogeneous. The hyperbolic moveout equation for
wide-azimuth data has the form (Grechka and Tsvankin, 1998)

t2ðh; αÞ ¼ t20 þ
4h2

V2
nmoðαÞ

; (1)

where h is the half-offset, α is the azimuth of the CMP line, t0
is the zero-offset traveltime, and VnmoðαÞ is the NMO velocity
given by

V−2
nmoðαÞ ¼ W11 cos

2 αþ 2W12 sin α cos αþW22 sin
2 α.

(2)

The symmetric 2 × 2 matrix Wij depends on the second spatial de-
rivatives of the one-way traveltime τ from the zero-offset reflection
point to the surface location x ¼ ½x1; x2�

Wij ¼ τ0
∂2τ

∂xi ∂xj

����
x¼xCMP

; ði; j ¼ 1; 2Þ; (3)

τ0 is the one-way zero-offset time. The matrix Wij describes an
ellipse if the eigenvalues of the matrix are positive (a typical case).
For a horizontal anisotropic layer with a horizontal symmetry-

plane, the influence of weak lateral velocity variation on the
NMO ellipse is represented by (Grechka and Tsvankin, 1999):

Whom
ij ¼ Whet

ij −
τ0
3

∂2τ0
∂yi ∂yj

����
y¼yCMP

; ði; j ¼ 1; 2Þ; (4)

where Whet
ij is the NMO ellipse in the laterally heterogeneous (LH)

layer, Whom
ij is the NMO ellipse for the reference homogeneous

model, which has the same medium parameters as those at the
CMP location, and τ0 ¼ τ0ðyÞ is the one-way zero-offset traveltime
at the surface location y ¼ ½y1; y2�. The absence of the first deriva-
tives of τ0 indicates that a constant lateral gradient of the zero-offset
traveltime (or a constant lateral gradient of the vertical slowness)
does not distort the NMO ellipse, which is governed by quadratic
lateral variation of τ0 (Grechka and Tsvankin, 1999).
Equation 4 can be extended in a straightforward way to an arbi-

trary number of horizontal layers. We assume that lateral heteroge-
neity and anisotropy in each layer are weak and that the horizontal
plane is a plane of symmetry. The same assumptions were made by
Grechka and Tsvankin (1999, Appendix B) in their derivation of
the NMO ellipse for a model with two LH layers. Following their
approach, the NMO ellipse for the reflection from the bottom of an
N-layered model can be obtained as:

Whom
ij ¼ Whet

ij −
XN
m¼1

τ0 Dm

3

∂2τ0m
∂yi∂yj

����
y¼yCMP

; ði; j ¼ 1; 2Þ;

(5)

where

Dm ¼ k2m þ 3kmlm þ 3l2m; (6)

km ¼ τ0mðVðmÞ
cir Þ2P

N
r¼1 τ0rðVðrÞ

cir Þ2
; (7)

and

lm ¼
P

N
r¼mþ1 τ0rðVðrÞ

cirÞ2P
N
r¼1 τ0rðVðrÞ

cirÞ2
. (8)
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Here, τ0m is the one-way interval vertical traveltime in layer m
(m ¼ 1 corresponds to the top layer), and the coefficients km
and lm in equations 7 and 8 can be obtained from interval moveout
analysis. VðmÞ

cir are the best-fit circles approximating the interval
NMO ellipses for each layer (Grechka and Tsvankin, 1999):

V−2
cir ¼

1

2π

Z
2π

0

V−2
nmoðαÞdα ¼ Whom

11 þWhom
22

2
≈
Whet

11 þWhet
22

2
:

(9)

The correction term in equation 5 is obtained by adding the con-
tributions of all LH layers. If layer m is laterally homogeneous,
the corresponding correction term goes to zero because the
vertical time τ0m is constant.
To study the dependence of the NMO ellipse on the depth and

thickness of an LH interval in the overburden, we consider the
special case of a three-layer medium with lateral velocity variation
confined to the second layer (Figure 1). Using equation 5, the
NMO ellipse for the reflection from the bottom of the model
can be written as:

Whom
ij ¼ Whet

ij −
τ0 D
3

∂2τ02
∂yi ∂yj

����
y¼yCMP

; ði; j ¼ 1; 2Þ;

(10)

where

D ¼ k2 þ 3klþ 3l2; (11)

k ¼ τ02ðVð2Þ
cir Þ2

τ01ðVð1Þ
cir Þ2 þ τ02ðVð2Þ

cir Þ2 þ τ03ðVð3Þ
cir Þ2

; (12)

and

l ¼ τ03ðVð3Þ
cir Þ2

τ01ðVð1Þ
cir Þ2 þ τ02ðVð2Þ

cir Þ2 þ τ03ðVð3Þ
cir Þ2

: (13)

If the vertical velocity variation is weak, k and l are close to the
relative thicknesses of the second and third layers, respectively.
When l ¼ 0, the model includes just an LH layer overlaid by a
homogeneous medium, and the term D reduces to k2. This result,
obtained by Grechka and Tsvankin (1999), indicates that the influ-
ence of a thin LH layer located immediately above the target reflec-
tor is insignificant. Indeed, when the relative thickness of the LH
layer is 0.1, the term D reduces to just 0.01 (equations 10 and 11
and Figure 2), compared to unity for a single LH layer (equation 4).
However, the influence of LH rapidly increases with the thick-

ness of layer 3 and reaches its maximum when the LH layer is lo-
cated at the top of the model (the termD reaches 2.71 when k ¼ 0.1

and l ¼ 0.9). Indeed, the contribution of a thin LH layer to the
NMO ellipse is proportional to the squared relative thickness of
the third (underlying) layer because the term 3l2 in equation 11
makes the primary contribution to D when l ≫ k. Thus, along with
the thickness of the LH layer, its distance from the target reflector is
a key parameter responsible for the LH-induced distortion.
For a fixed depth of the LH layer, the magnitude of the

LH-related term in equation 10 increases with target depth not only

because of a larger coefficient D, but also because of the increase in
the total vertical traveltime τ0. As illustrated by Figure 3, the NMO-
velocity error monotonically increases with the depth of the target
reflector and also with the velocity in the third (deepest) layer or
elsewhere in the medium. Indeed, Whom

ij is inversely propotional
to the squared average velocity (Vavg) in the model, while τ0 in
the LH-related term in equation 10 is proportional 1/Vavg. Therefore,
the contribution of the correction term increases with the average
velocity.
The exact interval NMO ellipse in the reference laterally homo-

geneous medium can be found from the generalized Dix equation
(Grechka et al., 1999):

W−1
n;hom ¼ tðNÞW−1

homðNÞ − tðN − 1ÞW−1
homðN − 1Þ

tðNÞ − tðN − 1Þ ; (14)

where WhomðN − 1Þ and WhomðNÞ describe the reference effective
NMO ellipses for the top and bottom of the Nth layer (respectively),
and tðN − 1Þ and tðNÞ are the corresponding zero-offset travel-
times. When the target interval is located beneath the LH layer,
the LH-induced distortion in WhetðNÞ is larger than that in
WhetðN − 1Þ (see Figure 3). Hence, substitution of Whet for

Figure 1. Reflection raypath through a model with three horizontal
layers. Here, R is the reflection point for the unperturbed ray. Fol-
lowing Grechka and Tsvankin (1999), the raypath perturbation
caused by weak lateral heterogeneity is assumed to be negligible,
and the ray is confined to the vertical plane. Only the second layer is
laterally heterogeneous.

Figure 2. Coefficient D for a three-layer model computed from
equation 11 as a function of the parameter l for k ¼ 0.1 (solid line)
and k ¼ 0.2 (dashed). Here, D ¼ 1 (thin horizontal line) corre-
sponds to a single LH layer. For l ¼ 0, the reflector coincides with
the bottom of the LH layer.
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Whom causes errors in the interval NMO ellipse obtained from equa-
tion 14. Although the difference in the correction term between
WhetðNÞ and WhetðN − 1Þ may be relatively small if the Nth layer
is thin, the influence of LH is amplified by Dix differentiation
(Figure 4). Therefore, the NMO ellipse should be corrected for lat-
eral heterogeneity before applying equation 14.
Similar conclusions for isotropic media are drawn by Blias

(2009), who shows that the heterogeneity-related distortion
becomes more significant after Dix differentiation. Note that our
algorithm can be applied to NMO velocities estimated from 2D data
and, therefore, can increase the accuracy of conventional velocity
analysis and time-to-depth conversion based on the Dix equation.

Synthetic test

Next, we compare analytic NMO ellipses computed from equa-
tions 10–14 with the ellipses reconstructed from synthetic data gen-
erated by a 2D finite-difference algorithm (we used the open-source
Madagascar code “sfewe”). The model includes an isotropic LH
interval embedded in a layered HTI medium (Figure 5 and Table 1).
HTI can be considered as a special case of the more general

orthorhombic medium with a horizontal symmetry plane. The
azimuthal variation of the P-wave NMO velocity in a horizontal
orthorhombic layer is described by (Tsvankin, 1997, 2005):

V−2
nmoðαÞ ¼

sin2ðα − φÞ
½Vð1Þ

nmo�2
þ cos2ðα − φÞ

½Vð2Þ
nmo�2

; (15)

VðiÞ
nmo ¼ V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δðiÞ

p
; ði ¼ 1; 2Þ; (16)

where φ is the azimuth of the symmetry plane ½x1; x3�, Vð1;2Þ
nmo are the

symmetry-plane NMO velocities, and δð1;2Þ are the anisotropy para-
meters introduced by Tsvankin (1997). For an HTI layer with the
symmetry axis x1, the coefficient δð1Þ ¼ 0, and the NMO ellipse is
determined by the parameters V0, φ, and δð2Þ (often denoted by
δðVÞ). Equation 15 remains valid in a layered HTI or orthorhombic
medium with a uniform orientation of the vertical symmetry
planes. The velocities Vð1;2Þ

nmo then become effective parameters
obtained by rms averaging of the interval values.
The isotropy plane of the HTI layers (φ ¼ 45°) represents a plane

of symmetry for the entire model. Although the orthogonal plane is
not a plane of symmetry, our testing shows that the NMO ellipses
can be accurately estimated by 2D synthetic modeling and hyper-
bolic semblance search for the vertical planes corresponding to
φ ¼ �45°. The interval NMO ellipses are then obtained from

Figure 3. LH-induced distortion in the effective NMO velocity
computed from equation 10 in the y-direction for a three-layer iso-
tropic model where lateral heterogeneity is confined to the second
layer. The horizontal axis is the depth of the target interface (the
bottom of the third layer). The velocity at the CMP location
(y ¼ 0 km) in the first and second layers is 3 km∕s, and in the third
layer is 2 km∕s (dotted line), 3 km∕s (dashed) and 4 km∕s (solid).
The second (LH) layer is located at 1 km depth with thickness
z2 ¼ 0.2 km and ∂2τ02∕∂y2 ¼ 0.02 s∕km2, which corresponds
to a 10 ms perturbation of τ02 (or a 13% velocity perturbation)
at y ¼ �1 km. There is no linear lateral velocity variation in the
LH layer.

Figure 4. LH-induced distortion in the interval NMO velocity (so-
lid line) for a horizontally layered isotropic model where the thick-
ness of the target interval is (a) 0.5 km and (b) 1 km. The horizontal
axis is the depth of the top of the target interval. The velocity at the
CMP location (y ¼ 0 km) is 3 km∕s for all depths, and an LH
layer is located at 1 km depth with thickness z2 ¼ 0.2 km and
∂2τ02∕∂y2 ¼ 0.02 s∕km2 (the other layers are laterally homoge-
neous). Here, Vnmo is computed in the y-direction using Dix differ-
entiation. Errors in the effective NMO velocities for the top (dotted)
and bottom (dashed) of the target layer are shown for comparison.

Figure 5. (a) Stratified HTI model that includes an isotropic LH
layer. (b) Lateral variation of the vertical velocity V0 in the LH
layer. Model parameters are listed in Table 1.

Table 1. Parameters of the model from Figure 5. The vertical
velocity V0 in layer 2 is shown in Figure 5b. The Thomsen-
style parameter δ�V� is defined in the symmetry-axis plane
of HTI media (e.g., Tsvankin, 2005), and φ is the azimuth
of the symmetry axis.

Layer 1 Layer 2 Layer 3 Layer 4

V0 ðkm∕sÞ 2.0 2.5–3.2 3.8 4.5

δðVÞ −0.05 0 −0.03 −0.07
φ (degrees) −45 — −45 −45

U52 Takanashi and Tsvankin
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the generalized Dix equation 14 without correcting for lateral het-
erogeneity. The analytic NMO ellipses Whet

ij are computed from the
second derivatives of the interval traveltime τ02 at the CMP location
and the exact expression for the reference ellipses Whom

ij . Since the
surface τ02ðx1; x2Þ for the LH layer from the model in Figure 5 is
sufficiently smooth, the second traveltime derivative ∂2τ02∕ð∂yi∂yjÞ
can be accurately evaluated in a close vicinity (1 × 1 km) of the
CMP location.
The difference in the eccentricity of the NMO ellipses computed

by the two methods does not exceed 2% (Table 2). This test also
confirms that the distortion caused by an LH layer in the overburden
increases with reflector depth and is further amplified by Dix-type
differentiation (Table 2). The eccentricity of the interval NMO
ellipse for layer 4 determined from the synthetic data is more than
two times greater than the actual value. The error in the interval
eccentricity reduces from 12.5% to 2% when the correction term
is subtracted from the effective NMO ellipses (equation 5) prior
to Dix differentiation (equation 14).
Next, we investigate the sensitivity of the presented analytic

approach to the strength of anisotropy and lateral heterogeneity
using the model in Figure 5. When the values of δðVÞ for layers
1, 3, and 4 are changed to 0.15, 0.09, and 0.21, respectively (the
other parameters are the same as in Table 1), the error of equation 5
for the eccentricity of the effective NMO ellipses is still less than
2%, although the interval eccentricity is distorted by 5%. If the mag-
nitude of the lateral velocity variation in the LH layer (layer 2) is
three times larger than that for the model in Figure 5, the difference
between the analytic and numerical estimates of the effective eccen-
tricity does not exceed 3%, with the corrected interval eccentricity
deviating by 5% from the actual value.

ESTIMATION OF THE LENS-INDUCED
DISTORTION IN NMO ELLIPSES

Here, we explore the possibility of applying the above formalism
to evaluation of distortions caused by a velocity lens. First, follow-
ing Biondi (2006) and Takanashi and Tsvankin (2011), we review
the influence of a high-velocity lens on the NMO velocity for 2D
models where the effective spreadlength L 0 (i.e., the maximum dis-
tance between the incident and reflected rays at lens depth) is larger
than the lens width (Figure 6a). At the center of the lens
(location B), the NMO velocity is significantly reduced compared
to that for the background medium (location A) because of a larger
traveltime difference between the near- and far-offset traces. At the
side of the lens (location C), Vnmo is greater than the background
value. A similar distortion in Vnmo can also be induced by a horst
structure when the overburden has a lower velocity (Figure 6b).
The 2D analysis helps understand the influence of a velocity lens

on the NMO ellipse. We consider a 3D model containing an elon-
gated high-velocity lens embedded in a homogeneous background
layer (Figure 7). The NMO velocity estimated at location B in the
direction perpendicular to the lens is smaller than the background
value. The NMO velocity parallel to the lens represents the
correct effective Vnmo (provided the lens is longer than the effective
spreadlength), which is slightly higher than the velocity in the
background. Thus, the NMO ellipse at point B is extended in
the direction parallel to the lens. Near the edge of the lens (location
C), the NMO velocity measured perpendicular to the lens is greater
than Vnmo in the background.

Therefore, if the background is isotropic, the major axis of the
NMO ellipse is parallel to the high-velocity lens at location B
and perpendicular to it at location C (Figure 7a). If the background
is azimuthally anisotropic with the high-velocity direction perpen-
dicular to the lens, the NMO ellipse becomes closer to a circle at
location B and more elongated at location C (Figure 7b). The
spatially varying NMO ellipses in Figure 7b resemble those
observed on field data by Takanashi et al. (2009b), who attributed

Table 2. Eccentricity of the effective NMO ellipses (described
by Whet

ij ) for interfaces 3 and 4 and of the interval NMO
ellipse in layer 4 for the model in Figure 5 and Table 1.
The analytic values computed from equation 5 are
compared with those obtained by synthetic modeling.
The interval NMO ellipses are found from equation 14
without correcting for lateral heterogeneity. The
background eccentricity corresponds to the reference
laterally homogeneous model at the CMP location.
The azimuth of the major axis of all NMO ellipses is 45°.

Interface 3 Interface 4 Interval (layer 4)

Analytic (%) 7.3 12 18

Numerical (%) 8.1 13 20

Background (%) 3.5 4.9 7.5

Figure 6. Schematic picture of near- and far-offset raypaths from a
horizontal reflector beneath (a) a high-velocity lens and (b) a horst
structure where the top layer has a lower velocity (modified from
Biondi, 2006, and Takanashi and Tsvankin, 2011). (c) The influ-
ence of the lens or horst structure on the moveout curves. The ray-
paths and moveout curves at locations A, B, and C are shown by
dotted, solid, and dashed lines, respectively.
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the NMO-velocity distortions to the presence of a high-velocity lens
in the overburden.
Next, we apply equation 5, designed for a smooth velocity

field, to correct for the influence of a velocity lens embedded in
horizontally layered media. Grechka and Tsvankin (1999) show that
accurate estimation of the second traveltime derivatives in an LH
layer generally requires spatial smoothing and the order of the
polynominal used to approximate τ0ðx; yÞ influences the correction
results.
Here, we suggest to compute the curvature of the interval vertical

traveltime in a spreadlength-dependent way to adequately approx-
imate lens-induced distortions in the NMO ellipse using equation 5.
The finite-spread moveout velocity is primarily governed by the
lateral variation of the interval vertical traveltime over the area
corresponding to the effective spreadlength L 0ðαÞ (α is the
azimuth). Ignoring ray bending, L 0ðαÞ can be found as

L 0ðαÞ ¼ Z − Z 0

Z
LðαÞ; (17)

where LðαÞ is the spreadlength, Z is the reflector depth, and Z 0

is the depth of the lens. As shown below, L 0ðαÞ can be accurately
estimated by velocity-independent layer-stripping (VILS) without
knowledge of the medium parameters. The lateral variation

of τ02 over L 0ðαÞ can be approximated by the quadratic
equation

τ02ðx; yÞ ¼ aþ bxþ cyþ dx2 þ exyþ fy2; (18)

and the second derivatives of τ02 then become

∂2τ02
∂x2

¼ 2d;
∂2τ02
∂x∂y

¼ e;
∂2τ02
∂y2

¼ 2f: (19)

The best-fit curvature (i.e., the coefficients d, e, and f) obtained
from equation 18 can vary with spreadlength; a larger spreadlength
generally reduces the estimated curvature. Since L 0ðαÞ increases
with target depth (Takanashi and Tsvankin, 2011), the computed
curvature is also depth-dependent. The parameters d, e, and f,
combined with τ0 and D, are sufficient to compute the correction
terms in equation 5 at a given CMP location. The synthetic test
below confirms that this method accurately approximates the
distortion in the NMO ellipse caused by a lens with a width (w)
smaller than L 0. If the lens is centered at the CMP location, the
curvature is substantial for the ratio w∕L 0 ranging between 0.3
and 0.7, which is consistent with 2D numerical results in Takanashi
and Tsvankin (2011).

Synthetic tests

Isotropic model with an elongated lens

First, we present a synthetic example for a
multilayered isotropic model that contains a
high-velocity elongated lens in the second layer
(Figure 8). The lens-induced vertical-traveltime
distortion reaches 20 ms. Using equations 5–8
and 17–19, we analyze the influence of the lens
on the effective and interval NMO ellipses.
To obtain the correction term in equation 5 for

interfaces 3 and 4, we estimate the curvature of
the interval vertical traveltime τ02. The best-fit
surface of τ02, obtained from equation 18 for
the area of the effective spread L 0, has a positive
curvature (in the direction perpendicular to the
lens axis) at the center of the lens and a negative
curvature outside it. When the horizontal dis-
tance between the lens and the CMP location

is larger than half the effective spreadlength, the curvature goes
to zero.
In agreement with Figure 7a, the matrix Whet

ij computed from
equations 5–8 and 17–19 shows that the major axis of the effective
NMO ellipses for interfaces 3 and 4 is parallel to the lens axis at the
center of the lens and perpendicular to it outside the lens (Figure 9).
The larger distortion for interface 4 is due to an increase in τ0 and
the coefficient D with depth (equation 10).
Although the target interval is isotropic and located far below the

thin LH layer, applying Dix-type differentiation without correcting
for the influence of the lens amplifies the false elongation of
the effective NMO ellipses (Figure 9). The false eccentricity of
the interval NMO ellipse reaches 10%, which exceeds a typical
anisotropy-related azimuthal variation of Vnmo (e.g., Grechka and
Tsvankin, 1999).

Figure 7. Plan view of NMO ellipses (solid lines) at three locations for an otherwise
homogeneous layer with an embedded high-velocity elongated lens (shaded). The ve-
locity model and raypaths in the vertical plane perpendicular to the lens are the same as
in Figure 6a. The lens is embedded in (a) an isotropic background and (b) an azimuthally
anisotropic background with the higher-velocity direction perpendicular to the major
axis of the lens. The dashed circles mark the background NMO ellipses at location
A outside the lens.

Figure 8. (a) Isotropic layeredmodelwithanelongatedhigh-velocity
lens. The first, third, and fourth layers are homogeneous with
V0 ¼ 2 km∕s, 3.8 km∕s, and 4.5 km∕s, respectively. (b) The
velocity surface in the second layer,which is 100m thick andcontains
a smooth elongated lens with V0 ¼ 3.3 km∕s at the center
(V0 ¼ 2.5 km∕s outside the lens).
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Table 3 compares the NMO ellipses computed from equation 5
with the ellipses reconstructed from wide-azimuth synthetic data
(generated with finite-differences) using the global semblance
search of Grechka and Tsvankin (1999). The eccentricity of the
analytic NMO ellipses for both interfaces does not deviate by more
than 1% from the numerically modeled value. Therefore, equation 5
gives an accurate description of NMO ellipses in a layered isotropic
medium with a thin elongated lens.

Jenner’s model

A more complicated isotropic model with lateral heterogeneity is
studied by Jenner (2009; Figure 10). The lateral velocity variation is
produced by the topography of the top of a low-velocity inclusion
inside the LH layer; the maximum push-down vertical time anomaly
is 16 ms (Figure 10b). Using ray-traced synthetic data of Jenner
(2009), we compared the NMO ellipses obtained by hyperbolic
moveout inversion with those computed from equations 5–8.
As expected, the NMO ellipses for interfaces 1 and 2 are

extended perpendicular to the axis of the low-velocity lens above
the lens center and parallel to the axis outside the lens. Similar to the
model from Figures 8 and 9, the distortion of the effective NMO
ellipses is larger for the deeper interface (Figure 11). The effective
eccentricity for Jenner’s model is small because the LH layer is lo-
cated relatively close to the two deeper reflectors (see equations 5
and 6). However, the false azimuthal variation of the effective NMO
velocity is significantly amplified in the interval NMO ellipses ob-
tained from Dix differentiation (Figure 12). Although the zero-
offset traveltime surface in the LH layer has a complicated shape,
and the semblance for CMP locations near the lens is relatively low,
the analytic ellipses are in good agreement with those reconstructed
from the synthetic data. Note that the magnitude of the interval
eccentricity (both analytic and modeled numerically) does not
increase with depth as rapidly as it does in Figure 4; indeed, the
estimated curvature (i.e., the magnitude of the parameters d, e,
and f in equation 18) in equation 5 decreases with target depth.

HTI model

Next, we examine an azimuthally anisotropic medium (Table 4)
that has the same geometry as the isotropic model in Figure 8.
The LH layer is kept isotropic, while the other layers have HTI sym-
metry. The effective NMO ellipses computed from equation 5 are
close to circles at the center of the lens because the influence of azi-
muthal anisotropy is compensated by the lens-induced distortion
(Figure 13a, b). Substantial effective and interval
ellipticities are observed at the side of the lens
where LH further stretches the NMO ellipse for
the reference homogeneous model. As is the
case for isotropic media, the LH-induced distor-
tion is amplified in the interval NMO ellipses
(Figure 13c).
To verify the accuracy of the analytic expres-

sions, we reconstruct the interval NMO ellipses
in layer 4 using finite-difference synthetic data.
Since lateral heterogeneity and azimuthal aniso-
tropy are relatively weak, reflection traveltimes
in any azimuthal direction are well-approximated
by those computed using the 2D finite-difference
algorithm, as was confirmed by comparing shot

Figure 9. Effective NMO ellipses for the model from Figure 8 (the
gray zone marks the lens, see Figure 8b) for interfaces (a) 3 and (b)
4. (c) The interval NMO ellipses for layer 4 obtained by generalized
Dix differentiation without correcting for lateral heterogeneity.
The ticks are parallel to the major axis of the ellipse, and their length
is proportional to the eccentricity. The maximum eccentricity
(at the center of the lens) is 4%, 6%, and 10% for plots (a), (b),
and (c), respectively. The spreadlength is 3 km in both the
x- and y-directions.

Table 3. Comparison of the eccentricity of the NMO ellipses
computed from equations 5–8 and 17–19 with that obtained
from finite-difference synthetic data for the model from
Figure 8.

CMP location
ðx; yÞ km

Interface 3
(0, 0)

Interface 3
(0, 1.5)

Interface 4
(0, 0)

Interface 4
(0, 1.5)

Analytic (%) 4.4 2.5 6.4 3.5

Finite-
difference (%)

4.9 1.6 7.0 3.4

Figure 10. (a) Isotropic layered model with a 200 m-thick laterally heterogeneous layer
(Jenner, 2009). (b) Zero-offset time distortion (estimated from the push-down anomaly
on the near-offset stack) caused by a low-velocity inclusion in the LH layer.
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gathers produced by 2D and 3D modeling. To remove the LH-
induced distortion in the effective NMO ellipses, we estimate the
coefficient D in equation 5 from the zero-offset traveltime τ0
and the best-fit azimuthally invariant NMO velocity (i.e., the
“NMO circle”) for each layer. Because the model is horizontally
layered, the zero-offset time distortion Δτ0 can be accurately

recovered from the pull-up anomaly on the near-offset stacked sec-
tion. The second derivatives of the interval vertical traveltime are
then obtained from the best-fit surface τ02 over the area limited
by the effective spreadlength using equation 18.
The interval NMO ellipse estimated from the uncorrected data is

strongly distorted by LH both at the center and outside the lens
(Table 5). The eccentricity is understated at
the center of the lens and overstated outside,
and the major axis of the ellipse at the center
of the lens is even rotated by 90°. For the model
parameters in Table 4, the major axis after the
correction has the correct orientation and the er-
ror in the eccentricity is less than 1%. Further-
more, the correction accurately reconstructs
the background NMO ellipse for a medium with
stronger azimuthal anisotropy (model 2); the er-
ror in the eccentricity at the center of the lens for
that model decreases from 11% to 2%.

LENS CORRECTION FOR
NONHYPERBOLIC MOVEOUT

INVERSION OF
WIDE-AZIMUTH DATA

For a horizontal, laterally homogeneous
orthorhombic layer with a horizontal symmetry
plane, long-spread P-wave reflection moveout
is accurately described by the generalized
Alkhalifah-Tsvankin (1995) equation (Xu and
Tsvankin, 2006; Tsvankin and Grechka, 2011)

t2 ¼ t20 þ
x2

V2
nmoðαÞ

−
2 ηðαÞ x4

V2
nmo½t20 V2

nmoðαÞ þ ð1þ 2ηðαÞÞx2� ;
(20)

where t is the traveltime as a function of the
offset x and azimuth α, and t0 is the zero-offset
time. The azimuthally varying NMO velocity
(the NMO ellipse) is given by equation 15, while
the azimuthally varying parameter ηðαÞ can be
found from (Pech and Tsvankin, 2004):

ηðαÞ ¼ ηð1Þsin2ðα − φÞ
− ηð3Þsin2ðα − φÞ cos2ðα − φÞ
þ ηð2Þcos2ðα − φÞ;

(21)

φ is the azimuth of the ½x1; x3� symmetry
plane, and the anellipticity parameters ηð1;2;3Þ

are defined in the symmetry planes.
Equation 20 remains sufficiently accurate for

horizontally layered orthorhombic media, if
VnmoðαÞ represents the effective NMO ellipse,
and the effective η for each azimuth is given
by the VTI equation (Xu and Tsvankin, 2006):

Figure 11. Effective NMO ellipses for interfaces (a, b) 1 and (c, d) 2 from the model in
Figure 10 obtained from (a, c) hyperbolic moveout inversion and (b, d) equations 5–8
and 17–19. The spreadlength-to-depth ratio for moveout analysis is unity. The gray scale
is proportional to the magnitude of the zero-offset time distortion (see Figure 10b).

Figure 12. Interval NMO ellipses for layers (a, b) 1 and (c, d) 2 obtained from (a, c)
hyperbolic inversion and (b, d) equations 5–8 and 17–19. The interval ellipses are com-
puted from the generalized Dix equation without correcting for lateral heterogeneity.
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ηðαÞ ¼ 1

8

�
1

V4
nmoðαÞt0

�XN
i¼1

ðVðiÞ
nmoðαÞÞ4

× ð1þ 8ηðiÞðαÞÞtðiÞ0
�
− 1

�
; (22)

where VðiÞ
nmo and ηðiÞðαÞ are the interval parameters. The principal

azimuthal directions for the effective parameter ηðαÞ in equation 21
are described by a separate angle φ1 (rather than φ), if the vertical
symmetry planes in different layers are misaligned (Xu and
Tsvankin, 2006). The symmetry-plane orientation and five effective
moveout parameters can be obtained by a semblance-based
algorithm using the nonhyperbolic equation 20 (Vasconcelos and
Tsvankin, 2006). After the effective traveltimes have been recon-
structed, the velocity-independent layer-stripping method (VILS)
can be employed to find the interval moveout parameters (Wang
and Tsvankin, 2009).

Correction algorithm

To remove the influence of lenses on long-offset reflection
traveltime, we extend the correction algorithm of Takanashi and
Tsvankin (2011) to 3D wide-azimuth data. Eliminating the travel-
time distortions on each recorded trace ensures accurate estimation
of the moveout parameters in equations 20 and 21. This extension is
based on the 3D version of VILS employed by Wang and Tsvankin
(2009) (also, see Tsvankin and Grechka, 2011) for purposes of in-
terval nonhyperbolic moveout inversion in laterally homogeneous
media. As is the case for the 2D algorithm, the lens should be
embedded in a horizontally layered overburden, but the target layer
can be heterogeneous with dipping or curved internal reflectors
(Figure 14).
Under the assumption that the raypath perturbation caused by the

lens is negligible, VILS can estimate the horizontal coordinates xT1,
xR1, xT2, and xR2 of the intersection points along the raypath. This
procedure does not require knowledge of the velocity model and
involves matching the time slopes of the target event and those
of the reflections from the top and bottom of the layer containing
the lens (Figure 14a, see Wang and Tsvankin, 2009). Then, ignoring
ray bending in the lens layer, we can find the horizontal coordinates
of the crossing points and the ray angles (Figure 14):

xTL ¼ xT1 þ
z 0TLðxT2 − xT1Þ

z
; (23)

xRL ¼ xR1 þ
z 0RLðxR2 − xR1Þ

z
; (24)

cos θTL ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxT1 − xT2j2 þ z2

p ; (25)

cos θRL ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxR1 − xR2j2 þ z2

p ; (26)

where z is the layer thickness, and z 0TL and z 0RL are the distances
between the lens and the top of the layer at locations xTL and
xRL, respectively.

Figure 13. Effective NMO ellipses (same display as in Figure 9) for
interfaces (a) 3 and (b) 4 from the layered HTI model in Table 4.
(c) The interval NMO ellipses for layer 4 obtained from the general-
ized Dix equation. The maximum eccentricity is 5%, 8%, and 13%
for plots (a), (b), and (c), respectively. The eccentricity of the effec-
tive background NMO ellipses for interfaces 3 and 4 is 3.8% and
5.1%, respectively.

Table 4. Relevant parameters of the HTI model used in
synthetic testing. The model geometry and the vertical
velocity V0 are the same as in Figure 8. The second (LH)
layer is isotropic with V0 shown in Figure 8b; the other
layers are laterally homogeneous.

Layer 1 Layer 2 Layer 3 Layer 4

V0 ðkm∕sÞ 2.0 2.5–3.2 3.8 4.5

δðVÞ −0.05 0 −0.03 −0.07

φ (degrees) −45 — −45 −45

Table 5. Eccentricity of the interval NMO ellipses in layer 4
of the four-layer HTI medium from Table 4. The ellipses are
obtained by generalized Dix differentiation before and after
correcting for lateral heterogeneity. The parameters of model
1 are listed in Table 4 (see also Figure 13), while for model 2
the parameter δ�V� in layer 4 was changed to −0.15.

Location ðx; yÞ km Model 1
(0, 0)

Model 1
(0, 1.5)

Model 2
(0, 0)

Model 2
(0, 1.5)

Before correction (%) 2.3 15 7.3 27

After correction (%) 8.2 8.5 19 20

Actual (%) 7.5 7.5 18 18
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Assuming that z 0TL∕z and z 0RL∕z are known from vertical travel-
times, the total lens-induced traveltime shift for the reflection from
the bottom of the target can be computed as

Δtta ¼
1

2

�
Δt0ðxTLÞ
cos θTL

þ Δt0ðxRLÞ
cos θTL

�
; (27)

where Δt0ðxTLÞ and Δt0ðxRLÞ are the zero-offset time distortions
below the lens at locations xTL and xRL, respectively.
After the correction, the reflection traveltimes should be close to

those in the background model and, therefore, well-described by
equation 20. The interval values of Vð1;2Þ

nmo and ηð1;2;3Þ can be com-
puted following the algorithm of Wang and Tsvankin (2009) using
the layer-stripped data corrected for the lens-induced time shifts.
The removal of the LH-related time distortions should also improve
stacking of wide-azimuth data.
The horizontal coordinates xTL and xRL for the longest-offset

raypath for each azimuth delineate the area corresponding to the
effective spreadlength L 0ðαÞ. That area can be used to find the
second traveltime derivatives needed in the analytic correction of
the NMO ellipse discussed above.

Synthetic tests

The correction algorithm was tested on the layered model from
Table 6 that includes a lens embedded in a three-layer orthorhombic
medium. The moveout parameters Vð1;2Þ

nmo , φ, and ηð1;2;3Þ were
estimated at the center and side of the lens from finite-difference
synthetic data. The required input quantities for the lens correction
are the vertical-time distortion Δt0 in the lens area, the horizontal

coordinates xTL and xRL for each reflected ray, and the angles θTL
and θRL. The spatially varying values Δt0 were obtained from
the pull-up anomaly measured from near-offset stacked data
(Figure 15). The spatial extent of the lens can be also identified
by the high-amplitude anomaly of the reflection from its top.
The pull-up time anomaly is observed for the bottom of the lens
layer as well as for interfaces 3 and 4. The agreement of the spatial
extent of the amplitude and zero-offset time anomalies can be used
to identify an LH layer on field data (Armstrong et al., 2001;
Takanashi et al., 2008, 2009a).
The ratio z 0∕z for the layer containing the lens is not required for

estimating the coordinates xTL and xRL because the lens in this
model is sufficiently close to the bottom of layer 1 (Figure 8). Thus,
xTL ≈ xT1 and xRL ≈ xR1 can be obtained by matching the time
slopes of the target reflection and the reflection from the bottom
of layer 1 (Figure 8).
The gather uncorrected for LH contains azimuthally varying re-

sidual moveout, which could not be removed by the nonhyperbolic
moveout equation 20 (Figure 16a). Application of traveltime shifts
substantially reduces the residual moveout and makes it possible to
produce a high-quality stack.

Figure 14. (a) 3D ray diagram of the correction algorithm. The
horizontal coordinates of the intersection points (two-component
vectors xT1, xT2, xR1, and xR2) are determined from velocity-
independent layer stripping. (b) An upgoing ray segment crossing
the lens. Using the values of z 0RL and z, we can compute the hor-
izontal location of the crossing point (xRL) and the ray angle (θRL)
with the vertical.

Table 6. Anisotropy parameters of a layered orthorhombic
model with an isotropic velocity lens in layer 2. The model
geometry and the vertical velocity V0 are the same as in
Figure 8 (V0 in the second layer is shown in Figure 8b). The
angle φ is the azimuth of the �x1; x3� symmetry plane.

Layer 1 Layer 2 Layer 3 Layer 4

Vð1Þ
nmo ðkm∕sÞ 2.0 2.5–3.3 3.8 4.72

Vð2Þ
nmo ðkm∕sÞ 1.9 2.5–3.3 4.0 4.85

φ (degrees) −45 — −45 −45

ηð1Þ 0 0 0.05 0

ηð2Þ 0 0 0 0.07

ηð3Þ 0 0 0.1 −0.12

Figure 15. Near-offset stacked sections for several azimuthal
directions. The center of each panel corresponds to x ¼ y ¼ 0.
The azimuth −45° corresponds to the major axis of the lens.
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Next, the interval parameters Vð1;2Þ
nmo and ηð1;2;3Þ for layer 4 are

estimated using the layer-stripped prestack data, as suggested by
Wang and Tsvankin (2009). The errors in Vð1Þ

nmo and ηð1Þ before
the lens correction reach 25% and 0.49, respectively; after the
correction, the distortion is reduced to 1% for Vð1;2Þ

nmo and less than
0.03 for ηð1;2;3Þ (Table 7). As shown in Takanashi and Tsvankin
(2011) for 2D models, errors up to 20% in the input parameters
Δt0 and z do not significantly impair the correction results.

CONCLUSIONS

We presented an analytic expression for the NMO ellipse in a
stratified anisotropic medium with an arbitrary number of laterally

heterogeneous (LH) layers. Both anisotropy and heterogeneity are
assumed to be weak, and the horizontal plane has to be a plane of
symmetry. The equation shows that the distortion caused by an
LH layer in the overburden is proportional to the quadratic lateral
variation of the interval vertical traveltime and also increases
with target depth and average effective NMO velocity for the target
event.
Because of the strong depth dependence of the influence of

lateral heterogeneity, application of the generalized Dix equation
may significantly amplify the false elongation or compression of
the effective NMO ellipses. To obtain an accurate interval NMO
ellipse in the reference homogeneous medium, the influence of
LH on the effective NMO ellipses should be removed before apply-
ing Dix differentiation. The correction for lateral heterogeneity re-
quires estimating the second horizontal derivatives of the vertical
traveltime in the LH interval and the circular (isotropic) approxima-
tions for the interval NMO velocity in all layers.
The presented equation can be applied to multiple LH layers by

computing the horizontal interval traveltime derivatives for each
layer. Since the influence of weak anisotropy on the correction term
is negligible, the method is not restricted to HTI and remains valid
for lower-symmetry (orthorhombic and monoclinic) media with a
horizontal symmetry plane. Synthetic tests confirm the accuracy
of our formalism for typical horizontally layered models with
moderate anisotropy and lateral velocity variation. Although the
correction for LH substantially reduces the distortion in the interval
moveout, Dix differentiation is sensitive to even small errors in the
effective NMO ellipses, particularly when the target interval is
relatively thin.
To describe NMO ellipses for interfaces beneath thin

velocity lenses, we compute the second lateral traveltime derivatives
by approximating the zero-offset traveltime with a quadratic
function over the area corresponding to the effective spreadlength
(i.e., to the maximum distance between the incident and reflected
rays at lens depth). Application of our technique to isotropic and
HTI models showed that it closely approximates the laterally
varying lens-induced distortion in the effective NMO ellipses.
Consequently, generalized Dix differentiation produces an accurate
interval NMO ellipse in the reference homogeneous model.
Although this analytic approach cannot be used to correct
prestack traveltimes and increase stack power, it helps quickly
evaluate the influence of velocity lenses on both effective and
interval NMO velocities and reconstruct the background NMO
ellipticities.
To correct long-offset, multiazimuth prestack data for lens-

induced time shifts, we developed an approach based on 3D
velocity-independent layer stripping (VILS). The correction algo-
rithm assumes that the raypath perturbation caused by the lens is
negligible and requires estimates of the lens-related zero-offset time
distortion Δt0, the thickness of the layer containing the lens, and
the distance between the lens and the nearest layer boundary.
The method was successfully tested on synthetic data generated
with a finite-difference algorithm for a thin lens embedded in a
layered orthorhombic medium. Application of prestack traveltime
shifts substantially reduced errors in the effective and interval move-
out parameters Vð1;2Þ

nmo and ηð1;2;3Þ and ensured a high quality of stack
for a wide range of offsets and azimuths.
Since some fractured reservoirs are overlaid by a gently dipping

overburden containing velocity lenses, the developed methodology

Table 7. Estimated interval parameters V�1;2�
nmo , φ, and η�1;2;3�

in layer 4 from the model in Table 6 before and after
applying the time shifts (equation 27).

Location
ðx; yÞ km

Actual Before
correction

After
correction

Before
correction

After
correction

(0, 0) (0, 0) (0, 1.5) (0, 1.5)

Vð1Þ
nmo ðkm∕sÞ 4.72 3.58 4.79 5.07 4.70

Vð2Þ
nmo ðkm∕sÞ 4.85 4.59 4.93 5.05 4.87

φ (degrees) 45 45 45 — 45

ηð1Þ 0 0.49 −0.01 0.04 0.01

ηð2Þ 0.07 0.22 0.04 0.05 0.05

ηð3Þ −0.12 0.13 −0.10 0.46 −0.15

Figure 16. CMP gathers in different azimuthal directions at the cen-
ter of the lens. The gathers are corrected for nonhyperbolic moveout
using equation 20 (a) before and (b) after applying the lens-related
traveltime shifts.
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should be highly beneficial in fracture-detection projects.
The proposed correction algorithms should also help build
more accurate velocity models for imaging of wide-azimuth off-
shore data.
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APPENDIX A

NMO ELLIPSE IN A HORIZONTALLY LAYERED
MODEL WITH WEAK LATERAL

VELOCITY VARIATION

The goal of this appendix is to obtain an approximate expression
for the NMO ellipse in a stratified model with an arbitrary number
of laterally heterogeneous layers. First, we derive the NMO ellipse
for an N-layer model with lateral heterogeneity confined to layer m
(Figure A-1). The derivation follows the approach of Grechka and
Tsvankin (1999, Appendix B), whose model was limited to two LH
layers. The magnitude of anisotropy in each layer and of lateral
heterogeneity in layer m is assumed to be weak, and the horizontal
plane is taken to be a plane of symmetry. In the linear approxima-
tion, the raypath perturbation caused by lateral heterogeneity can be
neglected, so the ray does not deviate from the vertical incidence
plane (Figure A-1).
Then the one-way traveltime τ hetðx1; x2Þ for the stratified model

from Figure A-1 can be obtained in the same way as in Grechka and
Tsvankin (1999, equation B-3):

τhetðx1; x2Þ ¼ τT þ τB þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhðmÞÞ2 þ ðzðmÞÞ2

q
hðmÞ

×
Z

hðmÞþhðBÞ

hðBÞ

1

gðmÞðξÞ dξ; (A-1)

where

hðBÞ ¼ hðmþ1Þþ · · · þhðNÞ; (A-2)

τT ¼ τ1þ · · · þτm−1; (A-3)

and

τB ¼ τmþ1þ · · · þτN: (A-4)

Here ξ is the horizontal displacement along the ray, τ1 · · ·N
is the one-way interval traveltime, and zðmÞ is the thickness of
layer m.
The interval group velocity along the ray is denoted by

gðmÞ ¼ gðmÞðα; θ; ξÞ ¼ gðmÞðα; θ; y1; y2Þ (α is the azimuth of the
CMP line, and θ is the polar angle). As mentioned above, the
traveltime perturbation due to the velocity variation is computed
along the unperturbed ray in the laterally homogeneous layered
model. Expanding the lateral variation of gðmÞ in a double Taylor
series in the horizontal coordinates y1 and y2 and evaluating the
integral in equation A-1, τ het can be expressed as (Grechka and
Tsvankin, 1999, Appendix B):

τ het ¼ τT þ τB þ τhomm

�
1 −

hðmÞ
h þ 2 hðBÞ

h

2gðmÞ
0

ðgðmÞ
;1 x1 þ gðmÞ

;2 x2Þ

−
ðhðmÞ

h Þ þ 3 hðmÞhðBÞ
h2 þ 3ðhðBÞh Þ2

6gðmÞ
0

× ðgðmÞ
;11 x

2
1 þ 2gðmÞ

;12 x1x2 þ gðmÞ
;22 x

2
2Þ
�
; (A-5)

where τhomm is the one-way interval traveltime for the reference
homogeneous model, x1 ¼ h cos α, x2 ¼ h sin α, and gðmÞ

0 , gðmÞ
;i ,

and gðmÞ
;ij are the zero-, first-, and second-order terms of the

Taylor series:

gðmÞ
0 ≡ gðmÞðα; θ; 0; 0Þ; (A-6)

gðmÞ
;i ≡

∂gðmÞðα; θ; y1; y2Þ
∂yi

����
y1¼y2¼0

; (A-7)

gðmÞ
;ij ≡

∂ 2gðmÞðα; θ; y1; y2Þ
∂yi ∂yj

����
y1¼y2¼0

: (A-8)

The third- and higher-order terms are assumed to be negligible.
If anisotropy and lateral heterogeneity are weak, Snell’s

law at the transmission points can be applied to the background

Figure A-1 Reflection raypath through an anisotropic, horizontally
layered model. The half-offset h ¼ hðBÞ þ hðmÞ þ hðTÞ; R is the re-
flection point for the unperturbed ray, and R1 and R2 are the inter-
section points with layer boundaries. The raypath perturbation
caused by weak lateral heterogeneity is assumed to be negligible,
and the ray is confined to the vertical plane. Only layerm is laterally
heterogeneous.
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group velocities gðmÞjy1¼y2¼0 (for layer m ¼ 1; 2; ...; N) and the
corresponding ray angles (Figure A-1):

sin θ1
gð1Þ

¼ sin θ2
gð2Þ

¼ · · ·¼ sin θm
gðmÞ ¼ · · ·¼ sin θN

gðNÞ : (A-9)

Since the LH-induced raypath perturbation is neglected,
equation A-9 can be rewritten as

hð1Þ

τhom1 ðgð1ÞÞ2 ¼
hð2Þ

τhom2 ðgð2ÞÞ2 ¼ · · ·¼ hðmÞ

τhomm ðgðmÞÞ2 ¼ · · ·

¼ hðNÞ

τhomN ðgðNÞÞ2 ; (A-10)

which leads to the following relationships:

hðmÞ

h
¼ τmðgðmÞÞ2PN

r¼1 τrðgðrÞÞ2
(A-11)

and

hðBÞ

h
¼

P
N
r¼mþ1 τrðgðrÞÞ2P
N
r¼1 τrðgðrÞÞ2

: (A-12)

In the weak-anisotropy approximation, the vertical velocities gðmÞ
0

can be replaced with the interval NMO velocities averaged over
azimuth (Grechka and Tsvankin, 1999):

V−2
cir ¼

1

2π

Z
2π

0

V−2
nmoðαÞdα ¼ Whom

11 þWhom
22

2
≈
Whet

11 þWhet
22

2
:

(A-13)

Therefore, the ratios km ¼ hðmÞ
h

����
h¼0

and lm ¼ hðBÞ
h

����
h¼0

are determined

by VðmÞ
cir and the vertical traveltimes τ0m:

km ¼ τ0mðVðmÞ
cir Þ2P

N
r¼1 τ0rðVðrÞ

cir Þ2

¼ τ0mðVðmÞ
cir Þ2

τ0TðVðTÞ
cir Þ2 þ τ0mðVðmÞ

cir Þ2 þ τ0BðVðBÞ
cir Þ2

; (A-14)

and

lm ¼
P

N
r¼mþ1 τ0rðVðrÞ

cir Þ2P
N
r¼1 τ0rðVðrÞ

cir Þ2

¼ τ0BðVðBÞ
cir Þ2

τ0TðVðTÞ
cir Þ2 þ τ0mðVðmÞ

cir Þ2 þ τ0BðVðBÞ
cir Þ2

; (A-15)

where VðTÞ
cir and VðBÞ

cir are the circular approximations of the interval
NMO velocities in the layers above (from 1 to m − 1) and below
(from mþ 1 to N) the LH layer, respectively, and τ0T and τ0B are
corresponding zero-offset traveltimes. Evaluating the second-order

derivatives of equation A-5 with respect to x1 and x2 at the CMP
location yields:

∂2τhet

∂xi∂xj

����
x¼0

¼ ∂2τhom

∂xi∂xj

����
x¼0

− ðkm þ 2lmÞ
�
∂τhomm

∂xi

����
x¼0

gðmÞ
;j

gðmÞ
0

þ ∂τhomm

∂xj

����
x¼0

gðmÞ
;i

gðmÞ
0

�

− τhomm ðkm þ 2lmÞ
�
∂
∂xi

�
gðmÞ
;j

gðmÞ
0

�
þ ∂

∂xj

�
gðmÞ
;i

gðmÞ
0

������
x¼0

− τhom0m

ðk2m þ 3kmlm þ 3l2mÞ gðmÞ
;ij

3gðmÞ
0

����
x¼0

: (A-16)

Following Grechka and Tsvankin (1999, Appendices A and B),
we eliminate the terms containing ∂τhomm ∕∂xði;jÞ (since the zero-
offset ray is assumed to be vertical, and the interval traveltime is
symmetric with respect to the vertical axis) and gðmÞ

;ði;jÞ (because
of the symmetry with respect to the vertical axis). Then
equation A-16 yields

∂2τhet

∂xi∂xj

����
x¼0

¼ ∂2τhom

∂xi∂xj

����
x¼0

−
�
k2m þ 3kmlm þ 3l2m

3gðmÞ
0

τhom0m gðmÞ
;ij

�
:

(A-17)

Using the definition of the NMO ellipse (Grechka and Tsvankin,
1998) and setting τ0m ¼ τhet0m ¼ τhom0m (because lateral heterogeneity
is weak), equation A-17 can be rewritten as

Whet
ij ¼ Whom

ij −
τ0

3gðmÞ
0

�
ðk2m þ 3kmlm þ 3l2mÞτ0mgðmÞ

;ij

�����
x¼0

;

ði; j ¼ 1; 2Þ; (A-18)

whereWhet
ij is the NMO ellipse for the actual model, andWhom

ij is the
NMO ellipse for the reference anisotropic homogeneous medium.
Since all reflectors in the model are horizontal, the second spatial
derivatives of the vertical velocity gðmÞ

0 can be approximately
expressed through those of the vertical traveltime τ0m (Grechka
and Tsvankin, 1999)

Whom
ij ¼ Whet

ij −
τ0
3

�
ðk2m þ 3kmlm þ 3l2mÞτ0m;ij

�����
x¼0

;

ði; j ¼ 1; 2Þ: (A-19)

Note that the Taylor-series expansion of the group velocity g ðmÞ
0

used in the derivation can be replaced with that of the “group
slowness” (the inverse of gðmÞ

0 ). Then equation A-19 can be derived
without applying the linear approximation to equation A-18
required to obtain 1∕ðgðmÞðα; θ; y1; y2ÞÞ from gðmÞðα; θ; y1; y2Þ
(Grechka and Tsvankin, 1999, their equation A-11). Numerical test-
ing shows that the expression for the heterogeneity-related term in
equation A-19 (with the second derivatives of the interval vertical
traveltime) is more accurate than that in equation A-18 (with the
second derivatives of the interval vertical velocity).
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As mentioned above, in the linear approximation the raypath
perturbation caused by weak lateral heterogeneity can be ignored.
Therefore, equation A-19 can be generalized for a model with an
arbitrary number of LH layers (i.e., every layer can be LH) as
follows:

Whom
ij ¼ Whet

ij −
XN
m¼1

τ0 Dm

3

∂2τ0m
∂yi ∂yj

����
y¼yCMP

; ði; j ¼ 1; 2Þ;

(A-20)

where

Dm ¼ k2m þ 3kmlm þ 3l2m: (A-21)
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