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ABSTRACT

Reflection tomography in the migrated domain can help re-
construct heterogeneous, anisotropic velocity fields needed for
accurate depth imaging of complex geologic structures. The pre-
sence of anisotropy, however, increases the uncertainty in velo-
city analysis and typically requires a priori constraints on the
model parameters. Here, we develop a 2D P-wave tomographic
algorithm for heterogeneous transversely isotropic media with a
tilted symmetry axis (TTI) and investigate the conditions neces-
sary for stable estimation of the symmetry-direction velocity
VP0 and the anisotropy parameters ε and δ. The model is divided
into rectangular cells, and the parameters VP0, ε, δ, and the tilt ν
of the symmetry axis are defined at the grid points. To increase
the stability of the inversion, the symmetry axis is set orthogonal

to the imaged reflectors, with the tilt interpolated inside each
layer. The iterative migration velocity analysis involves efficient
linearized parameter updating designed to minimize the residual
moveout in image gathers for all available reflection events.
The moveout equation in the depth-migrated domain includes
a nonhyperbolic term that describes long-offset data, which
are particularly sensitive to ε. Synthetic tests for models with
a “quasi-factorized” TTI syncline (i.e., ε and δ are constant in-
side the anisotropic layer) and a TTI thrust sheet demonstrate
that stable parameter estimation requires either strong smooth-
ness constraints or additional information from walkaway VSP
(vertical seismic profiling) traveltimes. If the model is quasi-
factorized with a linear spatial variation of VP0, it may be pos-
sible to obtain the interval TTI parameters just from long-spread
reflection data.

INTRODUCTION

Prestack depth migration, or PSDM (e.g., Berkhout, 1982; Etgen,
1988; Lumley, 1989) has become the most widely used imaging
technique in seismic exploration because of its high accuracy for
complex subsurface structures. Velocity models for depth imaging
are usually built by migration velocity analysis (MVA), which op-
erates in the migrated domain (Fowler, 1988; Deregowski, 1990;
Etgen, 1990; van Trier, 1990; Liu, 1997).
The goal of MVA is to remove residual moveout of reflection

events in common-image gathers (CIGs), obtained by computing
migrated depth as a function of offset. Due to the high sensitivity
of CIGs to medium parameters, quantitative analysis of the relation-
ship between the residual moveout and velocity field helps refine
the model, usually in iterative fashion. However, the flatness
of CIGs is a necessary, but not a sufficient condition for resolv-
ing the medium parameters. Therefore, velocity model-building
using CIGs typically requires additional constraints (e.g., well

measurements) to reduce the nonuniqueness of the inverse
problem.
Since most subsurface formations are anisotropic, ignoring ani-

sotropy in P-wave processing leads to image distortions and inter-
pretation errors (e.g., Alkhalifah and Larner, 1994; Alkhalifah et al.,
1996; Vestrum et al., 1999). For example, in complex geologic set-
tings including fold-and-thrust belts and subsalt plays, sedimentary
formations are often described by transversely isotropic models
with a vertical (VTI) or tilted (TTI) symmetry axis (Douma et al.,
2009; Neal et al., 2009; Bakulin et al., 2010a). To ensure stable
estimation of the symmetry-direction P-wave velocity VP0 and an-
isotropy parameters ε and δ, the orientation of the symmetry axis
is commonly assumed to be known from structural information
(Audebert et al., 2006; Bakulin et al., 2010b).
Behera and Tsvankin (2009) develop a 2D MVA algorithm for

heterogeneous TTI media based on the approach suggested by Sar-
kar and Tsvankin (2004) for vertical transverse isotropy. To reduce
the number of unknown parameters, they divide the model into
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quasi-factorized TTI blocks. Within each block, the parameters ε
and δ are constant, and the symmetry-direction velocity VP0 varies
linearly according to the vertical (kz) and lateral (kx) gradients. Be-
hera and Tsvankin (2009) also adopt the widely used assumption
that the symmetry axis is perpendicular to the bottom of TTI layers
(i.e., the tilt ν of the symmetry axis is equal to the reflector dip).
They show that the gradients kz and kx and the parameters ε and
δ can be accurately resolved, if VP0 is specified at a single point
in each block. Note that stable estimation of ε in TTI media requires
long-spread (nonhyperbolic) moveout with the maximum offset
reaching at least two reflector depths. Despite the efficiency of
Behera and Tsvankin’s (2009) algorithm, their relatively simple
model representation may be inadequate for complex subsurface
structures with nonlinear spatial parameter variations.
To handle realistic subsurface geology, the model can be divided

into relatively small cells, and the parameters at each grid point are
often estimated using ray-based postmigration tomography (Stork,
1992; Campbell et al., 2006; Woodward et al., 2008). Most current
applications of gridded tomography to TTI media simplify the in-
version by keeping ε and δ fixed and updating only the symmetry-
direction velocity VP0 (Charles et al., 2008; Huang et al., 2008).
This procedure, however, does not adequately describe anisotropic
velocity fields and may distort NMO velocities for both horizontal
and dipping events. Zhou et al. (2011) develop multiparameter to-
mography for TTI media and apply it to field data. They find that
simultaneous estimation of all three relevant parameters (VP0, ε, and
δ) provides a better data fit than single-parameter (only velocity)
inversion. Zhou et al. (2011) also conclude that trade-offs between
the TTI parameters cannot be eliminated using only P-wave reflec-
tions, and point out the importance of additional constraints from
well data. However, they do not carry out joint inversion of reflec-
tion and borehole data including, for example, VSP (vertical seis-
mic profiling) traveltimes.
Bakulin et al. (2010b) develop localized gridded anisotropic to-

mography, which combines surface seismic data with borehole
measurements (acoustic logs or check-shot surveys). Despite the
additional constraints, they still obtain a wide range of TTI models
that flatten the CIGs and fit the borehole data. The nonuniqueness

may be partially caused by the limited angle coverage of check-shot
rays. Bakulin et al. (2010b) also use a constant (45°) tilt of the sym-
metry axis for their synthetic model, not a practical assumption for
field data.
Here, we present a 2D ray-based tomographic algorithm designed

to iteratively update TTI parameters defined on rectangular (in some
cases square) grids. The symmetry axis is set perpendicular to the
interfaces that may be dipping or curved. To construct the Fréchet
matrix, which links the model update and the data misfit, the tra-
veltime derivatives with respect to the parameters at each grid point
are computed numerically along the ray trajectory. We test the al-
gorithm on two synthetic models containing a TTI syncline and a
thrust sheet. To better constrain the anisotropic velocity field,
P-wave reflections are combined with walkaway VSP data by
including the VSP traveltime misfit in the objective function.

METHODOLOGY

We start from an initial model, which can be built using conven-
tional-spread P-wave reflection data combined with borehole infor-
mation, such as check-shot traveltimes and reflector depths (Wang
and Tsvankin, 2010). Then, the entire P-wave data volume is used
to update the subsurface velocity field by flattening long-spread im-
age gathers throughout the model. This linearized parameter update
is implemented using the 2D ray-based gridded tomographic tech-
nique described below.

Input data

Images at each step of parameter updating are generated by 2D
prestack Kirchhoff depth migration (Seismic Unix program “sukd-
mig2d”). The moveout of migrated events in CIGs serves as the
input to the tomographic algorithm. To avoid manual moveout pick-
ing, MVA typically employs semblance analysis with an appropri-
ate analytic representation of moveout as a function of offset.
Conventionally, moveout in CIGs is described by the best-fit hyper-
bola with a single parameter (equivalent to NMO velocity) respon-
sible for the term quadratic in the half-offset h. To constrain the TI
anellipticity parameter η (and, therefore, ε), the hyperbolic approx-
imation can be replaced by a more general nonhyperbolic equation
(Sarkar and Tsvankin, 2004)

z2ðhÞ ≈ z2ð0Þ þ Rh2 þ S
h4

h2 þ z2ð0Þ ; (1)

where z is migrated depth, and R and S are dimensionless coeffi-
cients used to estimate the magnitude of residual moveout. Alter-
natively, the residual moveout can be evaluated using nonparametric
methods (e.g., Murphy and Gray, 1999).

Model representation

The model is divided into rectangular (sometimes square) cells
(Figure 1), with the symmetry-direction velocity VP0 and the an-
isotropy parameters ε and δ defined at each vertex of the grid.
The spatial variation of the model parameters inside each cell is
obtained by 2D interpolation. The grid size is determined by the
expected resolution, acquisition geometry, and subsurface structure.
If the grid size is too large compared to the dimensions of geologic
units, the property variation is oversimplified. On the other hand, if
the grid is too fine, the parameters may be poorly constrained and

Figure 1. Gridded model (dashed lines) used in MVA. The symme-
try axis (arrows) at the vertices (dots) of each cell crossed by an
interface (solid lines) is set orthogonal to the corresponding
interface segment.
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reside in the null space. Also, the grid size determines the number of
unknown parameters and, therefore, influences the demands on
computer memory.
When an interface crosses a cell, the symmetry axis at the four

vertices of the cell is assumed to be orthogonal to the corresponding
interface segment (Figure 1). Therefore, the tilt ν of the symmetry
axis is taken equal to the interface dip ϕ calculated from the depth
image. Then, the tilt field for the whole section is obtained by 2D
linear interpolation.

Model updating

To update the velocity model, we extend to gridded TTI media
the MVA algorithm of Sarkar and Tsvankin (2004) designed for
piecewise-factorized VTI models. Because the number of un-
knowns in our model is much larger, the partial derivatives of tra-
veltime with respect to the medium parameters cannot be obtained
simply from traveltime differences caused by certain parameter
perturbations (Sarkar and Tsvankin, 2004). Instead, the traveltime
derivatives are found numerically along computed raypaths, as
described below.
Suppose the number of grid points in the model isW, and there are

N parameters defined at each grid point. Then we iteratively update
the parameter vector λ, which contains W × N elements, using the
inversion algorithm introduced in Appendix A. Since the number
of unknowns can be very large and the coverage of seismic rays
for each cell is uneven, the tomographic inversion is generally ill-
conditioned. Therefore, the inverse problem (equation A-4) should
be constrained using regularization terms. To obtain the vector of
model updates Δλ, we minimize the following objective function
(based on the L2-norm):

F ðΔλÞ ¼ kAΔλþ bk2 þ ζ21 kΔλk2 þ ζ22 kLðΔλþ λ0Þk2;
(2)

where A is a matrix withM × P rows (M is the number of offsets in
each CIG and P is the number of CIGs) and W × N columns whose
elements are the derivatives of migrated depth with respect to the
medium parameters, and b is a vector which contains the residual
moveout of the migrated depths (see Appendix A). The matrix L
is a finite-difference approximation of the Laplacian operator, which
penalizes solutions that are rough in a second-derivative sense (λ0 is
the model obtained at the previous iteration), and ζ2 is a regulariza-
tion parameter that controls the trade-off between minimizing the
data misfit and the norm of the model parameters scaled by L. Also,
the magnitudes of the parameter updates corresponding to small de-
rivatives in the matrix A are governed by including the norm of Δλ
with the weight ζ1 in function 2.

Computation of traveltime derivatives

The matrix A contains the traveltime derivatives with respect to
the medium parameters defined on grids (equation A-5). These de-
rivatives can be computed numerically along each raypath (Jech and
Pšenčík, 1992; Zhou et al., 2004; Zhou and Greenhalgh, 2008)
using the first-order traveltime perturbation theory (Červený and
Jech, 1982; Červený, 2001). The location of the imaged reflection
point for each source-receiver pair (equation A-1) is obtained
from the results of semblance analysis using equation 1. Then, start-
ing from that reflection point, we use the initial-value ray-tracing

algorithm of Alkhalifah (1995) for 2D TI media to search for
the incidence and reflected ray trajectories that satisfy Snell’s
law and match the corresponding offset. The perturbation of the
medium parameter δλis on any raypath R causes the traveltime
change δτ expressed to the first order by

δτ ¼ −
Z
R

1

VVG

�
∂V
∂λis

�
δλis ds; (3)

where V and VG are P-wave phase and group velocities, respec-
tively, and ds is a small segment of R (denoted by the subscript
s). Therefore, the traveltime derivative with respect to the parameter
λi at a specific ray step is approximately given by

∂τ
∂λis

¼ −
δt
V

�
∂V
∂λis

�
; (4)

where δt is the time sample (i.e., the traveltime along ds) in ray
tracing.
Next, we need to convert ∂τ∕∂λis into the derivative with respect

to the parameter λic at a grid point (∂τ∕∂λic). If there are several time
samples on a seismic ray inside one cell (Figure 2), the parameter
perturbation for a specific time sample (δλis) can be obtained by
Lagrange interpolation of the parameter perturbation at one vertex
c (assuming the perturbations at the other three vertices cþ 1,
cþ 2, and cþ 3 are all zero):

δλis ¼ δλic
Y3
d¼1

kxs − xcþdk
kxc − xcþdk

; (5)

where x is the coordinate vector and k : : : k represents the distance
between two points. Since the parameter perturbation at a grid point
only influences the ray segments in the cells that have that grid point
as a vertex, the traveltime derivative with respect to the parameter at
the vertex c (in equation A-5) is

∂τ
∂λic

¼ −
Xn
s¼m

�
δt
V

�
∂V
∂λis

�Y3
d¼1

kxs − xcþdk
kxc − xcþdk

�
: (6)

a) b)

Figure 2. (a) Diagram of seismic ray R passing through three cells
that share a grid point (in red); time samples along the ray change
from m to n. (b) Enlarged cell with each time sample (ray step)
marked in blue. The four vertices of the grid are defined by the
coordinate vectors xc, xcþ1, xcþ2, and xcþ3. The coordinate vector
of a specific ray step is xs.
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Here, the time samples along the ray passing through the cells that
share the vertex c vary from m to n (Figure 2).
Finally, the problem reduces to the computation of the derivatives

of the P-wave phase velocity V with respect to the medium para-
meters on the raypath. Using the P-wave phase-velocity function in
TI media, the derivative ∂V∕∂λis can be obtained analytically. The
exact P-wave phase velocity in terms of the Thomsen parameters is
given by Tsvankin (1996, 2005):

V2

V2
P0

¼ 1þ ε sin2 θ −
f
2

þ f
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 2ε sin2 θ

f

�
2

−
2ðε − δÞ sin2 2θ

f

s
; (7)

where θ is the phase angle with the symmetry axis, VP0 is the sym-
metry-direction velocity, and f ≡ 1 − V2

S0∕V2
P0; VS0 is the symme-

try-direction velocity of S-waves. Because the influence of VS0 on
P-wave kinematics is negligible, the value of f can be set to a con-
stant using a typical VP0∕VS0 ratio (e.g., VP0∕VS0 ¼ 2).
The P-wave phase velocity can also be obtained from an approx-

imation suggested by Fowler (2003) for VTI media:

2V2 ≈ V2
h sin

2 θ þ V2
P0 cos

2 θ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

h sin
2 θ þ V2

P0 cos
2 θÞ2 þ V2

P0ðV2
nmo − V2

hÞ sin2 2θ
q

;

(8)

where Vh ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ε

p
is the velocity in the direction (hori-

zontal in VTI media) perpendicular to the symmetry axis, and
Vnmo ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

p
is the zero-dip NMO velocity. The advantage

of equation 8 is that three velocity variables have the same units and
similar magnitudes; therefore, all elements of A (equation 2) have
the units of time. Moreover, equation 8 helps in constructing the
regularization terms in equation 2. If the changes in ε and δ are

small (e.g., jΔεj ≤ 0.02; jΔδj ≤ 0.02), the up-
dates of Vh and Vnmo can be converted into
the updates of the Thomsen parameters via the
relationships

ΔVh ≈ VP0Δε; ΔVnmo ≈ VP0Δδ: (9)

SYNTHETIC EXAMPLES

Syncline model

Using a 2D finite difference program
(“suea2df” in Seismic Unix), we generate
P-wave reflection data for a medium similar to
the syncline model of Behera and Tsvankin
(2009) (Figure 3). A quasi-factorized TTI layer,
with the boundaries dipping at angles up to 35°
and the symmetry axis perpendicular to its bot-
tom, is embedded between isotropic media. Each
layer includes an additional reflector that helps
estimate the vertical velocity gradient. The data
are computed with shot and receiver intervals of
0.05 km; the maximum offset is 7 km. A depth
section produced by Kirchhoff migration with
the correct velocity model is shown in Figure 4;
it is compared below with images generated
using the inverted models. The artifacts are
caused by noise in the synthetic data.

Test 1

In the first test, we assume that the first layer is known to be
isotropic, while the other two layers are treated as quasi-factorized
TTI. In each layer, the anisotropy parameters ε and δ are constant,
and the symmetry-direction velocity VP0 is defined as

VP0ðx; zÞ ¼ VP0ðx0; z0Þ þ kxðx − x0Þ þ kzðz − z0Þ; (10)

where VP0ðx0; z0Þ is the value at a specific point ðx0; z0Þ; kx and kz
are the lateral and vertical gradients, respectively. Thus, the model
vector becomes

λf ¼ fVðnÞ
P0 ; k

ðnÞ
x ; kðnÞz ; εðnÞ; δðnÞg; ðn ¼ 1; 2; 3Þ; (11)

0

5

D
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th
 (

km
)

0 2 4 6 8
Position (km)

Figure 4. Depth image of the model from Figure 3 computed with
the actual parameters.
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Figure 3. Model with a quasi-factorized TTI layer. (a) The layer boundaries are marked
by bold black lines; within each layer, there is one more reflector (thin lines). The TTI
layer in the middle is embedded between two isotropic layers. The symmetry-direction
velocities at the top of each layer (at locations marked by three black dots in the middle
of the model) are Vð1Þ

P0 ¼ 1.62 km∕s, Vð2Þ
P0 ¼ 2.66 km∕s, and Vð3Þ

P0 ¼ 3.44 km∕s (from
top to bottom). The velocity VP0 varies linearly in each layer according to the lateral
gradients kð1Þx ¼ 0.03 s−1, kð2Þx ¼ 0.05 s−1, and kð3Þx ¼ 0.05 s−1, and the vertical gradi-
ents kð1Þz ¼ 0.5 s−1, kð2Þz ¼ 0.4 s−1, and kð3Þz ¼ 0.3 s−1. The symmetry axis (black ar-
rows) is perpendicular to the boundaries of the TTI layer. (b) The field of the tilt
angle ν of the symmetry axis with the vertical. (c, d) The anisotropy parameters ε
and δ, which are constant in each layer (εð1Þ ¼ δð1Þ ¼ εð3Þ ¼ δð3Þ ¼ 0, εð2Þ ¼ 0.1,
and δð2Þ ¼ − 0.1).
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where VðnÞ
P0 is defined on top of each layer at the point with lateral

coordinate x0 ¼ 4 km (Figure 3a); the depth zðnÞ0 of that point may
change with the interface position after each iteration of MVA.
Behera and Tsvankin (2009) assume that VðnÞ

P0 is known at one point
in each layer (e.g., from check shots) and demonstrate that the other
elements of the model vector in equation 11 can be resolved by
flattening CIGs of long-spread P-wave reflections.
The available range of dips in the TTI syncline, however, helps

resolve the parameters VP0 and δ (Tsvankin and Grechka, 2011,
section 2.4.1) in the second and third layer using just reflection tra-
veltimes. Therefore, we relax the requirement of specifying the cor-
rect velocity value at a single location in each layer, and invert for
VðnÞ
P0 . However, because the first layer is quasi-horizontal, V

ð1Þ
P0 can-

not be constrained without assuming isotropy (Behera and Tsvan-
kin, 2009). Therefore, εð1Þ and δð1Þ in the top layer are set to zero,
with only Vð1Þ

P0 , k
ð1Þ
x , and kð1Þz estimated by MVA. The symmetry axis

is assumed (correctly) to be perpendicular to the interfaces (see
above), with the spatial distribution of the tilt ν between the inter-
faces obtained by linear interpolation.
The quasi-factorized assumption (which is valid for the model at

hand) is equivalent to applying a strong smoothing constraint (de-
scribed by the operator L in equation 2) to the anisotropic velocity
field. Also, the number of unknown parameters (equation 11 with
εð1Þ ¼ δð1Þ ¼ 0) is significantly reduced.
The traveltime derivatives, however, are still calculated at the ver-

tices of relatively small grids (equations 6 and 8). Therefore, we
need to construct a mapping matrix C using the picked boundaries
to convert the model update Δλf into the parameter perturbations
ΔVP0, ΔVh, and ΔVnmo at each grid point (equation 9; the grid size
is 100 m × 100 m). Also, the updates at each iteration are con-
strained by jΔVðnÞ

P0 j ≤ 0.05 km∕s, εðnÞ ≥ 0, jΔεðnÞj ≤ 0.02, and
jΔδðnÞj ≤ 0.02, which corresponds to restricting the norm of model
updates in equation 2. Therefore, without a regularization term, the
inverse problem reduces to minimizing the function

F ðΔλfÞ ¼ kACΔλf þ bk2; (12)

which can be accomplished by applying a linear least-squares algo-
rithm (Gill et al., 1981; Coleman and Li, 1996).
Tomographic inversion is performed for 31 image gathers uni-

formly distributed between the horizontal coordinates 1 km and
7 km. The initial model used in the first iteration of MVA is com-
posed of horizontal isotropic layers (Figure 5a). Because the velo-
city field is strongly distorted, the events exhibit significant residual
moveout (Figure 5b) and the depth image is inaccurate (Figure 5c).
The inverted parameters after 20 iterations are listed in Table 1.

As expected, the errors in the parameters of the third (deepest) layer
are largest, primarily due to its smaller contribution to the effective

reflection traveltimes. Also, because the two bottom reflectors have
mild dips and the maximum offset-to-depth ratio for the deepest
reflector is less than 1.5, the anisotropy parameters in the third layer
are not well constrained. After PSDM, all CIGs become sufficiently
flat (Figure 6a) with the maximum error in the migrated depth
reaching 80 m for the bottom of the model (Figure 6b). If the correct
values of VðnÞ

P0 on top of each layer are used (as Behera and Tsvankin
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Figure 5. (a) Horizontally layered isotropic model used in the first
iteration of velocity analysis. (b) CIGs (displayed every 0.5 km
from 1 km to 7 km) after migration with the initial model.
(c) The corresponding depth image. The bottom of the model is
shifted up due to the inaccurate velocity field.

Table 1. Inversion results for test 1.

VP0 ðkm∕sÞ kx ðs−1Þ kz ðs−1Þ ε δ

Inverted Error (%) Inverted Error Inverted Error Inverted Error Inverted Error
Layer 1 1.63 1 0.030 0 0.48 −0.02 — — — —
Layer 2 2.63 −1 0.048 −0.002 0.43 0.03 0.10 0 −0.09 0.01

Layer 3 3.29 −4 0.046 −0.004 0.28 −0.02 0.05 0.05 0.05 0.05
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[2009] did in their inversion), the velocity gradients and anisotropy
parameters can be recovered with higher accuracy.

Test 2

This time, we relax the constraint on the spatial velocity varia-
tion, and update the symmetry-direction velocity VP0 at each grid
point (the grid size is the same: 100 m × 100 m). The parameters ε
and δ are still taken constant within each layer, as they are in the
actual model. Therefore, the model-update vector becomes

Δλ ¼ fΔVc
P0;ΔεðnÞ;ΔδðnÞg;

ðc ¼ 1; 2; : : : ;WÞ; ðn ¼ 2; 3Þ; (13)

where W is the number of grid points in the model (W ¼ 81 × 51);
εð1Þ and δð1Þ in the top layer are still fixed at zero.
To solve the tomographic inverse problem, equation 2 is

modified as

F ðΔλÞ ¼ kACΔλþ bk2 þ ζ21 kCΔλk2
þ ζ22 kLðΔλþ λ0Þk2; (14)

where C is a mapping matrix similar to the one in equation 12, and
the regularization term (with the same matrix L as in equation 2) is
applied to smooth the velocity field in the process of flattening
CIGs. Here, because the matrix L is a finite-difference approxima-
tion of the Laplacian operator, only parameter variations between
adjacent grid points are restricted. Therefore, equation 14 can be
used to recover nonlinear velocity fields, while in test 1 the spatial
variation of VP0 was held linear. The parameter εðnÞ is kept nonne-
gative, which is a plausible constraint for sedimentary rocks.

To build an initial isotropic model, we use the Dix-derived values
of Vnmo from a common-midpoint (CMP) gather in the area with
relatively flat reflectors (close to the left edge of the model). Then,
the initial velocity field is obtained by image-guided interpolation
(Hale, 2009) (Figure 7a). After 10 iterations, the residual moveout
in the CIGs is largely removed (Figure 8a). On the final image
(Figure 8b), the middle sections of the reflectors in the top two
layers are well positioned (errors are up to �80 m), but the two
bottom reflectors and the interface segments near the model edges
are somewhat distorted.
Because the symmetry-direction velocity VP0 is estimated on the

grid, specifying it at any single point does not help in the inversion.
Without a strong smoothing constraint (as the one in test 1), the
velocity VP0 is obtained with substantial errors. In some areas of
the top two layers, flattening the CIGs yields VP0 with accuracy
higher than 5% (Figures 9a and 10a). The errors in VP0, however,
are much larger in the top left part of the model and in the section
below the syncline. Moreover, because the velocity across the layer
boundaries is discontinuous (Figure 3a), whereas the inversion
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Figure 6. (a) CIGs after PSDM with the inverted parameters
(Table 1) and (b) the corresponding depth image.

Position (km)

D
ep

th
 (

km
)

V (km/s)

 

 

0 2 4 6 8

0

a)

b)

c)

1

2

3

4

5 1

2

3

4

0

5

D
ep

th
 (

km
)

2 4 6
Position (km)

0

5

D
ep

th
 (

km
)

0 2 4 6 8
Position (km)

Figure 7. (a) Isotropic model for the first iteration of velocity ana-
lysis in test 2. The velocity is defined at each vertex of the 100 m
×100 m grid. There is substantial residual moveout in the CIGs
which are displayed every 0.5 km from 1 km to 7 km on plot
(b), and the depth image (c) is distorted.
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operates with a smoothed model (equation 14), VP0 is distorted near
the interfaces.
Because ε and δ were correctly assumed to be constant in each

layer, both parameters are well-resolved (Figure 9b and 9c). To
avoid inconsistent updates of ε and δ caused by interface movement
at each iteration, we applied vertical smoothing over a distance of
100 m. As a result, there are no jumps in the inverted values of ε and
δ across the boundaries. The velocities Vh ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ε

p
and

Vnmo ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

p
, computed with the estimated parameters

VP0, ε, and δ, are distorted by less than 5% in the top two layers,
except for the vicinity of the layer boundaries (Figure 10b and 10c).
However, Vh and Vnmo below the syncline are poorly constrained,
with errors up to 8%.

Test 3

The nonuniqueness of parameter estimation in anisotropic media
is often reduced by including additional information, such as bore-
hole data (Sexton and Williamson, 1998; Morice et al., 2004;
Bakulin et al., 2010b). Therefore, in the next test we combine
the surface reflection data with P-wave walkaway VSP traveltimes.
The parameters ε and δ are still assumed to be constant in each

layer, but the number of layers is doubled to increase the complexity
of the trial model and make it more realistic (i.e., each of the three
layers is divided into two by an additional interface). Therefore, the
model-update vector becomes

Δλ ¼ fΔVc
P0;ΔεðnÞ;ΔδðnÞg;

ðc ¼ 1; 2; : : : ;WÞ; ðn ¼ 1; 2; : : : ; 6Þ; (15)

whereW ¼ 81 × 51 is the same as in test 2. Because the constraints
from walkaway VSP data allow us to resolve all three TTI
parameters, each layer is treated as anisotropic with the parameters
Vc
P0, ε

ðnÞ, and δðnÞ updated simultaneously.

To generate synthetic VSP data, a vertical “well” is placed at lo-
cation xVSP ¼ 3 km, with a string of 46 receivers spanning the
depth interval from 0.09 km to 4.59 km every 100 m. The sources
are located at the surface between x ¼ 0.05 km and x ¼ 5.95 km,
also with an interval of 100 m. The traveltime tVSP for each source-
receiver pair is obtained by ray tracing in the actual model
(Figure 3).
During the iterative inversion, VSP traveltimes t calcVSP are com-

puted by anisotropic ray tracing for each trial model. The difference
between the observed and calculated traveltimes d ¼ tVSP − t calcVSP

can serve as the input to traveltime tomography (Chapman and
Pratt, 1992; Pratt and Chapman, 1992) based on the following
equation

ECΔλ ¼ d: (16)

The matrix E is composed of the traveltime derivatives with respect
to the parameters at each grid point, and the matrixC plays the same
role as that in equation 12 — it maps the model update Δλ into the
parameter perturbation at each grid point. To solve the joint tomo-
graphic inverse problem, we minimize the function
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Figure 8. (a) CIGs after 10 iterations and (b) the corresponding
depth image in test 2.
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Figure 9. (a) Symmetry-direction velocity VP0 estimated at each
grid point in test 2. The inverted interval parameters (b) ε and
(c) δ. Vertical smoothing over a distance of 100 m was applied
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FðΔλÞ ¼ kACΔλþ bk2 þ ζ2VSPkECΔλ − dk2
þ ζ21 kCΔλk2 þ ζ22 kLðΔλþ λ0Þk2; (17)

where ζVSP is the weighting factor of the VSP traveltime misfit.
If borehole information is available, it is possible to build an in-

itial TTI velocity model using, for example, stacking-velocity tomo-
graphy (Wang and Tsvankin, 2010). Here, to ensure consistency, we
use the same isotropic initial model as that in test 2. The VSP data
are directly used in the iterative tomographic algorithm to constrain
the anisotropic velocity field.
After 15 iterations, the tomographic inversion significantly re-

duced the misfit of VSP traveltimes (Figure 11b). Also, CIGs
are flat throughout much of the model (Figures 11a and 12a),
although several gathers close to the right edge still exhibit apparent
RMO because VSP data do not provide constraints on the right side
of the section. The reflectors on the final image (Figure 12b) are
accurately positioned (errors are up to �50 m), with somewhat
larger distortions near the edges due to errors in the velocity field.
With the constraints from VSP data, the spatially varying

symmetry-direction velocity VP0 is well-recovered (Figure 13a),
with absolute errors in most areas smaller than 2% (Figure 14a).
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Figure 10. Percentage velocity errors in test 2 for 1 km ≤ x ≤ 7 km
and 0.3 km ≤ z ≤ 3.9 km. (a) VP0, (b) Vh, and (c) Vnmo.

0 3 6 9 12 15
0

1

2

3

4

5

Iteration

b
(k

m
)

0 3 6 9 12 15
0

0.5

1

1.5

2

Iteration

d
(s

)

a)

b)

Figure 11. (a) L2-norm of the residual moveout in CIGs at each
iteration for joint inversion of reflection and VSP data (test 3, equa-
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0

10

D
ep

th
 (

km
)

6
Position (km)

0

5

D
ep

th
 (

km
)

0

2 4

2 4 6 8
Position (km)

a)

b)
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at long offsets for events near both edges of the model.
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As in test 2, the errors in VP0 are higher near the layer boundaries
(Figure 14a). Due to the insufficient angle coverage of both reflec-
tion and VSP data, the errors in ε and δ in the bottom layer increase
up to 0.05 (Figure 13b and 13c). The velocities Vh and Vnmo are
generally distorted by less than 3% (Figure 14b and 14c), although
the errors at grid points near the layer boundaries are somewhat
larger.

TTI thrust sheet

Next, we test the algorithm on the synthetic data of Zhu et al.
(2007), whose model (simulating typical structures in the Canadian
Foothills) includes a TTI thrust sheet embedded in an otherwise
isotropic, homogeneous medium (Figure 15). P-wave reflection
data are generated by anisotropic finite-difference modeling. The
sources and receivers used in our test are placed every 60 m with
the maximum offset reaching 1980 m. Because the exact model
geometry (i.e., interface positions) is unavailable, we cannot pro-
vide comparisons of our migration results with the actual section.
The initial model for MVA includes two horizontal isotropic

layers (Figure 16a). Although the P-wave velocity in the isotropic
background is set to the correct value, ignoring transverse isotropy

causes noticeable RMO in CIGs (Figure 16b) and a strong distortion
of the imaged reflector beneath the thrust sheet (Figure 16c).
In the model-updating process, the velocity VP0 is defined on a

square (100 m × 100 m) grid. Based on the picked reflectors, the
model is divided into two isotropic blocks and a TTI layer sand-
wiched between them. Within each layer/block, the anisotropy para-
meters ε and δ are assumed to be constant. The symmetry axis is
taken perpendicular to the reflectors, with the tilt changing during
the updates. Because there is only a single deep horizontal reflector
on the right side of the model (Figure 15), the parameters ε and δ
cannot be resolved solely from P-wave reflection data. Therefore,
both ε and δ in the block to the right of the TTI layer are set to zero.
After 12 iterations using the objective function in equation 14, the

velocity in the TTI layer is partially recovered (Figure 17a). Be-
cause VP0 is updated on a relatively fine grid, flattening the CIGs
along three reflectors (only one reflector for the block on the right
side) with general smoothing regularization (equation 14) is insuf-
ficient to recover the velocity field. For example, there is noticeable
heterogeneity in each block that does not exist in the actual model.
With the constraints provided by a wide range of dips in the TTI
thrust sheet and the correct assumption about the spatial variation
of ε and δ, both parameters inside the sheet are well resolved
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Figure 13. (a) Symmetry-direction velocity VP0 estimated at each
grid point in test 3. (b, c) The inverted layer-based parameters ε and
δ (the model includes six layers instead of three in test 2).
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Figure 14. Percentage velocity errors in test 3 for 1 km ≤ x ≤ 7 km
and 0.2 km ≤ z ≤ 4 km. (a) VP0, (b) Vh, and (c) Vnmo.
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(Figure 17b and 17c). The error in ε in the TTI layer (0.03) is some-
what larger than that in δ ð− 0.01Þ because of the small offset-to-
depth ratio, which is close to unity for the bottom reflector. Despite
remaining distortions in VP0, the obtained anisotropic velocity field
largely removes the residual moveout in the CIGs (Figure 18a) and
improves the depth image, especially that of the bottom horizontal
reflector (Figure 18b). Additional reflectors or walkaway VSP data
would allow us to improve reconstruction of the velocity field.

DISCUSSION

Here, we assumed the symmetry axis to be perpendicular to the
reflectors. This common assumption not only stabilizes parameter
estimation, but also simplifies ray tracing because the incidence and
reflection angles are equal. In reality, however, the symmetry axis
may not be aligned with the reflector normal if, for example, sedi-
mentation and tectonic processes occur simultaneously (Bakulin
et al., 2010b). Also, in sediments near salt bodies, stress-induced
anisotropy may cause deviation of the symmetry axis from the nor-
mal to the bedding. Sometimes, the symmetry-axis orientation may
be constrained using a priori information (e.g., geologic data),
which may help express the tilt ν as a function of reflector dip.
Otherwise, an unknown direction of the symmetry axis significantly
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Figure 16. (a) Initial isotropic model used in velocity analysis for
the model from Figure 15. The P-wave velocities in the top and
bottom layers are 2740 m∕s and 3200 m∕s, respectively. (b) The
CIGs computed with the initial model and displayed every
0.6 km. (c) The corresponding depth image.
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Figure 17. (a) Symmetry-direction velocity VP0 estimated at each
grid point. The inverted block-based parameters (b) ε and (c) δ.
In the TTI layer, the estimated ε ¼ 0.19 and δ ¼ 0.07. The para-
meters ε and δ in the block to the right of the TTI layer are set
to zero.

Figure 15. Schematic plot of the synthetic model from Zhu et al.
(2007) (exact model geometry is unknown). The bending thrust
sheet is TTI with the symmetry axis perpendicular to the bound-
aries. The dips range from 0° to 61°, and the interval parameters
of the sheet are VP0 ¼ 2925 m∕s, ε ¼ 0.16, and δ ¼ 0.08. The
P-wave velocity in the isotropic background medium is 2740 m∕s.
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increases the nonuniqueness of the inversion. Note that, except for
the need to compute the reflection angle from Snell’s law, deviation
of the symmetry axis from the reflector normal does not require
substantial changes in the tomographic algorithm.
In areas with sufficient ray coverage, higher model resolution can

be achieved with smaller grids. In general, resolution depends on
many factors, such as acquisition geometry, seismic frequency,
and complexity of subsurface structures (Woodward et al.,
2008). For example, spatial resolution typically decreases with
depth because of a larger Fresnel zone and insufficient constraints
provided by deep reflection events. Below salt bodies, resolution is
also reduced because of illumination problems. Therefore, uniform
rectangular/square grids used here may not be optimal in practice.
To obtain a better velocity model, grid points can be distributed
according to the ray density, size of the Fresnel zone, and geologic
information. Then, it may be convenient to divide the model into
triangular (2D) or tetrahedral (3D) cells of different size (Fomel
and Guitton, 2006; Lelièvre et al., 2012).
Here, we employed Tikhonov (1963) regularization to smooth

the velocity field in both horizontal and vertical directions. Clapp
et al. (2004) develop so-called “steering filters” designed to steer the
velocity variations according to geologic structures (e.g., layers).
Using the steering-filter preconditioner, Bakulin et al. (2010c) per-
form joint tomographic inversion of P-wave reflection data and
check-shot traveltimes for VTI media. In a sequel paper, we intro-
duce similar regularization terms that smooth the model parameters
along layer boundaries, while allowing for more pronounced varia-
tions in the orthogonal direction. Such “structure-guided” regular-
ization may provide useful geologic constraints in field applications
of MVA.

CONCLUSIONS

Currently TTI models are often used to improve imaging results
in complex geologic environments including subsalt plays and ac-
tive tectonic areas (e.g., the Canadian Foothills). However, allowing
for the tilt of the symmetry axis introduces additional uncertainty
into estimation of the interval TTI parameters, even if the symme-
try-axis orientation is fixed using a priori information. Here, we de-
veloped efficient 2D reflection tomography for TTI models, with
the parameters VP0, ε, δ, and the symmetry-axis tilt ν defined on
a rectangular grid. To remove residual moveout of reflection events
in CIGs, migrated depths are described by a nonhyperbolic equation
that remains accurate for large offsets.
Model updating is performed by iterative linearized inversion for

VP0, ε, and δ, while the spatial distribution of ν is obtained by setting
the symmetry axis orthogonal to the reflectors. The Fréchet matrix at
each iteration is constructed by approximately evaluating the travel-
time derivatives with respect to the TTI parameters at all grid points
near the reflection raypaths. The devised algorithm is used to explore
the influence of different assumptions about the spatial variation of
TTI parameters on the accuracy of the inverted model.
Numerical testing is first performed for a three-layer medium

with a quasi-factorized TTI syncline (in which ε and δ are constant)
embedded between isotropic layers with linear velocity variation.
The symmetry-direction velocity VP0 in the TTI layer also varies
linearly, while the symmetry axis is orthogonal to the layer bound-
aries. With several correct model assumptions (i.e., if ε and δ are
known to be constant in each layer, the interval velocity is defined
by the vertical and lateral gradients, and the first layer is treated as
isotropic), the algorithm accurately reconstructs the velocity field
with no other a priori information. If VP0 is updated separately
at each grid point while the anisotropy parameters are still assumed
to be constant in each layer, flattening the CIGs helps recover the
velocities Vh ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ε

p
and Vnmo ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

p
in the first

two layers with errors reaching 5%. The accuracy of the inverted
velocities is lower in the layer below the TTI syncline.
In another test for the same model, reflection data are combined

with P-wave walkaway VSP traveltimes. While VP0 is updated at
each grid point, ε and δ are taken constant in six “sublayers” (each
layer was divided into two). Because of the additional constraints
from VSP data, the velocities VP0, Vh, and Vnmo are well-resolved
(errors are smaller than 3%) for most of the model, and the errors in
ε and δ do not exceed 0.02 (except for the bottom layer).
The other synthetic model includes a bending TTI thrust sheet

with constant parameters ε and δ. The velocity VP0 is updated
on a grid, while the quasi-factorized assumption proves sufficient
to recover both ε and δ due to a wide range of reflector dips. Without
walkaway VSP traveltimes, however, the velocity VP0 in each layer
cannot be resolved just by flattening the CIGs for the available three
reflectors, despite application of general smoothing regularization.
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APPENDIX A

PARAMETER-UPDATING METHODOLOGY

Here, the MVA algorithm for factorized VTI media introduced by
Sarkar and Tsvankin (2004) is extended to gridded TTI models. To
linearize the velocity-analysis problem, we employ an iterative tech-
nique based on the following updating procedure.
Suppose that after the (l − 1)th iteration of MVA, PSDM pro-

duces the migrated depths z0ðxj; hkÞ (xj is the midpoint of the
jth image gather, and hk is the half-offset). The migrated depths
zðxj; hkÞ after the lth iteration can be expressed as a linear perturba-
tion of z0ðxj; hkÞ:

zðxj; hkÞ ¼ z0ðxj; hkÞ þ
XW
c¼1

XN
i¼1

∂z0ðxj; hkÞ
∂λic

Δλic; (A-1)

where W is the number of grid points (c ¼ 1; 2; : : : ;W),
∂z0ðxj; hkÞ∕∂λic are the derivatives of the migrated depths with re-
spect to the medium parameters λi ði ¼ 1; 2; : : : ; NÞ at the vertex c,
and Δλic ¼ λic − λ0ic are the desired parameter updates. Note that
∂z0ðxj; hkÞ∕∂λic ¼ 0, if a specific ray does not cross any cell with
the vertex c (a vertex is shared by four cells). After obtaining the
update Δλic, we can find the parameters λic for the next (lth) itera-
tion of PSDM.
Following the MVA algorithm of Liu (1997), Sarkar and Tsvan-

kin (2004) define the variance of the migrated depths for all offsets
and image gathers as

Var ¼
XP
j¼1

XM
k¼1

½zðxj; hkÞ − ẑðxjÞ� 2; (A-2)

where ẑðxjÞ ¼ ð1∕MÞPM
k¼1 zðxj; hkÞ is the average migrated depth

of a reflection event at midpoint xj, P is the number of image gath-
ers, and M is the number of offsets in each image gather. At each
iteration, the goal is to find the parameter updates that make the
derivative of Var with respect to Δλrs (r ¼ 1; 2; : : : ; N, and
s ¼ 1; 2; : : : ; W) vanish, which helps minimize the RMO in all
CIGs. Using equations A-1 and A-2, we can differentiate the var-
iance Var with respect to the updates and set ∂Var∕∂ðΔλrsÞ ¼ 0,
which yields an equation for Δλic:

XP
j¼1

XM
k¼1

XW
c¼1

XN
i¼1

ðgjk;ic − ĝj;icÞðgjk;rs − ĝj;rsÞΔλic

¼ −
XP
j¼1

XM
k¼1

½z0ðxj; hkÞ − ẑ0ðxjÞ�ðgjk;rs − ĝj;rsÞ; (A-3)

where gjk;ic ≡ ∂z0ðxj; hkÞ∕∂λic (the subscripts r and s correspond to
i and c, respectively), and ĝj;ic ¼ ð1∕MÞPM

k¼1 gjk;ic. Equation A-3
can be rewritten in matrix form as

ATAΔλ ¼ −AT b; (A-4)

where the matrix A has M × P rows and W × N columns (its ele-
ments are gjk;ic − ĝj;ic); the superscript T denotes the transpose, and
b is a vector with M × P elements defined as z0ðxj; hkÞ − ẑ0ðxjÞ.
To evaluate the derivatives of the migrated depths zðxj; hkÞ for a

gridded model, we modify the function given by Sarkar and Tsvan-
kin (2004) as

dz
dλic

¼ −
�
∂τs
∂λic

þ ∂τr
∂λic

�
1

qs þ qr
; (A-5)

where τs is the traveltime from the source to the reflector obtained
after PSDM with the medium parameters λ0ic, τr is the traveltime
from the reflector to the receiver, and qs ¼ ∂τs∕∂z and
qr ¼ ∂τr∕∂z are the vertical slownesses at the reflector for the rays
connecting the reflection point with the source and receiver, respec-
tively. Equation A-5 expresses ∂zðxj; hkÞ∕∂λic through the travel-
time derivatives and vertical slownesses — quantities that can
be computed from anisotropic ray tracing.
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